1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-03 02:35:55 +01:00

Merge branch 'develop' into feature/scalar_adjointFT

This commit is contained in:
Guido Cossu 2017-05-05 15:47:33 +01:00
commit 8546d01a4c
115 changed files with 7439 additions and 3818 deletions

View File

@ -7,7 +7,7 @@ cache:
matrix: matrix:
include: include:
- os: osx - os: osx
osx_image: xcode7.3 osx_image: xcode8.3
compiler: clang compiler: clang
- compiler: gcc - compiler: gcc
sudo: required sudo: required
@ -75,8 +75,6 @@ before_install:
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi - if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install openmpi; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]] && [[ "$CC" == "gcc" ]]; then brew install gcc5; fi
install: install:
- export CC=$CC$VERSION - export CC=$CC$VERSION
@ -94,15 +92,14 @@ script:
- cd build - cd build
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none - ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
- make -j4 - make -j4
- ./benchmarks/Benchmark_dwf --threads 1 - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- echo make clean - echo make clean
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none - ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
- make -j4 - make -j4
- ./benchmarks/Benchmark_dwf --threads 1 - ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- echo make clean - echo make clean
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then export CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make -j4; fi
- make -j4
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi

View File

@ -3,6 +3,8 @@ SUBDIRS = lib benchmarks tests extras
include $(top_srcdir)/doxygen.inc include $(top_srcdir)/doxygen.inc
bin_SCRIPTS=grid-config
tests: all tests: all
$(MAKE) -C tests tests $(MAKE) -C tests tests

61
TODO
View File

@ -1,6 +1,26 @@
TODO: TODO:
--------------- ---------------
Peter's work list:
2)- Precision conversion and sort out localConvert <--
3)- Remove DenseVector, DenseMatrix; Use Eigen instead. <-- started
4)- Binary I/O speed up & x-strips
-- Profile CG, BlockCG, etc... Flop count/rate -- PARTIAL, time but no flop/s yet
-- Physical propagator interface
-- Conserved currents
-- GaugeFix into central location
-- Multigrid Wilson and DWF, compare to other Multigrid implementations
-- HDCR resume
Recent DONE
-- Cut down the exterior overhead <-- DONE
-- Interior legs from SHM comms <-- DONE
-- Half-precision comms <-- DONE
-- Merge high precision reduction into develop
-- multiRHS DWF; benchmark on Cori/BNL for comms elimination
-- slice* linalg routines for multiRHS, BlockCG
-----
* Forces; the UdSdU term in gauge force term is half of what I think it should * Forces; the UdSdU term in gauge force term is half of what I think it should
be. This is a consequence of taking ONLY the first term in: be. This is a consequence of taking ONLY the first term in:
@ -21,16 +41,8 @@ TODO:
This means we must double the force in the Test_xxx_force routines, and is the origin of the factor of two. This means we must double the force in the Test_xxx_force routines, and is the origin of the factor of two.
This 2x is applied by hand in the fermion routines and in the Test_rect_force routine. This 2x is applied by hand in the fermion routines and in the Test_rect_force routine.
Policies:
* Link smearing/boundary conds; Policy class based implementation ; framework more in place
* Support different boundary conditions (finite temp, chem. potential ... ) * Support different boundary conditions (finite temp, chem. potential ... )
* Support different fermion representations?
- contained entirely within the integrator presently
- Sign of force term. - Sign of force term.
- Reversibility test. - Reversibility test.
@ -41,11 +53,6 @@ Policies:
- Audit oIndex usage for cb behaviour - Audit oIndex usage for cb behaviour
- Rectangle gauge actions.
Iwasaki,
Symanzik,
... etc...
- Prepare multigrid for HMC. - Alternate setup schemes. - Prepare multigrid for HMC. - Alternate setup schemes.
- Support for ILDG --- ugly, not done - Support for ILDG --- ugly, not done
@ -55,9 +62,11 @@ Policies:
- FFTnD ? - FFTnD ?
- Gparity; hand opt use template specialisation elegance to enable the optimised paths ? - Gparity; hand opt use template specialisation elegance to enable the optimised paths ?
- Gparity force term; Gparity (R)HMC. - Gparity force term; Gparity (R)HMC.
- Random number state save restore
- Mobius implementation clean up to rmove #if 0 stale code sequences - Mobius implementation clean up to rmove #if 0 stale code sequences
- CG -- profile carefully, kernel fusion, whole CG performance measurements. - CG -- profile carefully, kernel fusion, whole CG performance measurements.
================================================================ ================================================================
@ -90,6 +99,7 @@ Insert/Extract
Not sure of status of this -- reverify. Things are working nicely now though. Not sure of status of this -- reverify. Things are working nicely now though.
* Make the Tensor types and Complex etc... play more nicely. * Make the Tensor types and Complex etc... play more nicely.
- TensorRemove is a hack, come up with a long term rationalised approach to Complex vs. Scalar<Scalar<Scalar<Complex > > > - TensorRemove is a hack, come up with a long term rationalised approach to Complex vs. Scalar<Scalar<Scalar<Complex > > >
QDP forces use of "toDouble" to get back to non tensor scalar. This role is presently taken TensorRemove, but I QDP forces use of "toDouble" to get back to non tensor scalar. This role is presently taken TensorRemove, but I
want to introduce a syntax that does not require this. want to introduce a syntax that does not require this.
@ -112,6 +122,8 @@ Not sure of status of this -- reverify. Things are working nicely now though.
RECENT RECENT
--------------- ---------------
- Support different fermion representations? -- DONE
- contained entirely within the integrator presently
- Clean up HMC -- DONE - Clean up HMC -- DONE
- LorentzScalar<GaugeField> gets Gauge link type (cleaner). -- DONE - LorentzScalar<GaugeField> gets Gauge link type (cleaner). -- DONE
- Simplified the integrators a bit. -- DONE - Simplified the integrators a bit. -- DONE
@ -123,6 +135,26 @@ RECENT
- Parallel io improvements -- DONE - Parallel io improvements -- DONE
- Plaquette and link trace checks into nersc reader from the Grid_nersc_io.cc test. -- DONE - Plaquette and link trace checks into nersc reader from the Grid_nersc_io.cc test. -- DONE
DONE:
- MultiArray -- MultiRHS done
- ConjugateGradientMultiShift -- DONE
- MCR -- DONE
- Remez -- Mike or Boost? -- DONE
- Proto (ET) -- DONE
- uBlas -- DONE ; Eigen
- Potentially Useful Boost libraries -- DONE ; Eigen
- Aligned allocator; memory pool -- DONE
- Multiprecision -- DONE
- Serialization -- DONE
- Regex -- Not needed
- Tokenize -- Why?
- Random number state save restore -- DONE
- Rectangle gauge actions. -- DONE
Iwasaki,
Symanzik,
... etc...
Done: Cayley, Partial , ContFrac force terms. Done: Cayley, Partial , ContFrac force terms.
DONE DONE
@ -207,6 +239,7 @@ Done
FUNCTIONALITY: it pleases me to keep track of things I have done (keeps me arguably sane) FUNCTIONALITY: it pleases me to keep track of things I have done (keeps me arguably sane)
====================================================================================================== ======================================================================================================
* Link smearing/boundary conds; Policy class based implementation ; framework more in place -- DONE
* Command line args for geometry, simd, etc. layout. Is it necessary to have -- DONE * Command line args for geometry, simd, etc. layout. Is it necessary to have -- DONE
user pass these? Is this a QCD specific? user pass these? Is this a QCD specific?

View File

@ -1,28 +1,22 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_dwf.cc Source file: ./benchmarks/Benchmark_dwf.cc
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License along You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
@ -37,12 +31,12 @@ struct scal {
d internal; d internal;
}; };
Gamma::Algebra Gmu [] = { Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX, Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY, Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ, Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT Gamma::Algebra::GammaT
}; };
typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR; typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
typedef WilsonFermion5D<DomainWallVec5dImplF> WilsonFermion5DF; typedef WilsonFermion5D<DomainWallVec5dImplF> WilsonFermion5DF;
@ -51,24 +45,24 @@ typedef WilsonFermion5D<DomainWallVec5dImplD> WilsonFermion5DD;
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
int threads = GridThread::GetThreads(); int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl; std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> latt4 = GridDefaultLatt(); std::vector<int> latt4 = GridDefaultLatt();
const int Ls=16; const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi()); GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid); GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid); GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::cout << GridLogMessage << "Making s innermost grids"<<std::endl; std::cout << GridLogMessage << "Making s innermost grids"<<std::endl;
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi()); GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid); GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid); GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid); GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4}); std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8}); std::vector<int> seeds5({5,6,7,8});
@ -77,7 +71,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl; std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl; std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
LatticeFermion src (FGrid); random(RNG5,src); LatticeFermion src (FGrid); random(RNG5,src);
#if 0 #if 0
src = zero; src = zero;
@ -93,14 +87,13 @@ int main (int argc, char ** argv)
RealD N2 = 1.0/::sqrt(norm2(src)); RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2; src = src*N2;
#endif #endif
LatticeFermion result(FGrid); result=zero; LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero; LatticeFermion ref(FGrid); ref=zero;
LatticeFermion refDag(FGrid); refDag=zero;
LatticeFermion tmp(FGrid); LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid); LatticeFermion err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl; std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeField Umu(UGrid); LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu); SU3::HotConfiguration(RNG4,Umu);
@ -116,7 +109,7 @@ int main (int argc, char ** argv)
} }
std::cout << GridLogMessage << "Forced to diagonal " << std::endl; std::cout << GridLogMessage << "Forced to diagonal " << std::endl;
#endif #endif
//////////////////////////////////// ////////////////////////////////////
// Naive wilson implementation // Naive wilson implementation
//////////////////////////////////// ////////////////////////////////////
@ -132,30 +125,28 @@ int main (int argc, char ** argv)
U[mu] = PeekIndex<LorentzIndex>(Umu5d,mu); U[mu] = PeekIndex<LorentzIndex>(Umu5d,mu);
} }
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl; std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
if (1) if (1)
{ {
ref = zero; ref = zero;
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
tmp = U[mu]*Cshift(src,mu+1,1); tmp = U[mu]*Cshift(src,mu+1,1);
ref=ref + tmp - Gamma(Gmu[mu])*tmp; ref=ref + tmp - Gamma(Gmu[mu])*tmp;
tmp =adj(U[mu])*src; tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1); tmp =Cshift(tmp,mu+1,-1);
ref=ref + tmp + Gamma(Gmu[mu])*tmp; ref=ref + tmp + Gamma(Gmu[mu])*tmp;
}
ref = -0.5*ref;
} }
ref = -0.5*ref;
}
RealD mass=0.1; RealD mass=0.1;
RealD M5 =1.8; RealD M5 =1.8;
RealD NP = UGrid->_Nprocessors; RealD NP = UGrid->_Nprocessors;
RealD NN = UGrid->NodeCount();
std::cout << GridLogMessage << "Creating action operator " << std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl; std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl; std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl; std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
@ -164,16 +155,22 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplex::Nsimd()<<std::endl; std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl; if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl; if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl; std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000; int ncall =1000;
if (1) { if (1) {
FGrid->Barrier(); FGrid->Barrier();
Dw.ZeroCounters(); Dw.ZeroCounters();
Dw.Dhop(src,result,0); Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond(); double t0=usecond();
for(int i=0;i<ncall;i++){ for(int i=0;i<ncall;i++){
__SSC_START; __SSC_START;
@ -185,65 +182,81 @@ int main (int argc, char ** argv)
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall; double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl; std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl; // std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl; // std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl; std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl; std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
err = ref-result; err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl; std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
/* /*
if(( norm2(err)>1.0e-4) ) { if(( norm2(err)>1.0e-4) ) {
std::cout << "RESULT\n " << result<<std::endl; std::cout << "RESULT\n " << result<<std::endl;
std::cout << "REF \n " << ref <<std::endl; std::cout << "REF \n " << ref <<std::endl;
std::cout << "ERR \n " << err <<std::endl; std::cout << "ERR \n " << err <<std::endl;
FGrid->Barrier(); FGrid->Barrier();
exit(-1); exit(-1);
} }
*/ */
assert (norm2(err)< 1.0e-4 ); assert (norm2(err)< 1.0e-4 );
Dw.Report(); Dw.Report();
} }
if (1) { // Naive wilson dag implementation DomainWallFermionRL DwH(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
refDag = zero;
for (int mu = 0; mu < Nd; mu++) {
// ref = src - Gamma(Gamma::GammaX)* src ; // 1+gamma_x
tmp = U[mu] * Cshift(src, mu + 1, 1);
for (int i = 0; i < refDag._odata.size(); i++) {
refDag._odata[i] += tmp._odata[i] + Gamma(Gmu[mu]) * tmp._odata[i];
}
tmp = adj(U[mu]) * src;
tmp = Cshift(tmp, mu + 1, -1);
for (int i = 0; i < refDag._odata.size(); i++) {
refDag._odata[i] += tmp._odata[i] - Gamma(Gmu[mu]) * tmp._odata[i];
}
}
refDag = -0.5 * refDag;
}
if (1) { if (1) {
FGrid->Barrier();
DwH.ZeroCounters();
DwH.Dhop(src,result,0);
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwH.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert (norm2(err)< 1.0e-3 );
DwH.Report();
}
if (1)
{
std::cout << GridLogMessage<< "*********************************************************" <<std::endl; std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::Dhop "<<std::endl; std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl; std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl; if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl; if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl; std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR; typedef WilsonFermion5D<DomainWallVec5dImplR> WilsonFermion5DR;
LatticeFermion ssrc(sFGrid); LatticeFermion ssrc(sFGrid);
LatticeFermion sref(sFGrid); LatticeFermion sref(sFGrid);
LatticeFermion sresult(sFGrid); LatticeFermion sresult(sFGrid);
WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5); WilsonFermion5DR sDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,M5);
localConvert(src,ssrc); localConvert(src,ssrc);
std::cout<<GridLogMessage<< "src norms "<< norm2(src)<<" " <<norm2(ssrc)<<std::endl; std::cout<<GridLogMessage<< "src norms "<< norm2(src)<<" " <<norm2(ssrc)<<std::endl;
FGrid->Barrier(); FGrid->Barrier();
@ -259,11 +272,12 @@ int main (int argc, char ** argv)
FGrid->Barrier(); FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall; double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw s_inner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl; std::cout<<GridLogMessage << "Called Dw s_inner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl; std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl; std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage<< "res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl; std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
// std::cout<<GridLogMessage<< "res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
sDw.Report(); sDw.Report();
RealD sum=0; RealD sum=0;
@ -276,6 +290,7 @@ int main (int argc, char ** argv)
std::cout<< "sD REF\n " <<ref << std::endl; std::cout<< "sD REF\n " <<ref << std::endl;
std::cout<< "sD ERR \n " <<err <<std::endl; std::cout<< "sD ERR \n " <<err <<std::endl;
} }
// assert(sum < 1.0e-4);
err=zero; err=zero;
localConvert(sresult,err); localConvert(sresult,err);
@ -288,29 +303,16 @@ int main (int argc, char ** argv)
} }
assert(sum < 1.0e-4); assert(sum < 1.0e-4);
// Check Dag
std::cout << GridLogMessage << "Compare WilsonFermion5D<DomainWallVec5dImplR>::Dhop to naive wilson implementation Dag to verify correctness" << std::endl;
sDw.Dhop(ssrc,sresult,1);
err=zero;
localConvert(sresult,err);
err = err - refDag;
sum = norm2(err);
std::cout<<GridLogMessage<<" difference between normal dag ref and simd is "<<sum<<std::endl;
if(sum > 1.0e-4 ){
std::cout<< "sD REF\n " <<result << std::endl;
std::cout<< "sD ERR \n " << err <<std::endl;
}
assert(sum < 1.0e-4);
if(1){ if(1){
std::cout << GridLogMessage<< "*********************************************************" <<std::endl; std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::DhopEO "<<std::endl; std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::DhopEO "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl; std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl; if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl; if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric )
std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl; std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll)
@ -318,58 +320,57 @@ int main (int argc, char ** argv)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm )
std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl; std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl; std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
LatticeFermion sr_eo(sFGrid); LatticeFermion sr_eo(sFGrid);
LatticeFermion ssrc_e (sFrbGrid); LatticeFermion ssrc_e (sFrbGrid);
LatticeFermion ssrc_o (sFrbGrid); LatticeFermion ssrc_o (sFrbGrid);
LatticeFermion sr_e (sFrbGrid); LatticeFermion sr_e (sFrbGrid);
LatticeFermion sr_o (sFrbGrid); LatticeFermion sr_o (sFrbGrid);
pickCheckerboard(Even,ssrc_e,ssrc); pickCheckerboard(Even,ssrc_e,ssrc);
pickCheckerboard(Odd,ssrc_o,ssrc); pickCheckerboard(Odd,ssrc_o,ssrc);
// setCheckerboard(sr_eo,ssrc_o); // setCheckerboard(sr_eo,ssrc_o);
// setCheckerboard(sr_eo,ssrc_e); // setCheckerboard(sr_eo,ssrc_e);
sr_e = zero; sr_e = zero;
sr_o = zero; sr_o = zero;
FGrid->Barrier(); FGrid->Barrier();
sDw.DhopEO(ssrc_o, sr_e, DaggerNo); sDw.DhopEO(ssrc_o, sr_e, DaggerNo);
sDw.ZeroCounters(); sDw.ZeroCounters();
// sDw.stat.init("DhopEO"); // sDw.stat.init("DhopEO");
double t0=usecond(); double t0=usecond();
for (int i = 0; i < ncall; i++) { for (int i = 0; i < ncall; i++) {
sDw.DhopEO(ssrc_o, sr_e, DaggerNo); sDw.DhopEO(ssrc_o, sr_e, DaggerNo);
} }
double t1=usecond(); double t1=usecond();
FGrid->Barrier(); FGrid->Barrier();
// sDw.stat.print(); // sDw.stat.print();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume*ncall)/2; double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "sDeo mflop/s = "<< flops/(t1-t0)<<std::endl; std::cout<<GridLogMessage << "sDeo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "sDeo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl; std::cout<<GridLogMessage << "sDeo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "sDeo mflop/s per node "<< flops/(t1-t0)/NN<<std::endl;
sDw.Report(); sDw.Report();
sDw.DhopEO(ssrc_o,sr_e,DaggerNo); sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
sDw.DhopOE(ssrc_e,sr_o,DaggerNo); sDw.DhopOE(ssrc_e,sr_o,DaggerNo);
sDw.Dhop (ssrc ,sresult,DaggerNo); sDw.Dhop (ssrc ,sresult,DaggerNo);
pickCheckerboard(Even,ssrc_e,sresult); pickCheckerboard(Even,ssrc_e,sresult);
pickCheckerboard(Odd ,ssrc_o,sresult); pickCheckerboard(Odd ,ssrc_o,sresult);
// Check even part
ssrc_e = ssrc_e - sr_e; ssrc_e = ssrc_e - sr_e;
RealD error = norm2(ssrc_e); RealD error = norm2(ssrc_e);
std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<< " vec nrm: "<<norm2(sr_e) <<std::endl; std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<< " vec nrm"<<norm2(sr_e) <<std::endl;
// Check odd part
ssrc_o = ssrc_o - sr_o; ssrc_o = ssrc_o - sr_o;
error+= norm2(ssrc_o); error+= norm2(ssrc_o);
std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<< " vec nrm: "<<norm2(sr_o) <<std::endl; std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<< " vec nrm"<<norm2(sr_o) <<std::endl;
if(error>1.0e-4) { if(( error>1.0e-4) ) {
setCheckerboard(ssrc,ssrc_o); setCheckerboard(ssrc,ssrc_o);
setCheckerboard(ssrc,ssrc_e); setCheckerboard(ssrc,ssrc_e);
std::cout<< "DIFF\n " <<ssrc << std::endl; std::cout<< "DIFF\n " <<ssrc << std::endl;
@ -379,43 +380,20 @@ int main (int argc, char ** argv)
std::cout<< "RESULT\n " <<sresult<< std::endl; std::cout<< "RESULT\n " <<sresult<< std::endl;
} }
assert(error<1.0e-4); assert(error<1.0e-4);
// Check the dag
std::cout << GridLogMessage << "Compare WilsonFermion5D<DomainWallVec5dImplR>::DhopEO to Dhop to verify correctness" << std::endl;
pickCheckerboard(Even,ssrc_e,ssrc);
pickCheckerboard(Odd,ssrc_o,ssrc);
sDw.DhopEO(ssrc_o,sr_e,DaggerYes);
sDw.DhopOE(ssrc_e,sr_o,DaggerYes);
sDw.Dhop (ssrc ,sresult,DaggerYes);
pickCheckerboard(Even,ssrc_e,sresult);
pickCheckerboard(Odd ,ssrc_o,sresult);
ssrc_e = ssrc_e - sr_e;
error = norm2(ssrc_e);
std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<< " vec nrm: "<<norm2(sr_e) <<std::endl;
ssrc_o = ssrc_o - sr_o;
error+= norm2(ssrc_o);
std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<< " vec nrm: "<<norm2(sr_o) <<std::endl;
if(error>1.0e-4) {
setCheckerboard(ssrc,ssrc_o);
setCheckerboard(ssrc,ssrc_e);
std::cout<< ssrc << std::endl;
}
} }
} }
if (1) { // Naive wilson dag implementation if (1)
{ // Naive wilson dag implementation
ref = zero; ref = zero;
for(int mu=0;mu<Nd;mu++){ for(int mu=0;mu<Nd;mu++){
// ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x // ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x
tmp = U[mu]*Cshift(src,mu+1,1); tmp = U[mu]*Cshift(src,mu+1,1);
for(int i=0;i<ref._odata.size();i++){ for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ; ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
} }
tmp =adj(U[mu])*src; tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1); tmp =Cshift(tmp,mu+1,-1);
for(int i=0;i<ref._odata.size();i++){ for(int i=0;i<ref._odata.size();i++){
@ -424,43 +402,44 @@ int main (int argc, char ** argv)
} }
ref = -0.5*ref; ref = -0.5*ref;
} }
// dump=1;
Dw.Dhop(src,result,1); Dw.Dhop(src,result,1);
std::cout << GridLogMessage << "Compare DomainWallFermionR::Dhop to naive wilson implementation Dag to verify correctness" << std::endl; std::cout << GridLogMessage << "Compare to naive wilson implementation Dag to verify correctness" << std::endl;
std::cout<<GridLogMessage << "Called DwDag"<<std::endl; std::cout<<GridLogMessage << "Called DwDag"<<std::endl;
std::cout<<GridLogMessage << "norm dag result "<< norm2(result)<<std::endl; std::cout<<GridLogMessage << "norm dag result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm dag ref "<< norm2(ref)<<std::endl; std::cout<<GridLogMessage << "norm dag ref "<< norm2(ref)<<std::endl;
err = ref-result; err = ref-result;
std::cout<<GridLogMessage << "norm dag diff "<< norm2(err)<<std::endl; std::cout<<GridLogMessage << "norm dag diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){ if((norm2(err)>1.0e-4)){
std::cout<< "DAG RESULT\n " <<ref << std::endl; std::cout<< "DAG RESULT\n " <<ref << std::endl;
std::cout<< "DAG sRESULT\n " <<result << std::endl; std::cout<< "DAG sRESULT\n " <<result << std::endl;
std::cout<< "DAG ERR \n " << err <<std::endl; std::cout<< "DAG ERR \n " << err <<std::endl;
} }
LatticeFermion src_e (FrbGrid); LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid); LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid); LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid); LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid); LatticeFermion r_eo (FGrid);
std::cout<<GridLogMessage << "Calling Deo and Doe and //assert Deo+Doe == Dunprec"<<std::endl; std::cout<<GridLogMessage << "Calling Deo and Doe and //assert Deo+Doe == Dunprec"<<std::endl;
pickCheckerboard(Even,src_e,src); pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src); pickCheckerboard(Odd,src_o,src);
std::cout<<GridLogMessage << "src_e"<<norm2(src_e)<<std::endl; std::cout<<GridLogMessage << "src_e"<<norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "src_o"<<norm2(src_o)<<std::endl; std::cout<<GridLogMessage << "src_o"<<norm2(src_o)<<std::endl;
// S-direction is INNERMOST and takes no part in the parity. // S-direction is INNERMOST and takes no part in the parity.
static int Opt; // these are a temporary hack
static int Comms; // these are a temporary hack
std::cout << GridLogMessage<< "*********************************************************" <<std::endl; std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermionR::DhopEO "<<std::endl; std::cout << GridLogMessage<< "* Benchmarking DomainWallFermionR::DhopEO "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplex::Nsimd()<<std::endl; std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplex::Nsimd()<<std::endl;
if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl; if ( sizeof(Real)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl; if ( sizeof(Real)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl; if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
@ -478,38 +457,39 @@ int main (int argc, char ** argv)
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu]; double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume*ncall)/2; double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl; std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl; std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report(); Dw.Report();
} }
Dw.DhopEO(src_o,r_e,DaggerNo); Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo); Dw.DhopOE(src_e,r_o,DaggerNo);
Dw.Dhop (src ,result,DaggerNo); Dw.Dhop (src ,result,DaggerNo);
std::cout<<GridLogMessage << "r_e"<<norm2(r_e)<<std::endl; std::cout<<GridLogMessage << "r_e"<<norm2(r_e)<<std::endl;
std::cout<<GridLogMessage << "r_o"<<norm2(r_o)<<std::endl; std::cout<<GridLogMessage << "r_o"<<norm2(r_o)<<std::endl;
std::cout<<GridLogMessage << "res"<<norm2(result)<<std::endl; std::cout<<GridLogMessage << "res"<<norm2(result)<<std::endl;
setCheckerboard(r_eo,r_o); setCheckerboard(r_eo,r_o);
setCheckerboard(r_eo,r_e); setCheckerboard(r_eo,r_e);
err = r_eo-result; err = r_eo-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl; std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){ if((norm2(err)>1.0e-4)){
std::cout<< "Deo RESULT\n " <<r_eo << std::endl; std::cout<< "Deo RESULT\n " <<r_eo << std::endl;
std::cout<< "Deo REF\n " <<result << std::endl; std::cout<< "Deo REF\n " <<result << std::endl;
std::cout<< "Deo ERR \n " << err <<std::endl; std::cout<< "Deo ERR \n " << err <<std::endl;
} }
pickCheckerboard(Even,src_e,err); pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err); pickCheckerboard(Odd,src_o,err);
std::cout<<GridLogMessage << "norm diff even "<< norm2(src_e)<<std::endl; std::cout<<GridLogMessage << "norm diff even "<< norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "norm diff odd "<< norm2(src_o)<<std::endl; std::cout<<GridLogMessage << "norm diff odd "<< norm2(src_o)<<std::endl;
//assert(norm2(src_e)<1.0e-4); //assert(norm2(src_e)<1.0e-4);
//assert(norm2(src_o)<1.0e-4); //assert(norm2(src_o)<1.0e-4);
Grid_finalize(); Grid_finalize();
} }

