1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Fixed single-precision issues in Test_serialisation

This commit is contained in:
Michael Marshall 2019-03-20 22:05:16 +00:00
parent a66bb8acba
commit 88cb004731

View File

@ -30,6 +30,7 @@ Author: Michael Marshall <michael.marshall@ed.ac.uk>
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#include <Grid/util/EigenUtil.h> #include <Grid/util/EigenUtil.h>
#include <typeinfo>
using namespace Grid; using namespace Grid;
using namespace Grid::QCD; using namespace Grid::QCD;
@ -109,126 +110,148 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
std::cout << " done." << std::endl; std::cout << " done." << std::endl;
} }
typedef ComplexD TestScalar; // Perform I/O tests on a range of tensor types
typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>> TensorRank5UShort; // Test coverage: scalars, complex and GridVectors in single, double and default precision
typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>, Eigen::StorageOptions::RowMajor> TensorRank5UShortAlt; class TensorIO : public Serializable {
typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank3; using TestScalar = ComplexD;
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2; using SR3 = Eigen::Sizes<9,4,2>;
typedef std::vector<Tensor_9_4_2> aTensor_9_4_2; using SR5 = Eigen::Sizes<5,4,3,2,1>;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor; using ESO = Eigen::StorageOptions;
using TensorRank3 = Eigen::Tensor<ComplexF, 3, ESO::RowMajor>;
using TensorR5 = Eigen::TensorFixedSize<Real, SR5>;
using TensorR5Alt = Eigen::TensorFixedSize<Real, SR5, ESO::RowMajor>;
using Tensor942 = Eigen::TensorFixedSize<TestScalar, SR3, ESO::RowMajor>;
using aTensor942 = std::vector<Tensor942>;
using Perambulator = Eigen::Tensor<SpinColourVector, 6, ESO::RowMajor>;
using LSCTensor = Eigen::TensorFixedSize<SpinColourMatrix, Eigen::Sizes<6,5>>;
static const Real FlagR;
static const Complex Flag;
static const ComplexF FlagF;
static const TestScalar FlagTS;
static const char * const pszFilePrefix;
class PerambIOTestClass: Serializable { void Init(unsigned short Precision)
ComplexD Flag; {
SequentialInit(Perambulator1, Flag, Precision);
SequentialInit(Perambulator2, Flag, Precision);
SequentialInit(tensorR5, FlagR, Precision);
SequentialInit(tensorRank3, FlagF, Precision);
SequentialInit(tensor_9_4_2, FlagTS, Precision);
for( auto &t : atensor_9_4_2 )
SequentialInit(t, FlagTS, Precision);
SequentialInit(MyLSCTensor, Flag, Precision);
}
// Perform an I/O test for a single Eigen tensor (of any type)
template <typename W, typename R, typename T, typename... IndexTypes>
static void TestOne(const char * MyTypeName, unsigned short Precision, std::string &filename,
const char * pszExtension, unsigned int &TestNum,
typename EigenIO::Traits<T>::scalar_type Flag, IndexTypes... otherDims)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
std::unique_ptr<T> pTensor{new T(otherDims...)};
SequentialInit( * pTensor, Flag, Precision );
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
ioTest<W, R, T>(filename, * pTensor, MyTypeName, MyTypeName);
}
public: public:
using PerambTensor = Eigen::Tensor<SpinColourVector, 6, Eigen::StorageOptions::RowMajor>; GRID_SERIALIZABLE_CLASS_MEMBERS(TensorIO
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass , SpinColourVector, spinColourVector
, SpinColourVector, spinColourVector , SpinColourMatrix, spinColourMatrix
, SpinColourMatrix, spinColourMatrix
, std::vector<std::string>, DistilParameterNames , std::vector<std::string>, DistilParameterNames
