1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-19 16:27:05 +01:00

CG test written and passes i.e. converges with small true residual

in RedBlack MpcDagMpc, Unprec MdagM and Schur red black solver for
each of.

DomainWallFermion
MobiusFermion
MobiusZolotarevFermion
ScaledShamirFermion
ScaledShamirZolotarevFermion
This commit is contained in:
Peter Boyle
2015-06-03 10:54:03 +01:00
parent 260011670e
commit 84b5c7217d
30 changed files with 241 additions and 74 deletions

103
tests/Test_remez.cc Normal file
View File

@ -0,0 +1,103 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
class MultiShiftFunction {
public:
std::vector<double> poles;
std::vector<double> residues;
double norm;
double lo,hi;
MultiShiftFunction(int n,double _lo,double _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
double approx(double x);
void csv(std::ostream &out);
void gnuplot(std::ostream &out);
};
double MultiShiftFunction::approx(double x)
{
double a = norm;
for(int n=0;n<poles.size();n++){
a = a + residues[n]/(x+poles[n]);
}
return a;
}
void MultiShiftFunction::gnuplot(std::ostream &out)
{
out<<"f(x) = "<<norm<<"";
for(int n=0;n<poles.size();n++){
out<<"+("<<residues[n]<<"/(x+"<<poles[n]<<"))";
}
out<<";"<<std::endl;
}
void MultiShiftFunction::csv(std::ostream &out)
{
for (double x=lo; x<hi; x*=1.05) {
double f = approx(x);
double r = sqrt(x);
out<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
}
return;
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::cout << "Testing Remez"<<std::endl;
double lo=0.01;
double hi=1.0;
int precision=64;
int degree=10;
AlgRemez remez(0.001,1.0,precision);
////////////////////////////////////////
// sqrt and inverse sqrt
////////////////////////////////////////
MultiShiftFunction Sqrt(degree,lo,hi);
MultiShiftFunction InvSqrt(degree,lo,hi);
MultiShiftFunction SqrtSqrt(degree,lo,hi);
MultiShiftFunction InvSqrtSqrt(degree,lo,hi);
std::cout << "Generating degree "<<degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(degree,1,2);
remez.getPFE (& Sqrt.residues[0],& Sqrt.poles[0],& Sqrt.norm);
remez.getIPFE(&InvSqrt.residues[0],&InvSqrt.poles[0],&InvSqrt.norm);
std::cout << "Generating degree "<<degree<<" for x^(1/4)"<<std::endl;
remez.generateApprox(degree,1,4);
remez.getPFE (&SqrtSqrt.residues[0],&SqrtSqrt.poles[0],&SqrtSqrt.norm);
remez.getIPFE(&InvSqrtSqrt.residues[0],&InvSqrtSqrt.poles[0],&InvSqrtSqrt.norm);
ofstream gnuplot(std::string("Sqrt.gnu"),std::ios::out|std::ios::trunc);
Sqrt.gnuplot(gnuplot);
ofstream gnuplot_inv(std::string("InvSqrt.gnu"),std::ios::out|std::ios::trunc);
InvSqrt.gnuplot(gnuplot);
double x=0.6789;
double sx=sqrt(x);
double ssx=sqrt(sx);
double isx=1.0/sx;
double issx=1.0/ssx;
double asx =Sqrt.approx(x);
double assx =SqrtSqrt.approx(x);
double aisx =InvSqrt.approx(x);
double aissx=InvSqrtSqrt.approx(x);
std::cout << "x^(1/2) : "<<sx<<" "<<asx<<std::endl;
std::cout << "x^(1/4) : "<<ssx<<" "<<assx<<std::endl;
std::cout << "x^(-1/2): "<<isx<<" "<<aisx<<std::endl;
std::cout << "x^(-1/4): "<<issx<<" "<<aissx<<std::endl;
assert(fabs(sx-asx)<1.0e-6);
assert(fabs(ssx-assx)<1.0e-6);
assert(fabs(isx-aisx)<1.0e-6);
assert(fabs(issx-aissx)<1.0e-6);
Grid_finalize();
}