View File

@ -1,5 +1,5 @@
AC_PREREQ([2.63]) AC_PREREQ([2.63])
AC_INIT([Grid], [0.6.0], [https://github.com/paboyle/Grid], [Grid]) AC_INIT([Grid], [0.6.0-dev], [https://github.com/paboyle/Grid], [Grid])
AC_CANONICAL_BUILD AC_CANONICAL_BUILD
AC_CANONICAL_HOST AC_CANONICAL_HOST
AC_CANONICAL_TARGET AC_CANONICAL_TARGET
@ -32,7 +32,7 @@ AC_TYPE_SIZE_T
AC_TYPE_UINT32_T AC_TYPE_UINT32_T
AC_TYPE_UINT64_T AC_TYPE_UINT64_T
############### OpenMP ############### OpenMP
AC_OPENMP AC_OPENMP
ac_openmp=no ac_openmp=no
if test "${OPENMP_CXXFLAGS}X" != "X"; then if test "${OPENMP_CXXFLAGS}X" != "X"; then
@ -63,8 +63,8 @@ AC_ARG_WITH([mpfr],
[AM_CXXFLAGS="-I$with_mpfr/include $AM_CXXFLAGS"] [AM_CXXFLAGS="-I$with_mpfr/include $AM_CXXFLAGS"]
[AM_LDFLAGS="-L$with_mpfr/lib $AM_LDFLAGS"]) [AM_LDFLAGS="-L$with_mpfr/lib $AM_LDFLAGS"])
############### FFTW3 ############### FFTW3
AC_ARG_WITH([fftw], AC_ARG_WITH([fftw],
[AS_HELP_STRING([--with-fftw=prefix], [AS_HELP_STRING([--with-fftw=prefix],
[try this for a non-standard install prefix of the FFTW3 library])], [try this for a non-standard install prefix of the FFTW3 library])],
[AM_CXXFLAGS="-I$with_fftw/include $AM_CXXFLAGS"] [AM_CXXFLAGS="-I$with_fftw/include $AM_CXXFLAGS"]
@ -77,9 +77,9 @@ AC_ARG_WITH([lime],
[AM_CXXFLAGS="-I$with_lime/include $AM_CXXFLAGS"] [AM_CXXFLAGS="-I$with_lime/include $AM_CXXFLAGS"]
[AM_LDFLAGS="-L$with_lime/lib $AM_LDFLAGS"]) [AM_LDFLAGS="-L$with_lime/lib $AM_LDFLAGS"])
############### lapack ############### lapack
AC_ARG_ENABLE([lapack], AC_ARG_ENABLE([lapack],
[AC_HELP_STRING([--enable-lapack=yes|no|prefix], [enable LAPACK])], [AC_HELP_STRING([--enable-lapack=yes|no|prefix], [enable LAPACK])],
[ac_LAPACK=${enable_lapack}], [ac_LAPACK=no]) [ac_LAPACK=${enable_lapack}], [ac_LAPACK=no])
case ${ac_LAPACK} in case ${ac_LAPACK} in
@ -93,6 +93,18 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK]);; AC_DEFINE([USE_LAPACK],[1],[use LAPACK]);;
esac esac
############### FP16 conversions
AC_ARG_ENABLE([sfw-fp16],
[AC_HELP_STRING([--enable-sfw-fp16=yes|no], [enable software fp16 comms])],
[ac_SFW_FP16=${enable_sfw_fp16}], [ac_SFW_FP16=yes])
case ${ac_SFW_FP16} in
yes)
AC_DEFINE([SFW_FP16],[1],[software conversion to fp16]);;
no);;
*)
AC_MSG_ERROR(["SFW FP16 option not supported ${ac_SFW_FP16}"]);;
esac
############### MKL ############### MKL
AC_ARG_ENABLE([mkl], AC_ARG_ENABLE([mkl],
[AC_HELP_STRING([--enable-mkl=yes|no|prefix], [enable Intel MKL for LAPACK & FFTW])], [AC_HELP_STRING([--enable-mkl=yes|no|prefix], [enable Intel MKL for LAPACK & FFTW])],
@ -118,7 +130,7 @@ AC_ARG_WITH([hdf5],
############### first-touch ############### first-touch
AC_ARG_ENABLE([numa], AC_ARG_ENABLE([numa],
[AC_HELP_STRING([--enable-numa=yes|no|prefix], [enable first touch numa opt])], [AC_HELP_STRING([--enable-numa=yes|no|prefix], [enable first touch numa opt])],
[ac_NUMA=${enable_NUMA}],[ac_NUMA=no]) [ac_NUMA=${enable_NUMA}],[ac_NUMA=no])
case ${ac_NUMA} in case ${ac_NUMA} in
@ -144,8 +156,8 @@ if test "${ac_MKL}x" != "nox"; then
fi fi
AC_SEARCH_LIBS([__gmpf_init], [gmp], AC_SEARCH_LIBS([__gmpf_init], [gmp],
[AC_SEARCH_LIBS([mpfr_init], [mpfr], [AC_SEARCH_LIBS([mpfr_init], [mpfr],
[AC_DEFINE([HAVE_LIBMPFR], [1], [AC_DEFINE([HAVE_LIBMPFR], [1],
[Define to 1 if you have the `MPFR' library])] [Define to 1 if you have the `MPFR' library])]
[have_mpfr=true], [AC_MSG_ERROR([MPFR library not found])])] [have_mpfr=true], [AC_MSG_ERROR([MPFR library not found])])]
[AC_DEFINE([HAVE_LIBGMP], [1], [Define to 1 if you have the `GMP' library])] [AC_DEFINE([HAVE_LIBGMP], [1], [Define to 1 if you have the `GMP' library])]
@ -154,7 +166,7 @@ AC_SEARCH_LIBS([__gmpf_init], [gmp],
if test "${ac_LAPACK}x" != "nox"; then if test "${ac_LAPACK}x" != "nox"; then
AC_SEARCH_LIBS([LAPACKE_sbdsdc], [lapack], [], AC_SEARCH_LIBS([LAPACKE_sbdsdc], [lapack], [],
[AC_MSG_ERROR("LAPACK enabled but library not found")]) [AC_MSG_ERROR("LAPACK enabled but library not found")])
fi fi
AC_SEARCH_LIBS([fftw_execute], [fftw3], AC_SEARCH_LIBS([fftw_execute], [fftw3],
[AC_SEARCH_LIBS([fftwf_execute], [fftw3f], [], [AC_SEARCH_LIBS([fftwf_execute], [fftw3f], [],
@ -194,19 +206,26 @@ case ${ax_cv_cxx_compiler_vendor} in
case ${ac_SIMD} in case ${ac_SIMD} in
SSE4) SSE4)
AC_DEFINE([SSE4],[1],[SSE4 intrinsics]) AC_DEFINE([SSE4],[1],[SSE4 intrinsics])
SIMD_FLAGS='-msse4.2';; case ${ac_SFW_FP16} in
yes)
SIMD_FLAGS='-msse4.2';;
no)
SIMD_FLAGS='-msse4.2 -mf16c';;
*)
AC_MSG_ERROR(["SFW_FP16 must be either yes or no value ${ac_SFW_FP16} "]);;
esac;;
AVX) AVX)
AC_DEFINE([AVX1],[1],[AVX intrinsics]) AC_DEFINE([AVX1],[1],[AVX intrinsics])
SIMD_FLAGS='-mavx';; SIMD_FLAGS='-mavx -mf16c';;
AVXFMA4) AVXFMA4)
AC_DEFINE([AVXFMA4],[1],[AVX intrinsics with FMA4]) AC_DEFINE([AVXFMA4],[1],[AVX intrinsics with FMA4])
SIMD_FLAGS='-mavx -mfma4';; SIMD_FLAGS='-mavx -mfma4 -mf16c';;
AVXFMA) AVXFMA)
AC_DEFINE([AVXFMA],[1],[AVX intrinsics with FMA3]) AC_DEFINE([AVXFMA],[1],[AVX intrinsics with FMA3])
SIMD_FLAGS='-mavx -mfma';; SIMD_FLAGS='-mavx -mfma -mf16c';;
AVX2) AVX2)
AC_DEFINE([AVX2],[1],[AVX2 intrinsics]) AC_DEFINE([AVX2],[1],[AVX2 intrinsics])
SIMD_FLAGS='-mavx2 -mfma';; SIMD_FLAGS='-mavx2 -mfma -mf16c';;
AVX512) AVX512)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics]) AC_DEFINE([AVX512],[1],[AVX512 intrinsics])
SIMD_FLAGS='-mavx512f -mavx512pf -mavx512er -mavx512cd';; SIMD_FLAGS='-mavx512f -mavx512pf -mavx512er -mavx512cd';;
@ -315,7 +334,7 @@ case ${ac_COMMS} in
comms_type='shmem' comms_type='shmem'
;; ;;
*) *)
AC_MSG_ERROR([${ac_COMMS} unsupported --enable-comms option]); AC_MSG_ERROR([${ac_COMMS} unsupported --enable-comms option]);
;; ;;
esac esac
case ${ac_COMMS} in case ${ac_COMMS} in
@ -352,7 +371,7 @@ case ${ac_RNG} in
AC_DEFINE([RNG_SITMO],[1],[RNG_SITMO] ) AC_DEFINE([RNG_SITMO],[1],[RNG_SITMO] )
;; ;;
*) *)
AC_MSG_ERROR([${ac_RNG} unsupported --enable-rng option]); AC_MSG_ERROR([${ac_RNG} unsupported --enable-rng option]);
;; ;;
esac esac
@ -369,7 +388,7 @@ case ${ac_TIMERS} in
AC_DEFINE([TIMERS_OFF],[1],[TIMERS_OFF] ) AC_DEFINE([TIMERS_OFF],[1],[TIMERS_OFF] )
;; ;;
*) *)
AC_MSG_ERROR([${ac_TIMERS} unsupported --enable-timers option]); AC_MSG_ERROR([${ac_TIMERS} unsupported --enable-timers option]);
;; ;;
esac esac
@ -381,7 +400,7 @@ case ${ac_CHROMA} in
yes|no) yes|no)
;; ;;
*) *)
AC_MSG_ERROR([${ac_CHROMA} unsupported --enable-chroma option]); AC_MSG_ERROR([${ac_CHROMA} unsupported --enable-chroma option]);
;; ;;
esac esac
@ -402,39 +421,31 @@ DX_INIT_DOXYGEN([$PACKAGE_NAME], [doxygen.cfg])
############### Ouput ############### Ouput
cwd=`pwd -P`; cd ${srcdir}; abs_srcdir=`pwd -P`; cd ${cwd} cwd=`pwd -P`; cd ${srcdir}; abs_srcdir=`pwd -P`; cd ${cwd}
GRID_CXXFLAGS="$AM_CXXFLAGS $CXXFLAGS"
GRID_LDFLAGS="$AM_LDFLAGS $LDFLAGS"
GRID_LIBS=$LIBS
GRID_SHORT_SHA=`git rev-parse --short HEAD`
GRID_SHA=`git rev-parse HEAD`
GRID_BRANCH=`git rev-parse --abbrev-ref HEAD`
AM_CXXFLAGS="-I${abs_srcdir}/include $AM_CXXFLAGS" AM_CXXFLAGS="-I${abs_srcdir}/include $AM_CXXFLAGS"
AM_CFLAGS="-I${abs_srcdir}/include $AM_CFLAGS" AM_CFLAGS="-I${abs_srcdir}/include $AM_CFLAGS"
AM_LDFLAGS="-L${cwd}/lib $AM_LDFLAGS" AM_LDFLAGS="-L${cwd}/lib $AM_LDFLAGS"
AC_SUBST([AM_CFLAGS]) AC_SUBST([AM_CFLAGS])
AC_SUBST([AM_CXXFLAGS]) AC_SUBST([AM_CXXFLAGS])
AC_SUBST([AM_LDFLAGS]) AC_SUBST([AM_LDFLAGS])
AC_CONFIG_FILES(Makefile) AC_SUBST([GRID_CXXFLAGS])
AC_CONFIG_FILES(lib/Makefile) AC_SUBST([GRID_LDFLAGS])
AC_CONFIG_FILES(tests/Makefile) AC_SUBST([GRID_LIBS])
AC_CONFIG_FILES(tests/IO/Makefile) AC_SUBST([GRID_SHA])
AC_CONFIG_FILES(tests/core/Makefile) AC_SUBST([GRID_BRANCH])
AC_CONFIG_FILES(tests/debug/Makefile)
AC_CONFIG_FILES(tests/forces/Makefile)
AC_CONFIG_FILES(tests/hadrons/Makefile)
AC_CONFIG_FILES(tests/hmc/Makefile)
AC_CONFIG_FILES(tests/solver/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(tests/smearing/Makefile)
AC_CONFIG_FILES(tests/testu01/Makefile)
AC_CONFIG_FILES(benchmarks/Makefile)
AC_CONFIG_FILES(extras/Makefile)
AC_CONFIG_FILES(extras/Hadrons/Makefile)
AC_OUTPUT
git_commit=`cd $srcdir && ./scripts/configure.commit` git_commit=`cd $srcdir && ./scripts/configure.commit`
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Summary of configuration for $PACKAGE v$VERSION Summary of configuration for $PACKAGE v$VERSION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
----- GIT VERSION ------------------------------------- ----- GIT VERSION -------------------------------------
$git_commit $git_commit
----- PLATFORM ---------------------------------------- ----- PLATFORM ----------------------------------------
architecture (build) : $build_cpu architecture (build) : $build_cpu
os (build) : $build_os os (build) : $build_os
@ -444,10 +455,11 @@ compiler vendor : ${ax_cv_cxx_compiler_vendor}
compiler version : ${ax_cv_gxx_version} compiler version : ${ax_cv_gxx_version}
----- BUILD OPTIONS ----------------------------------- ----- BUILD OPTIONS -----------------------------------
SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG} SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG}
Threading : ${ac_openmp} Threading : ${ac_openmp}
Communications type : ${comms_type} Communications type : ${comms_type}
Default precision : ${ac_PRECISION} Default precision : ${ac_PRECISION}
RNG choice : ${ac_RNG} Software FP16 conversion : ${ac_SFW_FP16}
RNG choice : ${ac_RNG}
GMP : `if test "x$have_gmp" = xtrue; then echo yes; else echo no; fi` GMP : `if test "x$have_gmp" = xtrue; then echo yes; else echo no; fi`
LAPACK : ${ac_LAPACK} LAPACK : ${ac_LAPACK}
FFTW : `if test "x$have_fftw" = xtrue; then echo yes; else echo no; fi` FFTW : `if test "x$have_fftw" = xtrue; then echo yes; else echo no; fi`
@ -462,6 +474,30 @@ LDFLAGS:
LIBS: LIBS:
`echo ${LIBS} | tr ' ' '\n' | sed 's/^-/ -/g'` `echo ${LIBS} | tr ' ' '\n' | sed 's/^-/ -/g'`
-------------------------------------------------------" > grid.configure.summary -------------------------------------------------------" > grid.configure.summary
GRID_SUMMARY="`cat grid.configure.summary`"
AM_SUBST_NOTMAKE([GRID_SUMMARY])
AC_SUBST([GRID_SUMMARY])
AC_CONFIG_FILES([grid-config], [chmod +x grid-config])
AC_CONFIG_FILES(Makefile)
AC_CONFIG_FILES(lib/Makefile)
AC_CONFIG_FILES(tests/Makefile)
AC_CONFIG_FILES(tests/IO/Makefile)
AC_CONFIG_FILES(tests/core/Makefile)
AC_CONFIG_FILES(tests/debug/Makefile)
AC_CONFIG_FILES(tests/forces/Makefile)
AC_CONFIG_FILES(tests/hadrons/Makefile)
AC_CONFIG_FILES(tests/hmc/Makefile)
AC_CONFIG_FILES(tests/solver/Makefile)
AC_CONFIG_FILES(tests/smearing/Makefile)
AC_CONFIG_FILES(tests/qdpxx/Makefile)
AC_CONFIG_FILES(tests/testu01/Makefile)
AC_CONFIG_FILES(benchmarks/Makefile)
AC_CONFIG_FILES(extras/Makefile)
AC_CONFIG_FILES(extras/Hadrons/Makefile)
AC_OUTPUT
echo "" echo ""
cat grid.configure.summary cat grid.configure.summary
echo "" echo ""

View File

@ -162,7 +162,8 @@ void Application::saveParameterFile(const std::string parameterFileName)
sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)" sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
#define DEFINE_MEMPEAK \ #define DEFINE_MEMPEAK \
auto memPeak = [this](const std::vector<unsigned int> &program)\ GeneticScheduler<unsigned int>::ObjFunc memPeak = \
[this](const std::vector<unsigned int> &program)\
{\ {\
unsigned int memPeak;\ unsigned int memPeak;\
bool msg;\ bool msg;\

View File

@ -145,6 +145,15 @@ std::string typeName(void)
return typeName(typeIdPt<T>()); return typeName(typeIdPt<T>());
} }
// default writers/readers
#ifdef HAVE_HDF5
typedef Hdf5Reader CorrReader;
typedef Hdf5Writer CorrWriter;
#else
typedef XmlReader CorrReader;
typedef XmlWriter CorrWriter;
#endif
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE
#endif // Hadrons_Global_hpp_ #endif // Hadrons_Global_hpp_

View File

@ -29,12 +29,20 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Modules/MAction/DWF.hpp> #include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp> #include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp> #include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp> #include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MGauge/Load.hpp> #include <Grid/Hadrons/Modules/MGauge/Load.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp> #include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp> #include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp> #include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp> #include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp> #include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp> #include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/Quark.hpp> #include <Grid/Hadrons/Modules/Quark.hpp>

View File

@ -112,7 +112,7 @@ void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
<< " quarks '" << par().q1 << "', '" << par().q2 << "', and '" << " quarks '" << par().q1 << "', '" << par().q2 << "', and '"
<< par().q3 << "'" << std::endl; << par().q3 << "'" << std::endl;
XmlWriter writer(par().output); CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1); PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2); PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
PropagatorField3 &q3 = *env().template getObject<PropagatorField3>(par().q2); PropagatorField3 &q3 = *env().template getObject<PropagatorField3>(par().q2);

View File

@ -0,0 +1,144 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/DiscLoop.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_DiscLoop_hpp_
#define Hadrons_DiscLoop_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* DiscLoop *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class DiscLoopPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DiscLoopPar,
std::string, q_loop,
Gamma::Algebra, gamma,
std::string, output);
};
template <typename FImpl>
class TDiscLoop: public Module<DiscLoopPar>
{
TYPE_ALIASES(FImpl,);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<Complex>, corr);
};
public:
// constructor
TDiscLoop(const std::string name);
// destructor
virtual ~TDiscLoop(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(DiscLoop, TDiscLoop<FIMPL>, MContraction);
/******************************************************************************
* TDiscLoop implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TDiscLoop<FImpl>::TDiscLoop(const std::string name)
: Module<DiscLoopPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TDiscLoop<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q_loop};
return in;
}
template <typename FImpl>
std::vector<std::string> TDiscLoop<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDiscLoop<FImpl>::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDiscLoop<FImpl>::execute(void)
{
LOG(Message) << "Computing disconnected loop contraction '" << getName()
<< "' using '" << par().q_loop << "' with " << par().gamma
<< " insertion." << std::endl;
CorrWriter writer(par().output);
PropagatorField &q_loop = *env().template getObject<PropagatorField>(par().q_loop);
LatticeComplex c(env().getGrid());
Gamma gamma(par().gamma);
std::vector<TComplex> buf;
Result result;
c = trace(gamma*q_loop);
sliceSum(c, buf, Tp);
result.gamma = par().gamma;
result.corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[t] = TensorRemove(buf[t]);
}
write(writer, "disc", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_DiscLoop_hpp_

View File

@ -0,0 +1,170 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/Gamma3pt.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Gamma3pt_hpp_
#define Hadrons_Gamma3pt_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
* 3pt contraction with gamma matrix insertion.
*
* Schematic:
*
* q2 q3
* /----<------*------<----¬
* / gamma \
* / \
* i * * f
* \ /
* \ /
* \----------->----------/
* q1
*
* trace(g5*q1*adj(q2)*g5*gamma*q3)
*/
/******************************************************************************
* Gamma3pt *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class Gamma3ptPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Gamma3ptPar,
std::string, q1,
std::string, q2,
std::string, q3,
Gamma::Algebra, gamma,
std::string, output);
};
template <typename FImpl1, typename FImpl2, typename FImpl3>
class TGamma3pt: public Module<Gamma3ptPar>
{
TYPE_ALIASES(FImpl1, 1);
TYPE_ALIASES(FImpl2, 2);
TYPE_ALIASES(FImpl3, 3);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<Complex>, corr);
};
public:
// constructor
TGamma3pt(const std::string name);
// destructor
virtual ~TGamma3pt(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(Gamma3pt, ARG(TGamma3pt<FIMPL, FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TGamma3pt implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
TGamma3pt<FImpl1, FImpl2, FImpl3>::TGamma3pt(const std::string name)
: Module<Gamma3ptPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3};
return in;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::execute(void)
{
LOG(Message) << "Computing 3pt contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', '" << par().q2 << "' and '"
<< par().q3 << "', with " << par().gamma << " insertion."
<< std::endl;
CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
PropagatorField3 &q3 = *env().template getObject<PropagatorField3>(par().q3);
LatticeComplex c(env().getGrid());
Gamma g5(Gamma::Algebra::Gamma5);
Gamma gamma(par().gamma);
std::vector<TComplex> buf;
Result result;
c = trace(g5*q1*adj(q2)*(g5*gamma)*q3);
sliceSum(c, buf, Tp);
result.gamma = par().gamma;
result.corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[t] = TensorRemove(buf[t]);
}
write(writer, "gamma3pt", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Gamma3pt_hpp_

View File

@ -6,8 +6,10 @@ Source file: extras/Hadrons/Modules/MContraction/Meson.hpp
Copyright (C) 2015 Copyright (C) 2015
Copyright (C) 2016 Copyright (C) 2016
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com> Author: Antonin Portelli <antonin.portelli@me.com>
Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -36,20 +38,39 @@ See the full license in the file "LICENSE" in the top level distribution directo
BEGIN_HADRONS_NAMESPACE BEGIN_HADRONS_NAMESPACE
/*
Meson contractions
-----------------------------
* options:
- q1: input propagator 1 (string)
- q2: input propagator 2 (string)
- gammas: gamma products to insert at sink & source, pairs of gamma matrices
(space-separated strings) in angled brackets (i.e. <g_sink g_src>),
in a sequence (e.g. "<Gamma5 Gamma5><Gamma5 GammaT>").
Special values: "all" - perform all possible contractions.
- mom: momentum insertion, space-separated float sequence (e.g ".1 .2 1. 0."),
given as multiples of (2*pi) / L.
*/
/****************************************************************************** /******************************************************************************
* TMeson * * TMeson *
******************************************************************************/ ******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction) BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class MesonPar: Serializable class MesonPar: Serializable
{ {
public: public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonPar, GRID_SERIALIZABLE_CLASS_MEMBERS(MesonPar,
std::string, q1, std::string, q1,
std::string, q2, std::string, q2,
std::string, output, std::string, gammas,
Gamma::Algebra, gammaSource, std::string, mom,
Gamma::Algebra, gammaSink); std::string, output);
}; };
template <typename FImpl1, typename FImpl2> template <typename FImpl1, typename FImpl2>
@ -61,7 +82,10 @@ public:
class Result: Serializable class Result: Serializable
{ {
public: public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result, std::vector<Complex>, corr); GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma_snk,
Gamma::Algebra, gamma_src,
std::vector<Complex>, corr);
}; };
public: public:
// constructor // constructor
@ -71,6 +95,7 @@ public:
// dependencies/products // dependencies/products
virtual std::vector<std::string> getInput(void); virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void); virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
// execution // execution
virtual void execute(void); virtual void execute(void);
}; };
@ -103,6 +128,32 @@ std::vector<std::string> TMeson<FImpl1, FImpl2>::getOutput(void)
return output; return output;
} }
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::parseGammaString(std::vector<GammaPair> &gammaList)
{
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
unsigned int n_gam = Ns * Ns;
gammaList.resize(n_gam*n_gam);
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
for (unsigned int j = 1; j < Gamma::nGamma; j += 2)
{
gammaList.push_back(std::make_pair((Gamma::Algebra)i,
(Gamma::Algebra)j));
}
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
}
// execution /////////////////////////////////////////////////////////////////// // execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2> template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::execute(void) void TMeson<FImpl1, FImpl2>::execute(void)
@ -111,21 +162,44 @@ void TMeson<FImpl1, FImpl2>::execute(void)
<< " quarks '" << par().q1 << "' and '" << par().q2 << "'" << " quarks '" << par().q1 << "' and '" << par().q2 << "'"
<< std::endl; << std::endl;
XmlWriter writer(par().output); CorrWriter writer(par().output);
PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1); PropagatorField1 &q1 = *env().template getObject<PropagatorField1>(par().q1);
PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2); PropagatorField2 &q2 = *env().template getObject<PropagatorField2>(par().q2);
LatticeComplex c(env().getGrid()); LatticeComplex c(env().getGrid());
Gamma gSrc(par().gammaSource), gSnk(par().gammaSink); Gamma g5(Gamma::Algebra::Gamma5);
Gamma g5(Gamma::Algebra::Gamma5); std::vector<GammaPair> gammaList;
std::vector<TComplex> buf; std::vector<TComplex> buf;
Result result; std::vector<Result> result;
std::vector<Real> p;
c = trace(gSnk*q1*adj(gSrc)*g5*adj(q2)*g5);
sliceSum(c, buf, Tp); p = strToVec<Real>(par().mom);
result.corr.resize(buf.size()); LatticeComplex ph(env().getGrid()), coor(env().getGrid());
for (unsigned int t = 0; t < buf.size(); ++t) Complex i(0.0,1.0);
ph = zero;
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{ {
result.corr[t] = TensorRemove(buf[t]); LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
}
ph = exp((Real)(2*M_PI)*i*ph);
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
c = trace((g5*gSnk)*q1*(adj(gSrc)*g5)*adj(q2))*ph;
sliceSum(c, buf, Tp);
result[i].gamma_snk = gammaList[i].first;
result[i].gamma_src = gammaList[i].second;
result[i].corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
} }
write(writer, "meson", result); write(writer, "meson", result);
} }

View File

@ -0,0 +1,114 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonian.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonian_hpp_
#define Hadrons_WeakHamiltonian_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonian *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
/*******************************************************************************
* Utilities for contractions involving the Weak Hamiltonian.
******************************************************************************/
//// Sum and store correlator.
#define MAKE_DIAG(exp, buf, res, n)\
sliceSum(exp, buf, Tp);\
res.name = (n);\
res.corr.resize(buf.size());\
for (unsigned int t = 0; t < buf.size(); ++t)\
{\
res.corr[t] = TensorRemove(buf[t]);\
}
//// Contraction of mu index: use 'mu' variable in exp.
#define SUM_MU(buf,exp)\
buf = zero;\
for (unsigned int mu = 0; mu < ndim; ++mu)\
{\
buf += exp;\
}
enum
{
i_V = 0,
i_A = 1,
n_i = 2
};
class WeakHamiltonianPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WeakHamiltonianPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, q4,
std::string, output);
};
#define MAKE_WEAK_MODULE(modname)\
class T##modname: public Module<WeakHamiltonianPar>\
{\
public:\
TYPE_ALIASES(FIMPL,)\
class Result: Serializable\
{\
public:\
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,\
std::string, name,\
std::vector<Complex>, corr);\
};\
public:\
/* constructor */ \
T##modname(const std::string name);\
/* destructor */ \
virtual ~T##modname(void) = default;\
/* dependency relation */ \
virtual std::vector<std::string> getInput(void);\
virtual std::vector<std::string> getOutput(void);\
/* setup */ \
virtual void setup(void);\
/* execution */ \
virtual void execute(void);\
std::vector<std::string> VA_label = {"V", "A"};\
};\
MODULE_REGISTER_NS(modname, T##modname, MContraction);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonian_hpp_

View File

@ -0,0 +1,137 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianEye.cc
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematics: q4 |
* /-<-¬ |
* / \ | q2 q3
* \ / | /----<------*------<----¬
* q2 \ / q3 | / /-*-¬ \
* /-----<-----* *-----<----¬ | / / \ \
* i * H_W * f | i * \ / q4 * f
* \ / | \ \->-/ /
* \ / | \ /
* \---------->---------/ | \----------->----------/
* q1 | q1
* |
* Saucer (S) | Eye (E)
*
* S: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1]*q4*gL[mu][p_2])
* E: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1])*trace(q4*gL[mu][p_2])
*/
/******************************************************************************
* TWeakHamiltonianEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianEye::TWeakHamiltonianEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianEye::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_eye_diag);
unsigned int ndim = env().getNd();
PropagatorField tmp1(env().getGrid());
LatticeComplex tmp2(env().getGrid());
std::vector<PropagatorField> S_body(ndim, tmp1);
std::vector<PropagatorField> S_loop(ndim, tmp1);
std::vector<LatticeComplex> E_body(ndim, tmp2);
std::vector<LatticeComplex> E_loop(ndim, tmp2);
// Setup for S-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
S_body[mu] = MAKE_SE_BODY(q1, q2, q3, GammaL(Gamma::gmu[mu]));
S_loop[mu] = MAKE_SE_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
// Perform S-type contractions.
SUM_MU(expbuf, trace(S_body[mu]*S_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[S_diag], "HW_S")
// Recycle sub-expressions for E-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
E_body[mu] = trace(S_body[mu]);
E_loop[mu] = trace(S_loop[mu]);
}
// Perform E-type contractions.
SUM_MU(expbuf, E_body[mu]*E_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[E_diag], "HW_E")
write(writer, "HW_Eye", result);
}

View File

@ -0,0 +1,58 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonianEye_hpp_
#define Hadrons_WeakHamiltonianEye_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonianEye *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
S_diag = 0,
E_diag = 1,
n_eye_diag = 2
};
// Saucer and Eye subdiagram contractions.
#define MAKE_SE_BODY(Q_1, Q_2, Q_3, gamma) (Q_3*g5*Q_1*adj(Q_2)*g5*gamma)
#define MAKE_SE_LOOP(Q_loop, gamma) (Q_loop*gamma)
MAKE_WEAK_MODULE(WeakHamiltonianEye)
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonianEye_hpp_

View File

@ -0,0 +1,139 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.cc
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Non-Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematic:
* q2 q3 | q2 q3
* /--<--¬ /--<--¬ | /--<--¬ /--<--¬
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* i * * H_W * f | i * * * H_W * f
* \ * | | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \-->--/ \-->--/
* \-->--/ \-->--/ | q1 q4
* q1 q4 |
* Connected (C) | Wing (W)
*
* C: trace(q1*adj(q2)*g5*gL[mu]*q3*adj(q4)*g5*gL[mu])
* W: trace(q1*adj(q2)*g5*gL[mu])*trace(q3*adj(q4)*g5*gL[mu])
*
*/
/******************************************************************************
* TWeakHamiltonianNonEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianNonEye::TWeakHamiltonianNonEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianNonEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianNonEye::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Non-Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_noneye_diag);
unsigned int ndim = env().getNd();
PropagatorField tmp1(env().getGrid());
LatticeComplex tmp2(env().getGrid());
std::vector<PropagatorField> C_i_side_loop(ndim, tmp1);
std::vector<PropagatorField> C_f_side_loop(ndim, tmp1);
std::vector<LatticeComplex> W_i_side_loop(ndim, tmp2);
std::vector<LatticeComplex> W_f_side_loop(ndim, tmp2);
// Setup for C-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
C_i_side_loop[mu] = MAKE_CW_SUBDIAG(q1, q2, GammaL(Gamma::gmu[mu]));
C_f_side_loop[mu] = MAKE_CW_SUBDIAG(q3, q4, GammaL(Gamma::gmu[mu]));
}
// Perform C-type contractions.
SUM_MU(expbuf, trace(C_i_side_loop[mu]*C_f_side_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[C_diag], "HW_C")
// Recycle sub-expressions for W-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
W_i_side_loop[mu] = trace(C_i_side_loop[mu]);
W_f_side_loop[mu] = trace(C_f_side_loop[mu]);
}
// Perform W-type contractions.
SUM_MU(expbuf, W_i_side_loop[mu]*W_f_side_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[W_diag], "HW_W")
write(writer, "HW_NonEye", result);
}

View File

@ -0,0 +1,57 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakHamiltonianNonEye_hpp_
#define Hadrons_WeakHamiltonianNonEye_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonianNonEye *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
W_diag = 0,
C_diag = 1,
n_noneye_diag = 2
};
// Wing and Connected subdiagram contractions
#define MAKE_CW_SUBDIAG(Q_1, Q_2, gamma) (Q_1*adj(Q_2)*g5*gamma)
MAKE_WEAK_MODULE(WeakHamiltonianNonEye)
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakHamiltonianNonEye_hpp_

View File

@ -0,0 +1,135 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.cc
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian + current contractions, disconnected topology for neutral
* mesons.
*
* These contractions are generated by operators Q_1,...,10 of the dS=1 Weak
* Hamiltonian in the physical basis and an additional current J (see e.g.
* Fig 11 of arXiv:1507.03094).
*
* Schematic:
*
* q2 q4 q3
* /--<--¬ /---<--¬ /---<--¬
* / \ / \ / \
* i * * H_W | J * * f
* \ / \ / \ /
* \--->---/ \-------/ \------/
* q1
*
* options
* - q1: input propagator 1 (string)
* - q2: input propagator 2 (string)
* - q3: input propagator 3 (string), assumed to be sequential propagator
* - q4: input propagator 4 (string), assumed to be a loop
*
* type 1: trace(q1*adj(q2)*g5*gL[mu])*trace(loop*gL[mu])*trace(q3*g5)
* type 2: trace(q1*adj(q2)*g5*gL[mu]*loop*gL[mu])*trace(q3*g5)
*/
/*******************************************************************************
* TWeakNeutral4ptDisc implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakNeutral4ptDisc::TWeakNeutral4ptDisc(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakNeutral4ptDisc::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakNeutral4ptDisc::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakNeutral4ptDisc::setup(void)
{
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakNeutral4ptDisc::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian neutral disconnected contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
CorrWriter writer(par().output);
PropagatorField &q1 = *env().template getObject<PropagatorField>(par().q1);
PropagatorField &q2 = *env().template getObject<PropagatorField>(par().q2);
PropagatorField &q3 = *env().template getObject<PropagatorField>(par().q3);
PropagatorField &q4 = *env().template getObject<PropagatorField>(par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
LatticeComplex expbuf(env().getGrid());
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_neut_disc_diag);
unsigned int ndim = env().getNd();
PropagatorField tmp(env().getGrid());
std::vector<PropagatorField> meson(ndim, tmp);
std::vector<PropagatorField> loop(ndim, tmp);
LatticeComplex curr(env().getGrid());
// Setup for type 1 contractions.
for (int mu = 0; mu < ndim; ++mu)
{
meson[mu] = MAKE_DISC_MESON(q1, q2, GammaL(Gamma::gmu[mu]));
loop[mu] = MAKE_DISC_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
curr = MAKE_DISC_CURR(q3, GammaL(Gamma::Algebra::Gamma5));
// Perform type 1 contractions.
SUM_MU(expbuf, trace(meson[mu]*loop[mu]))
expbuf *= curr;
MAKE_DIAG(expbuf, corrbuf, result[neut_disc_1_diag], "HW_disc0_1")
// Perform type 2 contractions.
SUM_MU(expbuf, trace(meson[mu])*trace(loop[mu]))
expbuf *= curr;
MAKE_DIAG(expbuf, corrbuf, result[neut_disc_2_diag], "HW_disc0_2")
write(writer, "HW_disc0", result);
}

View File

@ -0,0 +1,59 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WeakNeutral4ptDisc_hpp_
#define Hadrons_WeakNeutral4ptDisc_hpp_
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakNeutral4ptDisc *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
neut_disc_1_diag = 0,
neut_disc_2_diag = 1,
n_neut_disc_diag = 2
};
// Neutral 4pt disconnected subdiagram contractions.
#define MAKE_DISC_MESON(Q_1, Q_2, gamma) (Q_1*adj(Q_2)*g5*gamma)
#define MAKE_DISC_LOOP(Q_LOOP, gamma) (Q_LOOP*gamma)
#define MAKE_DISC_CURR(Q_c, gamma) (trace(Q_c*gamma))
MAKE_WEAK_MODULE(WeakNeutral4ptDisc)
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WeakNeutral4ptDisc_hpp_

View File

@ -0,0 +1,132 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MLoop/NoiseLoop.hpp
Copyright (C) 2016
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_NoiseLoop_hpp_
#define Hadrons_NoiseLoop_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Noise loop propagator
-----------------------------
* loop_x = q_x * adj(eta_x)
* options:
- q = Result of inversion on noise source.
- eta = noise source.
*/
/******************************************************************************
* NoiseLoop *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MLoop)
class NoiseLoopPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(NoiseLoopPar,
std::string, q,
std::string, eta);
};
template <typename FImpl>
class TNoiseLoop: public Module<NoiseLoopPar>
{
public:
TYPE_ALIASES(FImpl,);
public:
// constructor
TNoiseLoop(const std::string name);
// destructor
virtual ~TNoiseLoop(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(NoiseLoop, TNoiseLoop<FIMPL>, MLoop);
/******************************************************************************
* TNoiseLoop implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TNoiseLoop<FImpl>::TNoiseLoop(const std::string name)
: Module<NoiseLoopPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TNoiseLoop<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().eta};
return in;
}
template <typename FImpl>
std::vector<std::string> TNoiseLoop<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TNoiseLoop<FImpl>::setup(void)
{
env().template registerLattice<PropagatorField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TNoiseLoop<FImpl>::execute(void)
{
PropagatorField &loop = *env().template createLattice<PropagatorField>(getName());
PropagatorField &q = *env().template getObject<PropagatorField>(par().q);
PropagatorField &eta = *env().template getObject<PropagatorField>(par().eta);
loop = q*adj(eta);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_NoiseLoop_hpp_

