1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Merge branch 'develop' of https://github.com/paboyle/Grid into develop

This commit is contained in:
Peter Boyle 2019-04-17 12:05:09 +01:00
commit 8b7805200f
39 changed files with 1971 additions and 311 deletions

1
.gitignore vendored
View File

@ -114,3 +114,4 @@ gh-pages/
##################### #####################
Grid/qcd/spin/gamma-gen/*.h Grid/qcd/spin/gamma-gen/*.h
Grid/qcd/spin/gamma-gen/*.cc Grid/qcd/spin/gamma-gen/*.cc
Grid/util/Version.h

View File

@ -42,6 +42,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridQCDcore.h> #include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/Action.h> #include <Grid/qcd/action/Action.h>
#include <Grid/qcd/utils/GaugeFix.h> #include <Grid/qcd/utils/GaugeFix.h>
#include <Grid/qcd/utils/CovariantSmearing.h>
#include <Grid/qcd/smearing/Smearing.h> #include <Grid/qcd/smearing/Smearing.h>
#include <Grid/parallelIO/MetaData.h> #include <Grid/parallelIO/MetaData.h>
#include <Grid/qcd/hmc/HMC_aggregate.h> #include <Grid/qcd/hmc/HMC_aggregate.h>

View File

@ -619,6 +619,7 @@ PARALLEL_CRITICAL
{ {
std::cout << GridLogMessage << "writeLatticeObject: read test checksum failure, re-writing (" << attemptsLeft << " attempt(s) remaining)" << std::endl; std::cout << GridLogMessage << "writeLatticeObject: read test checksum failure, re-writing (" << attemptsLeft << " attempt(s) remaining)" << std::endl;
offset = offsetCopy; offset = offsetCopy;
parallel_for(uint64_t x=0;x<lsites;x++) munge(scalardata[x],iodata[x]);
} }
else else
{ {

View File

@ -47,8 +47,10 @@ namespace Grid {
namespace QCD { namespace QCD {
#define GRID_FIELD_NORM "FieldNormMetaData" #define GRID_FIELD_NORM "FieldNormMetaData"
#define GRID_FIELD_NORM_CHECK(FieldNormMetaData_,n2ck) \ #define GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) \
assert(0.5*fabs(FieldNormMetaData_.norm2 - n2ck)/(FieldNormMetaData_.norm2 + n2ck) < 1.0e-5 ); 0.5*fabs(FieldNormMetaData_.norm2 - n2ck)/(FieldNormMetaData_.norm2 + n2ck)
#define GRID_FIELD_NORM_CHECK(FieldNormMetaData_, n2ck) \
assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
///////////////////////////////// /////////////////////////////////
// Encode word types as strings // Encode word types as strings
@ -249,9 +251,9 @@ class GridLimeReader : public BinaryIO {
///////////////////////////////////////////// /////////////////////////////////////////////
if(FieldNormMetaData_.norm2 != 0.0){ if(FieldNormMetaData_.norm2 != 0.0){
RealD n2ck = norm2(field); RealD n2ck = norm2(field);
std::cout << GridLogMessage << "Field norm: metadata= "<<FieldNormMetaData_.norm2<< " / field= " << n2ck<<std::endl; std::cout << GridLogMessage << "Field norm: metadata= " << FieldNormMetaData_.norm2
<< " / field= " << n2ck << " / rdiff= " << GRID_FIELD_NORM_CALC(FieldNormMetaData_,n2ck) << std::endl;
GRID_FIELD_NORM_CHECK(FieldNormMetaData_,n2ck); GRID_FIELD_NORM_CHECK(FieldNormMetaData_,n2ck);
std::cout << GridLogMessage << "FieldNormMetaData OK! "<<std::endl;
} }
assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1); assert(scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb)==1);