, std::vector<int>, DistilParameterValues , std::vector<int>, DistilParameterValues
, PerambTensor, Perambulator , Perambulator, Perambulator1
, PerambTensor, Perambulator2 , Perambulator, Perambulator2
, TensorRank5UShort, tensorRank5UShort , TensorR5, tensorR5
, TensorRank3, tensorRank3 , TensorRank3, tensorRank3
, Tensor_9_4_2, tensor_9_4_2 , Tensor942, tensor_9_4_2
, aTensor_9_4_2, atensor_9_4_2 , aTensor942, atensor_9_4_2
, LSCTensor, MyLSCTensor , LSCTensor, MyLSCTensor
); );
PerambIOTestClass() TensorIO()
: DistilParameterNames {"do", "androids", "dream", "of", "electric", "sheep?"} : DistilParameterNames {"do", "androids", "dream", "of", "electric", "sheep?"}
, DistilParameterValues{2,3,1,4,5,1} , DistilParameterValues{2,3,1,4,5,1}
, Perambulator(2,3,1,4,5,1) , Perambulator1(2,3,1,4,5,1)
, Perambulator2(7,1,6,1,5,1) , Perambulator2(7,1,6,1,5,1)
, tensorRank3(7,3,2) , tensorRank3(7,3,2)
, atensor_9_4_2(3) , atensor_9_4_2(3) {}
//, Flag(1,-3.1415927)
, Flag(1,-1) #define TEST_PARAMS( T ) #T, Precision, filename, pszExtension, TestNum
// Perform a series of I/O tests for Eigen tensors, including a serialisable object
template <typename WTR_, typename RDR_>
static void Test(const char * pszExtension, unsigned short Precision = 0)
{ {
SequentialInit(Perambulator, Flag); // Perform a series of tests on progressively more complex tensors
SequentialInit(Perambulator2, Flag); unsigned int TestNum = 0;
SequentialInit(tensorRank5UShort); std::string filename;
SequentialInit(tensorRank3, Flag); // Rank 1 tensor containing a single integer
SequentialInit(tensor_9_4_2, Flag); using TensorSingle = Eigen::TensorFixedSize<Integer, Eigen::Sizes<1>>;
for( auto &t : atensor_9_4_2 ) SequentialInit(t, Flag); TestOne<WTR_, RDR_, TensorSingle>( TEST_PARAMS( TensorSingle ), 7 ); // lucky!
SequentialInit( MyLSCTensor, Flag ); // Rather convoluted way of defining a single complex number
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,1>, 6>;
using I = typename TensorSimple::Index; // NB: Never specified, so same for all my test tensors
// Try progressively more complicated tensors
TestOne<WTR_, RDR_, TensorSimple, I,I,I,I,I,I>( TEST_PARAMS( TensorSimple ), FlagTS, 1,1,1,1,1,1 );
TestOne<WTR_, RDR_, TensorRank3, I, I, I>( TEST_PARAMS( TensorRank3 ), FlagF, 6, 3, 2 );
TestOne<WTR_, RDR_, Tensor942>(TEST_PARAMS( Tensor942 ), FlagTS);
TestOne<WTR_, RDR_, LSCTensor>(TEST_PARAMS( LSCTensor ), Flag );
// Now see whether we can write a tensor in one memory order and read back in the other
{
TestOne<WTR_, RDR_, TensorR5>(TEST_PARAMS( TensorR5 ), FlagR);
std::cout << " Testing alternate memory order read ... ";
TensorR5Alt t2;
RDR_ reader(filename);
::Grid::read(reader, "TensorR5", t2);
bool good = true;
TensorR5 cf;
SequentialInit( cf, FlagR, Precision );
for_all( t2, [&](typename EigenIO::Traits<TensorR5Alt>::scalar_type c, I n,
const std::array<I, TensorR5Alt::NumIndices> &TensorIndex,
const std::array<int, EigenIO::Traits<TensorR5Alt>::Rank> &GridTensorIndex ){
Real &r = cf(TensorIndex);
if( c != r ){
good = false;
std::cout << "\nError: " << n << ": " << c << " != " << r;
}
} );
if (!good) {
std::cout << std::endl;
dump_tensor(t2,"t2");
exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
}
// Now test a serialisable object containing a number of tensors
{
static const char MyTypeName[] = "TensorIO";
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
std::unique_ptr<TensorIO> pObj{new TensorIO()};
pObj->Init(Precision);
ioTest<WTR_, RDR_, TensorIO>(filename, * pObj, MyTypeName, MyTypeName, Precision);
}
// Stress test. Too large for the XML or text readers and writers!