View File

@ -6,6 +6,7 @@ Source file: extras/Hadrons/Modules/MSource/SeqGamma.hpp
Copyright (C) 2015 Copyright (C) 2015
Copyright (C) 2016 Copyright (C) 2016
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com> Author: Antonin Portelli <antonin.portelli@me.com>
@ -149,9 +150,9 @@ void TSeqGamma<FImpl>::execute(void)
for(unsigned int mu = 0; mu < env().getNd(); mu++) for(unsigned int mu = 0; mu < env().getNd(); mu++)
{ {
LatticeCoordinate(coor, mu); LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor; ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
} }
ph = exp(i*ph); ph = exp((Real)(2*M_PI)*i*ph);
LatticeCoordinate(t, Tp); LatticeCoordinate(t, Tp);
src = where((t >= par().tA) and (t <= par().tB), ph*(g*q), 0.*q); src = where((t >= par().tA) and (t <= par().tB), ph*(g*q), 0.*q);
} }

View File

@ -0,0 +1,147 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MSource/Wall.hpp
Copyright (C) 2017
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_WallSource_hpp_
#define Hadrons_WallSource_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Wall source
-----------------------------
* src_x = delta(x_3 - tW) * exp(i x.mom)
* options:
- tW: source timeslice (integer)
- mom: momentum insertion, space-separated float sequence (e.g ".1 .2 1. 0.")
*/
/******************************************************************************
* Wall *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSource)
class WallPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WallPar,
unsigned int, tW,
std::string, mom);
};
template <typename FImpl>
class TWall: public Module<WallPar>
{
public:
TYPE_ALIASES(FImpl,);
public:
// constructor
TWall(const std::string name);
// destructor
virtual ~TWall(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(Wall, TWall<FIMPL>, MSource);
/******************************************************************************
* TWall implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWall<FImpl>::TWall(const std::string name)
: Module<WallPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWall<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TWall<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWall<FImpl>::setup(void)
{
env().template registerLattice<PropagatorField>(getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWall<FImpl>::execute(void)
{
LOG(Message) << "Generating wall source at t = " << par().tW
<< " with momentum " << par().mom << std::endl;
PropagatorField &src = *env().template createLattice<PropagatorField>(getName());
Lattice<iScalar<vInteger>> t(env().getGrid());
LatticeComplex ph(env().getGrid()), coor(env().getGrid());
std::vector<Real> p;
Complex i(0.0,1.0);
p = strToVec<Real>(par().mom);
ph = zero;
for(unsigned int mu = 0; mu < Nd; mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor*((1./(env().getGrid()->_fdimensions[mu])));
}
ph = exp((Real)(2*M_PI)*i*ph);
LatticeCoordinate(t, Tp);
src = 1.;
src = where((t == par().tW), src*ph, 0.*src);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WallSource_hpp_

View File

@ -173,7 +173,7 @@ void TQuark<FImpl>::execute(void)
*env().template getObject<PropagatorField>(getName()); *env().template getObject<PropagatorField>(getName());
axpby_ssp_pminus(sol, 0., sol, 1., sol, 0, 0); axpby_ssp_pminus(sol, 0., sol, 1., sol, 0, 0);
axpby_ssp_pplus(sol, 0., sol, 1., sol, 0, Ls_-1); axpby_ssp_pplus(sol, 1., sol, 1., sol, 0, Ls_-1);
ExtractSlice(tmp, sol, 0, 0); ExtractSlice(tmp, sol, 0, 0);
FermToProp(p4d, tmp, s, c); FermToProp(p4d, tmp, s, c);
} }

View File

@ -1,4 +1,7 @@
modules_cc =\ modules_cc =\
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MGauge/Load.cc \ Modules/MGauge/Load.cc \
Modules/MGauge/Random.cc \ Modules/MGauge/Random.cc \
Modules/MGauge/Unit.cc Modules/MGauge/Unit.cc
@ -7,13 +10,21 @@ modules_hpp =\
Modules/MAction/DWF.hpp \ Modules/MAction/DWF.hpp \
Modules/MAction/Wilson.hpp \ Modules/MAction/Wilson.hpp \
Modules/MContraction/Baryon.hpp \ Modules/MContraction/Baryon.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/Meson.hpp \ Modules/MContraction/Meson.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MGauge/Load.hpp \ Modules/MGauge/Load.hpp \
Modules/MGauge/Random.hpp \ Modules/MGauge/Random.hpp \
Modules/MGauge/Unit.hpp \ Modules/MGauge/Unit.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MSolver/RBPrecCG.hpp \ Modules/MSolver/RBPrecCG.hpp \
Modules/MSource/Point.hpp \ Modules/MSource/Point.hpp \
Modules/MSource/SeqGamma.hpp \ Modules/MSource/SeqGamma.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/Z2.hpp \ Modules/MSource/Z2.hpp \
Modules/Quark.hpp Modules/Quark.hpp

86
grid-config.in Executable file
View File

@ -0,0 +1,86 @@
#! /bin/sh
prefix=@prefix@
exec_prefix=@exec_prefix@
includedir=@includedir@
usage()
{
cat <<EOF
Usage: grid-config [OPTION]
Known values for OPTION are:
--prefix show Grid installation prefix
--cxxflags print pre-processor and compiler flags
--ldflags print library linking flags
--libs print library linking information
--summary print full build summary
--help display this help and exit
--version output version information
--git print git revision
EOF
exit $1
}
if test $# -eq 0; then
usage 1
fi
cflags=false
libs=false
while test $# -gt 0; do
case "$1" in
-*=*) optarg=`echo "$1" | sed 's/[-_a-zA-Z0-9]*=//'` ;;
*) optarg= ;;
esac
case "$1" in
--prefix)
echo $prefix
;;
--version)
echo @VERSION@
exit 0
;;
--git)
echo "@GRID_BRANCH@ @GRID_SHA@"
exit 0
;;
--help)
usage 0
;;
--cxxflags)
echo @GRID_CXXFLAGS@
;;
--ldflags)
echo @GRID_LDFLAGS@
;;
--libs)
echo @GRID_LIBS@
;;
--summary)
echo ""
echo "@GRID_SUMMARY@"
echo ""
;;
*)
usage
exit 1
;;
esac
shift
done
exit 0

View File

@ -38,28 +38,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_BASE_H #ifndef GRID_BASE_H
#define GRID_BASE_H #define GRID_BASE_H
/////////////////// #include <Grid/GridStd.h>
// Std C++ dependencies
///////////////////
#include <cassert>
#include <complex>
#include <vector>
#include <iostream>
#include <iomanip>
#include <random>
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>
#include <sys/time.h>
#include <chrono>
///////////////////
// Grid headers
///////////////////
#include "Config.h"
#include <Grid/perfmon/Timer.h> #include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/PerfCount.h> #include <Grid/perfmon/PerfCount.h>

27
lib/GridStd.h Normal file
View File

@ -0,0 +1,27 @@
#ifndef GRID_STD_H
#define GRID_STD_H
///////////////////
// Std C++ dependencies
///////////////////
#include <cassert>
#include <complex>
#include <vector>
#include <iostream>
#include <iomanip>
#include <random>
#include <functional>
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <ctime>
#include <sys/time.h>
#include <chrono>
///////////////////
// Grid config
///////////////////
#include "Config.h"
#endif /* GRID_STD_H */

View File

@ -46,7 +46,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
// Lanczos support // Lanczos support
#include <Grid/algorithms/iterative/MatrixUtils.h> //#include <Grid/algorithms/iterative/MatrixUtils.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h> #include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h> #include <Grid/algorithms/FFT.h>

View File

@ -16,7 +16,7 @@
#define INCLUDED_ALG_REMEZ_H #define INCLUDED_ALG_REMEZ_H
#include <stddef.h> #include <stddef.h>
#include <Config.h> #include <Grid/GridStd.h>
#ifdef HAVE_LIBGMP #ifdef HAVE_LIBGMP
#include "bigfloat.h" #include "bigfloat.h"

View File

@ -0,0 +1,366 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
Copyright (C) 2017
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
const int blockDim = 0;
int Nblock;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BlockConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
/************************************************************************
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
************************************************************************
* O'Leary : R = B - A X
* O'Leary : P = M R ; preconditioner M = 1
* O'Leary : alpha = PAP^{-1} RMR
* O'Leary : beta = RMR^{-1}_old RMR_new
* O'Leary : X=X+Palpha
* O'Leary : R_new=R_old-AP alpha
* O'Leary : P=MR_new+P beta
*/
R = Src - AP;
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
for(int b=0;b<Nblock;b++){
RealD rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << GridLogMessage <<"\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
template <class Field>
class MultiRHSConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
const int blockDim = 0;
int Nblock;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
MultiRHSConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
std::vector<ComplexD> v_pAp(Nblock);
std::vector<RealD> v_rr (Nblock);
std::vector<RealD> v_rr_inv(Nblock);
std::vector<RealD> v_alpha(Nblock);
std::vector<RealD> v_beta(Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
R = Src - AP;
P = R;
sliceNorm(v_rr,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch sliceNormTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
// sliceInnerProductVectorTest(v_pAp_test,P,AP,Orthog);
sliceInnerTimer.Start();
sliceInnerProductVector(v_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
for(int b=0;b<Nblock;b++){
// std::cout << " "<< v_pAp[b]<<" "<< v_pAp_test[b]<<std::endl;
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
}
// Psi, R update
sliceMaddTimer.Start();
sliceMaddVector(Psi,v_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddVector(R ,v_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
for(int b=0;b<Nblock;b++){
v_rr_inv[b] = 1.0/v_rr[b];
}
sliceNormTimer.Start();
sliceNorm(v_rr,R,Orthog);
sliceNormTimer.Stop();
for(int b=0;b<Nblock;b++){
v_beta[b] = v_rr_inv[b] *v_rr[b];
}
// Search update
sliceMaddTimer.Start();
sliceMaddVector(P,v_beta,P,R,Orthog);
sliceMaddTimer.Stop();
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
for(int b=0;b<Nblock;b++){
RealD rr = v_rr[b]/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << sliceNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
}
#endif

View File

@ -78,18 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
cp = a; cp = a;
ssq = norm2(src); ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
<< "ConjugateGradient: guess " << guess << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
<< "ConjugateGradient: src " << ssq << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
<< "ConjugateGradient: mp " << d << std::endl; std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq; RealD rsq = Tolerance * Tolerance * ssq;
@ -99,8 +93,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
} }
std::cout << GridLogIterative << std::setprecision(4) std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
<< std::endl;
GridStopWatch LinalgTimer; GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer; GridStopWatch MatrixTimer;
@ -148,19 +141,20 @@ class ConjugateGradient : public OperatorFunction<Field> {
RealD resnorm = sqrt(norm2(p)); RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm; RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
<< "ConjugateGradient: Converged on iteration " << k << std::endl; std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq) std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
<< " true residual " << true_residual << " target " std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
<< Tolerance << std::endl;
std::cout << GridLogMessage << "Time elapsed: Iterations " std::cout << GridLogMessage << "Time breakdown "<<std::endl;
<< SolverTimer.Elapsed() << " Matrix " std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
<< MatrixTimer.Elapsed() << " Linalg " std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
<< LinalgTimer.Elapsed(); std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0); if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k; IterationsToComplete = k;
return; return;
} }
} }

View File

@ -30,6 +30,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define GRID_IRL_H #define GRID_IRL_H
#include <string.h> //memset #include <string.h> //memset
#ifdef USE_LAPACK #ifdef USE_LAPACK
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e, void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol, double *vl, double *vu, int *il, int *iu, double *abstol,
@ -37,8 +38,9 @@ void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *work, int *lwork, int *iwork, int *liwork, double *work, int *lwork, int *iwork, int *liwork,
int *info); int *info);
#endif #endif
#include "DenseMatrix.h"
#include "EigenSort.h" #include <Grid/algorithms/densematrix/DenseMatrix.h>
#include <Grid/algorithms/iterative/EigenSort.h>
namespace Grid { namespace Grid {
@ -1088,8 +1090,6 @@ static void Lock(DenseMatrix<T> &H, // Hess mtx
int dfg, int dfg,
bool herm) bool herm)
{ {
//ForceTridiagonal(H); //ForceTridiagonal(H);
int M = H.dim; int M = H.dim;
@ -1121,7 +1121,6 @@ static void Lock(DenseMatrix<T> &H, // Hess mtx
AH = Hermitian(QQ)*AH; AH = Hermitian(QQ)*AH;
AH = AH*QQ; AH = AH*QQ;
for(int i=con;i<M;i++){ for(int i=con;i<M;i++){
for(int j=con;j<M;j++){ for(int j=con;j<M;j++){

View File

@ -1,453 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/Matrix.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef MATRIX_H
#define MATRIX_H
#include <cstdlib>
#include <string>
#include <cmath>
#include <vector>
#include <iostream>
#include <iomanip>
#include <complex>
#include <typeinfo>
#include <Grid/Grid.h>
/** Sign function **/
template <class T> T sign(T p){return ( p/abs(p) );}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////// Hijack STL containers for our wicked means /////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T> using Vector = Vector<T>;
template<class T> using Matrix = Vector<Vector<T> >;
template<class T> void Resize(Vector<T > & vec, int N) { vec.resize(N); }
template<class T> void Resize(Matrix<T > & mat, int N, int M) {
mat.resize(N);
for(int i=0;i<N;i++){
mat[i].resize(M);
}
}
template<class T> void Size(Vector<T> & vec, int &N)
{
N= vec.size();
}
template<class T> void Size(Matrix<T> & mat, int &N,int &M)
{
N= mat.size();
M= mat[0].size();
}
template<class T> void SizeSquare(Matrix<T> & mat, int &N)
{
int M; Size(mat,N,M);
assert(N==M);
}
template<class T> void SizeSame(Matrix<T> & mat1,Matrix<T> &mat2, int &N1,int &M1)
{
int N2,M2;
Size(mat1,N1,M1);
Size(mat2,N2,M2);
assert(N1==N2);
assert(M1==M2);
}
//*****************************************
//* (Complex) Vector operations *
//*****************************************
/**Conj of a Vector **/
template <class T> Vector<T> conj(Vector<T> p){
Vector<T> q(p.size());
for(int i=0;i<p.size();i++){q[i] = conj(p[i]);}
return q;
}
/** Norm of a Vector**/
template <class T> T norm(Vector<T> p){
T sum = 0;
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
return abs(sqrt(sum));
}
/** Norm squared of a Vector **/
template <class T> T norm2(Vector<T> p){
T sum = 0;
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
return abs((sum));
}
/** Sum elements of a Vector **/
template <class T> T trace(Vector<T> p){
T sum = 0;
for(int i=0;i<p.size();i++){sum = sum + p[i];}
return sum;
}
/** Fill a Vector with constant c **/
template <class T> void Fill(Vector<T> &p, T c){
for(int i=0;i<p.size();i++){p[i] = c;}
}
/** Normalize a Vector **/
template <class T> void normalize(Vector<T> &p){
T m = norm(p);
if( abs(m) > 0.0) for(int i=0;i<p.size();i++){p[i] /= m;}
}
/** Vector by scalar **/
template <class T, class U> Vector<T> times(Vector<T> p, U s){
for(int i=0;i<p.size();i++){p[i] *= s;}
return p;
}
template <class T, class U> Vector<T> times(U s, Vector<T> p){
for(int i=0;i<p.size();i++){p[i] *= s;}
return p;
}
/** inner product of a and b = conj(a) . b **/
template <class T> T inner(Vector<T> a, Vector<T> b){
T m = 0.;
for(int i=0;i<a.size();i++){m = m + conj(a[i])*b[i];}
return m;
}
/** sum of a and b = a + b **/
template <class T> Vector<T> add(Vector<T> a, Vector<T> b){
Vector<T> m(a.size());
for(int i=0;i<a.size();i++){m[i] = a[i] + b[i];}
return m;
}
/** sum of a and b = a - b **/
template <class T> Vector<T> sub(Vector<T> a, Vector<T> b){
Vector<T> m(a.size());
for(int i=0;i<a.size();i++){m[i] = a[i] - b[i];}
return m;
}
/**
*********************************
* Matrices *
*********************************
**/
template<class T> void Fill(Matrix<T> & mat, T&val) {
int N,M;
Size(mat,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
mat[i][j] = val;
}}
}
/** Transpose of a matrix **/
Matrix<T> Transpose(Matrix<T> & mat){
int N,M;
Size(mat,N,M);
Matrix C; Resize(C,M,N);
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
C[i][j] = mat[j][i];
}}
return C;
}
/** Set Matrix to unit matrix **/
template<class T> void Unity(Matrix<T> &mat){
int N; SizeSquare(mat,N);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
if ( i==j ) A[i][j] = 1;
else A[i][j] = 0;
}
}
}
/** Add C * I to matrix **/
template<class T>
void PlusUnit(Matrix<T> & A,T c){
int dim; SizeSquare(A,dim);
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
}
/** return the Hermitian conjugate of matrix **/
Matrix<T> HermitianConj(Matrix<T> &mat){
int dim; SizeSquare(mat,dim);
Matrix<T> C; Resize(C,dim,dim);
for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
C[i][j] = conj(mat[j][i]);
}
}
return C;
}
/** return diagonal entries as a Vector **/
Vector<T> diag(Matrix<T> &A)
{
int dim; SizeSquare(A,dim);
Vector<T> d; Resize(d,dim);
for(int i=0;i<dim;i++){
d[i] = A[i][i];
}
return d;
}
/** Left multiply by a Vector **/
Vector<T> operator *(Vector<T> &B,Matrix<T> &A)
{
int K,M,N;
Size(B,K);
Size(A,M,N);
assert(K==M);
Vector<T> C; Resize(C,N);
for(int j=0;j<N;j++){
T sum = 0.0;
for(int i=0;i<M;i++){
sum += B[i] * A[i][j];
}
C[j] = sum;
}
return C;
}
/** return 1/diagonal entries as a Vector **/
Vector<T> inv_diag(Matrix<T> & A){
int dim; SizeSquare(A,dim);
Vector<T> d; Resize(d,dim);
for(int i=0;i<dim;i++){
d[i] = 1.0/A[i][i];
}
return d;
}
/** Matrix Addition **/
inline Matrix<T> operator + (Matrix<T> &A,Matrix<T> &B)
{
int N,M ; SizeSame(A,B,N,M);
Matrix C; Resize(C,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
C[i][j] = A[i][j] + B[i][j];
}
}
return C;
}
/** Matrix Subtraction **/
inline Matrix<T> operator- (Matrix<T> & A,Matrix<T> &B){
int N,M ; SizeSame(A,B,N,M);
Matrix C; Resize(C,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
C[i][j] = A[i][j] - B[i][j];
}}
return C;
}
/** Matrix scalar multiplication **/
inline Matrix<T> operator* (Matrix<T> & A,T c){
int N,M; Size(A,N,M);
Matrix C; Resize(C,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
C[i][j] = A[i][j]*c;
}}
return C;
}
/** Matrix Matrix multiplication **/
inline Matrix<T> operator* (Matrix<T> &A,Matrix<T> &B){
int K,L,N,M;
Size(A,K,L);
Size(B,N,M); assert(L==N);
Matrix C; Resize(C,K,M);
for(int i=0;i<K;i++){
for(int j=0;j<M;j++){
T sum = 0.0;
for(int k=0;k<N;k++) sum += A[i][k]*B[k][j];
C[i][j] =sum;
}
}
return C;
}
/** Matrix Vector multiplication **/
inline Vector<T> operator* (Matrix<T> &A,Vector<T> &B){
int M,N,K;
Size(A,N,M);
Size(B,K); assert(K==M);
Vector<T> C; Resize(C,N);
for(int i=0;i<N;i++){
T sum = 0.0;
for(int j=0;j<M;j++) sum += A[i][j]*B[j];
C[i] = sum;
}
return C;
}
/** Some version of Matrix norm **/
/*
inline T Norm(){ // this is not a usual L2 norm
T norm = 0;
for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
norm += abs(A[i][j]);
}}
return norm;
}
*/
/** Some version of Matrix norm **/
template<class T> T LargestDiag(Matrix<T> &A)
{
int dim ; SizeSquare(A,dim);
T ld = abs(A[0][0]);
for(int i=1;i<dim;i++){
T cf = abs(A[i][i]);
if(abs(cf) > abs(ld) ){ld = cf;}
}
return ld;
}
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
template <class T,class U> int Chop_subdiag(Matrix<T> &A,T norm, int offset, U small)
{
int dim; SizeSquare(A,dim);
for(int l = dim - 1 - offset; l >= 1; l--) {
if((U)abs(A[l][l - 1]) < (U)small) {
A[l][l-1]=(U)0.0;
return l;
}
}
return 0;
}
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
template <class T,class U> int Chop_symm_subdiag(Matrix<T> & A,T norm, int offset, U small)
{
int dim; SizeSquare(A,dim);
for(int l = dim - 1 - offset; l >= 1; l--) {
if((U)abs(A[l][l - 1]) < (U)small) {
A[l][l - 1] = (U)0.0;
A[l - 1][l] = (U)0.0;
return l;
}
}
return 0;
}
/**Assign a submatrix to a larger one**/
template<class T>
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
{
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
A[i][j] = S[i - row_st][j - col_st];
}
}
}
/**Get a square submatrix**/
template <class T>
Matrix<T> GetSubMtx(Matrix<T> &A,int row_st, int row_end, int col_st, int col_end)
{
Matrix<T> H; Resize(row_end - row_st,col_end-col_st);
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
H[i-row_st][j-col_st]=A[i][j];
}}
return H;
}
/**Assign a submatrix to a larger one NB remember Vector Vectors are transposes of the matricies they represent**/
template<class T>
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
{
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
A[i][j] = S[i - row_st][j - col_st];
}}
}
/** compute b_i A_ij b_j **/ // surprised no Conj
template<class T> T proj(Matrix<T> A, Vector<T> B){
int dim; SizeSquare(A,dim);
int dimB; Size(B,dimB);
assert(dimB==dim);
T C = 0;
for(int i=0;i<dim;i++){
T sum = 0.0;
for(int j=0;j<dim;j++){
sum += A[i][j]*B[j];
}
C += B[i]*sum; // No conj?
}
return C;
}
/*
*************************************************************
*
* Matrix Vector products
*
*************************************************************
*/
// Instead make a linop and call my CG;
/// q -> q Q
template <class T,class Fermion> void times(Vector<Fermion> &q, Matrix<T> &Q)
{
int M; SizeSquare(Q,M);
int N; Size(q,N);
assert(M==N);
times(q,Q,N);
}
/// q -> q Q
template <class T> void times(multi1d<LatticeFermion> &q, Matrix<T> &Q, int N)
{
GridBase *grid = q[0]._grid;
int M; SizeSquare(Q,M);
int K; Size(q,K);
assert(N<M);
assert(N<K);
Vector<Fermion> S(N,grid );
for(int j=0;j<N;j++){
S[j] = zero;
for(int k=0;k<N;k++){
S[j] = S[j] + q[k]* Q[k][j];
}
}
for(int j=0;j<q.size();j++){
q[j] = S[j];
}
}
#endif

View File

@ -1,75 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MatrixUtils.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATRIX_UTILS_H
#define GRID_MATRIX_UTILS_H
namespace Grid {
namespace MatrixUtils {
template<class T> inline void Size(Matrix<T>& A,int &N,int &M){
N=A.size(); assert(N>0);
M=A[0].size();
for(int i=0;i<N;i++){
assert(A[i].size()==M);
}
}
template<class T> inline void SizeSquare(Matrix<T>& A,int &N)
{
int M;
Size(A,N,M);
assert(N==M);
}
template<class T> inline void Fill(Matrix<T>& A,T & val)
{
int N,M;
Size(A,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
A[i][j]=val;
}}
}
template<class T> inline void Diagonal(Matrix<T>& A,T & val)
{
int N;
SizeSquare(A,N);
for(int i=0;i<N;i++){
A[i][i]=val;
}
}
template<class T> inline void Identity(Matrix<T>& A)
{
Fill(A,0.0);
Diagonal(A,1.0);
}
};
}
#endif

View File

@ -1,15 +0,0 @@
- ConjugateGradientMultiShift
- MCR
- Potentially Useful Boost libraries
- MultiArray
- Aligned allocator; memory pool
- Remez -- Mike or Boost?
- Multiprecision
- quaternians
- Tokenize
- Serialization
- Regex
- Proto (ET)
- uBlas

View File

@ -1,122 +0,0 @@
#include <math.h>
#include <stdlib.h>
#include <vector>
struct Bisection {
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
{
int i,j;
std::vector<RealD> evec1(row_num+3);
std::vector<RealD> evec2(row_num+3);
RealD eps2;
ALPHA[1]=0.;
BETHA[1]=0.;
for(i=0;i<row_num-1;i++) {
ALPHA[i+1] = A[i*(row_num+1)].real();
BETHA[i+2] = A[i*(row_num+1)+1].real();
}
ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
// Do we really need to sort here?
int begin=1;
int end = row_num;
int swapped=1;
while(swapped) {
swapped=0;
for(i=begin;i<end;i++){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
end--;
for(i=end-1;i>=begin;i--){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
begin++;
}
for(i=0;i<row_num;i++){
for(j=0;j<row_num;j++) {
if(i==j) H[i*row_num+j]=evec2[i+1];
else H[i*row_num+j]=0.;
}
}
}
static void bisec(std::vector<RealD> &c,
std::vector<RealD> &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh,
std::vector<RealD> &x,
RealD &eps2)
{
std::vector<RealD> wu(n+2);
RealD h,q,x1,xu,x0,xmin,xmax;
int i,a,k;
b[1]=0.0;
xmin=c[n]-fabs(b[n]);
xmax=c[n]+fabs(b[n]);
for(i=1;i<n;i++){
h=fabs(b[i])+fabs(b[i+1]);
if(c[i]+h>xmax) xmax= c[i]+h;
if(c[i]-h<xmin) xmin= c[i]-h;
}
xmax *=2.;
eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
if(eps1<=0.0) eps1=eps2;
eps2=0.5*eps1+7.0*(eps2);
x0=xmax;
for(i=m1;i<=m2;i++){
x[i]=xmax;
wu[i]=xmin;
}
for(k=m2;k>=m1;k--){
xu=xmin;
i=k;
do{
if(xu<wu[i]){
xu=wu[i];
i=m1-1;
}
i--;
}while(i>=m1);
if(x0>x[k]) x0=x[k];
while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
x1=(xu+x0)/2;
a=0;
q=1.0;
for(i=1;i<=n;i++){
q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
if(q<0) a++;
}
// printf("x1=%e a=%d\n",x1,a);
if(a<k){
if(a<m1){
xu=x1;
wu[m1]=x1;
}else {
xu=x1;
wu[a+1]=x1;
if(x[a]>x1) x[a]=x1;
}
}else x0=x1;
}
x[k]=(x0+xu)/2;
}
}
}

View File

@ -1 +0,0 @@

View File

@ -30,21 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid { namespace Grid {
template<class vobj>
class SimpleCompressor {
public:
void Point(int) {};
vobj operator() (const vobj &arg) {
return arg;
}
};
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split with compression // Gather for when there is no need to SIMD split
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor> void template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off=0) Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{ {
int rd = rhs._grid->_rdimensions[dimension]; int rd = rhs._grid->_rdimensions[dimension];
@ -62,7 +52,7 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimen
for(int b=0;b<e2;b++){ for(int b=0;b<e2;b++){
int o = n*stride; int o = n*stride;
int bo = n*e2; int bo = n*e2;
buffer[off+bo+b]=compress(rhs._odata[so+o+b]); buffer[off+bo+b]=rhs._odata[so+o+b];
} }
} }
} else { } else {
@ -78,17 +68,16 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimen
} }
} }
parallel_for(int i=0;i<table.size();i++){ parallel_for(int i=0;i<table.size();i++){
buffer[off+table[i].first]=compress(rhs._odata[so+table[i].second]); buffer[off+table[i].first]=rhs._odata[so+table[i].second];
} }
} }
} }
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split with compression // Gather for when there *is* need to SIMD split
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<class cobj,class vobj,class compressor> void template<class vobj> void
Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_object *> pointers,int dimension,int plane,int cbmask,compressor &compress) Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{ {
int rd = rhs._grid->_rdimensions[dimension]; int rd = rhs._grid->_rdimensions[dimension];
@ -109,8 +98,8 @@ Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_
int o = n*n1; int o = n*n1;
int offset = b+n*e2; int offset = b+n*e2;
cobj temp =compress(rhs._odata[so+o+b]); vobj temp =rhs._odata[so+o+b];
extract<cobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
} }
} }
@ -127,32 +116,14 @@ Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_
int offset = b+n*e2; int offset = b+n*e2;
if ( ocb & cbmask ) { if ( ocb & cbmask ) {
cobj temp =compress(rhs._odata[so+o+b]); vobj temp =rhs._odata[so+o+b];
extract<cobj>(temp,pointers,offset); extract<vobj>(temp,pointers,offset);
} }
} }
} }
} }
} }
//////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
SimpleCompressor<vobj> dontcompress;
Gather_plane_simple (rhs,buffer,dimension,plane,cbmask,dontcompress);
}
//////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{
SimpleCompressor<vobj> dontcompress;
Gather_plane_extract<vobj,vobj,decltype(dontcompress)>(rhs,pointers,dimension,plane,cbmask,dontcompress);
}
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split // Scatter for when there is no need to SIMD split
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
@ -200,7 +171,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Scatter for when there *is* need to SIMD split // Scatter for when there *is* need to SIMD split
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
template<class vobj,class cobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<cobj *> pointers,int dimension,int plane,int cbmask) template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{ {
int rd = rhs._grid->_rdimensions[dimension]; int rd = rhs._grid->_rdimensions[dimension];

View File

@ -154,13 +154,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
recv_from_rank, recv_from_rank,
bytes); bytes);
grid->Barrier(); grid->Barrier();
/*
for(int i=0;i<send_buf.size();i++){
assert(recv_buf.size()==buffer_size);
assert(send_buf.size()==buffer_size);
std::cout << "SendRecv_Cshift_comms ["<<i<<" "<< dimension<<"] snd "<<send_buf[i]<<" rcv " << recv_buf[i] << " 0x" << cbmask<<std::endl;
}
*/
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask); Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
} }
} }
@ -246,13 +240,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
(void *)&recv_buf_extract[i][0], (void *)&recv_buf_extract[i][0],
recv_from_rank, recv_from_rank,
bytes); bytes);
/*
for(int w=0;w<recv_buf_extract[i].size();w++){
assert(recv_buf_extract[i].size()==buffer_size);
assert(send_buf_extract[i].size()==buffer_size);
std::cout << "SendRecv_Cshift_comms ["<<w<<" "<< dimension<<"] recv "<<recv_buf_extract[i][w]<<" send " << send_buf_extract[nbr_lane][w] << cbmask<<std::endl;
}
*/
grid->Barrier(); grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0]; rpointers[i] = &recv_buf_extract[i][0];
} else { } else {