View File

@ -53,7 +53,7 @@ namespace Grid {
ComplexField coor(in._grid); ComplexField coor(in._grid);
ComplexField ph(in._grid); ph = zero; ComplexField ph(in._grid); ph = zero;
FermionField in_buf(in._grid); in_buf = zero; FermionField in_buf(in._grid); in_buf = zero;
Complex ci(0.0,1.0); Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd assert(twist.size() == Nd);//check that twist is Nd
int shift = 0; int shift = 0;
if(fiveD) shift = 1; if(fiveD) shift = 1;
@ -63,7 +63,7 @@ namespace Grid {
LatticeCoordinate(coor, nu + shift); LatticeCoordinate(coor, nu + shift);
ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu+shift]))); ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu+shift])));
} }
in_buf = exp((Real)(2.0*M_PI)*ci*ph*(-1.0))*in; in_buf = exp(Scalar(2.0*M_PI)*ci*ph*(-1.0))*in;
if(fiveD){//FFT only on temporal and spatial dimensions if(fiveD){//FFT only on temporal and spatial dimensions
std::vector<int> mask(Nd+1,1); mask[0] = 0; std::vector<int> mask(Nd+1,1); mask[0] = 0;
@ -78,7 +78,7 @@ namespace Grid {
} }
//phase for boundary condition //phase for boundary condition
out = out * exp((Real)(2.0*M_PI)*ci*ph); out = out * exp(Scalar(2.0*M_PI)*ci*ph);
}; };
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) { virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {

View File

@ -106,21 +106,21 @@ namespace Grid {
ComplexField coor(in._grid); ComplexField coor(in._grid);
ComplexField ph(in._grid); ph = zero; ComplexField ph(in._grid); ph = zero;
FermionField in_buf(in._grid); in_buf = zero; FermionField in_buf(in._grid); in_buf = zero;
Complex ci(0.0,1.0); Scalar ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd assert(twist.size() == Nd);//check that twist is Nd
for(unsigned int nu = 0; nu < Nd; nu++) for(unsigned int nu = 0; nu < Nd; nu++)
{ {
LatticeCoordinate(coor, nu); LatticeCoordinate(coor, nu);
ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu]))); ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu])));
} }
in_buf = exp((Real)(2.0*M_PI)*ci*ph*(-1.0))*in; in_buf = exp(Scalar(-2.0*M_PI)*ci*ph)*in;
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward); theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
this->MomentumSpacePropagator(prop_k,in_k,mass,twist); this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward); theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition //phase for boundary condition
out = out * exp((Real)(2.0*M_PI)*ci*ph); out = out * exp(Scalar(2.0*M_PI)*ci*ph);
}; };
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) { virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {

View File

@ -46,6 +46,7 @@ namespace QCD {
#define INHERIT_GIMPL_TYPES(GImpl) \ #define INHERIT_GIMPL_TYPES(GImpl) \
typedef typename GImpl::Simd Simd; \ typedef typename GImpl::Simd Simd; \
typedef typename GImpl::Scalar Scalar; \
typedef typename GImpl::LinkField GaugeLinkField; \ typedef typename GImpl::LinkField GaugeLinkField; \
typedef typename GImpl::Field GaugeField; \ typedef typename GImpl::Field GaugeField; \
typedef typename GImpl::ComplexField ComplexField;\ typedef typename GImpl::ComplexField ComplexField;\
@ -63,7 +64,8 @@ namespace QCD {
template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes { template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplTypes {
public: public:
typedef S Simd; typedef S Simd;
typedef typename Simd::scalar_type scalar_type;
typedef scalar_type Scalar;
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >; template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >; template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>; template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;

View File

@ -38,6 +38,7 @@ namespace QCD{
{ {
public: public:
typedef S Simd; typedef S Simd;
typedef typename Simd::scalar_type Scalar;
template <typename vtype> template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>; using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;

View File

@ -0,0 +1,87 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
Copyright (C) 2016
Author: Azusa Yamaguchi
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
#pragma once
namespace Grid {
namespace QCD {
template <class Gimpl> class CovariantSmearing : public Gimpl
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
template<typename T>
static void GaussianSmear(const std::vector<LatticeColourMatrix>& U,
T& chi,
const Real& width, int Iterations, int orthog)
{
GridBase *grid = chi._grid;
T psi(grid);
////////////////////////////////////////////////////////////////////////////////////
// Follow Chroma conventions for width to keep compatibility with previous data
// Free field iterates
// chi = (1 - w^2/4N p^2)^N chi
//
// ~ (e^(-w^2/4N p^2)^N chi
// ~ (e^(-w^2/4 p^2) chi
// ~ (e^(-w'^2/2 p^2) chi [ w' = w/sqrt(2) ]
//
// Which in coordinate space is proportional to
//
// e^(-x^2/w^2) = e^(-x^2/2w'^2)
//
// The 4 is a bit unconventional from Gaussian width perspective, but... it's Chroma convention.
// 2nd derivative approx d^2/dx^2 = x+mu + x-mu - 2x
//
// d^2/dx^2 = - p^2
//
// chi = ( 1 + w^2/4N d^2/dx^2 )^N chi
//
////////////////////////////////////////////////////////////////////////////////////
Real coeff = (width*width) / Real(4*Iterations);
int dims = Nd;
if( orthog < Nd ) dims=Nd-1;
for(int n = 0; n < Iterations; ++n) {
psi = (-2.0*dims)*chi;
for(int mu=0;mu<Nd;mu++) {
if ( mu != orthog ) {
psi = psi + Gimpl::CovShiftForward(U[mu],mu,chi);
psi = psi + Gimpl::CovShiftBackward(U[mu],mu,chi);
}
}
chi = chi + coeff*psi;
}
}
};
}}

