1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 12:47:05 +01:00

multishift conjugate gradient added and a strong test: take a diagonal

but non-identity matrix
l1 0  0  0 ....
0  l2 0  0 ....
0  0  l3 0 ...
.  .   .
.  .   .
.  .   .

And apply the multishift CG to it. Sum the poles and residues.
Insist that this be the same as the exactly taken square root
where l1,l2,l3 >= 0.
This commit is contained in:
Azusa Yamaguchi
2015-06-08 11:52:44 +01:00
parent 351c2905f5
commit 8688ff8b3a
11 changed files with 453 additions and 54 deletions

View File

@ -0,0 +1,29 @@
#include <Grid.h>
namespace Grid {
double MultiShiftFunction::approx(double x)
{
double a = norm;
for(int n=0;n<poles.size();n++){
a = a + residues[n]/(x+poles[n]);
}
return a;
}
void MultiShiftFunction::gnuplot(std::ostream &out)
{
out<<"f(x) = "<<norm<<"";
for(int n=0;n<poles.size();n++){
out<<"+("<<residues[n]<<"/(x+"<<poles[n]<<"))";
}
out<<";"<<std::endl;
}
void MultiShiftFunction::csv(std::ostream &out)
{
for (double x=lo; x<hi; x*=1.05) {
double f = approx(x);
double r = sqrt(x);
out<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
}
return;
}
}

View File

@ -0,0 +1,28 @@
#ifndef MULTI_SHIFT_FUNCTION
#define MULTI_SHIFT_FUNCTION
namespace Grid {
class MultiShiftFunction {
public:
int order;
std::vector<RealD> poles;
std::vector<RealD> residues;
std::vector<RealD> tolerances;
RealD norm;
RealD lo,hi;
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
RealD approx(RealD x);
void csv(std::ostream &out);
void gnuplot(std::ostream &out);
MultiShiftFunction(AlgRemez & remez,double tol,bool inverse) :
order(remez.getDegree()),
tolerances(remez.getDegree(),tol),
poles(remez.getDegree()),
residues(remez.getDegree())
{
remez.getBounds(lo,hi);
if ( inverse ) remez.getIPFE (&residues[0],&poles[0],&norm);
else remez.getPFE (&residues[0],&poles[0],&norm);
}
};
}
#endif

View File

@ -125,8 +125,17 @@ class AlgRemez
// Destructor
virtual ~AlgRemez();
int getDegree(void){
assert(n==d);
return n;
}
// Reset the bounds of the approximation
void setBounds(double lower, double upper);
// Reset the bounds of the approximation
void getBounds(double &lower, double &upper) {
lower=(double)apstrt;
upper=(double)apend;
}
// Generate the rational approximation x^(pnum/pden)
double generateApprox(int num_degree, int den_degree,