View File

@ -1,224 +1,521 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015 Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License along You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#ifndef GRID_LATTICE_REDUCTION_H #ifndef GRID_LATTICE_REDUCTION_H
#define GRID_LATTICE_REDUCTION_H #define GRID_LATTICE_REDUCTION_H
#include <Grid/Eigen/Dense>
namespace Grid { namespace Grid {
#ifdef GRID_WARN_SUBOPTIMAL #ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded " #warning "Optimisation alert all these reduction loops are NOT threaded "
#endif #endif
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations // Deterministic Reduction operations
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj> template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
inline RealD norm2(const Lattice<vobj> &arg) { ComplexD nrm = innerProduct(arg,arg);
ComplexD nrm = innerProduct(arg, arg); return std::real(nrm);
return std::real(nrm); }
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
scalar_type nrm;
GridBase *grid = left._grid;
std::vector<vector_type,alignedAllocator<vector_type> > sumarray(grid->SumArraySize());
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
decltype(innerProductD(left._odata[0],right._odata[0])) vnrm=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vnrm = vnrm + innerProductD(left._odata[ss],right._odata[ss]);
}
sumarray[thr]=TensorRemove(vnrm) ;
} }
template <class vobj> vector_type vvnrm; vvnrm=zero; // sum across threads
inline ComplexD innerProduct(const Lattice<vobj> &left, for(int i=0;i<grid->SumArraySize();i++){
const Lattice<vobj> &right) { vvnrm = vvnrm+sumarray[i];
}
nrm = Reduce(vvnrm);// sum across simd
right._grid->GlobalSum(nrm);
return nrm;
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
// may be important for correlation functions
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
assert(grid!=NULL);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data._odata[ss];
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
extract(lvSum[rt],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx];
}
}
// sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=zero;
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// sum over nodes.
scalar_type gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=scalar_type(0.0);
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = rhs._grid->GlobalDimensions()[Orthog];
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
sliceInnerProductVector(ip,rhs,rhs,Orthog);
for(int ss=0;ss<Nblock;ss++){
sn[ss] = real(ip[ss]);
}
};
template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced tensor_reduced;
GridBase *grid = X._grid;
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
int fd =grid->_fdimensions[orthogdim];
int ld =grid->_ldimensions[orthogdim];
int rd =grid->_rdimensions[orthogdim];
int e1 =grid->_slice_nblock[orthogdim];
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
std::vector<int> icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
vector_type av;
for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd;
scalar_type *as =(scalar_type *)&av;
as[l] = scalar_type(a[ldx])*scale;
}
tensor_reduced at; at=av;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
}
}
}
};
/*
template<class vobj>
static void sliceMaddVectorSlow (Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int Orthog,RealD scale=1.0)
{
// FIXME: Implementation is slow
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// If we based this on Cshift it would work for spread out
// but it would be even slower
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
ExtractSlice(Xslice,X,i,Orthog);
Rslice = Rslice + Xslice*(scale*a[i]);
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductVectorSlow( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Look at localInnerProduct implementation,
// and do inside a site loop with block strided iterators
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
scalar_type nrm; typedef typename vobj::tensor_reduced scalar;
typedef typename scalar::scalar_object scomplex;
GridBase *grid = left._grid;
int Nblock = lhs._grid->GlobalDimensions()[Orthog];
std::vector<vector_type, alignedAllocator<vector_type> > sumarray(grid->SumArraySize()); vec.resize(Nblock);
for (int i = 0; i < grid->SumArraySize(); i++) { std::vector<scomplex> sip(Nblock);
sumarray[i] = zero; Lattice<scalar> IP(lhs._grid);
IP=localInnerProduct(lhs,rhs);
sliceSum(IP,sip,Orthog);
for(int ss=0;ss<Nblock;ss++){
vec[ss] = TensorRemove(sip[ss]);
} }
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(), thr, mywork, myoff);
decltype(innerProduct(left._odata[0], right._odata[0])) vnrm=zero; // private to thread; sub summation
for(int ss = myoff; ss<mywork + myoff; ss++){
vnrm = vnrm + innerProduct(left._odata[ss],right._odata[ss]);
}
sumarray[thr]=TensorRemove(vnrm) ;
}
vector_type vvnrm;
vvnrm=zero; // sum across threads
for(int i=0; i < grid->SumArraySize(); i++){
vvnrm = vvnrm + sumarray[i];
}
nrm = Reduce(vvnrm);// sum across simd
right._grid->GlobalSum(nrm);
return nrm;
} }
*/
//////////////////////////////////////////////////////////////////////////////////////////
// FIXME: Implementation is slow
// If we based this on Cshift it would work for spread out
// but it would be even slower
//
// Repeated extract slice is inefficient
//
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
//////////////////////////////////////////////////////////////////////////////////////////
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
template <class Op, class T1> std::vector<int> latt_phys(0);
inline auto sum(const LatticeUnaryExpression<Op, T1> &expr) -> std::vector<int> simd_phys(0);
typename decltype(expr.first.func(eval(0, std::get<0>(expr.second))))::scalar_object { std::vector<int> mpi_phys(0);
return sum(closure(expr));
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
} }
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg){
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
assert(grid!=NULL);
// FIXME
// std::cout<<GridLogMessage<<"WARNING ! SliceSum is unthreaded "<<grid->SumArraySize()<<" threads "<<std::endl;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
std::vector<int> coor(Nd);
// sum over reduced dimension planes, breaking out orthog dir
for(int ss=0;ss<grid->oSites();ss++){
Lexicographic::CoorFromIndex(coor,ss,grid->_rdimensions);
int r = coor[orthogdim];
lvSum[r]=lvSum[r]+Data._odata[ss];
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
extract(lvSum[rt],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx];
}
}
// sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=zero;
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
} }
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Xslice,X,j,Orthog);
Rslice = Rslice + Xslice*(scale*aa(j,i));
}
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Not sure of best solution.. think about it
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
Lattice<vobj> Lslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
for(int i=0;i<Nblock;i++){
ExtractSlice(Lslice,lhs,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Rslice,rhs,j,Orthog);
mat(i,j) = innerProduct(Lslice,Rslice);
}
}
#undef FORCE_DIAG
#ifdef FORCE_DIAG
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
if ( i != j ) mat(i,j)=0.0;
}
}
#endif
return;
}
} /*END NAMESPACE GRID*/
#endif #endif

View File

@ -1,4 +1,4 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
@ -359,7 +359,7 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
template<class vobj> template<class vobj>
void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog) void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
@ -401,7 +401,7 @@ void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int
} }
template<class vobj> template<class vobj>
void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, int orthog) void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice, int orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
@ -444,7 +444,7 @@ void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, in
template<class vobj> template<class vobj>
void InsertSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog) void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;

View File

@ -110,8 +110,8 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){ friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) { if ( log.active ) {
stream << log.background()<< std::setw(10) << std::left << log.topName << log.background()<< " : "; stream << log.background()<< std::setw(8) << std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::setw(14) << std::left << log.name << log.background() << " : "; stream << log.colour() << std::setw(10) << std::left << log.name << log.background() << " : ";
if ( log.timestamp ) { if ( log.timestamp ) {
StopWatch.Stop(); StopWatch.Stop();
GridTime now = StopWatch.Elapsed(); GridTime now = StopWatch.Elapsed();

View File

@ -563,7 +563,7 @@ class BinaryIO {
if (ILDG.is_ILDG){ if (ILDG.is_ILDG){
// use C-LIME to populate the record // use C-LIME to populate the record
#ifdef HAVE_LIME #ifdef HAVE_LIME
size_t sizeFO = sizeof(fileObj); uint64_t sizeFO = sizeof(fileObj);
limeReaderSeek(ILDG.LR, g_idx*sizeFO, SEEK_SET); limeReaderSeek(ILDG.LR, g_idx*sizeFO, SEEK_SET);
int status = limeReaderReadData((void *)&fileObj, &sizeFO, ILDG.LR); int status = limeReaderReadData((void *)&fileObj, &sizeFO, ILDG.LR);
#endif #endif
@ -762,7 +762,7 @@ class BinaryIO {
if (ILDG.is_ILDG) { if (ILDG.is_ILDG) {
#ifdef HAVE_LIME #ifdef HAVE_LIME
size_t sizeFO = sizeof(fileObj); uint64_t sizeFO = sizeof(fileObj);
limeWriterSeek(ILDG.LW, g_idx*sizeFO, SEEK_SET); limeWriterSeek(ILDG.LW, g_idx*sizeFO, SEEK_SET);
int status = limeWriteRecordData((void *)&fileObj, &sizeFO, ILDG.LW); int status = limeWriteRecordData((void *)&fileObj, &sizeFO, ILDG.LW);
#endif #endif

View File

@ -44,7 +44,12 @@ namespace QCD {
struct WilsonImplParams { struct WilsonImplParams {
bool overlapCommsCompute; bool overlapCommsCompute;
WilsonImplParams() : overlapCommsCompute(false){}; std::vector<Complex> boundary_phases;
WilsonImplParams() : overlapCommsCompute(false) {
boundary_phases.resize(Nd, 1.0);
};
WilsonImplParams(const std::vector<Complex> phi)
: boundary_phases(phi), overlapCommsCompute(false) {}
}; };
struct StaggeredImplParams { struct StaggeredImplParams {

View File

@ -320,7 +320,7 @@ void CayleyFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const
this->DhopDeriv(mat,U,Din,dag); this->DhopDeriv(mat,U,Din,dag);
} else { } else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call // U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
MeooeDag5D(U,Din); Meooe5D(U,Din);
this->DhopDeriv(mat,Din,V,dag); this->DhopDeriv(mat,Din,V,dag);
} }
}; };
@ -335,8 +335,8 @@ void CayleyFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const
this->DhopDerivOE(mat,U,Din,dag); this->DhopDerivOE(mat,U,Din,dag);
} else { } else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call // U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
MeooeDag5D(U,Din); Meooe5D(U,Din);
this->DhopDerivOE(mat,Din,V,dag); this->DhopDerivOE(mat,Din,V,dag);
} }
}; };
template<class Impl> template<class Impl>
@ -350,7 +350,7 @@ void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const
this->DhopDerivEO(mat,U,Din,dag); this->DhopDerivEO(mat,U,Din,dag);
} else { } else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call // U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
MeooeDag5D(U,Din); Meooe5D(U,Din);
this->DhopDerivEO(mat,Din,V,dag); this->DhopDerivEO(mat,Din,V,dag);
} }
}; };
@ -380,6 +380,8 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
// The Cayley coeffs (unprec) // The Cayley coeffs (unprec)
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
assert(gamma.size()==Ls);
omega.resize(Ls); omega.resize(Ls);
bs.resize(Ls); bs.resize(Ls);
cs.resize(Ls); cs.resize(Ls);
@ -412,10 +414,11 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
for(int i=0; i < Ls; i++){ for(int i=0; i < Ls; i++){
as[i] = 1.0; as[i] = 1.0;
omega[i] = gamma[i]*zolo_hi; //NB reciprocal relative to Chroma NEF code omega[i] = gamma[i]*zolo_hi; //NB reciprocal relative to Chroma NEF code
// assert(fabs(omega[i])>0.0);
bs[i] = 0.5*(bpc/omega[i] + bmc); bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc); cs[i] = 0.5*(bpc/omega[i] - bmc);
} }
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Constants for the preconditioned matrix Cayley form // Constants for the preconditioned matrix Cayley form
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
@ -425,12 +428,12 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
ceo.resize(Ls); ceo.resize(Ls);
for(int i=0;i<Ls;i++){ for(int i=0;i<Ls;i++){
bee[i]=as[i]*(bs[i]*(4.0-this->M5) +1.0); bee[i]=as[i]*(bs[i]*(4.0-this->M5) +1.0);
// assert(fabs(bee[i])>0.0);
cee[i]=as[i]*(1.0-cs[i]*(4.0-this->M5)); cee[i]=as[i]*(1.0-cs[i]*(4.0-this->M5));
beo[i]=as[i]*bs[i]; beo[i]=as[i]*bs[i];
ceo[i]=-as[i]*cs[i]; ceo[i]=-as[i]*cs[i];
} }
aee.resize(Ls); aee.resize(Ls);
aeo.resize(Ls); aeo.resize(Ls);
for(int i=0;i<Ls;i++){ for(int i=0;i<Ls;i++){
@ -474,14 +477,16 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
{ {
Coeff_t delta_d=mass*cee[Ls-1]; Coeff_t delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) delta_d *= cee[j]/bee[j]; for(int j=0;j<Ls-1;j++) {
// assert(fabs(bee[j])>0.0);
delta_d *= cee[j]/bee[j];
}
dee[Ls-1] += delta_d; dee[Ls-1] += delta_d;
} }
int inv=1; int inv=1;
this->MooeeInternalCompute(0,inv,MatpInv,MatmInv); this->MooeeInternalCompute(0,inv,MatpInv,MatmInv);
this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag); this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag);
} }
@ -495,7 +500,9 @@ void CayleyFermion5D<Impl>::MooeeInternalCompute(int dag, int inv,
GridBase *grid = this->FermionRedBlackGrid(); GridBase *grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0]; int LLs = grid->_rdimensions[0];
if ( LLs == Ls ) return; // Not vectorised in 5th direction if ( LLs == Ls ) {
return; // Not vectorised in 5th direction
}
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls); Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls); Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);

View File

@ -237,6 +237,13 @@ void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &
INSTANTIATE_DPERP(GparityWilsonImplD); INSTANTIATE_DPERP(GparityWilsonImplD);
INSTANTIATE_DPERP(ZWilsonImplF); INSTANTIATE_DPERP(ZWilsonImplF);
INSTANTIATE_DPERP(ZWilsonImplD); INSTANTIATE_DPERP(ZWilsonImplD);
INSTANTIATE_DPERP(WilsonImplFH);
INSTANTIATE_DPERP(WilsonImplDF);
INSTANTIATE_DPERP(GparityWilsonImplFH);
INSTANTIATE_DPERP(GparityWilsonImplDF);
INSTANTIATE_DPERP(ZWilsonImplFH);
INSTANTIATE_DPERP(ZWilsonImplDF);
#endif #endif
}} }}

View File

@ -137,6 +137,20 @@ template void CayleyFermion5D<WilsonImplF>::MooeeInternal(const FermionField &ps
template void CayleyFermion5D<WilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<WilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<ZWilsonImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<ZWilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
INSTANTIATE_DPERP(GparityWilsonImplFH);
INSTANTIATE_DPERP(GparityWilsonImplDF);
INSTANTIATE_DPERP(WilsonImplFH);
INSTANTIATE_DPERP(WilsonImplDF);
INSTANTIATE_DPERP(ZWilsonImplFH);
INSTANTIATE_DPERP(ZWilsonImplDF);
template void CayleyFermion5D<GparityWilsonImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<GparityWilsonImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<WilsonImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<WilsonImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
#endif #endif
}} }}

View File

@ -37,7 +37,6 @@ namespace Grid {
namespace QCD { namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse. // FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards // Pminus fowards
// Pplus backwards // Pplus backwards
template<class Impl> template<class Impl>
@ -152,6 +151,13 @@ void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &
INSTANTIATE_DPERP(GparityWilsonImplD); INSTANTIATE_DPERP(GparityWilsonImplD);
INSTANTIATE_DPERP(ZWilsonImplF); INSTANTIATE_DPERP(ZWilsonImplF);
INSTANTIATE_DPERP(ZWilsonImplD); INSTANTIATE_DPERP(ZWilsonImplD);
INSTANTIATE_DPERP(WilsonImplFH);
INSTANTIATE_DPERP(WilsonImplDF);
INSTANTIATE_DPERP(GparityWilsonImplFH);
INSTANTIATE_DPERP(GparityWilsonImplDF);
INSTANTIATE_DPERP(ZWilsonImplFH);
INSTANTIATE_DPERP(ZWilsonImplDF);
#endif #endif
} }

View File

@ -808,10 +808,21 @@ INSTANTIATE_DPERP(DomainWallVec5dImplF);
INSTANTIATE_DPERP(ZDomainWallVec5dImplD); INSTANTIATE_DPERP(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP(ZDomainWallVec5dImplF); INSTANTIATE_DPERP(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP(DomainWallVec5dImplDF);
INSTANTIATE_DPERP(DomainWallVec5dImplFH);
INSTANTIATE_DPERP(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP(ZDomainWallVec5dImplFH);
template void CayleyFermion5D<DomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<DomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<DomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv); template void CayleyFermion5D<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
}} }}

View File

@ -68,7 +68,7 @@ namespace Grid {
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls); assert(zdata->n==this->Ls);
// std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<this->Ls<<std::endl; std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<this->Ls<<std::endl;
// Call base setter // Call base setter
this->SetCoefficientsTanh(zdata,1.0,0.0); this->SetCoefficientsTanh(zdata,1.0,0.0);

View File

@ -58,6 +58,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/DomainWallFermion.h> #include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/MobiusFermion.h> #include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h> #include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h> #include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h> #include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h> #include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>
@ -88,6 +89,10 @@ typedef WilsonFermion<WilsonImplR> WilsonFermionR;
typedef WilsonFermion<WilsonImplF> WilsonFermionF; typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD; typedef WilsonFermion<WilsonImplD> WilsonFermionD;
typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR; typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF; typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD; typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
@ -104,27 +109,50 @@ typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF; typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD; typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR; typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF; typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD; typedef MobiusFermion<WilsonImplD> MobiusFermionD;
typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR; typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF; typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD; typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised // Ls vectorised
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR; typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF; typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD; typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
typedef DomainWallFermion<DomainWallVec5dImplRL> DomainWallFermionVec5dRL;
typedef DomainWallFermion<DomainWallVec5dImplFH> DomainWallFermionVec5dFH;
typedef DomainWallFermion<DomainWallVec5dImplDF> DomainWallFermionVec5dDF;
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR; typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF; typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD; typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
typedef MobiusFermion<DomainWallVec5dImplRL> MobiusFermionVec5dRL;
typedef MobiusFermion<DomainWallVec5dImplFH> MobiusFermionVec5dFH;
typedef MobiusFermion<DomainWallVec5dImplDF> MobiusFermionVec5dDF;
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR; typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF; typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD; typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
typedef ZMobiusFermion<ZDomainWallVec5dImplRL> ZMobiusFermionVec5dRL;
typedef ZMobiusFermion<ZDomainWallVec5dImplFH> ZMobiusFermionVec5dFH;
typedef ZMobiusFermion<ZDomainWallVec5dImplDF> ZMobiusFermionVec5dDF;
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR; typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF; typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
@ -165,17 +193,35 @@ typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonP
typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR; typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR;
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF; typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD; typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR; typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF; typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD; typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR; typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF; typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD; typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR; typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF; typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD; typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR; typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF; typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD; typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;

View File

@ -55,7 +55,14 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
template class A<ZWilsonImplF>; \ template class A<ZWilsonImplF>; \
template class A<ZWilsonImplD>; \ template class A<ZWilsonImplD>; \
template class A<GparityWilsonImplF>; \ template class A<GparityWilsonImplF>; \
template class A<GparityWilsonImplD>; template class A<GparityWilsonImplD>; \
template class A<WilsonImplFH>; \
template class A<WilsonImplDF>; \
template class A<ZWilsonImplFH>; \
template class A<ZWilsonImplDF>; \
template class A<GparityWilsonImplFH>; \
template class A<GparityWilsonImplDF>;
#define AdjointFermOpTemplateInstantiate(A) \ #define AdjointFermOpTemplateInstantiate(A) \
template class A<WilsonAdjImplF>; \ template class A<WilsonAdjImplF>; \
@ -69,7 +76,11 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
template class A<DomainWallVec5dImplF>; \ template class A<DomainWallVec5dImplF>; \
template class A<DomainWallVec5dImplD>; \ template class A<DomainWallVec5dImplD>; \
template class A<ZDomainWallVec5dImplF>; \ template class A<ZDomainWallVec5dImplF>; \
template class A<ZDomainWallVec5dImplD>; template class A<ZDomainWallVec5dImplD>; \
template class A<DomainWallVec5dImplFH>; \
template class A<DomainWallVec5dImplDF>; \
template class A<ZDomainWallVec5dImplFH>; \
template class A<ZDomainWallVec5dImplDF>;
#define FermOpTemplateInstantiate(A) \ #define FermOpTemplateInstantiate(A) \
FermOp4dVecTemplateInstantiate(A) \ FermOp4dVecTemplateInstantiate(A) \

View File

@ -35,7 +35,6 @@ directory
namespace Grid { namespace Grid {
namespace QCD { namespace QCD {
////////////////////////////////////////////// //////////////////////////////////////////////
// Template parameter class constructs to package // Template parameter class constructs to package
// externally control Fermion implementations // externally control Fermion implementations
@ -89,7 +88,53 @@ namespace QCD {
// //
// } // }
////////////////////////////////////////////// //////////////////////////////////////////////
template <class T> struct SamePrecisionMapper {
typedef T HigherPrecVector ;
typedef T LowerPrecVector ;
};
template <class T> struct LowerPrecisionMapper { };
template <> struct LowerPrecisionMapper<vRealF> {
typedef vRealF HigherPrecVector ;
typedef vRealH LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vRealD> {
typedef vRealD HigherPrecVector ;
typedef vRealF LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vComplexF> {
typedef vComplexF HigherPrecVector ;
typedef vComplexH LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vComplexD> {
typedef vComplexD HigherPrecVector ;
typedef vComplexF LowerPrecVector ;
};
struct CoeffReal {
public:
typedef RealD _Coeff_t;
static const int Nhcs = 2;
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
};
struct CoeffRealHalfComms {
public:
typedef RealD _Coeff_t;
static const int Nhcs = 1;
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
};
struct CoeffComplex {
public:
typedef ComplexD _Coeff_t;
static const int Nhcs = 2;
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
};
struct CoeffComplexHalfComms {
public:
typedef ComplexD _Coeff_t;
static const int Nhcs = 1;
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
};
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Implementation dependent fermion types // Implementation dependent fermion types
@ -114,43 +159,48 @@ namespace QCD {
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index // Single flavour four spinors with colour index
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation,class _Coeff_t = RealD > template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > { class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public: public:
static const int Dimension = Representation::Dimension; static const int Dimension = Representation::Dimension;
static const bool LsVectorised=false;
static const int Nhcs = Options::Nhcs;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl; typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
//Necessary? //Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;} constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=false; typedef typename Options::_Coeff_t Coeff_t;
typedef _Coeff_t Coeff_t; typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >; template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >; template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >; template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>; template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
typedef iImplSpinor<Simd> SiteSpinor; typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator; typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor; typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField; typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField; typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField; typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField; typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor; typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams; typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl; typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
ImplParams Params; ImplParams Params;
WilsonImpl(const ImplParams &p = ImplParams()) : Params(p){}; WilsonImpl(const ImplParams &p = ImplParams()) : Params(p){
assert(Params.boundary_phases.size() == Nd);
};
bool overlapCommsCompute(void) { return Params.overlapCommsCompute; }; bool overlapCommsCompute(void) { return Params.overlapCommsCompute; };
@ -174,10 +224,16 @@ namespace QCD {
conformable(Uds._grid, GaugeGrid); conformable(Uds._grid, GaugeGrid);
conformable(Umu._grid, GaugeGrid); conformable(Umu._grid, GaugeGrid);
GaugeLinkField U(GaugeGrid); GaugeLinkField U(GaugeGrid);
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for (int mu = 0; mu < Nd; mu++) { for (int mu = 0; mu < Nd; mu++) {
LatticeCoordinate(coor, mu);
int Lmu = GaugeGrid->GlobalDimensions()[mu] - 1;
U = PeekIndex<LorentzIndex>(Umu, mu); U = PeekIndex<LorentzIndex>(Umu, mu);
PokeIndex<LorentzIndex>(Uds, U, mu); tmp = where(coor == Lmu, Params.boundary_phases[mu] * U, U);
PokeIndex<LorentzIndex>(Uds, tmp, mu);
U = adj(Cshift(U, mu, -1)); U = adj(Cshift(U, mu, -1));
U = where(coor == 0, Params.boundary_phases[mu] * U, U);
PokeIndex<LorentzIndex>(Uds, U, mu + 4); PokeIndex<LorentzIndex>(Uds, U, mu + 4);
} }
} }
@ -209,31 +265,34 @@ namespace QCD {
//////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index, 5d redblack // Single flavour four spinors with colour index, 5d redblack
//////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////
template<class S,int Nrepresentation=Nc, class Options=CoeffReal>
template<class S,int Nrepresentation=Nc,class _Coeff_t = RealD>
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepresentation> > { class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepresentation> > {
public: public:
static const int Dimension = Nrepresentation;
const bool LsVectorised=true;
typedef _Coeff_t Coeff_t;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl; typedef PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(Gimpl);
static const int Dimension = Nrepresentation;
static const bool LsVectorised=true;
static const int Nhcs = Options::Nhcs;
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >; template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Nrepresentation>, Ns> >; template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Nrepresentation>, Ns> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >; template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhcs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>; template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>; template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >; template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
typedef iImplSpinor<Simd> SiteSpinor; typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator; typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor; typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef Lattice<SiteSpinor> FermionField; typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef Lattice<SitePropagator> PropagatorField; typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
///////////////////////////////////////////////// /////////////////////////////////////////////////
// Make the doubled gauge field a *scalar* // Make the doubled gauge field a *scalar*
@ -241,9 +300,9 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField; typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor; typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams; typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl; typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
@ -303,6 +362,11 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
} }
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) { inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
assert(0);
// Following lines to be revised after Peter's addition of half prec
// missing put lane...
/*
typedef decltype(traceIndex<SpinIndex>(outerProduct(Btilde[0], Atilde[0]))) result_type; typedef decltype(traceIndex<SpinIndex>(outerProduct(Btilde[0], Atilde[0]))) result_type;
unsigned int LLs = Btilde._grid->_rdimensions[0]; unsigned int LLs = Btilde._grid->_rdimensions[0];
conformable(Atilde._grid,Btilde._grid); conformable(Atilde._grid,Btilde._grid);
@ -342,41 +406,44 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
} }
} }
PokeIndex<LorentzIndex>(mat, tmp, mu); PokeIndex<LorentzIndex>(mat, tmp, mu);
*/
} }
}; };
//////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////
// Flavour doubled spinors; is Gparity the only? what about C*? // Flavour doubled spinors; is Gparity the only? what about C*?
//////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////
template <class S, int Nrepresentation, class Options=CoeffReal>
template <class S, int Nrepresentation,class _Coeff_t = RealD>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > { class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
public: public:
static const int Dimension = Nrepresentation; static const int Dimension = Nrepresentation;
static const int Nhcs = Options::Nhcs;
static const bool LsVectorised=false;
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t;
typedef ConjugateGaugeImpl< GaugeImplTypes<S,Nrepresentation> > Gimpl; typedef ConjugateGaugeImpl< GaugeImplTypes<S,Nrepresentation> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>; template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Nrepresentation>, Ns>, Ngp >; template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>; template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
template <typename vtype> using iImplHalfCommSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhcs>, Ngp>;
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>; template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
typedef iImplSpinor<Simd> SiteSpinor; typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator; typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor; typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField; typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField; typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField; typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField; typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor; typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl; typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
typedef GparityWilsonImplParams ImplParams; typedef GparityWilsonImplParams ImplParams;
@ -393,8 +460,8 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
const SiteHalfSpinor &chi, int mu, StencilEntry *SE, const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
StencilImpl &St) { StencilImpl &St) {
typedef SiteHalfSpinor vobj; typedef SiteHalfSpinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj; typedef typename SiteHalfSpinor::scalar_object sobj;
vobj vtmp; vobj vtmp;
sobj stmp; sobj stmp;
@ -513,7 +580,6 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
} }
} }
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) { inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
// DhopDir provides U or Uconj depending on coor/flavour. // DhopDir provides U or Uconj depending on coor/flavour.
@ -546,23 +612,22 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
}; };
/////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////// // Single flavour one component spinors with colour index
// Single flavour one component spinors with colour index /////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////// template <class S, class Representation = FundamentalRepresentation >
template <class S, class Representation = FundamentalRepresentation > class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public: public:
typedef RealD _Coeff_t ; typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension; static const int Dimension = Representation::Dimension;
static const bool LsVectorised=false;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl; typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary? //Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;} constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t; typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(Gimpl);
@ -679,8 +744,6 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
} }
}; };
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec // Single flavour one component spinors with colour index. 5d vec
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
@ -689,16 +752,14 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
public: public:
typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension; static const int Dimension = Representation::Dimension;
static const bool LsVectorised=true;
typedef RealD Coeff_t ;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl; typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary? //Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;} constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=true;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl); INHERIT_GIMPL_TYPES(Gimpl);
@ -861,43 +922,61 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
} }
}; };
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation > WilsonImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation > WilsonImplF; // Float typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation > WilsonImplD; // Double typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, ComplexD > ZWilsonImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, ComplexD > ZWilsonImplF; // Float typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, ComplexD > ZWilsonImplD; // Double typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation > WilsonAdjImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation > WilsonAdjImplF; // Float typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation > WilsonAdjImplD; // Double typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD; // Double
typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplF; // Float typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplD; // Double typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc> DomainWallVec5dImplR; // Real.. whichever prec typedef DomainWallVec5dImpl<vComplex ,Nc, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc> DomainWallVec5dImplF; // Float typedef DomainWallVec5dImpl<vComplexF,Nc, CoeffReal> DomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc> DomainWallVec5dImplD; // Double typedef DomainWallVec5dImpl<vComplexD,Nc, CoeffReal> DomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc,ComplexD> ZDomainWallVec5dImplR; // Real.. whichever prec typedef DomainWallVec5dImpl<vComplex ,Nc, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc,ComplexD> ZDomainWallVec5dImplF; // Float typedef DomainWallVec5dImpl<vComplexF,Nc, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc,ComplexD> ZDomainWallVec5dImplD; // Double typedef DomainWallVec5dImpl<vComplexD,Nc, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
typedef GparityWilsonImpl<vComplex , Nc> GparityWilsonImplR; // Real.. whichever prec typedef DomainWallVec5dImpl<vComplex ,Nc,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc> GparityWilsonImplF; // Float typedef DomainWallVec5dImpl<vComplexF,Nc,CoeffComplex> ZDomainWallVec5dImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc> GparityWilsonImplD; // Double typedef DomainWallVec5dImpl<vComplexD,Nc,CoeffComplex> ZDomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
typedef GparityWilsonImpl<vComplex , Nc,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc,CoeffReal> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc,CoeffReal> GparityWilsonImplD; // Double
typedef GparityWilsonImpl<vComplex , Nc,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc,CoeffRealHalfComms> GparityWilsonImplFH; // Float
typedef GparityWilsonImpl<vComplexD, Nc,CoeffRealHalfComms> GparityWilsonImplDF; // Double
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double
typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec
typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float
typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double
}} }}

View File

@ -160,8 +160,6 @@ void ImprovedStaggeredFermion<Impl>::ImportGauge(const GaugeField &_Uthin,const
PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4); PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4);
} }
std::cout << " Umu " << Umu._odata[0]<<std::endl;
std::cout << " UUUmu " << UUUmu._odata[0]<<std::endl;
pickCheckerboard(Even, UmuEven, Umu); pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu); pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven, UUUmu); pickCheckerboard(Even, UUUmuEven, UUUmu);

View File

@ -0,0 +1,102 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: SchurDiagTwoKappa.h
Copyright (C) 2017
Author: Christoph Lehner
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _SCHUR_DIAG_TWO_KAPPA_H
#define _SCHUR_DIAG_TWO_KAPPA_H
namespace Grid {
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
INHERIT_IMPL_TYPES(Matrix);
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out._grid;
out.checkerboard = in.checkerboard;
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
parallel_for(int ss=0;ss<grid->oSites();ss++){
vobj tmp = s[ss % Ls]*in._odata[ss];
vstream(out._odata[ss],tmp);
}
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
}
#endif