#ifdef STRESS_TEST
const std::type_info &tw = typeid( WTR_ );
if( tw == typeid( Hdf5Writer ) || tw == typeid( BinaryWriter ) ) {
using LCMTensor=Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>,
Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor>;
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
TestOne<WTR_, RDR_, LCMTensor>(TEST_PARAMS( LCMTensor ), Flag);
}
#endif
} }
}; };
#define TEST_PARAMS( T ) #T, Flag, Precision, filename, pszExtension, TestNum const Real TensorIO::FlagR {-1.001};
const Complex TensorIO::Flag {1,-3.1415927};
// Perform an I/O test for a single Eigen tensor (of any type) const ComplexF TensorIO::FlagF {1,-3.1415927};
template <typename WTR_, typename RDR_, typename T, typename... IndexTypes> const TensorIO::TestScalar TensorIO::FlagTS{1,-3.1415927};
void EigenTensorTestSingle(const char * MyTypeName, typename EigenIO::Traits<T>::scalar_type Flag, const char * const TensorIO::pszFilePrefix = "tensor_";
unsigned short Precision, std::string &filename, const char * pszExtension,
unsigned int &TestNum, IndexTypes... otherDims)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
std::unique_ptr<T> pTensor{new T(otherDims...)};
SequentialInit( * pTensor, Flag, Precision );
filename = "iotest_" + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
ioTest<WTR_, RDR_, T>(filename, * pTensor, MyTypeName, MyTypeName);
}
// Perform a series of I/O tests for Eigen tensors, including a serialisable object
template <typename WTR_, typename RDR_>
void EigenTensorTest(const char * pszExtension, unsigned short Precision = 0)
{
// Perform a series of tests on progressively more complex tensors
unsigned int TestNum = 0;
std::string filename;
{
int Flag = 7;
using TensorSingle = Eigen::TensorFixedSize<Integer, Eigen::Sizes<1>>;
EigenTensorTestSingle<WTR_, RDR_, TensorSingle>(TEST_PARAMS( TensorSingle ));
}
TestScalar Flag{1,-3.1415927};
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,1>, 6>;
using I = typename TensorSimple::Index;
EigenTensorTestSingle<WTR_, RDR_, TensorSimple, I, I, I, I, I, I>( TEST_PARAMS( TensorSimple ), 1, 1, 1, 1, 1, 1 );
EigenTensorTestSingle<WTR_, RDR_, TensorRank3, I, I, I>( TEST_PARAMS( TensorRank3 ), 6, 3, 2 );
EigenTensorTestSingle<WTR_, RDR_, Tensor_9_4_2>(TEST_PARAMS( Tensor_9_4_2 ));
EigenTensorTestSingle<WTR_, RDR_, LSCTensor>(TEST_PARAMS( LSCTensor ));
// Now see whether we could write out a tensor in one memory order and read back in the other
{
unsigned short Flag = 1;
EigenTensorTestSingle<WTR_, RDR_, TensorRank5UShort>(TEST_PARAMS( TensorRank5UShort ));
std::cout << " Testing alternate memory order read ... ";
TensorRank5UShortAlt t2;
RDR_ reader(filename);
read(reader, "TensorRank5UShort", t2);
bool good = true;
using Index = typename TensorRank5UShortAlt::Index;
// NB: I can't call
for_all( t2, [&](unsigned short c, Index n,
const std::array<Index, TensorRank5UShortAlt::NumIndices> &TensorIndex,
const std::array<int, EigenIO::Traits<TensorRank5UShortAlt>::Rank> &GridTensorIndex ){
good = good && ( c == n );
} );
if (!good) {
std::cout << " failure!" << std::endl;
dump_tensor(t2,"t2");
exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
}
// Now test a serialisable object containing a number of tensors
{
static const char MyTypeName[] = "PerambIOTestClass";
std::unique_ptr<PerambIOTestClass> pObj{new PerambIOTestClass()};
filename = "iotest_" + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
ioTest<WTR_, RDR_, PerambIOTestClass>(filename, * pObj, MyTypeName, MyTypeName);
}
// Stress test. Too large for the XML or text readers and writers!
#ifdef STRESS_TEST
if( typeid( WTR_ ).name() == typeid( Hdf5Writer ).name() || typeid( WTR_ ).name() == typeid( BinaryWriter ).name() ) {
using LCMTensor=Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>,
Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor>;
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
EigenTensorTestSingle<WTR_, RDR_, LCMTensor>(TEST_PARAMS( LCMTensor ));
}
#endif
}
template <typename T> template <typename T>
void tensorConvTestFn(GridSerialRNG &rng, const std::string label) void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
@ -314,14 +337,14 @@ int main(int argc,char **argv)
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) "); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)"); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl; std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl;
EigenTensorTest<Hdf5Writer, Hdf5Reader>(".h5"); TensorIO::Test<Hdf5Writer, Hdf5Reader>(".h5");
#endif #endif
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl; std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
EigenTensorTest<BinaryWriter, BinaryReader>(".bin"); TensorIO::Test<BinaryWriter, BinaryReader>(".bin");
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl; std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
EigenTensorTest<XmlWriter, XmlReader>(".xml", 6); TensorIO::Test<XmlWriter, XmlReader>(".xml", 6);
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl; std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
EigenTensorTest<TextWriter, TextReader>(".dat", 5); TensorIO::Test<TextWriter, TextReader>(".dat", 5);
std::cout << "\n==== vector flattening/reconstruction" << std::endl; std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d; typedef std::vector<std::vector<std::vector<double>>> vec3d;