View File

@ -33,228 +33,321 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid { namespace Grid {
namespace QCD { namespace QCD {
template<class SiteHalfSpinor,class SiteSpinor> /////////////////////////////////////////////////////////////////////////////////////////////
class WilsonCompressor { // optimised versions supporting half precision too
public: /////////////////////////////////////////////////////////////////////////////////////////////
int mu;
int dag;
WilsonCompressor(int _dag){ template<class _HCspinor,class _Hspinor,class _Spinor, class projector,typename SFINAE = void >
mu=0; class WilsonCompressorTemplate;
dag=_dag;
assert((dag==0)||(dag==1));
}
void Point(int p) {
mu=p;
};
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
int mudag=mu;
if (!dag) {
mudag=(mu+Nd)%(2*Nd);
}
switch(mudag) {
case Xp:
spProjXp(ret,in);
break;
case Yp:
spProjYp(ret,in);
break;
case Zp:
spProjZp(ret,in);
break;
case Tp:
spProjTp(ret,in);
break;
case Xm:
spProjXm(ret,in);
break;
case Ym:
spProjYm(ret,in);
break;
case Zm:
spProjZm(ret,in);
break;
case Tm:
spProjTm(ret,in);
break;
default:
assert(0);
break;
}
return ret;
}
};
///////////////////////// template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
// optimised versions class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
///////////////////////// typename std::enable_if<std::is_same<_HCspinor,_Hspinor>::value>::type >
{
public:
int mu,dag;
template<class SiteHalfSpinor,class SiteSpinor> void Point(int p) { mu=p; };
class WilsonXpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjXp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonYpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjYp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonZpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjZp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonTpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjTp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor> WilsonCompressorTemplate(int _dag=0){
class WilsonXmCompressor { dag = _dag;
public: }
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjXm(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonYmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjYm(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonZmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjZm(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonTmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjTm(ret,in);
return ret;
}
};
// Fast comms buffer manipulation which should inline right through (avoid direction typedef _Spinor SiteSpinor;
// dependent logic that prevents inlining typedef _Hspinor SiteHalfSpinor;
template<class vobj,class cobj> typedef _HCspinor SiteHalfCommSpinor;
class WilsonStencil : public CartesianStencil<vobj,cobj> { typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
public: typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t; inline int CommDatumSize(void) {
return sizeof(SiteHalfCommSpinor);
}
WilsonStencil(GridBase *grid, /*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
inline void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
projector::Proj(buf[o],in,mu,dag);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
inline void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o) {
assert(0);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(out0[j],out1[j],temp1,temp2,type);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return false; }
};
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
{
public:
int mu,dag;
void Point(int p) { mu=p; };
WilsonCompressorTemplate(int _dag=0){
dag = _dag;
}
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _HCspinor SiteHalfCommSpinor;
typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
inline int CommDatumSize(void) {
return sizeof(SiteHalfCommSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
inline void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
SiteHalfSpinor hsp;
SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
projector::Proj(hsp,in,mu,dag);
precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
SiteHalfSpinor vt0,vt1;
SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
precisionChange((vComplexHigh *)&vt0,(vComplexLow *)&vpp0[o],Nw);
precisionChange((vComplexHigh *)&vt1,(vComplexLow *)&vpp1[o],Nw);
exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
inline void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o){
SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(temp3,temp4,temp1,temp2,type);
precisionChange((vComplexLow *)&hout0[j],(vComplexHigh *)&temp3,Nw);
precisionChange((vComplexLow *)&hout1[j],(vComplexHigh *)&temp4,Nw);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return true; }
};
#define DECLARE_PROJ(Projector,Compressor,spProj) \
class Projector { \
public: \
template<class hsp,class fsp> \
static void Proj(hsp &result,const fsp &in,int mu,int dag){ \
spProj(result,in); \
} \
}; \
template<typename HCS,typename HS,typename S> using Compressor = WilsonCompressorTemplate<HCS,HS,S,Projector>;
DECLARE_PROJ(WilsonXpProjector,WilsonXpCompressor,spProjXp);
DECLARE_PROJ(WilsonYpProjector,WilsonYpCompressor,spProjYp);
DECLARE_PROJ(WilsonZpProjector,WilsonZpCompressor,spProjZp);
DECLARE_PROJ(WilsonTpProjector,WilsonTpCompressor,spProjTp);
DECLARE_PROJ(WilsonXmProjector,WilsonXmCompressor,spProjXm);
DECLARE_PROJ(WilsonYmProjector,WilsonYmCompressor,spProjYm);
DECLARE_PROJ(WilsonZmProjector,WilsonZmCompressor,spProjZm);
DECLARE_PROJ(WilsonTmProjector,WilsonTmCompressor,spProjTm);
class WilsonProjector {
public:
template<class hsp,class fsp>
static void Proj(hsp &result,const fsp &in,int mu,int dag){
int mudag=dag? mu : (mu+Nd)%(2*Nd);
switch(mudag) {
case Xp: spProjXp(result,in); break;
case Yp: spProjYp(result,in); break;
case Zp: spProjZp(result,in); break;
case Tp: spProjTp(result,in); break;
case Xm: spProjXm(result,in); break;
case Ym: spProjYm(result,in); break;
case Zm: spProjZm(result,in); break;
case Tm: spProjTm(result,in); break;
default: assert(0); break;
}
}
};
template<typename HCS,typename HS,typename S> using WilsonCompressor = WilsonCompressorTemplate<HCS,HS,S,WilsonProjector>;
// Fast comms buffer manipulation which should inline right through (avoid direction
// dependent logic that prevents inlining
template<class vobj,class cobj>
class WilsonStencil : public CartesianStencil<vobj,cobj> {
public:
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
std::vector<int> same_node;
std::vector<int> surface_list;
WilsonStencil(GridBase *grid,
int npoints, int npoints,
int checkerboard, int checkerboard,
const std::vector<int> &directions, const std::vector<int> &directions,
const std::vector<int> &distances) : CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances) const std::vector<int> &distances)
{ }; : CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances) ,
same_node(npoints)
template < class compressor> {
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress) surface_list.resize(0);
{
std::vector<std::vector<CommsRequest_t> > reqs;
HaloExchangeOptGather(source,compress);
this->CommunicateBegin(reqs);
this->calls++;
this->CommunicateComplete(reqs);
this->CommsMerge();
}
template < class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress)
{
this->calls++;
this->Mergers.resize(0);
this->Packets.resize(0);
this->HaloGatherOpt(source,compress);
}
template < class compressor>
void HaloGatherOpt(const Lattice<vobj> &source,compressor &compress)
{
this->_grid->StencilBarrier();
// conformable(source._grid,_grid);
assert(source._grid==this->_grid);
this->halogtime-=usecond();
this->u_comm_offset=0;
int dag = compress.dag;
WilsonXpCompressor<cobj,vobj> XpCompress;
WilsonYpCompressor<cobj,vobj> YpCompress;
WilsonZpCompressor<cobj,vobj> ZpCompress;
WilsonTpCompressor<cobj,vobj> TpCompress;
WilsonXmCompressor<cobj,vobj> XmCompress;
WilsonYmCompressor<cobj,vobj> YmCompress;
WilsonZmCompressor<cobj,vobj> ZmCompress;
WilsonTmCompressor<cobj,vobj> TmCompress;
// Gather all comms buffers
// for(int point = 0 ; point < _npoints; point++) {
// compress.Point(point);
// HaloGatherDir(source,compress,point,face_idx);
// }
int face_idx=0;
if ( dag ) {
// std::cout << " Optimised Dagger compress " <<std::endl;
this->HaloGatherDir(source,XpCompress,Xp,face_idx);
this->HaloGatherDir(source,YpCompress,Yp,face_idx);
this->HaloGatherDir(source,ZpCompress,Zp,face_idx);
this->HaloGatherDir(source,TpCompress,Tp,face_idx);
this->HaloGatherDir(source,XmCompress,Xm,face_idx);
this->HaloGatherDir(source,YmCompress,Ym,face_idx);
this->HaloGatherDir(source,ZmCompress,Zm,face_idx);
this->HaloGatherDir(source,TmCompress,Tm,face_idx);
} else {
this->HaloGatherDir(source,XmCompress,Xp,face_idx);
this->HaloGatherDir(source,YmCompress,Yp,face_idx);
this->HaloGatherDir(source,ZmCompress,Zp,face_idx);
this->HaloGatherDir(source,TmCompress,Tp,face_idx);
this->HaloGatherDir(source,XpCompress,Xm,face_idx);
this->HaloGatherDir(source,YpCompress,Ym,face_idx);
this->HaloGatherDir(source,ZpCompress,Zm,face_idx);
this->HaloGatherDir(source,TpCompress,Tm,face_idx);
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
this->halogtime+=usecond();
}
}; };
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
same_node[point] = this->SameNode(point);
// std::cout << " dir " <<point<<" same_node " <<same_node[point]<<std::endl;
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
{
std::vector<std::vector<CommsRequest_t> > reqs;
this->HaloExchangeOptGather(source,compress);
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
this->CommsMerge(compress);
this->CommsMergeSHM(compress);
}
template <class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress)
{
this->Prepare();
this->HaloGatherOpt(source,compress);
}
template <class compressor>
void HaloGatherOpt(const Lattice<vobj> &source,compressor &compress)
{
// Strategy. Inherit types from Compressor.
// Use types to select the write direction by directon compressor
typedef typename compressor::SiteSpinor SiteSpinor;
typedef typename compressor::SiteHalfSpinor SiteHalfSpinor;
typedef typename compressor::SiteHalfCommSpinor SiteHalfCommSpinor;
this->_grid->StencilBarrier();
assert(source._grid==this->_grid);
this->halogtime-=usecond();
this->u_comm_offset=0;
WilsonXpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> XpCompress;
WilsonYpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> YpCompress;
WilsonZpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> ZpCompress;
WilsonTpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> TpCompress;
WilsonXmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> XmCompress;
WilsonYmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> YmCompress;
WilsonZmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> ZmCompress;
WilsonTmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> TmCompress;
int dag = compress.dag;
int face_idx=0;
if ( dag ) {
// std::cout << " Optimised Dagger compress " <<std::endl;
assert(same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
assert(same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
assert(same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
assert(same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
assert(same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
assert(same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
} else {
assert(same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
assert(same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
assert(same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
assert(same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
assert(same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
assert(same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
this->halogtime+=usecond();
}
};
}} // namespace close }} // namespace close
#endif #endif

View File

@ -118,6 +118,18 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
// Allocate the required comms buffer // Allocate the required comms buffer
ImportGauge(_Umu); ImportGauge(_Umu);
// Build lists of exterior only nodes
int LLs = FiveDimGrid._rdimensions[0];
int vol4;
vol4=FourDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol4);
vol4=FourDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
<<" " << StencilEven.surface_list.size()<<std::endl;
} }
template<class Impl> template<class Impl>
@ -359,6 +371,7 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DhopTotalTime+=usecond(); DhopTotalTime+=usecond();
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo, void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U, DoubledGaugeField & U,
@ -372,12 +385,21 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
int LLs = in._grid->_rdimensions[0]; int LLs = in._grid->_rdimensions[0];
int len = U._grid->oSites(); int len = U._grid->oSites();
DhopFaceTime-=usecond(); DhopFaceTime-=usecond();
st.HaloExchangeOptGather(in,compressor); st.HaloExchangeOptGather(in,compressor);
DhopFaceTime+=usecond(); DhopFaceTime+=usecond();
std::vector<std::vector<CommsRequest_t> > reqs; std::vector<std::vector<CommsRequest_t> > reqs;
// Rely on async comms; start comms before merge of local data
DhopCommTime-=usecond();
st.CommunicateBegin(reqs);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+=usecond();
// Perhaps use omp task and region
#pragma omp parallel #pragma omp parallel
{ {
int nthreads = omp_get_num_threads(); int nthreads = omp_get_num_threads();
@ -388,8 +410,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
int sF = LLs * myoff; int sF = LLs * myoff;
if ( me == 0 ) { if ( me == 0 ) {
DhopCommTime-=usecond();
st.CommunicateBegin(reqs);
st.CommunicateComplete(reqs); st.CommunicateComplete(reqs);
DhopCommTime+=usecond(); DhopCommTime+=usecond();
} else { } else {
@ -402,28 +422,37 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
} }
DhopFaceTime-=usecond(); DhopFaceTime-=usecond();
st.CommsMerge(); st.CommsMerge(compressor);
DhopFaceTime+=usecond(); DhopFaceTime+=usecond();
#pragma omp parallel // Load imbalance alert. Should use dynamic schedule OMP for loop
{ // Perhaps create a list of only those sites with face work, and
int nthreads = omp_get_num_threads(); // load balance process the list.
int me = omp_get_thread_num(); DhopComputeTime2-=usecond();
int myoff, mywork; if (dag == DaggerYes) {
int sz=st.surface_list.size();
GridThread::GetWork(len,me,mywork,myoff,nthreads); parallel_for (int ss = 0; ss < sz; ss++) {
int sF = LLs * myoff; int sU = st.surface_list[ss];
int sF = LLs * sU;
// Exterior links in stencil Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1);
if ( me==0 ) DhopComputeTime2-=usecond(); }
if (dag == DaggerYes) Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,myoff,LLs,mywork,in,out,0,1); } else {
else Kernels::DhopSite (st,lo,U,st.CommBuf(),sF,myoff,LLs,mywork,in,out,0,1); int sz=st.surface_list.size();
if ( me==0 ) DhopComputeTime2+=usecond(); parallel_for (int ss = 0; ss < sz; ss++) {
}// end parallel region int sU = st.surface_list[ss];
int sF = LLs * sU;
Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1);
}
}
DhopComputeTime2+=usecond();
#else #else
assert(0); assert(0);
#endif #endif
} }
template<class Impl> template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo, void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U, DoubledGaugeField & U,
@ -642,7 +671,6 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
} }
FermOpTemplateInstantiate(WilsonFermion5D); FermOpTemplateInstantiate(WilsonFermion5D);
GparityFermOpTemplateInstantiate(WilsonFermion5D); GparityFermOpTemplateInstantiate(WilsonFermion5D);

View File

@ -33,52 +33,8 @@ directory
namespace Grid { namespace Grid {
namespace QCD { namespace QCD {
int WilsonKernelsStatic::Opt = WilsonKernelsStatic::OptGeneric; int WilsonKernelsStatic::Opt = WilsonKernelsStatic::OptGeneric;
int WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsAndCompute; int WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsAndCompute;
#ifdef QPX
#include <spi/include/kernel/location.h>
#include <spi/include/l1p/types.h>
#include <hwi/include/bqc/l1p_mmio.h>
#include <hwi/include/bqc/A2_inlines.h>
#endif
void bgq_l1p_optimisation(int mode)
{
#ifdef QPX
#undef L1P_CFG_PF_USR
#define L1P_CFG_PF_USR (0x3fde8000108ll) /* (64 bit reg, 23 bits wide, user/unpriv) */
uint64_t cfg_pf_usr;
if ( mode ) {
cfg_pf_usr =
L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_adaptive_throttle(0xF) ;
// if ( sizeof(Float) == sizeof(double) ) {
cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(2)| L1P_CFG_PF_USR_dfetch_max_footprint(3) ;
// } else {
// cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(1)| L1P_CFG_PF_USR_dfetch_max_footprint(2) ;
// }
} else {
cfg_pf_usr = L1P_CFG_PF_USR_dfetch_depth(1)
| L1P_CFG_PF_USR_dfetch_max_footprint(2)
| L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_stream_prefetch_enable;
}
*((uint64_t *)L1P_CFG_PF_USR) = cfg_pf_usr;
#endif
}
template <class Impl> template <class Impl>
WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){}; WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
@ -86,12 +42,72 @@ WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
//////////////////////////////////////////// ////////////////////////////////////////////
// Generic implementation; move to different file? // Generic implementation; move to different file?
//////////////////////////////////////////// ////////////////////////////////////////////
#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
chi_p = &chi; \
if (SE->_permute) { \
spProj(tmp, in._odata[SE->_offset]); \
permute(chi, tmp, ptype); \
} else { \
spProj(chi, in._odata[SE->_offset]); \
} \
} else { \
chi_p = &buf[SE->_offset]; \
} \
Impl::multLink(Uchi, U._odata[sU], *chi_p, Dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
chi_p = &chi; \
if (SE->_permute) { \
spProj(tmp, in._odata[SE->_offset]); \
permute(chi, tmp, ptype); \
} else { \
spProj(chi, in._odata[SE->_offset]); \
} \
} else if ( st.same_node[Dir] ) { \
chi_p = &buf[SE->_offset]; \
} \
if (SE->_is_local || st.same_node[Dir] ) { \
Impl::multLink(Uchi, U._odata[sU], *chi_p, Dir, SE, st); \
Recon(result, Uchi); \
}
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
chi_p = &buf[SE->_offset]; \
Impl::multLink(Uchi, U._odata[sU], *chi_p, Dir, SE, st); \
Recon(result, Uchi); \
nmu++; \
}
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
if (SE->_is_local && SE->_permute) { \
spProj(tmp, in._odata[SE->_offset]); \
permute(chi, tmp, ptype); \
} else if (SE->_is_local) { \
spProj(chi, in._odata[SE->_offset]); \
} else { \
chi = buf[SE->_offset]; \
} \
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); \
Recon(result, Uchi); \
}
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl> template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF, SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out, int sU, const FermionField &in, FermionField &out)
int interior,int exterior) { {
SiteHalfSpinor tmp; SiteHalfSpinor tmp;
SiteHalfSpinor chi; SiteHalfSpinor chi;
SiteHalfSpinor *chi_p; SiteHalfSpinor *chi_p;
@ -100,174 +116,22 @@ void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
StencilEntry *SE; StencilEntry *SE;
int ptype; int ptype;
/////////////////////////// GENERIC_STENCIL_LEG(Xp,spProjXp,spReconXp);
// Xp GENERIC_STENCIL_LEG(Yp,spProjYp,accumReconYp);
/////////////////////////// GENERIC_STENCIL_LEG(Zp,spProjZp,accumReconZp);
SE = st.GetEntry(ptype, Xp, sF); GENERIC_STENCIL_LEG(Tp,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG(Xm,spProjXm,accumReconXm);
if (SE->_is_local) { GENERIC_STENCIL_LEG(Ym,spProjYm,accumReconYm);
chi_p = &chi; GENERIC_STENCIL_LEG(Zm,spProjZm,accumReconZm);
if (SE->_permute) { GENERIC_STENCIL_LEG(Tm,spProjTm,accumReconTm);
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st);
spReconXp(result, Uchi);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Yp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st);
accumReconYp(result, Uchi);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st);
accumReconZp(result, Uchi);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st);
accumReconTp(result, Uchi);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st);
accumReconXm(result, Uchi);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Ym, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st);
accumReconYm(result, Uchi);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st);
accumReconZm(result, Uchi);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st);
accumReconTm(result, Uchi);
vstream(out._odata[sF], result); vstream(out._odata[sF], result);
}; };
// Need controls to do interior, exterior, or both
template <class Impl> template <class Impl>
void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF, SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out,int interior,int exterior) { int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp; SiteHalfSpinor tmp;
SiteHalfSpinor chi; SiteHalfSpinor chi;
SiteHalfSpinor *chi_p; SiteHalfSpinor *chi_p;
@ -276,168 +140,123 @@ void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, Do
StencilEntry *SE; StencilEntry *SE;
int ptype; int ptype;
/////////////////////////// GENERIC_STENCIL_LEG(Xm,spProjXp,spReconXp);
// Xp GENERIC_STENCIL_LEG(Ym,spProjYp,accumReconYp);
/////////////////////////// GENERIC_STENCIL_LEG(Zm,spProjZp,accumReconZp);
SE = st.GetEntry(ptype, Xm, sF); GENERIC_STENCIL_LEG(Tm,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG(Xp,spProjXm,accumReconXm);
if (SE->_is_local) { GENERIC_STENCIL_LEG(Yp,spProjYm,accumReconYm);
chi_p = &chi; GENERIC_STENCIL_LEG(Zp,spProjZm,accumReconZm);
if (SE->_permute) { GENERIC_STENCIL_LEG(Tp,spProjTm,accumReconTm);
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st);
spReconXp(result, Uchi);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Ym, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st);
accumReconYp(result, Uchi);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st);
accumReconZp(result, Uchi);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st);
accumReconTp(result, Uchi);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st);
accumReconXm(result, Uchi);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Yp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st);
accumReconYm(result, Uchi);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st);
accumReconZm(result, Uchi);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st);
accumReconTm(result, Uchi);
vstream(out._odata[sF], result); vstream(out._odata[sF], result);
}; };
////////////////////////////////////////////////////////////////////
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
result=zero;
GENERIC_STENCIL_LEG_INT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_INT(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_INT(Zp,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_INT(Tp,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_INT(Xm,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_INT(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_INT(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_INT(Tm,spProjTm,accumReconTm);
vstream(out._odata[sF], result);
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
result=zero;
GENERIC_STENCIL_LEG_INT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_INT(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_INT(Zm,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_INT(Tm,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_INT(Xp,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_INT(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_INT(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_INT(Tp,spProjTm,accumReconTm);
vstream(out._odata[sF], result);
};
////////////////////////////////////////////////////////////////////
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
result=zero;
GENERIC_STENCIL_LEG_EXT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_EXT(Tp,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_EXT(Xm,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_EXT(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tm,spProjTm,accumReconTm);
if ( nmu ) {
out._odata[sF] = out._odata[sF] + result;
}
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
result=zero;
GENERIC_STENCIL_LEG_EXT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_EXT(Tm,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_EXT(Xp,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_EXT(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tp,spProjTm,accumReconTm);
if ( nmu ) {
out._odata[sF] = out._odata[sF] + result;
}
};
template <class Impl> template <class Impl>
void WilsonKernels<Impl>::DhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF, void WilsonKernels<Impl>::DhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF,
@ -451,119 +270,14 @@ void WilsonKernels<Impl>::DhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHal
int ptype; int ptype;
SE = st.GetEntry(ptype, dir, sF); SE = st.GetEntry(ptype, dir, sF);
GENERIC_DHOPDIR_LEG(Xp,spProjXp,spReconXp);
// Xp GENERIC_DHOPDIR_LEG(Yp,spProjYp,spReconYp);
if (gamma == Xp) { GENERIC_DHOPDIR_LEG(Zp,spProjZp,spReconZp);
if (SE->_is_local && SE->_permute) { GENERIC_DHOPDIR_LEG(Tp,spProjTp,spReconTp);
spProjXp(tmp, in._odata[SE->_offset]); GENERIC_DHOPDIR_LEG(Xm,spProjXm,spReconXm);
permute(chi, tmp, ptype); GENERIC_DHOPDIR_LEG(Ym,spProjYm,spReconYm);
} else if (SE->_is_local) { GENERIC_DHOPDIR_LEG(Zm,spProjZm,spReconZm);
spProjXp(chi, in._odata[SE->_offset]); GENERIC_DHOPDIR_LEG(Tm,spProjTm,spReconTm);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconXp(result, Uchi);
}
// Yp
if (gamma == Yp) {
if (SE->_is_local && SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjYp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconYp(result, Uchi);
}
// Zp
if (gamma == Zp) {
if (SE->_is_local && SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjZp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconZp(result, Uchi);
}
// Tp
if (gamma == Tp) {
if (SE->_is_local && SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjTp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconTp(result, Uchi);
}
// Xm
if (gamma == Xm) {
if (SE->_is_local && SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjXm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconXm(result, Uchi);
}
// Ym
if (gamma == Ym) {
if (SE->_is_local && SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjYm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconYm(result, Uchi);
}
// Zm
if (gamma == Zm) {
if (SE->_is_local && SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjZm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconZm(result, Uchi);
}
// Tm
if (gamma == Tm) {
if (SE->_is_local && SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjTm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconTm(result, Uchi);
}
vstream(out._odata[sF], result); vstream(out._odata[sF], result);
} }

View File

@ -34,8 +34,6 @@ directory
namespace Grid { namespace Grid {
namespace QCD { namespace QCD {
void bgq_l1p_optimisation(int mode);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper routines that implement Wilson stencil for a single site. // Helper routines that implement Wilson stencil for a single site.
// Common to both the WilsonFermion and WilsonFermion5D // Common to both the WilsonFermion and WilsonFermion5D
@ -44,9 +42,8 @@ class WilsonKernelsStatic {
public: public:
enum { OptGeneric, OptHandUnroll, OptInlineAsm }; enum { OptGeneric, OptHandUnroll, OptInlineAsm };
enum { CommsAndCompute, CommsThenCompute }; enum { CommsAndCompute, CommsThenCompute };
// S-direction is INNERMOST and takes no part in the parity. static int Opt;
static int Opt; // these are a temporary hack static int Comms;
static int Comms; // these are a temporary hack
}; };
template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public WilsonKernelsStatic { template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public WilsonKernelsStatic {
@ -66,7 +63,7 @@ public:
switch(Opt) { switch(Opt) {
#if defined(AVX512) || defined (QPX) #if defined(AVX512) || defined (QPX)
case OptInlineAsm: case OptInlineAsm:
if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSite(st,lo,U,buf,sF,sU,Ls,Ns,in,out); if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSite (st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (interior) WilsonKernels<Impl>::AsmDhopSiteInt(st,lo,U,buf,sF,sU,Ls,Ns,in,out); else if (interior) WilsonKernels<Impl>::AsmDhopSiteInt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (exterior) WilsonKernels<Impl>::AsmDhopSiteExt(st,lo,U,buf,sF,sU,Ls,Ns,in,out); else if (exterior) WilsonKernels<Impl>::AsmDhopSiteExt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else assert(0); else assert(0);
@ -75,7 +72,9 @@ public:
case OptHandUnroll: case OptHandUnroll:
for (int site = 0; site < Ns; site++) { for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) { for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::HandDhopSite(st,lo,U,buf,sF,sU,in,out,interior,exterior); if(interior&&exterior) WilsonKernels<Impl>::HandDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::HandDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::HandDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
sF++; sF++;
} }
sU++; sU++;
@ -84,7 +83,10 @@ public:
case OptGeneric: case OptGeneric:
for (int site = 0; site < Ns; site++) { for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) { for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out,interior,exterior); if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++; sF++;
} }
sU++; sU++;
@ -99,11 +101,14 @@ public:
template <bool EnableBool = true> template <bool EnableBool = true>
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool, void>::type typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool, void>::type
DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1 ) { int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1 ) {
// no kernel choice // no kernel choice
for (int site = 0; site < Ns; site++) { for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) { for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSite(st, lo, U, buf, sF, sU, in, out,interior,exterior); if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++; sF++;
} }
sU++; sU++;
@ -113,13 +118,13 @@ public:
template <bool EnableBool = true> template <bool EnableBool = true>
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 && EnableBool,void>::type typename std::enable_if<Impl::Dimension == 3 && Nc == 3 && EnableBool,void>::type
DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1) { int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1)
{
bgq_l1p_optimisation(1); bgq_l1p_optimisation(1);
switch(Opt) { switch(Opt) {
#if defined(AVX512) || defined (QPX) #if defined(AVX512) || defined (QPX)
case OptInlineAsm: case OptInlineAsm:
if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSiteDag(st,lo,U,buf,sF,sU,Ls,Ns,in,out); if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSiteDag (st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (interior) WilsonKernels<Impl>::AsmDhopSiteDagInt(st,lo,U,buf,sF,sU,Ls,Ns,in,out); else if (interior) WilsonKernels<Impl>::AsmDhopSiteDagInt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (exterior) WilsonKernels<Impl>::AsmDhopSiteDagExt(st,lo,U,buf,sF,sU,Ls,Ns,in,out); else if (exterior) WilsonKernels<Impl>::AsmDhopSiteDagExt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else assert(0); else assert(0);
@ -128,7 +133,10 @@ public:
case OptHandUnroll: case OptHandUnroll:
for (int site = 0; site < Ns; site++) { for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) { for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::HandDhopSiteDag(st,lo,U,buf,sF,sU,in,out,interior,exterior); if(interior&&exterior) WilsonKernels<Impl>::HandDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::HandDhopSiteDagInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::HandDhopSiteDagExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++; sF++;
} }
sU++; sU++;
@ -137,7 +145,10 @@ public:
case OptGeneric: case OptGeneric:
for (int site = 0; site < Ns; site++) { for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) { for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out,interior,exterior); if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteDagInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteDagExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++; sF++;
} }
sU++; sU++;
@ -156,7 +167,10 @@ public:
for (int site = 0; site < Ns; site++) { for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) { for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out,interior,exterior); if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteDagInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteDagExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++; sF++;
} }
sU++; sU++;
@ -169,36 +183,60 @@ public:
private: private:
// Specialised variants // Specialised variants
void GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior); int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior); int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void AsmDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void AsmDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out); int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void AsmDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void AsmDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out); int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void AsmDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void AsmDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out); int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void AsmDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void AsmDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out); int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void AsmDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void AsmDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out); int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void AsmDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void AsmDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out); int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void HandDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void HandDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior); int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf, void HandDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior); int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
public: public:
WilsonKernels(const ImplParams &p = ImplParams()); WilsonKernels(const ImplParams &p = ImplParams());

View File

@ -112,5 +112,16 @@ INSTANTIATE_ASM(DomainWallVec5dImplD);
INSTANTIATE_ASM(ZDomainWallVec5dImplF); INSTANTIATE_ASM(ZDomainWallVec5dImplF);
INSTANTIATE_ASM(ZDomainWallVec5dImplD); INSTANTIATE_ASM(ZDomainWallVec5dImplD);
INSTANTIATE_ASM(WilsonImplFH);
INSTANTIATE_ASM(WilsonImplDF);
INSTANTIATE_ASM(ZWilsonImplFH);
INSTANTIATE_ASM(ZWilsonImplDF);
INSTANTIATE_ASM(GparityWilsonImplFH);
INSTANTIATE_ASM(GparityWilsonImplDF);
INSTANTIATE_ASM(DomainWallVec5dImplFH);
INSTANTIATE_ASM(DomainWallVec5dImplDF);
INSTANTIATE_ASM(ZDomainWallVec5dImplFH);
INSTANTIATE_ASM(ZDomainWallVec5dImplDF);
}} }}

View File

@ -71,6 +71,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,Doub
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -84,6 +94,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
@ -97,6 +117,16 @@ template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf, WilsonKernels<ZWilsonImplF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, single // XYZT vectorised, dag Kernel, single
@ -115,6 +145,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -128,6 +168,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -141,6 +191,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef MAYBEPERM #undef MAYBEPERM
#undef MULT_2SPIN #undef MULT_2SPIN
#define MAYBEPERM(A,B) #define MAYBEPERM(A,B)
@ -162,6 +222,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSite(StencilImpl &st,LebesgueOrder
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -174,6 +243,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -189,6 +267,16 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
// Ls vectorised, dag Kernel, single // Ls vectorised, dag Kernel, single
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
@ -205,6 +293,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -217,6 +314,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagInt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -229,6 +335,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagExt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef COMPLEX_SIGNS #undef COMPLEX_SIGNS
#undef MAYBEPERM #undef MAYBEPERM
#undef MULT_2SPIN #undef MULT_2SPIN
@ -269,6 +384,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,Doub
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -281,6 +405,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -293,6 +426,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, single // XYZT vectorised, dag Kernel, single
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
@ -309,6 +451,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -321,6 +472,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -333,6 +493,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef MAYBEPERM #undef MAYBEPERM
#undef MULT_2SPIN #undef MULT_2SPIN
#define MAYBEPERM(A,B) #define MAYBEPERM(A,B)
@ -354,6 +523,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSite(StencilImpl &st,LebesgueOrder
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -366,6 +544,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -380,6 +567,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
// Ls vectorised, dag Kernel, single // Ls vectorised, dag Kernel, single
///////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////
@ -396,6 +592,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#define INTERIOR #define INTERIOR
#undef EXTERIOR #undef EXTERIOR
@ -408,6 +613,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteDagInt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR #undef INTERIOR_AND_EXTERIOR
#undef INTERIOR #undef INTERIOR
#define EXTERIOR #define EXTERIOR
@ -420,6 +634,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteDagExt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out) int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h> #include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef COMPLEX_SIGNS #undef COMPLEX_SIGNS
#undef MAYBEPERM #undef MAYBEPERM
#undef MULT_2SPIN #undef MULT_2SPIN

View File

@ -39,24 +39,26 @@
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR_AND_EXTERIOR #ifdef INTERIOR_AND_EXTERIOR
#define ZERO_NMU(A) #define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
#define INTERIOR_BLOCK_XP(a,b,PERMUTE_DIR,PROJMEM,RECON) INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) basep = st.GetPFInfo(nent,plocal); nent++; \
#define EXTERIOR_BLOCK_XP(a,b,RECON) EXTERIOR_BLOCK(a,b,RECON) if ( local ) { \
LOAD64(%r10,isigns); \
PROJ(base); \
MAYBEPERM(PERMUTE_DIR,perm); \
} else { \
LOAD_CHI(base); \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
MULT_2SPIN_DIR_PF(Dir,basep); \
LOAD64(%r10,isigns); \
RECON; \
#define INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) \ #define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
LOAD64(%r10,isigns); \ base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PROJMEM(base); \ PF_GAUGE(Xp); \
MAYBEPERM(PERMUTE_DIR,perm); PREFETCH1_CHIMU(base); \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define EXTERIOR_BLOCK(a,b,RECON) \
LOAD_CHI(base);
#define COMMON_BLOCK(a,b,RECON) \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
MULT_2SPIN_DIR_PF(a,basep); \
LOAD64(%r10,isigns); \
RECON;
#define RESULT(base,basep) SAVE_RESULT(base,basep); #define RESULT(base,basep) SAVE_RESULT(base,basep);
@ -67,62 +69,62 @@
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR #ifdef INTERIOR
#define COMMON_BLOCK(a,b,RECON) #define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
#define ZERO_NMU(A) basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD64(%r10,isigns); \
PROJ(base); \
MAYBEPERM(PERMUTE_DIR,perm); \
}else if ( st.same_node[Dir] ) {LOAD_CHI(base);} \
if ( local || st.same_node[Dir] ) { \
MULT_2SPIN_DIR_PF(Dir,basep); \
LOAD64(%r10,isigns); \
RECON; \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
// No accumulate for DIR0 #define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
#define EXTERIOR_BLOCK_XP(a,b,RECON) \ base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
ZERO_PSI; \ PF_GAUGE(Xp); \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; PREFETCH1_CHIMU(base); \
{ ZERO_PSI; } \
#define EXTERIOR_BLOCK(a,b,RECON) \ ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++;
#define INTERIOR_BLOCK_XP(a,b,PERMUTE_DIR,PROJMEM,RECON) INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON)
#define INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) \
LOAD64(%r10,isigns); \
PROJMEM(base); \
MAYBEPERM(PERMUTE_DIR,perm); \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
MULT_2SPIN_DIR_PF(a,basep); \
LOAD64(%r10,isigns); \
RECON;
#define RESULT(base,basep) SAVE_RESULT(base,basep); #define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif #endif
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Post comms kernel // Post comms kernel
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
#ifdef EXTERIOR #ifdef EXTERIOR
#define ZERO_NMU(A) nmu=0;
#define INTERIOR_BLOCK_XP(a,b,PERMUTE_DIR,PROJMEM,RECON) \ #define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
ZERO_PSI; base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_DIR_PF(Dir,base); \
LOAD64(%r10,isigns); \
RECON; \
nmu++; \
}
#define EXTERIOR_BLOCK_XP(a,b,RECON) EXTERIOR_BLOCK(a,b,RECON) #define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
nmu=0; \
{ ZERO_PSI;} \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_DIR_PF(Dir,base); \
LOAD64(%r10,isigns); \
RECON; \
nmu++; \
}
#define INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) \ #define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++;
#define EXTERIOR_BLOCK(a,b,RECON) \
nmu++; \
LOAD_CHI(base); \
MULT_2SPIN_DIR_PF(a,base); \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; \
LOAD64(%r10,isigns); \
RECON;
#define COMMON_BLOCK(a,b,RECON)
#define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
#endif #endif
{ {
int nmu; int nmu;
int local,perm, ptype; int local,perm, ptype;
@ -134,11 +136,15 @@
MASK_REGS; MASK_REGS;
int nmax=U._grid->oSites(); int nmax=U._grid->oSites();
for(int site=0;site<Ns;site++) { for(int site=0;site<Ns;site++) {
#ifndef EXTERIOR
int sU =lo.Reorder(ssU); int sU =lo.Reorder(ssU);
int ssn=ssU+1; if(ssn>=nmax) ssn=0; int ssn=ssU+1; if(ssn>=nmax) ssn=0;
int sUn=lo.Reorder(ssn); int sUn=lo.Reorder(ssn);
#ifndef EXTERIOR
LOCK_GAUGE(0); LOCK_GAUGE(0);
#else
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
int sUn=ssn;
#endif #endif
for(int s=0;s<Ls;s++) { for(int s=0;s<Ls;s++) {
ss =sU*Ls+s; ss =sU*Ls+s;
@ -146,93 +152,20 @@
int ent=ss*8;// 2*Ndim int ent=ss*8;// 2*Ndim
int nent=ssn*8; int nent=ssn*8;
ZERO_NMU(0); ASM_LEG_XP(Xp,Yp,PERMUTE_DIR3,DIR0_PROJMEM,DIR0_RECON);
base = st.GetInfo(ptype,local,perm,Xp,ent,plocal); ent++; ASM_LEG(Yp,Zp,PERMUTE_DIR2,DIR1_PROJMEM,DIR1_RECON);
#ifndef EXTERIOR ASM_LEG(Zp,Tp,PERMUTE_DIR1,DIR2_PROJMEM,DIR2_RECON);
PF_GAUGE(Xp); ASM_LEG(Tp,Xm,PERMUTE_DIR0,DIR3_PROJMEM,DIR3_RECON);
PREFETCH1_CHIMU(base);
#endif
////////////////////////////////
// Xp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK_XP(Xp,Yp,PERMUTE_DIR3,DIR0_PROJMEM,DIR0_RECON);
} else {
EXTERIOR_BLOCK_XP(Xp,Yp,DIR0_RECON);
}
COMMON_BLOCK(Xp,Yp,DIR0_RECON);
////////////////////////////////
// Yp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Yp,Zp,PERMUTE_DIR2,DIR1_PROJMEM,DIR1_RECON);
} else {
EXTERIOR_BLOCK(Yp,Zp,DIR1_RECON);
}
COMMON_BLOCK(Yp,Zp,DIR1_RECON);
////////////////////////////////
// Zp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Zp,Tp,PERMUTE_DIR1,DIR2_PROJMEM,DIR2_RECON);
} else {
EXTERIOR_BLOCK(Zp,Tp,DIR2_RECON);
}
COMMON_BLOCK(Zp,Tp,DIR2_RECON);
////////////////////////////////
// Tp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Tp,Xm,PERMUTE_DIR0,DIR3_PROJMEM,DIR3_RECON);
} else {
EXTERIOR_BLOCK(Tp,Xm,DIR3_RECON);
}
COMMON_BLOCK(Tp,Xm,DIR3_RECON);
////////////////////////////////
// Xm
////////////////////////////////
// basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Xm,Ym,PERMUTE_DIR3,DIR4_PROJMEM,DIR4_RECON);
} else {
EXTERIOR_BLOCK(Xm,Ym,DIR4_RECON);
}
COMMON_BLOCK(Xm,Ym,DIR4_RECON);
////////////////////////////////
// Ym
////////////////////////////////
basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Ym,Zm,PERMUTE_DIR2,DIR5_PROJMEM,DIR5_RECON);
} else {
EXTERIOR_BLOCK(Ym,Zm,DIR5_RECON);
}
COMMON_BLOCK(Ym,Zm,DIR5_RECON);
////////////////////////////////
// Zm
////////////////////////////////
basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Zm,Tm,PERMUTE_DIR1,DIR6_PROJMEM,DIR6_RECON);
} else {
EXTERIOR_BLOCK(Zm,Tm,DIR6_RECON);
}
COMMON_BLOCK(Zm,Tm,DIR6_RECON);
////////////////////////////////
// Tm
////////////////////////////////
basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Tm,Xp,PERMUTE_DIR0,DIR7_PROJMEM,DIR7_RECON);
} else {
EXTERIOR_BLOCK(Tm,Xp,DIR7_RECON);
}
COMMON_BLOCK(Tm,Xp,DIR7_RECON);
ASM_LEG(Xm,Ym,PERMUTE_DIR3,DIR4_PROJMEM,DIR4_RECON);
ASM_LEG(Ym,Zm,PERMUTE_DIR2,DIR5_PROJMEM,DIR5_RECON);
ASM_LEG(Zm,Tm,PERMUTE_DIR1,DIR6_PROJMEM,DIR6_RECON);
ASM_LEG(Tm,Xp,PERMUTE_DIR0,DIR7_PROJMEM,DIR7_RECON);
#ifdef EXTERIOR
if (nmu==0) break;
// if (nmu!=0) std::cout << "EXT "<<sU<<std::endl;
#endif
base = (uint64_t) &out._odata[ss]; base = (uint64_t) &out._odata[ss];
basep= st.GetPFInfo(nent,plocal); nent++; basep= st.GetPFInfo(nent,plocal); nent++;
RESULT(base,basep); RESULT(base,basep);
@ -258,10 +191,6 @@
#undef DIR5_RECON #undef DIR5_RECON
#undef DIR6_RECON #undef DIR6_RECON
#undef DIR7_RECON #undef DIR7_RECON
#undef EXTERIOR_BLOCK #undef ASM_LEG
#undef INTERIOR_BLOCK #undef ASM_LEG_XP
#undef EXTERIOR_BLOCK_XP
#undef INTERIOR_BLOCK_XP
#undef COMMON_BLOCK
#undef ZERO_NMU
#undef RESULT #undef RESULT

View File

@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define REGISTER #define REGISTER
#define LOAD_CHIMU \ #define LOAD_CHIMU \
const SiteSpinor & ref (in._odata[offset]); \ {const SiteSpinor & ref (in._odata[offset]); \
Chimu_00=ref()(0)(0);\ Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\ Chimu_01=ref()(0)(1);\
Chimu_02=ref()(0)(2);\ Chimu_02=ref()(0)(2);\
@ -43,20 +43,20 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Chimu_22=ref()(2)(2);\ Chimu_22=ref()(2)(2);\
Chimu_30=ref()(3)(0);\ Chimu_30=ref()(3)(0);\
Chimu_31=ref()(3)(1);\ Chimu_31=ref()(3)(1);\
Chimu_32=ref()(3)(2); Chimu_32=ref()(3)(2);}
#define LOAD_CHI\ #define LOAD_CHI\
const SiteHalfSpinor &ref(buf[offset]); \ {const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = ref()(0)(0);\ Chi_00 = ref()(0)(0);\
Chi_01 = ref()(0)(1);\ Chi_01 = ref()(0)(1);\
Chi_02 = ref()(0)(2);\ Chi_02 = ref()(0)(2);\
Chi_10 = ref()(1)(0);\ Chi_10 = ref()(1)(0);\
Chi_11 = ref()(1)(1);\ Chi_11 = ref()(1)(1);\
Chi_12 = ref()(1)(2); Chi_12 = ref()(1)(2);}
// To splat or not to splat depends on the implementation // To splat or not to splat depends on the implementation
#define MULT_2SPIN(A)\ #define MULT_2SPIN(A)\
auto & ref(U._odata[sU](A)); \ {auto & ref(U._odata[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \ Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \ Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \ Impl::loadLinkElement(U_20,ref()(2,0)); \
@ -83,7 +83,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
UChi_01+= U_10*Chi_02;\ UChi_01+= U_10*Chi_02;\
UChi_11+= U_10*Chi_12;\ UChi_11+= U_10*Chi_12;\
UChi_02+= U_20*Chi_02;\ UChi_02+= U_20*Chi_02;\
UChi_12+= U_20*Chi_12; UChi_12+= U_20*Chi_12;}
#define PERMUTE_DIR(dir) \ #define PERMUTE_DIR(dir) \
@ -307,55 +307,132 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
result_31-= UChi_11; \ result_31-= UChi_11; \
result_32-= UChi_12; result_32-= UChi_12;
namespace Grid { #define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
namespace QCD { SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out._odata[ss]); \
vstream(ref()(0)(0),result_00); \
vstream(ref()(0)(1),result_01); \
vstream(ref()(0)(2),result_02); \
vstream(ref()(1)(0),result_10); \
vstream(ref()(1)(1),result_11); \
vstream(ref()(1)(2),result_12); \
vstream(ref()(2)(0),result_20); \
vstream(ref()(2)(1),result_21); \
vstream(ref()(2)(2),result_22); \
vstream(ref()(3)(0),result_30); \
vstream(ref()(3)(1),result_31); \
vstream(ref()(3)(2),result_32); \
}
#define HAND_RESULT_EXT(ss) \
if (nmu){ \
SiteSpinor & ref (out._odata[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
}
template<class Impl> void #define HAND_DECLARATIONS(a) \
WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, Simd result_00; \
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior) Simd result_01; \
{ Simd result_02; \
typedef typename Simd::scalar_type S; Simd result_10; \
typedef typename Simd::vector_type V; Simd result_11; \
Simd result_12; \
Simd result_20; \
Simd result_21; \
Simd result_22; \
Simd result_30; \
Simd result_31; \
Simd result_32; \
Simd Chi_00; \
Simd Chi_01; \
Simd Chi_02; \
Simd Chi_10; \
Simd Chi_11; \
Simd Chi_12; \
Simd UChi_00; \
Simd UChi_01; \
Simd UChi_02; \
Simd UChi_10; \
Simd UChi_11; \
Simd UChi_12; \
Simd U_00; \
Simd U_10; \
Simd U_20; \
Simd U_01; \
Simd U_11; \
Simd U_21;
REGISTER Simd result_00; // 12 regs on knc #define ZERO_RESULT \
REGISTER Simd result_01; result_00=zero; \
REGISTER Simd result_02; result_01=zero; \
result_02=zero; \
REGISTER Simd result_10; result_10=zero; \
REGISTER Simd result_11; result_11=zero; \
REGISTER Simd result_12; result_12=zero; \
result_20=zero; \
REGISTER Simd result_20; result_21=zero; \
REGISTER Simd result_21; result_22=zero; \
REGISTER Simd result_22; result_30=zero; \
result_31=zero; \
REGISTER Simd result_30; result_32=zero;
REGISTER Simd result_31;
REGISTER Simd result_32; // 20 left
REGISTER Simd Chi_00; // two spinor; 6 regs
REGISTER Simd Chi_01;
REGISTER Simd Chi_02;
REGISTER Simd Chi_10;
REGISTER Simd Chi_11;
REGISTER Simd Chi_12; // 14 left
REGISTER Simd UChi_00; // two spinor; 6 regs
REGISTER Simd UChi_01;
REGISTER Simd UChi_02;
REGISTER Simd UChi_10;
REGISTER Simd UChi_11;
REGISTER Simd UChi_12; // 8 left
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
#define Chimu_00 Chi_00 #define Chimu_00 Chi_00
#define Chimu_01 Chi_01 #define Chimu_01 Chi_01
@ -370,475 +447,225 @@ WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGauge
#define Chimu_31 UChi_11 #define Chimu_31 UChi_11
#define Chimu_32 UChi_12 #define Chimu_32 UChi_12
namespace Grid {
namespace QCD {
template<class Impl> void
WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype; int offset,local,perm, ptype;
StencilEntry *SE; StencilEntry *SE;
// Xp HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
SE=st.GetEntry(ptype,Xp,ss); HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
offset = SE->_offset; HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
local = SE->_is_local; HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
perm = SE->_permute; HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
if ( local ) { HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
LOAD_CHIMU; HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
XM_PROJ; HAND_RESULT(ss);
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Xp);
}
XM_RECON;
// Yp
SE=st.GetEntry(ptype,Yp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YM_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Yp);
}
YM_RECON_ACCUM;
// Zp
SE=st.GetEntry(ptype,Zp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
ZM_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zp);
}
ZM_RECON_ACCUM;
// Tp
SE=st.GetEntry(ptype,Tp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
TM_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tp);
}
TM_RECON_ACCUM;
// Xm
SE=st.GetEntry(ptype,Xm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
XP_PROJ;
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Xm);
}
XP_RECON_ACCUM;
// Ym
SE=st.GetEntry(ptype,Ym,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YP_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Ym);
}
YP_RECON_ACCUM;
// Zm
SE=st.GetEntry(ptype,Zm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
ZP_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zm);
}
ZP_RECON_ACCUM;
// Tm
SE=st.GetEntry(ptype,Tm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
TP_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tm);
}
TP_RECON_ACCUM;
{
SiteSpinor & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
}
} }
template<class Impl> template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior) int ss,int sU,const FermionField &in, FermionField &out)
{ {
// std::cout << "Hand op Dhop "<<std::endl;
typedef typename Simd::scalar_type S; typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V; typedef typename Simd::vector_type V;
REGISTER Simd result_00; // 12 regs on knc HAND_DECLARATIONS(ignore);
REGISTER Simd result_01;
REGISTER Simd result_02;
REGISTER Simd result_10;
REGISTER Simd result_11;
REGISTER Simd result_12;
REGISTER Simd result_20;
REGISTER Simd result_21;
REGISTER Simd result_22;
REGISTER Simd result_30;
REGISTER Simd result_31;
REGISTER Simd result_32; // 20 left
REGISTER Simd Chi_00; // two spinor; 6 regs
REGISTER Simd Chi_01;
REGISTER Simd Chi_02;
REGISTER Simd Chi_10;
REGISTER Simd Chi_11;
REGISTER Simd Chi_12; // 14 left
REGISTER Simd UChi_00; // two spinor; 6 regs
REGISTER Simd UChi_01;
REGISTER Simd UChi_02;
REGISTER Simd UChi_10;
REGISTER Simd UChi_11;
REGISTER Simd UChi_12; // 8 left
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
StencilEntry *SE; StencilEntry *SE;
int offset,local,perm, ptype; int offset,local,perm, ptype;
// Xp HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
SE=st.GetEntry(ptype,Xp,ss); HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
offset = SE->_offset; HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
local = SE->_is_local; HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
perm = SE->_permute; HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
if ( local ) { HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
LOAD_CHIMU; HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
XP_PROJ; HAND_RESULT(ss);
if ( perm) { }
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{ template<class Impl> void
MULT_2SPIN(Xp); WilsonKernels<Impl>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
} int ss,int sU,const FermionField &in, FermionField &out)
XP_RECON; {
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
// Yp HAND_DECLARATIONS(ignore);
SE=st.GetEntry(ptype,Yp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YP_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Yp);
}
YP_RECON_ACCUM;
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
// Zp template<class Impl>
SE=st.GetEntry(ptype,Zp,ss); void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
offset = SE->_offset; int ss,int sU,const FermionField &in, FermionField &out)
local = SE->_is_local; {
perm = SE->_permute; typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
if ( local ) {
LOAD_CHIMU;
ZP_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zp);
}
ZP_RECON_ACCUM;
// Tp HAND_DECLARATIONS(ignore);
SE=st.GetEntry(ptype,Tp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
TP_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tp);
}
TP_RECON_ACCUM;
// Xm
SE=st.GetEntry(ptype,Xm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
XM_PROJ;
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Xm);
}
XM_RECON_ACCUM;
// Ym
SE=st.GetEntry(ptype,Ym,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YM_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Ym);
}
YM_RECON_ACCUM;
// Zm StencilEntry *SE;
SE=st.GetEntry(ptype,Zm,ss); int offset,local,perm, ptype;
offset = SE->_offset; ZERO_RESULT;
local = SE->_is_local; HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
perm = SE->_permute; HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
if ( local ) { template<class Impl> void
LOAD_CHIMU; WilsonKernels<Impl>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
ZM_PROJ; int ss,int sU,const FermionField &in, FermionField &out)
if ( perm) { {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc... // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
} typedef typename Simd::scalar_type S;
} else { typedef typename Simd::vector_type V;
LOAD_CHI;
}
{
MULT_2SPIN(Zm);
}
ZM_RECON_ACCUM;
// Tm HAND_DECLARATIONS(ignore);
SE=st.GetEntry(ptype,Tm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) { int offset,local,perm, ptype;
LOAD_CHIMU; StencilEntry *SE;
TM_PROJ; int nmu=0;
if ( perm) { ZERO_RESULT;
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc... HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
} HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
} else { HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
LOAD_CHI; HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
} HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
{ HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
MULT_2SPIN(Tm); HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
} HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
TM_RECON_ACCUM; HAND_RESULT_EXT(ss);
}
{ template<class Impl>
SiteSpinor & ref (out._odata[ss]); void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
vstream(ref()(0)(0),result_00); int ss,int sU,const FermionField &in, FermionField &out)
vstream(ref()(0)(1),result_01); {
vstream(ref()(0)(2),result_02); typedef typename Simd::scalar_type S;
vstream(ref()(1)(0),result_10); typedef typename Simd::vector_type V;
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12); HAND_DECLARATIONS(ignore);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21); StencilEntry *SE;
vstream(ref()(2)(2),result_22); int offset,local,perm, ptype;
vstream(ref()(3)(0),result_30); int nmu=0;
vstream(ref()(3)(1),result_31); ZERO_RESULT;
vstream(ref()(3)(2),result_32); HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
} HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT_EXT(ss);
} }
//////////////////////////////////////////////// ////////////////////////////////////////////////
// Specialise Gparity to simple implementation // Specialise Gparity to simple implementation
//////////////////////////////////////////////// ////////////////////////////////////////////////
template<> void #define HAND_SPECIALISE_EMPTY(IMPL) \
WilsonKernels<GparityWilsonImplF>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U, template<> void \
SiteHalfSpinor *buf, WilsonKernels<IMPL>::HandDhopSite(StencilImpl &st, \
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external) LebesgueOrder &lo, \
{ DoubledGaugeField &U, \
assert(0); SiteHalfSpinor *buf, \
} int sF,int sU, \
const FermionField &in, \
template<> void FermionField &out){ assert(0); } \
WilsonKernels<GparityWilsonImplF>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U, template<> void \
SiteHalfSpinor *buf, WilsonKernels<IMPL>::HandDhopSiteDag(StencilImpl &st, \
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external) LebesgueOrder &lo, \
{ DoubledGaugeField &U, \
assert(0); SiteHalfSpinor *buf, \
} int sF,int sU, \
const FermionField &in, \
template<> void FermionField &out){ assert(0); } \
WilsonKernels<GparityWilsonImplD>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, template<> void \
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external) WilsonKernels<IMPL>::HandDhopSiteInt(StencilImpl &st, \
{ LebesgueOrder &lo, \
assert(0); DoubledGaugeField &U, \
} SiteHalfSpinor *buf, \
int sF,int sU, \
template<> void const FermionField &in, \
WilsonKernels<GparityWilsonImplD>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, FermionField &out){ assert(0); } \
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external) template<> void \
{ WilsonKernels<IMPL>::HandDhopSiteExt(StencilImpl &st, \
assert(0); LebesgueOrder &lo, \
} DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
HAND_SPECIALISE_EMPTY(GparityWilsonImplF);
HAND_SPECIALISE_EMPTY(GparityWilsonImplD);
HAND_SPECIALISE_EMPTY(GparityWilsonImplFH);
HAND_SPECIALISE_EMPTY(GparityWilsonImplDF);
////////////// Wilson ; uses this implementation ///////////////////// ////////////// Wilson ; uses this implementation /////////////////////
// Need Nc=3 though //
#define INSTANTIATE_THEM(A) \ #define INSTANTIATE_THEM(A) \
template void WilsonKernels<A>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\ template void WilsonKernels<A>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior); \ int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\ template void WilsonKernels<A>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior); int ss,int sU,const FermionField &in, FermionField &out);\
template void WilsonKernels<A>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out);
INSTANTIATE_THEM(WilsonImplF); INSTANTIATE_THEM(WilsonImplF);
INSTANTIATE_THEM(WilsonImplD); INSTANTIATE_THEM(WilsonImplD);
@ -850,5 +677,15 @@ INSTANTIATE_THEM(DomainWallVec5dImplF);
INSTANTIATE_THEM(DomainWallVec5dImplD); INSTANTIATE_THEM(DomainWallVec5dImplD);
INSTANTIATE_THEM(ZDomainWallVec5dImplF); INSTANTIATE_THEM(ZDomainWallVec5dImplF);
INSTANTIATE_THEM(ZDomainWallVec5dImplD); INSTANTIATE_THEM(ZDomainWallVec5dImplD);
INSTANTIATE_THEM(WilsonImplFH);
INSTANTIATE_THEM(WilsonImplDF);
INSTANTIATE_THEM(ZWilsonImplFH);
INSTANTIATE_THEM(ZWilsonImplDF);
INSTANTIATE_THEM(GparityWilsonImplFH);
INSTANTIATE_THEM(GparityWilsonImplDF);
INSTANTIATE_THEM(DomainWallVec5dImplFH);
INSTANTIATE_THEM(DomainWallVec5dImplDF);
INSTANTIATE_THEM(ZDomainWallVec5dImplFH);
INSTANTIATE_THEM(ZDomainWallVec5dImplDF);
}} }}

View File

@ -56,6 +56,7 @@ class HMCWrapperTemplate: public HMCRunnerBase<ReaderClass> {
using IntegratorType = Integrator<Implementation, S, RepresentationsPolicy>; using IntegratorType = Integrator<Implementation, S, RepresentationsPolicy>;
HMCparameters Parameters; HMCparameters Parameters;
std::string ParameterFile;
HMCResourceManager<Implementation> Resources; HMCResourceManager<Implementation> Resources;
// The set of actions (keep here for lower level users, for now) // The set of actions (keep here for lower level users, for now)
@ -114,6 +115,10 @@ class HMCWrapperTemplate: public HMCRunnerBase<ReaderClass> {
GridCmdOptionIntVector(arg, ivec); GridCmdOptionIntVector(arg, ivec);
Parameters.NoMetropolisUntil = ivec[0]; Parameters.NoMetropolisUntil = ivec[0];
} }
if (GridCmdOptionExists(argv, argv + argc, "--ParameterFile")) {
arg = GridCmdOptionPayload(argv, argv + argc, "--ParameterFile");
ParameterFile = arg;
}
} }

View File

@ -49,24 +49,7 @@ class TopologicalCharge : public HmcObservable<typename Impl::Field> {
GridSerialRNG &sRNG, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) { GridParallelRNG &pRNG) {
// 4d topological charge Real q = WilsonLoops<Impl>::TopologicalCharge(U);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
GaugeLinkField Bx(U._grid), By(U._grid), Bz(U._grid);
WilsonLoops<Impl>::FieldStrength(Bx, U, Ydir, Zdir);
WilsonLoops<Impl>::FieldStrength(By, U, Zdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Bz, U, Xdir, Ydir);
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
GaugeLinkField Ex(U._grid), Ey(U._grid), Ez(U._grid);
WilsonLoops<Impl>::FieldStrength(Ex, U, Tdir, Xdir);
WilsonLoops<Impl>::FieldStrength(Ey, U, Tdir, Ydir);
WilsonLoops<Impl>::FieldStrength(Ez, U, Tdir, Zdir);
double coeff = 8.0/(32.0*M_PI*M_PI);
LatticeComplex qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
TComplex Tq = sum(qfield);
Real q = TensorRemove(Tq).real();
int def_prec = std::cout.precision(); int def_prec = std::cout.precision();

View File

View File

@ -313,6 +313,27 @@ public:
FS = 0.25*Ta(u*v + Cshift(vu, mu, +1)); FS = 0.25*Ta(u*v + Cshift(vu, mu, +1));
} }
static Real TopologicalCharge(GaugeLorentz &U){
// 4d topological charge
assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
GaugeMat Bx(U._grid), By(U._grid), Bz(U._grid);
FieldStrength(Bx, U, Ydir, Zdir);
FieldStrength(By, U, Zdir, Xdir);
FieldStrength(Bz, U, Xdir, Ydir);
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
GaugeMat Ex(U._grid), Ey(U._grid), Ez(U._grid);
FieldStrength(Ex, U, Tdir, Xdir);
FieldStrength(Ey, U, Tdir, Ydir);
FieldStrength(Ez, U, Tdir, Zdir);
double coeff = 8.0/(32.0*M_PI*M_PI);
LatticeComplex qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
TComplex Tq = sum(qfield);
return TensorRemove(Tq).real();
}
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// Similar to above for rectangle is required // Similar to above for rectangle is required

View File

@ -138,6 +138,54 @@ namespace Grid {
unsigned int dimInd_{0}; unsigned int dimInd_{0};
}; };
// Pair IO utilities /////////////////////////////////////////////////////////
// helper function to parse input in the format "<obj1 obj2>"
template <typename T1, typename T2>
inline std::istream & operator>>(std::istream &is, std::pair<T1, T2> &buf)
{
T1 buf1;
T2 buf2;
char c;
// Search for "pair" delimiters.
do
{
is.get(c);
} while (c != '<' && !is.eof());
if (c == '<')
{
int start = is.tellg();
do
{
is.get(c);
} while (c != '>' && !is.eof());
if (c == '>')
{
int end = is.tellg();
int psize = end - start - 1;
// Only read data between pair limiters.
is.seekg(start);
std::string tmpstr(psize, ' ');
is.read(&tmpstr[0], psize);
std::istringstream temp(tmpstr);
temp >> buf1 >> buf2;
buf = std::make_pair(buf1, buf2);
is.seekg(end);
}
}
is.peek();
return is;
}
// output to streams for pairs
template <class T1, class T2>
inline std::ostream & operator<<(std::ostream &os, const std::pair<T1, T2> &p)
{
os << "<" << p.first << " " << p.second << ">";
return os;
}
// Abstract writer/reader classes //////////////////////////////////////////// // Abstract writer/reader classes ////////////////////////////////////////////
// static polymorphism implemented using CRTP idiom // static polymorphism implemented using CRTP idiom
class Serializable; class Serializable;

View File

@ -54,7 +54,7 @@ THE SOFTWARE.
#define GRID_MACRO_EMPTY() #define GRID_MACRO_EMPTY()
#define GRID_MACRO_EVAL(...) GRID_MACRO_EVAL1024(__VA_ARGS__) #define GRID_MACRO_EVAL(...) GRID_MACRO_EVAL64(__VA_ARGS__)
#define GRID_MACRO_EVAL1024(...) GRID_MACRO_EVAL512(GRID_MACRO_EVAL512(__VA_ARGS__)) #define GRID_MACRO_EVAL1024(...) GRID_MACRO_EVAL512(GRID_MACRO_EVAL512(__VA_ARGS__))
#define GRID_MACRO_EVAL512(...) GRID_MACRO_EVAL256(GRID_MACRO_EVAL256(__VA_ARGS__)) #define GRID_MACRO_EVAL512(...) GRID_MACRO_EVAL256(GRID_MACRO_EVAL256(__VA_ARGS__))
#define GRID_MACRO_EVAL256(...) GRID_MACRO_EVAL128(GRID_MACRO_EVAL128(__VA_ARGS__)) #define GRID_MACRO_EVAL256(...) GRID_MACRO_EVAL128(GRID_MACRO_EVAL128(__VA_ARGS__))

View File

@ -368,8 +368,8 @@ namespace Optimization {
b0 = _mm256_extractf128_si256(b,0); b0 = _mm256_extractf128_si256(b,0);
a1 = _mm256_extractf128_si256(a,1); a1 = _mm256_extractf128_si256(a,1);
b1 = _mm256_extractf128_si256(b,1); b1 = _mm256_extractf128_si256(b,1);
a0 = _mm_mul_epi32(a0,b0); a0 = _mm_mullo_epi32(a0,b0);
a1 = _mm_mul_epi32(a1,b1); a1 = _mm_mullo_epi32(a1,b1);
return _mm256_set_m128i(a1,a0); return _mm256_set_m128i(a1,a0);
#endif #endif
#if defined (AVX2) #if defined (AVX2)
@ -461,7 +461,52 @@ namespace Optimization {
return in; return in;
}; };
}; };
#define USE_FP16
struct PrecisionChange {
static inline __m256i StoH (__m256 a,__m256 b) {
__m256i h;
#ifdef USE_FP16
__m128i ha = _mm256_cvtps_ph(a,0);
__m128i hb = _mm256_cvtps_ph(b,0);
h =(__m256i) _mm256_castps128_ps256((__m128)ha);
h =(__m256i) _mm256_insertf128_ps((__m256)h,(__m128)hb,1);
#else
assert(0);
#endif
return h;
}
static inline void HtoS (__m256i h,__m256 &sa,__m256 &sb) {
#ifdef USE_FP16
sa = _mm256_cvtph_ps((__m128i)_mm256_extractf128_ps((__m256)h,0));
sb = _mm256_cvtph_ps((__m128i)_mm256_extractf128_ps((__m256)h,1));
#else
assert(0);
#endif
}
static inline __m256 DtoS (__m256d a,__m256d b) {
__m128 sa = _mm256_cvtpd_ps(a);
__m128 sb = _mm256_cvtpd_ps(b);
__m256 s = _mm256_castps128_ps256(sa);
s = _mm256_insertf128_ps(s,sb,1);
return s;
}
static inline void StoD (__m256 s,__m256d &a,__m256d &b) {
a = _mm256_cvtps_pd(_mm256_extractf128_ps(s,0));
b = _mm256_cvtps_pd(_mm256_extractf128_ps(s,1));
}
static inline __m256i DtoH (__m256d a,__m256d b,__m256d c,__m256d d) {
__m256 sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (__m256i h,__m256d &a,__m256d &b,__m256d &c,__m256d &d) {
__m256 sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
struct Exchange{ struct Exchange{
// 3210 ordering // 3210 ordering
static inline void Exchange0(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){ static inline void Exchange0(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){
@ -666,6 +711,7 @@ namespace Optimization {
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
// Here assign types // Here assign types
typedef __m256i SIMD_Htype; // Single precision type
typedef __m256 SIMD_Ftype; // Single precision type typedef __m256 SIMD_Ftype; // Single precision type
typedef __m256d SIMD_Dtype; // Double precision type typedef __m256d SIMD_Dtype; // Double precision type
typedef __m256i SIMD_Itype; // Integer type typedef __m256i SIMD_Itype; // Integer type

View File

@ -235,11 +235,9 @@ namespace Optimization {
inline void mac(__m512 &a, __m512 b, __m512 c){ inline void mac(__m512 &a, __m512 b, __m512 c){
a= _mm512_fmadd_ps( b, c, a); a= _mm512_fmadd_ps( b, c, a);
} }
inline void mac(__m512d &a, __m512d b, __m512d c){ inline void mac(__m512d &a, __m512d b, __m512d c){
a= _mm512_fmadd_pd( b, c, a); a= _mm512_fmadd_pd( b, c, a);
} }
// Real float // Real float
inline __m512 operator()(__m512 a, __m512 b){ inline __m512 operator()(__m512 a, __m512 b){
return _mm512_mul_ps(a,b); return _mm512_mul_ps(a,b);
@ -342,7 +340,52 @@ namespace Optimization {
}; };
}; };
#define USE_FP16
struct PrecisionChange {
static inline __m512i StoH (__m512 a,__m512 b) {
__m512i h;
#ifdef USE_FP16
__m256i ha = _mm512_cvtps_ph(a,0);
__m256i hb = _mm512_cvtps_ph(b,0);
h =(__m512i) _mm512_castps256_ps512((__m256)ha);
h =(__m512i) _mm512_insertf64x4((__m512d)h,(__m256d)hb,1);
#else
assert(0);
#endif
return h;
}
static inline void HtoS (__m512i h,__m512 &sa,__m512 &sb) {
#ifdef USE_FP16
sa = _mm512_cvtph_ps((__m256i)_mm512_extractf64x4_pd((__m512d)h,0));
sb = _mm512_cvtph_ps((__m256i)_mm512_extractf64x4_pd((__m512d)h,1));
#else
assert(0);
#endif
}
static inline __m512 DtoS (__m512d a,__m512d b) {
__m256 sa = _mm512_cvtpd_ps(a);
__m256 sb = _mm512_cvtpd_ps(b);
__m512 s = _mm512_castps256_ps512(sa);
s =(__m512) _mm512_insertf64x4((__m512d)s,(__m256d)sb,1);
return s;
}
static inline void StoD (__m512 s,__m512d &a,__m512d &b) {
a = _mm512_cvtps_pd((__m256)_mm512_extractf64x4_pd((__m512d)s,0));
b = _mm512_cvtps_pd((__m256)_mm512_extractf64x4_pd((__m512d)s,1));
}
static inline __m512i DtoH (__m512d a,__m512d b,__m512d c,__m512d d) {
__m512 sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (__m512i h,__m512d &a,__m512d &b,__m512d &c,__m512d &d) {
__m512 sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
// On extracting face: Ah Al , Bh Bl -> Ah Bh, Al Bl // On extracting face: Ah Al , Bh Bl -> Ah Bh, Al Bl
// On merging buffers: Ah,Bh , Al Bl -> Ah Al, Bh, Bl // On merging buffers: Ah,Bh , Al Bl -> Ah Al, Bh, Bl
// The operation is its own inverse // The operation is its own inverse
@ -539,7 +582,9 @@ namespace Optimization {
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
// Here assign types // Here assign types
typedef __m512 SIMD_Ftype; // Single precision type
typedef __m512i SIMD_Htype; // Single precision type
typedef __m512 SIMD_Ftype; // Single precision type
typedef __m512d SIMD_Dtype; // Double precision type typedef __m512d SIMD_Dtype; // Double precision type
typedef __m512i SIMD_Itype; // Integer type typedef __m512i SIMD_Itype; // Integer type

View File

@ -279,6 +279,101 @@ namespace Optimization {
#undef timesi #undef timesi
struct PrecisionChange {
static inline vech StoH (const vecf &a,const vecf &b) {
#ifdef USE_FP16
vech ret;
vech *ha = (vech *)&a;
vech *hb = (vech *)&b;
const int nf = W<float>::r;
// VECTOR_FOR(i, nf,1){ ret.v[i] = ( (uint16_t *) &a.v[i])[1] ; }
// VECTOR_FOR(i, nf,1){ ret.v[i+nf] = ( (uint16_t *) &b.v[i])[1] ; }
VECTOR_FOR(i, nf,1){ ret.v[i] = ha->v[2*i+1]; }
VECTOR_FOR(i, nf,1){ ret.v[i+nf] = hb->v[2*i+1]; }
#else
assert(0);
#endif
return ret;
}
static inline void HtoS (vech h,vecf &sa,vecf &sb) {
#ifdef USE_FP16
const int nf = W<float>::r;
const int nh = W<uint16_t>::r;
vech *ha = (vech *)&sa;
vech *hb = (vech *)&sb;
VECTOR_FOR(i, nf, 1){ sb.v[i]= sa.v[i] = 0; }
// VECTOR_FOR(i, nf, 1){ ( (uint16_t *) (&sa.v[i]))[1] = h.v[i];}
// VECTOR_FOR(i, nf, 1){ ( (uint16_t *) (&sb.v[i]))[1] = h.v[i+nf];}
VECTOR_FOR(i, nf, 1){ ha->v[2*i+1]=h.v[i]; }
VECTOR_FOR(i, nf, 1){ hb->v[2*i+1]=h.v[i+nf]; }
#else
assert(0);
#endif
}
static inline vecf DtoS (vecd a,vecd b) {
const int nd = W<double>::r;
const int nf = W<float>::r;
vecf ret;
VECTOR_FOR(i, nd,1){ ret.v[i] = a.v[i] ; }
VECTOR_FOR(i, nd,1){ ret.v[i+nd] = b.v[i] ; }
return ret;
}
static inline void StoD (vecf s,vecd &a,vecd &b) {
const int nd = W<double>::r;
VECTOR_FOR(i, nd,1){ a.v[i] = s.v[i] ; }
VECTOR_FOR(i, nd,1){ b.v[i] = s.v[i+nd] ; }
}
static inline vech DtoH (vecd a,vecd b,vecd c,vecd d) {
vecf sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (vech h,vecd &a,vecd &b,vecd &c,vecd &d) {
vecf sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
//////////////////////////////////////////////
// Exchange support
struct Exchange{
template <typename T,int n>
static inline void ExchangeN(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
const int w = W<T>::r;
unsigned int mask = w >> (n + 1);
// std::cout << " Exchange "<<n<<" nsimd "<<w<<" mask 0x" <<std::hex<<mask<<std::dec<<std::endl;
VECTOR_FOR(i, w, 1) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) { out1.v[i]=in1.v[j1];}
else { out1.v[i]=in2.v[j1];}
int j2 = i|mask;
if ( (i&mask) == 0 ) { out2.v[i]=in1.v[j2];}
else { out2.v[i]=in2.v[j2];}
}
}
template <typename T>
static inline void Exchange0(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,0>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange1(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,1>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange2(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,2>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange3(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,3>(out1,out2,in1,in2);
};
};
////////////////////////////////////////////// //////////////////////////////////////////////
// Some Template specialization // Some Template specialization
#define perm(a, b, n, w)\ #define perm(a, b, n, w)\
@ -403,6 +498,7 @@ namespace Optimization {
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
// Here assign types // Here assign types
typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef Optimization::vecf SIMD_Ftype; // Single precision type typedef Optimization::vecf SIMD_Ftype; // Single precision type
typedef Optimization::vecd SIMD_Dtype; // Double precision type typedef Optimization::vecd SIMD_Dtype; // Double precision type
typedef Optimization::veci SIMD_Itype; // Integer type typedef Optimization::veci SIMD_Itype; // Integer type

View File

@ -66,6 +66,10 @@ namespace Optimization {
template <> struct W<Integer> { template <> struct W<Integer> {
constexpr static unsigned int r = GEN_SIMD_WIDTH/4u; constexpr static unsigned int r = GEN_SIMD_WIDTH/4u;
}; };
template <> struct W<uint16_t> {
constexpr static unsigned int c = GEN_SIMD_WIDTH/4u;
constexpr static unsigned int r = GEN_SIMD_WIDTH/2u;
};
// SIMD vector types // SIMD vector types
template <typename T> template <typename T>
@ -73,8 +77,9 @@ namespace Optimization {
alignas(GEN_SIMD_WIDTH) T v[W<T>::r]; alignas(GEN_SIMD_WIDTH) T v[W<T>::r];
}; };
typedef vec<float> vecf; typedef vec<float> vecf;
typedef vec<double> vecd; typedef vec<double> vecd;
typedef vec<Integer> veci; typedef vec<uint16_t> vech; // half precision comms
typedef vec<Integer> veci;
}} }}

View File

@ -33,6 +33,14 @@
#include "Grid_generic_types.h" // Definitions for simulated integer SIMD. #include "Grid_generic_types.h" // Definitions for simulated integer SIMD.
namespace Grid { namespace Grid {
#ifdef QPX
#include <spi/include/kernel/location.h>
#include <spi/include/l1p/types.h>
#include <hwi/include/bqc/l1p_mmio.h>
#include <hwi/include/bqc/A2_inlines.h>
#endif
namespace Optimization { namespace Optimization {
typedef struct typedef struct
{ {
@ -125,7 +133,6 @@ namespace Optimization {
f[2] = a.v2; f[2] = a.v2;
f[3] = a.v3; f[3] = a.v3;
} }
//Double //Double
inline void operator()(double *d, vector4double a){ inline void operator()(double *d, vector4double a){
vec_st(a, 0, d); vec_st(a, 0, d);

View File

@ -328,6 +328,140 @@ namespace Optimization {
}; };
}; };
#define _my_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16)
#define _my_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16)
#ifdef SFW_FP16
struct Grid_half {
Grid_half(){}
Grid_half(uint16_t raw) : x(raw) {}
uint16_t x;
};
union FP32 {
unsigned int u;
float f;
};
// PAB - Lifted and adapted from Eigen, which is GPL V2
inline float sfw_half_to_float(Grid_half h) {
const FP32 magic = { 113 << 23 };
const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
FP32 o;
o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits
unsigned int exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) { // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
} else if (exp == 0) { // Zero/Denormal?
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // renormalize
}
o.u |= (h.x & 0x8000) << 16; // sign bit
return o.f;
}
inline Grid_half sfw_float_to_half(float ff) {
FP32 f; f.f = ff;
const FP32 f32infty = { 255 << 23 };
const FP32 f16max = { (127 + 16) << 23 };
const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
unsigned int sign_mask = 0x80000000u;
Grid_half o;
o.x = static_cast<unsigned short>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
} else { // (De)normalized number or zero
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
o.x = static_cast<unsigned short>(f.u >> 13);
}
}
o.x |= static_cast<unsigned short>(sign >> 16);
return o;
}
static inline __m128i Grid_mm_cvtps_ph(__m128 f,int discard) {
__m128i ret=(__m128i)_mm_setzero_ps();
float *fp = (float *)&f;
Grid_half *hp = (Grid_half *)&ret;
hp[0] = sfw_float_to_half(fp[0]);
hp[1] = sfw_float_to_half(fp[1]);
hp[2] = sfw_float_to_half(fp[2]);
hp[3] = sfw_float_to_half(fp[3]);
return ret;
}
static inline __m128 Grid_mm_cvtph_ps(__m128i h,int discard) {
__m128 ret=_mm_setzero_ps();
float *fp = (float *)&ret;
Grid_half *hp = (Grid_half *)&h;
fp[0] = sfw_half_to_float(hp[0]);
fp[1] = sfw_half_to_float(hp[1]);
fp[2] = sfw_half_to_float(hp[2]);
fp[3] = sfw_half_to_float(hp[3]);
return ret;
}
#else
#define Grid_mm_cvtps_ph _mm_cvtps_ph
#define Grid_mm_cvtph_ps _mm_cvtph_ps
#endif
struct PrecisionChange {
static inline __m128i StoH (__m128 a,__m128 b) {
__m128i ha = Grid_mm_cvtps_ph(a,0);
__m128i hb = Grid_mm_cvtps_ph(b,0);
__m128i h =(__m128i) _mm_shuffle_ps((__m128)ha,(__m128)hb,_MM_SELECT_FOUR_FOUR(1,0,1,0));
return h;
}
static inline void HtoS (__m128i h,__m128 &sa,__m128 &sb) {
sa = Grid_mm_cvtph_ps(h,0);
h = (__m128i)_my_alignr_epi32((__m128i)h,(__m128i)h,2);
sb = Grid_mm_cvtph_ps(h,0);
}
static inline __m128 DtoS (__m128d a,__m128d b) {
__m128 sa = _mm_cvtpd_ps(a);
__m128 sb = _mm_cvtpd_ps(b);
__m128 s = _mm_shuffle_ps(sa,sb,_MM_SELECT_FOUR_FOUR(1,0,1,0));
return s;
}
static inline void StoD (__m128 s,__m128d &a,__m128d &b) {
a = _mm_cvtps_pd(s);
s = (__m128)_my_alignr_epi32((__m128i)s,(__m128i)s,2);
b = _mm_cvtps_pd(s);
}
static inline __m128i DtoH (__m128d a,__m128d b,__m128d c,__m128d d) {
__m128 sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (__m128i h,__m128d &a,__m128d &b,__m128d &c,__m128d &d) {
__m128 sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
struct Exchange{ struct Exchange{
// 3210 ordering // 3210 ordering
static inline void Exchange0(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ static inline void Exchange0(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
@ -335,8 +469,10 @@ namespace Optimization {
out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,2,3,2)); out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,2,3,2));
}; };
static inline void Exchange1(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ static inline void Exchange1(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); /*ACEG*/
out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); /*BDFH*/
out1= _mm_shuffle_ps(out1,out1,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/
out2= _mm_shuffle_ps(out2,out2,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/
}; };
static inline void Exchange2(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){ static inline void Exchange2(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
assert(0); assert(0);
@ -383,14 +519,9 @@ namespace Optimization {
default: assert(0); default: assert(0);
} }
} }
#ifndef _mm_alignr_epi64
#define _mm_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16)
#define _mm_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16)
#endif
template<int n> static inline __m128 tRotate(__m128 in){ return (__m128)_mm_alignr_epi32((__m128i)in,(__m128i)in,n); }; template<int n> static inline __m128 tRotate(__m128 in){ return (__m128)_my_alignr_epi32((__m128i)in,(__m128i)in,n); };
template<int n> static inline __m128d tRotate(__m128d in){ return (__m128d)_mm_alignr_epi64((__m128i)in,(__m128i)in,n); }; template<int n> static inline __m128d tRotate(__m128d in){ return (__m128d)_my_alignr_epi64((__m128i)in,(__m128i)in,n); };
}; };
////////////////////////////////////////////// //////////////////////////////////////////////
@ -450,7 +581,8 @@ namespace Optimization {
////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////
// Here assign types // Here assign types
typedef __m128 SIMD_Ftype; // Single precision type typedef __m128i SIMD_Htype; // Single precision type
typedef __m128 SIMD_Ftype; // Single precision type
typedef __m128d SIMD_Dtype; // Double precision type typedef __m128d SIMD_Dtype; // Double precision type
typedef __m128i SIMD_Itype; // Integer type typedef __m128i SIMD_Itype; // Integer type

View File

@ -2,7 +2,7 @@
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_vector_types.h Source file: ./lib/simd/Grid_vector_type.h
Copyright (C) 2015 Copyright (C) 2015
@ -53,12 +53,14 @@ directory
#if defined IMCI #if defined IMCI
#include "Grid_imci.h" #include "Grid_imci.h"
#endif #endif
#if defined QPX
#include "Grid_qpx.h"
#endif
#ifdef NEONv8 #ifdef NEONv8
#include "Grid_neon.h" #include "Grid_neon.h"
#endif #endif
#if defined QPX
#include "Grid_qpx.h"
#endif
#include "l1p.h"
namespace Grid { namespace Grid {
@ -74,12 +76,14 @@ struct RealPart<std::complex<T> > {
typedef T type; typedef T type;
}; };
#include <type_traits>
////////////////////////////////////// //////////////////////////////////////
// demote a vector to real type // demote a vector to real type
////////////////////////////////////// //////////////////////////////////////
// type alias used to simplify the syntax of std::enable_if // type alias used to simplify the syntax of std::enable_if
template <typename T> using Invoke = typename T::type; template <typename T> using Invoke = typename T::type;
template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >; template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >; template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >;
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
@ -88,13 +92,15 @@ template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<std::complex<double> > : public std::true_type {}; template <> struct is_complex<std::complex<double> > : public std::true_type {};
template <> struct is_complex<std::complex<float> > : public std::true_type {}; template <> struct is_complex<std::complex<float> > : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >; template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >; template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >; template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >;
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >; template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >; template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >; template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >;
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Define the operation templates functors // Define the operation templates functors
@ -358,16 +364,12 @@ class Grid_simd {
{ {
if (n==3) { if (n==3) {
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange3 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} else if(n==2) { } else if(n==2) {
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange2 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} else if(n==1) { } else if(n==1) {
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange1 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} else if(n==0) { } else if(n==0) {
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v); Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange0 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} }
} }
@ -428,7 +430,6 @@ template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) { inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd(); nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
// std::cout << "Rotate Real by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v, nrot); ret.v = Optimization::Rotate::rotate(b.v, nrot);
return ret; return ret;
} }
@ -436,7 +437,6 @@ template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) { inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd(); nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
// std::cout << "Rotate Complex by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot); ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
return ret; return ret;
} }
@ -444,14 +444,12 @@ template <class S, class V, IfNotComplex<S> =0>
inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot) inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{ {
nrot = nrot % Grid_simd<S,V>::Nsimd(); nrot = nrot % Grid_simd<S,V>::Nsimd();
// std::cout << "Rotate Real by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v,nrot); ret.v = Optimization::Rotate::rotate(b.v,nrot);
} }
template <class S, class V, IfComplex<S> =0> template <class S, class V, IfComplex<S> =0>
inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot) inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{ {
nrot = nrot % Grid_simd<S,V>::Nsimd(); nrot = nrot % Grid_simd<S,V>::Nsimd();
// std::cout << "Rotate Complex by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v,2*nrot); ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
} }
@ -711,7 +709,6 @@ inline Grid_simd<S, V> innerProduct(const Grid_simd<S, V> &l,
const Grid_simd<S, V> &r) { const Grid_simd<S, V> &r) {
return conjugate(l) * r; return conjugate(l) * r;
} }
template <class S, class V> template <class S, class V>
inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l, inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l,
const Grid_simd<S, V> &r) { const Grid_simd<S, V> &r) {
@ -771,6 +768,67 @@ typedef Grid_simd<std::complex<float>, SIMD_Ftype> vComplexF;
typedef Grid_simd<std::complex<double>, SIMD_Dtype> vComplexD; typedef Grid_simd<std::complex<double>, SIMD_Dtype> vComplexD;
typedef Grid_simd<Integer, SIMD_Itype> vInteger; typedef Grid_simd<Integer, SIMD_Itype> vInteger;
// Half precision; no arithmetic support
typedef Grid_simd<uint16_t, SIMD_Htype> vRealH;
typedef Grid_simd<std::complex<uint16_t>, SIMD_Htype> vComplexH;
inline void precisionChange(vRealF *out,vRealD *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v);
}
}
inline void precisionChange(vRealH *out,vRealD *in,int nvec)
{
assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){
int n=m*4;
out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v);
}
}
inline void precisionChange(vRealH *out,vRealF *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v);
}
}
inline void precisionChange(vRealD *out,vRealF *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
}
}
inline void precisionChange(vRealD *out,vRealH *in,int nvec)
{
assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){
int n=m*4;
Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v);
}
}
inline void precisionChange(vRealF *out,vRealH *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v);
}
}
inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
// Check our vector types are of an appropriate size. // Check our vector types are of an appropriate size.
#if defined QPX #if defined QPX
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect"); static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");

37
lib/simd/l1p.h Normal file
View File

@ -0,0 +1,37 @@
#pragma once
namespace Grid {
// L1p optimisation
inline void bgq_l1p_optimisation(int mode)
{
#ifdef QPX
#undef L1P_CFG_PF_USR
#define L1P_CFG_PF_USR (0x3fde8000108ll) /* (64 bit reg, 23 bits wide, user/unpriv) */
uint64_t cfg_pf_usr;
if ( mode ) {
cfg_pf_usr =
L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_adaptive_throttle(0xF) ;
// if ( sizeof(Float) == sizeof(double) ) {
cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(2)| L1P_CFG_PF_USR_dfetch_max_footprint(3) ;
// } else {
// cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(1)| L1P_CFG_PF_USR_dfetch_max_footprint(2) ;
// }
} else {
cfg_pf_usr = L1P_CFG_PF_USR_dfetch_depth(1)
| L1P_CFG_PF_USR_dfetch_max_footprint(2)
| L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_stream_prefetch_enable;
}
*((uint64_t *)L1P_CFG_PF_USR) = cfg_pf_usr;
#endif
}
}

View File

View File

@ -0,0 +1,29 @@
#ifndef _STENCIL_SIMPLE_COMPRESSOR_H_
#define _STENCIL_SIMPLE_COMPRESSOR_H_
namespace Grid {
template<class vobj>
class SimpleCompressor {
public:
void Point(int) {};
inline int CommDatumSize(void) { return sizeof(vobj); }
inline bool DecompressionStep(void) { return false; }
inline void Compress(vobj *buf,int o,const vobj &in) { buf[o]=in; }
inline void Exchange(vobj *mp,vobj *vp0,vobj *vp1,Integer type,Integer o){
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
}
inline void Decompress(vobj *out,vobj *in, int o){ assert(0); }
inline void CompressExchange(vobj *out0,vobj *out1,const vobj *in,
int j,int k, int m,int type){
exchange(out0[j],out1[j],in[k],in[m],type);
}
// For cshift. Cshift should drop compressor coupling altogether
// because I had to decouple the code from the Stencil anyway
inline vobj operator() (const vobj &arg) {
return arg;
}
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,6 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_class.h Source file: ./lib/tensors/Tensor_class.h
Copyright (C) 2015 Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
@ -13,16 +10,13 @@ This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License along You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution See the full license in the file "LICENSE" in the top level distribution
directory directory
*************************************************************************************/ *************************************************************************************/
@ -56,18 +50,18 @@ class iScalar {
typedef vtype element; typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type; typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v; typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object; typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iScalar<recurse_scalar_object> scalar_object; typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure // substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified; typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified; typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
// get double precision version // get double precision version
typedef iScalar<typename GridTypeMapper<vtype>::DoublePrecision> DoublePrecision; typedef iScalar<typename GridTypeMapper<vtype>::DoublePrecision> DoublePrecision;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 }; enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
// Scalar no action // Scalar no action
@ -80,29 +74,18 @@ class iScalar {
iScalar<vtype> & operator= (const iScalar<vtype> &copyme) = default; iScalar<vtype> & operator= (const iScalar<vtype> &copyme) = default;
iScalar<vtype> & operator= (iScalar<vtype> &&copyme) = default; iScalar<vtype> & operator= (iScalar<vtype> &&copyme) = default;
*/ */
iScalar(scalar_type s)
: _internal(s){}; // recurse down and hit the constructor for vector_type // template<int N=0>
// iScalar(EnableIf<isSIMDvectorized<vector_type>, vector_type> s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(scalar_type s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(const Zero &z) { *this = zero; }; iScalar(const Zero &z) { *this = zero; };
iScalar<vtype> &operator=(const Zero &hero) { iScalar<vtype> &operator=(const Zero &hero) {
zeroit(*this); zeroit(*this);
return *this; return *this;
} }
// managing the internal vector structure
strong_inline scalar_object getlane(int lane){
scalar_object ret;
ret._internal = _internal.getlane(lane);
return ret;
}
strong_inline void putlane(scalar_object &s, int lane){
_internal.putlane(s._internal,lane);
}
friend strong_inline void vstream(iScalar<vtype> &out, friend strong_inline void vstream(iScalar<vtype> &out,
const iScalar<vtype> &in) { const iScalar<vtype> &in) {
vstream(out._internal, in._internal); vstream(out._internal, in._internal);
@ -152,42 +135,38 @@ class iScalar {
strong_inline const vtype &operator()(void) const { return _internal; } strong_inline const vtype &operator()(void) const { return _internal; }
// Type casts meta programmed, must be pure scalar to match TensorRemove // Type casts meta programmed, must be pure scalar to match TensorRemove
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
IfNotSimd<U> = 0>
operator ComplexF() const { operator ComplexF() const {
return (TensorRemove(_internal)); return (TensorRemove(_internal));
}; };
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
IfNotSimd<U> = 0>
operator ComplexD() const { operator ComplexD() const {
return (TensorRemove(_internal)); return (TensorRemove(_internal));
}; };
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = // template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> =
// 0> operator RealD () const { return(real(TensorRemove(_internal))); } // 0> operator RealD () const { return(real(TensorRemove(_internal))); }
template <class U = vtype, class V = scalar_type, IfReal<V> = 0, template <class U = vtype, class V = scalar_type, IfReal<V> = 0,IfNotSimd<U> = 0>
IfNotSimd<U> = 0>
operator RealD() const { operator RealD() const {
return TensorRemove(_internal); return TensorRemove(_internal);
} }
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0, template <class U = vtype, class V = scalar_type, IfInteger<V> = 0, IfNotSimd<U> = 0>
IfNotSimd<U> = 0>
operator Integer() const { operator Integer() const {
return Integer(TensorRemove(_internal)); return Integer(TensorRemove(_internal));
} }
// convert from a something to a scalar via constructor of something arg // convert from a something to a scalar via constructor of something arg
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type * = nullptr>
* = nullptr> strong_inline iScalar<vtype> operator=(T arg) {
strong_inline iScalar<vtype> operator=(T arg) {
_internal = arg; _internal = arg;
return *this; return *this;
} }
friend std::ostream &operator<<(std::ostream &stream, friend std::ostream &operator<<(std::ostream &stream,const iScalar<vtype> &o) {
const iScalar<vtype> &o) {
stream << "S {" << o._internal << "}"; stream << "S {" << o._internal << "}";
return stream; return stream;
}; };
}; };
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
// Allows to turn scalar<scalar<scalar<double>>>> back to double. // Allows to turn scalar<scalar<scalar<double>>>> back to double.
@ -211,6 +190,7 @@ class iVector {
typedef vtype element; typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type; typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v; typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object; typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced; typedef iScalar<tensor_reduced_v> tensor_reduced;
@ -222,8 +202,7 @@ class iVector {
// get double precision version // get double precision version
typedef iVector<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision; typedef iVector<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr> * = nullptr>
strong_inline auto operator=(T arg) -> iVector<vtype, N> { strong_inline auto operator=(T arg) -> iVector<vtype, N> {
@ -246,20 +225,6 @@ class iVector {
zeroit(*this); zeroit(*this);
return *this; return *this;
} }
strong_inline scalar_object getlane(int lane){
scalar_object ret;
for (int i = 0; i < N; i++) ret._internal[i] = _internal[i].getlane(lane);
return ret;
}
strong_inline void putlane(scalar_object &s, int lane){
for (int i = 0; i < N; i++) _internal[i].putlane(s._internal[i],lane);
}
friend strong_inline void zeroit(iVector<vtype, N> &that) { friend strong_inline void zeroit(iVector<vtype, N> &that) {
for (int i = 0; i < N; i++) { for (int i = 0; i < N; i++) {
zeroit(that._internal[i]); zeroit(that._internal[i]);
@ -341,6 +306,7 @@ class iMatrix {
typedef vtype element; typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type; typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v; typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object; typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
@ -350,8 +316,7 @@ class iMatrix {
// get double precision version // get double precision version
typedef iMatrix<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision; typedef iMatrix<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
// Tensor removal // Tensor removal
typedef iScalar<tensor_reduced_v> tensor_reduced; typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object, N> scalar_object; typedef iMatrix<recurse_scalar_object, N> scalar_object;
@ -390,25 +355,6 @@ class iMatrix {
return *this; return *this;
} }
strong_inline scalar_object getlane(int lane){
scalar_object ret;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
ret._internal[i][j] = _internal[i][j].getlane(lane);
}
}
return ret;
}
strong_inline void putlane(scalar_object &s, int lane){
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) _internal[i][j].putlane(s._internal[i][j],lane);
}
friend strong_inline void zeroit(iMatrix<vtype,N> &that){ friend strong_inline void zeroit(iMatrix<vtype,N> &that){
for(int i=0;i<N;i++){ for(int i=0;i<N;i++){
for(int j=0;j<N;j++){ for(int j=0;j<N;j++){
@ -527,3 +473,6 @@ void vprefetch(const iMatrix<v, N> &vv) {
} }
} }
#endif #endif

View File

@ -29,51 +29,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_MATH_INNER_H #ifndef GRID_MATH_INNER_H
#define GRID_MATH_INNER_H #define GRID_MATH_INNER_H
namespace Grid { namespace Grid {
/////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////
// innerProduct Scalar x Scalar -> Scalar // innerProduct Scalar x Scalar -> Scalar
// innerProduct Vector x Vector -> Scalar // innerProduct Vector x Vector -> Scalar
// innerProduct Matrix x Matrix -> Scalar // innerProduct Matrix x Matrix -> Scalar
/////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////
template<class sobj> inline RealD norm2(const sobj &arg){ template<class sobj> inline RealD norm2(const sobj &arg){
typedef typename sobj::scalar_type scalar; auto nrm = innerProductD(arg,arg);
decltype(innerProduct(arg,arg)) nrm; RealD ret = real(nrm);
nrm = innerProduct(arg,arg); return ret;
RealD ret = real(nrm); }
return ret; //////////////////////////////////////
} // If single promote to double and sum 2x
//////////////////////////////////////
template<class l,class r,int N> inline inline ComplexD innerProductD(const ComplexF &l,const ComplexF &r){ return innerProduct(l,r); }
auto innerProduct (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0],rhs._internal[0]))> inline ComplexD innerProductD(const ComplexD &l,const ComplexD &r){ return innerProduct(l,r); }
{ inline RealD innerProductD(const RealD &l,const RealD &r){ return innerProduct(l,r); }
typedef decltype(innerProduct(lhs._internal[0],rhs._internal[0])) ret_t; inline RealD innerProductD(const RealF &l,const RealF &r){ return innerProduct(l,r); }
iScalar<ret_t> ret;
ret=zero; inline vComplexD innerProductD(const vComplexD &l,const vComplexD &r){ return innerProduct(l,r); }
for(int c1=0;c1<N;c1++){ inline vRealD innerProductD(const vRealD &l,const vRealD &r){ return innerProduct(l,r); }
ret._internal += innerProduct(lhs._internal[c1],rhs._internal[c1]); inline vComplexD innerProductD(const vComplexF &l,const vComplexF &r){
} vComplexD la,lb;
return ret; vComplexD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
return innerProduct(la,ra) + innerProduct(lb,rb);
}
inline vRealD innerProductD(const vRealF &l,const vRealF &r){
vRealD la,lb;
vRealD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
return innerProduct(la,ra) + innerProduct(lb,rb);
}
template<class l,class r,int N> inline
auto innerProductD (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProductD(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProductD(lhs._internal[c1],rhs._internal[c1]);
} }
template<class l,class r,int N> inline return ret;
auto innerProduct (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0]))> }
{ template<class l,class r,int N> inline
typedef decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0])) ret_t; auto innerProductD (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0]))>
iScalar<ret_t> ret; {
iScalar<ret_t> tmp; typedef decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
ret=zero; iScalar<ret_t> ret;
for(int c1=0;c1<N;c1++){ iScalar<ret_t> tmp;
for(int c2=0;c2<N;c2++){ ret=zero;
ret._internal+=innerProduct(lhs._internal[c1][c2],rhs._internal[c1][c2]); for(int c1=0;c1<N;c1++){
}} for(int c2=0;c2<N;c2++){
return ret; ret._internal+=innerProductD(lhs._internal[c1][c2],rhs._internal[c1][c2]);
} }}
template<class l,class r> inline return ret;
auto innerProduct (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProduct(lhs._internal,rhs._internal))> }
{ template<class l,class r> inline
typedef decltype(innerProduct(lhs._internal,rhs._internal)) ret_t; auto innerProductD (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProductD(lhs._internal,rhs._internal))>
iScalar<ret_t> ret; {
ret._internal = innerProduct(lhs._internal,rhs._internal); typedef decltype(innerProductD(lhs._internal,rhs._internal)) ret_t;
return ret; iScalar<ret_t> ret;
ret._internal = innerProductD(lhs._internal,rhs._internal);
return ret;
}
//////////////////////
// Keep same precison
//////////////////////
template<class l,class r,int N> inline
auto innerProduct (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProduct(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProduct(lhs._internal[c1],rhs._internal[c1]);
} }
return ret;
}
template<class l,class r,int N> inline
auto innerProduct (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
iScalar<ret_t> tmp;
ret=zero;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProduct(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> inline
auto innerProduct (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProduct(lhs._internal,rhs._internal))>
{
typedef decltype(innerProduct(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProduct(lhs._internal,rhs._internal);
return ret;
}
} }
#endif #endif

View File

@ -1,29 +1,21 @@
/************************************************************************************* /*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_traits.h Source file: ./lib/tensors/Tensor_traits.h
Copyright (C) 2015 Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@phys.columbia.edu> Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. (at your option) any later version.
This program is distributed in the hope that it will be useful, This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. GNU General Public License for more details.
You should have received a copy of the GNU General Public License along You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
@ -53,6 +45,7 @@ namespace Grid {
public: public:
typedef typename T::scalar_type scalar_type; typedef typename T::scalar_type scalar_type;
typedef typename T::vector_type vector_type; typedef typename T::vector_type vector_type;
typedef typename T::vector_typeD vector_typeD;
typedef typename T::tensor_reduced tensor_reduced; typedef typename T::tensor_reduced tensor_reduced;
typedef typename T::scalar_object scalar_object; typedef typename T::scalar_object scalar_object;
typedef typename T::Complexified Complexified; typedef typename T::Complexified Complexified;
@ -68,6 +61,7 @@ namespace Grid {
public: public:
typedef RealF scalar_type; typedef RealF scalar_type;
typedef RealF vector_type; typedef RealF vector_type;
typedef RealD vector_typeD;
typedef RealF tensor_reduced ; typedef RealF tensor_reduced ;
typedef RealF scalar_object; typedef RealF scalar_object;
typedef ComplexF Complexified; typedef ComplexF Complexified;
@ -79,6 +73,7 @@ namespace Grid {
public: public:
typedef RealD scalar_type; typedef RealD scalar_type;
typedef RealD vector_type; typedef RealD vector_type;
typedef RealD vector_typeD;
typedef RealD tensor_reduced; typedef RealD tensor_reduced;
typedef RealD scalar_object; typedef RealD scalar_object;
typedef ComplexD Complexified; typedef ComplexD Complexified;
@ -90,6 +85,7 @@ namespace Grid {
public: public:
typedef ComplexF scalar_type; typedef ComplexF scalar_type;
typedef ComplexF vector_type; typedef ComplexF vector_type;
typedef ComplexD vector_typeD;
typedef ComplexF tensor_reduced; typedef ComplexF tensor_reduced;
typedef ComplexF scalar_object; typedef ComplexF scalar_object;
typedef ComplexF Complexified; typedef ComplexF Complexified;
@ -101,6 +97,7 @@ namespace Grid {
public: public:
typedef ComplexD scalar_type; typedef ComplexD scalar_type;
typedef ComplexD vector_type; typedef ComplexD vector_type;
typedef ComplexD vector_typeD;
typedef ComplexD tensor_reduced; typedef ComplexD tensor_reduced;
typedef ComplexD scalar_object; typedef ComplexD scalar_object;
typedef ComplexD Complexified; typedef ComplexD Complexified;
@ -112,6 +109,7 @@ namespace Grid {
public: public:
typedef Integer scalar_type; typedef Integer scalar_type;
typedef Integer vector_type; typedef Integer vector_type;
typedef Integer vector_typeD;
typedef Integer tensor_reduced; typedef Integer tensor_reduced;
typedef Integer scalar_object; typedef Integer scalar_object;
typedef void Complexified; typedef void Complexified;
@ -124,6 +122,7 @@ namespace Grid {
public: public:
typedef RealF scalar_type; typedef RealF scalar_type;
typedef vRealF vector_type; typedef vRealF vector_type;
typedef vRealD vector_typeD;
typedef vRealF tensor_reduced; typedef vRealF tensor_reduced;
typedef RealF scalar_object; typedef RealF scalar_object;
typedef vComplexF Complexified; typedef vComplexF Complexified;
@ -135,6 +134,7 @@ namespace Grid {
public: public:
typedef RealD scalar_type; typedef RealD scalar_type;
typedef vRealD vector_type; typedef vRealD vector_type;
typedef vRealD vector_typeD;
typedef vRealD tensor_reduced; typedef vRealD tensor_reduced;
typedef RealD scalar_object; typedef RealD scalar_object;
typedef vComplexD Complexified; typedef vComplexD Complexified;
@ -142,10 +142,23 @@ namespace Grid {
typedef vRealD DoublePrecision; typedef vRealD DoublePrecision;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vComplexH> {
public:
typedef ComplexF scalar_type;
typedef vComplexH vector_type;
typedef vComplexD vector_typeD;
typedef vComplexH tensor_reduced;
typedef ComplexF scalar_object;
typedef vComplexH Complexified;
typedef vRealH Realified;
typedef vComplexD DoublePrecision;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vComplexF> { template<> class GridTypeMapper<vComplexF> {
public: public:
typedef ComplexF scalar_type; typedef ComplexF scalar_type;
typedef vComplexF vector_type; typedef vComplexF vector_type;
typedef vComplexD vector_typeD;
typedef vComplexF tensor_reduced; typedef vComplexF tensor_reduced;
typedef ComplexF scalar_object; typedef ComplexF scalar_object;
typedef vComplexF Complexified; typedef vComplexF Complexified;
@ -157,6 +170,7 @@ namespace Grid {
public: public:
typedef ComplexD scalar_type; typedef ComplexD scalar_type;
typedef vComplexD vector_type; typedef vComplexD vector_type;
typedef vComplexD vector_typeD;
typedef vComplexD tensor_reduced; typedef vComplexD tensor_reduced;
typedef ComplexD scalar_object; typedef ComplexD scalar_object;
typedef vComplexD Complexified; typedef vComplexD Complexified;
@ -168,6 +182,7 @@ namespace Grid {
public: public:
typedef Integer scalar_type; typedef Integer scalar_type;
typedef vInteger vector_type; typedef vInteger vector_type;
typedef vInteger vector_typeD;
typedef vInteger tensor_reduced; typedef vInteger tensor_reduced;
typedef Integer scalar_object; typedef Integer scalar_object;
typedef void Complexified; typedef void Complexified;
@ -252,7 +267,8 @@ namespace Grid {
template<typename T> template<typename T>
class isSIMDvectorized{ class isSIMDvectorized{
template<typename U> template<typename U>
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type, typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *); static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type,
typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *);
template<typename U> template<typename U>
static double test(...); static double test(...);
@ -264,13 +280,15 @@ namespace Grid {
//Get the precision of a Lattice, tensor or scalar type in units of sizeof(float) //Get the precision of a Lattice, tensor or scalar type in units of sizeof(float)
template<typename T> template<typename T>
class getPrecision{ class getPrecision{
public:
typedef typename getVectorType<T>::type vector_obj; //get the vector_obj (i.e. a grid Tensor) if its a Lattice<vobj>, do nothing otherwise (i.e. if fundamental or grid Tensor) typedef typename getVectorType<T>::type vector_obj; //get the vector_obj (i.e. a grid Tensor) if its a Lattice<vobj>, do nothing otherwise (i.e. if fundamental or grid Tensor)
typedef typename GridTypeMapper<vector_obj>::scalar_type scalar_type; //get the associated scalar type. Works on fundamental and tensor types typedef typename GridTypeMapper<vector_obj>::scalar_type scalar_type; //get the associated scalar type. Works on fundamental and tensor types
public:
typedef typename GridTypeMapper<scalar_type>::Realified real_scalar_type; //remove any std::complex wrapper, should get us to the fundamental type typedef typename GridTypeMapper<scalar_type>::Realified real_scalar_type; //remove any std::complex wrapper, should get us to the fundamental type
enum { value = sizeof(real_scalar_type)/sizeof(float) }; enum { value = sizeof(real_scalar_type)/sizeof(float) };
}; };
} }
#endif #endif

View File

@ -311,8 +311,8 @@ void Grid_init(int *argc,char ***argv)
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"Performance:"<<std::endl; std::cout<<GridLogMessage<<"Performance:"<<std::endl;
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --comms-isend : Asynchronous MPI calls; several dirs at a time "<<std::endl; std::cout<<GridLogMessage<<" --comms-concurrent : Asynchronous MPI calls; several dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-sendrecv: Synchronous MPI calls; one dirs at a time "<<std::endl; std::cout<<GridLogMessage<<" --comms-sequential : Synchronous MPI calls; one dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl; std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
std::cout<<GridLogMessage<<std::endl; std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl; std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl;
@ -464,5 +464,6 @@ void Grid_debug_handler_init(void)
sigaction(SIGFPE,&sa,NULL); sigaction(SIGFPE,&sa,NULL);
sigaction(SIGKILL,&sa,NULL); sigaction(SIGKILL,&sa,NULL);
sigaction(SIGILL,&sa,NULL);
} }
} }

View File

@ -16,4 +16,4 @@ else # configure.ac is modified
printf 'commit: %s-dirty\n' `git rev-parse --short HEAD` printf 'commit: %s-dirty\n' `git rev-parse --short HEAD`
printf 'branch: %s\n' `git rev-parse --abbrev-ref HEAD` printf 'branch: %s\n' `git rev-parse --abbrev-ref HEAD`
printf 'date : %s\n' `git log -1 --date=short --pretty=format:%cd` printf 'date : %s\n' `git log -1 --date=short --pretty=format:%cd`
fi fi

6
scripts/grep-global Executable file
View File

@ -0,0 +1,6 @@
#!/bin/bash
export LANG=C
find . -name "*.cc" -exec grep -H $@ {} \;
find . -name "*.h" -exec grep -H $@ {} \;

View File

@ -115,6 +115,7 @@ int main(int argc,char **argv)
// test serializable class writing // test serializable class writing
myclass obj(1234); // non-trivial constructor myclass obj(1234); // non-trivial constructor
std::vector<myclass> vec; std::vector<myclass> vec;
std::pair<myenum, myenum> pair;
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl; std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj); write(WR,"obj",obj);
@ -122,6 +123,8 @@ int main(int argc,char **argv)
vec.push_back(myclass(1234)); vec.push_back(myclass(1234));
vec.push_back(myclass(5678)); vec.push_back(myclass(5678));
vec.push_back(myclass(3838)); vec.push_back(myclass(3838));
pair = std::make_pair(myenum::red, myenum::blue);
write(WR, "objvec", vec); write(WR, "objvec", vec);
std::cout << "-- serialisable class writing to std::cout:" << std::endl; std::cout << "-- serialisable class writing to std::cout:" << std::endl;
std::cout << obj << std::endl; std::cout << obj << std::endl;
@ -129,21 +132,30 @@ int main(int argc,char **argv)
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl; std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl; std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
write(WR, "objpair", pair);
std::cout << "-- pair writing to std::cout:" << std::endl;
std::cout << pair << std::endl;
// read tests // read tests
std::cout << "\n==== IO self-consistency tests" << std::endl; std::cout << "\n==== IO self-consistency tests" << std::endl;
//// XML //// XML
ioTest<XmlWriter, XmlReader>("iotest.xml", obj, "XML (object) "); ioTest<XmlWriter, XmlReader>("iotest.xml", obj, "XML (object) ");
ioTest<XmlWriter, XmlReader>("iotest.xml", vec, "XML (vector of objects)"); ioTest<XmlWriter, XmlReader>("iotest.xml", vec, "XML (vector of objects)");
ioTest<XmlWriter, XmlReader>("iotest.xml", pair, "XML (pair of objects)");
//// binary //// binary
ioTest<BinaryWriter, BinaryReader>("iotest.bin", obj, "binary (object) "); ioTest<BinaryWriter, BinaryReader>("iotest.bin", obj, "binary (object) ");
ioTest<BinaryWriter, BinaryReader>("iotest.bin", vec, "binary (vector of objects)"); ioTest<BinaryWriter, BinaryReader>("iotest.bin", vec, "binary (vector of objects)");
ioTest<BinaryWriter, BinaryReader>("iotest.bin", pair, "binary (pair of objects)");
//// text //// text
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) "); ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)"); ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
ioTest<TextWriter, TextReader>("iotest.dat", pair, "text (pair of objects)");
//// HDF5 //// HDF5
#undef HAVE_HDF5
#ifdef HAVE_HDF5 #ifdef HAVE_HDF5
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) "); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)"); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", pair, "HDF5 (pair of objects)");
#endif #endif
std::cout << "\n==== vector flattening/reconstruction" << std::endl; std::cout << "\n==== vector flattening/reconstruction" << std::endl;

View File

@ -308,18 +308,23 @@ public:
int n; int n;
funcExchange(int _n) { n=_n;}; funcExchange(int _n) { n=_n;};
template<class vec> void operator()(vec &r1,vec &r2,vec &i1,vec &i2) const { exchange(r1,r2,i1,i2,n);} template<class vec> void operator()(vec &r1,vec &r2,vec &i1,vec &i2) const { exchange(r1,r2,i1,i2,n);}
template<class scal> void apply(std::vector<scal> &r1,std::vector<scal> &r2,std::vector<scal> &in1,std::vector<scal> &in2) const { template<class scal> void apply(std::vector<scal> &r1,
std::vector<scal> &r2,
std::vector<scal> &in1,
std::vector<scal> &in2) const
{
int sz=in1.size(); int sz=in1.size();
int msk = sz>>(n+1); int msk = sz>>(n+1);
int j1=0; for(int i=0;i<sz;i++) {
int j2=0; int j1 = i&(~msk);
for(int i=0;i<sz;i++) if ( (i&msk) == 0 ) r1[j1++] = in1[ i ]; int j2 = i|msk;
for(int i=0;i<sz;i++) if ( (i&msk) == 0 ) r1[j1++] = in2[ i ]; if ( (i&msk) == 0 ) { r1[i]=in1[j1];}
for(int i=0;i<sz;i++) if ( (i&msk) ) r2[j2++] = in1[ i ]; else { r1[i]=in2[j1];}
for(int i=0;i<sz;i++) if ( (i&msk) ) r2[j2++] = in2[ i ];
if ( (i&msk) == 0 ) { r2[i]=in1[j2];}
else { r2[i]=in2[j2];}
}
} }
std::string name(void) const { return std::string("Exchange"); } std::string name(void) const { return std::string("Exchange"); }
}; };
@ -454,8 +459,8 @@ void ExchangeTester(const functor &func)
std::cout<<GridLogMessage << " " << func.name() << " " <<func.n <<std::endl; std::cout<<GridLogMessage << " " << func.name() << " " <<func.n <<std::endl;
// for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" "<<reference1[i]<<" "<<result1[i]<<std::endl; //for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" ref "<<reference1[i]<<" res "<<result1[i]<<std::endl;
// for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" "<<reference2[i]<<" "<<result2[i]<<std::endl; //for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" ref "<<reference2[i]<<" res "<<result2[i]<<std::endl;
for(int i=0;i<Nsimd;i++){ for(int i=0;i<Nsimd;i++){
int found=0; int found=0;
@ -465,7 +470,7 @@ void ExchangeTester(const functor &func)
// std::cout << " i "<<i<<" j "<<j<<" "<<reference1[j]<<" "<<result1[i]<<std::endl; // std::cout << " i "<<i<<" j "<<j<<" "<<reference1[j]<<" "<<result1[i]<<std::endl;
} }
} }
assert(found==1); // assert(found==1);
} }
for(int i=0;i<Nsimd;i++){ for(int i=0;i<Nsimd;i++){
int found=0; int found=0;
@ -475,15 +480,24 @@ void ExchangeTester(const functor &func)
// std::cout << " i "<<i<<" j "<<j<<" "<<reference2[j]<<" "<<result2[i]<<std::endl; // std::cout << " i "<<i<<" j "<<j<<" "<<reference2[j]<<" "<<result2[i]<<std::endl;
} }
} }
assert(found==1); // assert(found==1);
} }
/*
for(int i=0;i<Nsimd;i++){
std::cout << " i "<< i
<<" result1 "<<result1[i]
<<" result2 "<<result2[i]
<<" test1 "<<test1[i]
<<" test2 "<<test2[i]
<<" input1 "<<input1[i]
<<" input2 "<<input2[i]<<std::endl;
}
*/
for(int i=0;i<Nsimd;i++){ for(int i=0;i<Nsimd;i++){
assert(test1[i]==input1[i]); assert(test1[i]==input1[i]);
assert(test2[i]==input2[i]); assert(test2[i]==input2[i]);
}// std::cout << " i "<< i<<" test1"<<test1[i]<<" "<<input1[i]<<std::endl; }
// std::cout << " i "<< i<<" test2"<<test2[i]<<" "<<input2[i]<<std::endl;
// }
} }
@ -678,5 +692,69 @@ int main (int argc, char ** argv)
IntTester(funcMinus()); IntTester(funcMinus());
IntTester(funcTimes()); IntTester(funcTimes());
std::cout<<GridLogMessage << "==================================="<< std::endl;
std::cout<<GridLogMessage << "Testing precisionChange "<< std::endl;
std::cout<<GridLogMessage << "==================================="<< std::endl;
{
GridSerialRNG sRNG;
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
const int Ndp = 16;
const int Nsp = Ndp/2;
const int Nhp = Ndp/4;
std::vector<vRealH,alignedAllocator<vRealH> > H (Nhp);
std::vector<vRealF,alignedAllocator<vRealF> > F (Nsp);
std::vector<vRealF,alignedAllocator<vRealF> > FF(Nsp);
std::vector<vRealD,alignedAllocator<vRealD> > D (Ndp);
std::vector<vRealD,alignedAllocator<vRealD> > DD(Ndp);
for(int i=0;i<16;i++){
random(sRNG,D[i]);
}
// Double to Single
precisionChange(&F[0],&D[0],Ndp);
precisionChange(&DD[0],&F[0],Ndp);
std::cout << GridLogMessage<<"Double to single";
for(int i=0;i<Ndp;i++){
// std::cout << "DD["<<i<<"] = "<< DD[i]<<" "<<D[i]<<" "<<DD[i]-D[i] <<std::endl;
DD[i] = DD[i] - D[i];
decltype(innerProduct(DD[0],DD[0])) nrm;
nrm = innerProduct(DD[i],DD[i]);
auto tmp = Reduce(nrm);
// std::cout << tmp << std::endl;
assert( tmp < 1.0e-14 );
}
std::cout <<" OK ! "<<std::endl;
// Double to Half
#ifdef USE_FP16
std::cout << GridLogMessage<< "Double to half" ;
precisionChange(&H[0],&D[0],Ndp);
precisionChange(&DD[0],&H[0],Ndp);
for(int i=0;i<Ndp;i++){
// std::cout << "DD["<<i<<"] = "<< DD[i]<<" "<<D[i]<<" "<<DD[i]-D[i]<<std::endl;
DD[i] = DD[i] - D[i];
decltype(innerProduct(DD[0],DD[0])) nrm;
nrm = innerProduct(DD[i],DD[i]);
auto tmp = Reduce(nrm);
// std::cout << tmp << std::endl;
assert( tmp < 1.0e-3 );
}
std::cout <<" OK ! "<<std::endl;
std::cout << GridLogMessage<< "Single to half";
// Single to Half
precisionChange(&H[0] ,&F[0],Nsp);
precisionChange(&FF[0],&H[0],Nsp);
for(int i=0;i<Nsp;i++){
// std::cout << "FF["<<i<<"] = "<< FF[i]<<" "<<F[i]<<" "<<FF[i]-F[i]<<std::endl;
FF[i] = FF[i] - F[i];
decltype(innerProduct(FF[0],FF[0])) nrm;
nrm = innerProduct(FF[i],FF[i]);
auto tmp = Reduce(nrm);
// std::cout << tmp << std::endl;
assert( tmp < 1.0e-3 );
}
std::cout <<" OK ! "<<std::endl;
#endif
}
Grid_finalize(); Grid_finalize();
} }

View File

@ -148,11 +148,13 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
Complex psqMax(16.0); Complex psqMax(16.0);
Fp = psqMax*one/psq; Fp = psqMax*one/psq;
/*
static int once; static int once;
if ( once == 0 ) { if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl; std::cout << " Fp " << Fp <<std::endl;
once ++; once ++;
} }*/
pokeSite(TComplex(1.0),Fp,coor); pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp; dmuAmu_p = dmuAmu_p * Fp;

View File

@ -0,0 +1,287 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_even_odd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
const int Ls=10;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeFermion src (FGrid); random(RNG5,src);
LatticeFermion phi (FGrid); random(RNG5,phi);
LatticeFermion chi (FGrid); random(RNG5,chi);
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion tmp(FGrid); tmp=zero;
LatticeFermion err(FGrid); tmp=zero;
LatticeGaugeField Umu(UGrid); random(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)
Umu=zero;
for(int nn=0;nn<Nd;nn++){
random(RNG4,U[nn]);
if ( nn>0 )
U[nn]=zero;
PokeIndex<LorentzIndex>(Umu,U[nn],nn);
}
RealD mass=0.1;
RealD M5 =1.8;
std::vector < std::complex<double> > omegas;
#if 0
for(int i=0;i<Ls;i++){
double imag = 0.;
if (i==0) imag=1.;
if (i==Ls-1) imag=-1.;
std::complex<double> temp (0.25+0.01*i, imag*0.01);
omegas.push_back(temp);
}
#else
omegas.push_back( std::complex<double>(1.45806438985048,-0) );
omegas.push_back( std::complex<double>(1.18231318389348,-0) );
omegas.push_back( std::complex<double>(0.830951166685955,-0) );
omegas.push_back( std::complex<double>(0.542352409156791,-0) );
omegas.push_back( std::complex<double>(0.341985020453729,-0) );
omegas.push_back( std::complex<double>(0.21137902619029,-0) );
omegas.push_back( std::complex<double>(0.126074299502912,-0) );
omegas.push_back( std::complex<double>(0.0990136651962626,-0) );
omegas.push_back( std::complex<double>(0.0686324988446592,0.0550658530827402) );
omegas.push_back( std::complex<double>(0.0686324988446592,-0.0550658530827402) );
#endif
MobiusFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5, 0.5,0.5);
// DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
LatticeFermion r_eeoo(FGrid);
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing that Meo + Moe + Moo + Mee = Munprec "<<std::endl;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
Ddwf.Meooe(src_e,r_o); std::cout<<GridLogMessage<<"Applied Meo"<<std::endl;
Ddwf.Meooe(src_o,r_e); std::cout<<GridLogMessage<<"Applied Moe"<<std::endl;
setCheckerboard(r_eo,r_o);
setCheckerboard(r_eo,r_e);
Ddwf.Mooee(src_e,r_e); std::cout<<GridLogMessage<<"Applied Mee"<<std::endl;
Ddwf.Mooee(src_o,r_o); std::cout<<GridLogMessage<<"Applied Moo"<<std::endl;
setCheckerboard(r_eeoo,r_e);
setCheckerboard(r_eeoo,r_o);
r_eo=r_eo+r_eeoo;
Ddwf.M(src,ref);
// std::cout<<GridLogMessage << r_eo<<std::endl;
// std::cout<<GridLogMessage << ref <<std::endl;
err= ref - r_eo;
std::cout<<GridLogMessage << "EO norm diff "<< norm2(err)<< " "<<norm2(ref)<< " " << norm2(r_eo) <<std::endl;
LatticeComplex cerr(FGrid);
cerr = localInnerProduct(err,err);
// std::cout<<GridLogMessage << cerr<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MooeeDagger is the dagger of Mooee by requiring "<<std::endl;
std::cout<<GridLogMessage<<"= < phi | Deo | chi > * = < chi | Deo^dag| phi> "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
LatticeFermion chi_e (FrbGrid);
LatticeFermion chi_o (FrbGrid);
LatticeFermion dchi_e (FrbGrid);
LatticeFermion dchi_o (FrbGrid);
LatticeFermion phi_e (FrbGrid);
LatticeFermion phi_o (FrbGrid);
LatticeFermion dphi_e (FrbGrid);
LatticeFermion dphi_o (FrbGrid);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
Ddwf.Mooee(chi_e,dchi_o);
Ddwf.Mooee(chi_o,dchi_e);
Ddwf.MooeeDag(phi_e,dphi_o);
Ddwf.MooeeDag(phi_o,dphi_e);
ComplexD pDce = innerProduct(phi_e,dchi_e);
ComplexD pDco = innerProduct(phi_o,dchi_o);
ComplexD cDpe = innerProduct(chi_e,dphi_e);
ComplexD cDpo = innerProduct(chi_o,dphi_o);
std::cout<<GridLogMessage <<"e "<<pDce<<" "<<cDpe <<std::endl;
std::cout<<GridLogMessage <<"o "<<pDco<<" "<<cDpo <<std::endl;
std::cout<<GridLogMessage <<"pDce - conj(cDpo) "<< pDce-conj(cDpo) <<std::endl;
std::cout<<GridLogMessage <<"pDco - conj(cDpe) "<< pDco-conj(cDpe) <<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test Ddagger is the dagger of D by requiring "<<std::endl;
std::cout<<GridLogMessage<<"= < phi | Deo | chi > * = < chi | Deo^dag| phi> "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
Ddwf.Meooe(chi_e,dchi_o);
Ddwf.Meooe(chi_o,dchi_e);
Ddwf.MeooeDag(phi_e,dphi_o);
Ddwf.MeooeDag(phi_o,dphi_e);
pDce = innerProduct(phi_e,dchi_e);
pDco = innerProduct(phi_o,dchi_o);
cDpe = innerProduct(chi_e,dphi_e);
cDpo = innerProduct(chi_o,dphi_o);
std::cout<<GridLogMessage <<"e "<<pDce<<" "<<cDpe <<std::endl;
std::cout<<GridLogMessage <<"o "<<pDco<<" "<<cDpo <<std::endl;
std::cout<<GridLogMessage <<"pDce - conj(cDpo) "<< pDce-conj(cDpo) <<std::endl;
std::cout<<GridLogMessage <<"pDco - conj(cDpe) "<< pDco-conj(cDpe) <<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MeeInv Mee = 1 "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
Ddwf.Mooee(chi_e,src_e);
Ddwf.MooeeInv(src_e,phi_e);
Ddwf.Mooee(chi_o,src_o);
Ddwf.MooeeInv(src_o,phi_o);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
err = phi-chi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MeeInvDag MeeDag = 1 "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
Ddwf.MooeeDag(chi_e,src_e);
Ddwf.MooeeInvDag(src_e,phi_e);
Ddwf.MooeeDag(chi_o,src_o);
Ddwf.MooeeInvDag(src_o,phi_o);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
err = phi-chi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MpcDagMpc is Hermitian "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
random(RNG5,phi);
random(RNG5,chi);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<MobiusFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);
HermOpEO.MpcDagMpc(phi_e,dphi_e,t1,t2);
HermOpEO.MpcDagMpc(phi_o,dphi_o,t1,t2);
pDce = innerProduct(phi_e,dchi_e);
pDco = innerProduct(phi_o,dchi_o);
cDpe = innerProduct(chi_e,dphi_e);
cDpo = innerProduct(chi_o,dphi_o);
std::cout<<GridLogMessage <<"e "<<pDce<<" "<<cDpe <<std::endl;
std::cout<<GridLogMessage <<"o "<<pDco<<" "<<cDpo <<std::endl;
std::cout<<GridLogMessage <<"pDce - conj(cDpo) "<< pDco-conj(cDpo) <<std::endl;
std::cout<<GridLogMessage <<"pDco - conj(cDpe) "<< pDce-conj(cDpe) <<std::endl;
Grid_finalize();
}

View File

@ -2,11 +2,10 @@
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_even_odd.cc Source file: ./tests/Test_wilson_tm_even_odd.cc
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
@ -89,8 +88,8 @@ int main (int argc, char ** argv)
} }
RealD mass=0.1; RealD mass=0.1;
RealD mu = 0.1;
WilsonTMFermionR Dw(Umu,Grid,RBGrid,mass,mu); WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
LatticeFermion src_e (&RBGrid); LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid); LatticeFermion src_o (&RBGrid);
@ -207,7 +206,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi); pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2; RealD t1,t2;
SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw); SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2); HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2); HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -2,10 +2,11 @@
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_tm_even_odd.cc Source file: ./tests/Test_wilson_even_odd.cc
Copyright (C) 2015 Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk> Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
@ -88,8 +89,8 @@ int main (int argc, char ** argv)
} }
RealD mass=0.1; RealD mass=0.1;
RealD mu = 0.1;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass); WilsonTMFermionR Dw(Umu,Grid,RBGrid,mass,mu);
LatticeFermion src_e (&RBGrid); LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid); LatticeFermion src_o (&RBGrid);
@ -206,7 +207,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi); pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2; RealD t1,t2;
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw); SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2); HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2); HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -115,8 +115,8 @@ int main (int argc, char ** argv)
RNG.SeedFixedIntegers(seeds); RNG.SeedFixedIntegers(seeds);
RealD alpha = 1.0; RealD alpha = 1.2;
RealD beta = 0.03; RealD beta = 0.1;
RealD mu = 0.0; RealD mu = 0.0;
int order = 11; int order = 11;
ChebyshevLanczos<LatticeComplex> Cheby(alpha,beta,mu,order); ChebyshevLanczos<LatticeComplex> Cheby(alpha,beta,mu,order);
@ -131,10 +131,9 @@ int main (int argc, char ** argv)
const int Nit= 10000; const int Nit= 10000;
int Nconv; int Nconv;
RealD eresid = 1.0e-8; RealD eresid = 1.0e-6;
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nm,eresid,Nit); ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nm,eresid,Nit);
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nm,eresid,Nit); ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nm,eresid,Nit);
LatticeComplex src(grid); gaussian(RNG,src); LatticeComplex src(grid); gaussian(RNG,src);
@ -145,9 +144,9 @@ int main (int argc, char ** argv)
} }
{ {
// std::vector<RealD> eval(Nm); std::vector<RealD> eval(Nm);
// std::vector<LatticeComplex> evec(Nm,grid); std::vector<LatticeComplex> evec(Nm,grid);
// ChebyIRL.calc(eval,evec,src, Nconv); ChebyIRL.calc(eval,evec,src, Nconv);
} }
Grid_finalize(); Grid_finalize();

Some files were not shown because too many files have changed in this diff Show More