View File

@ -33,8 +33,72 @@ Author: Guido Cossu <guido.cossu@ed.ac.uk>
#include <type_traits> #include <type_traits>
#include <Grid/tensors/Tensors.h> #include <Grid/tensors/Tensors.h>
#include <Grid/serialisation/VectorUtils.h> #include <Grid/serialisation/VectorUtils.h>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
namespace Grid { namespace Grid {
namespace EigenIO {
// EigenIO works for scalars that are not just Grid supported scalars
template<typename T, typename V = void> struct is_complex : public std::false_type {};
// Support all complex types (not just Grid complex types) - even if the definitions overlap (!)
template<typename T> struct is_complex< T , typename
std::enable_if< ::Grid::is_complex< T >::value>::type> : public std::true_type {};
template<typename T> struct is_complex<std::complex<T>, typename
std::enable_if<!::Grid::is_complex<std::complex<T>>::value>::type> : public std::true_type {};
// Helpers to support I/O for Eigen tensors of arithmetic scalars, complex types, or Grid tensors
template<typename T, typename V = void> struct is_scalar : public std::false_type {};
template<typename T> struct is_scalar<T, typename std::enable_if<std::is_arithmetic<T>::value || is_complex<T>::value>::type> : public std::true_type {};
// Is this an Eigen tensor
template<typename T> struct is_tensor : std::integral_constant<bool,
std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value> {};
// Is this an Eigen tensor of a supported scalar
template<typename T, typename V = void> struct is_tensor_of_scalar : public std::false_type {};
template<typename T> struct is_tensor_of_scalar<T, typename std::enable_if<is_tensor<T>::value && is_scalar<typename T::Scalar>::value>::type> : public std::true_type {};
// Is this an Eigen tensor of a supported container
template<typename T, typename V = void> struct is_tensor_of_container : public std::false_type {};
template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && isGridTensor<typename T::Scalar>::value>::type> : public std::true_type {};
// These traits describe the scalars inside Eigen tensors
// I wish I could define these in reference to the scalar type (so there would be fewer traits defined)
// but I'm unable to find a syntax to make this work
template<typename T, typename V = void> struct Traits {};
// Traits are the default for scalars, or come from GridTypeMapper for GridTensors
template<typename T> struct Traits<T, typename std::enable_if<is_tensor_of_scalar<T>::value>::type>
: public GridTypeMapper_Base {
using scalar_type = typename T::Scalar; // ultimate base scalar
static constexpr bool is_complex = ::Grid::EigenIO::is_complex<scalar_type>::value;
};
// Traits are the default for scalars, or come from GridTypeMapper for GridTensors
template<typename T> struct Traits<T, typename std::enable_if<is_tensor_of_container<T>::value>::type> {
using BaseTraits = GridTypeMapper<typename T::Scalar>;
using scalar_type = typename BaseTraits::scalar_type; // ultimate base scalar
static constexpr bool is_complex = ::Grid::EigenIO::is_complex<scalar_type>::value;
static constexpr int TensorLevel = BaseTraits::TensorLevel;
static constexpr int Rank = BaseTraits::Rank;
static constexpr std::size_t count = BaseTraits::count;
static constexpr int Dimension(int dim) { return BaseTraits::Dimension(dim); }
};
// Is this a fixed-size Eigen tensor
template<typename T> struct is_tensor_fixed : public std::false_type {};
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
struct is_tensor_fixed<Eigen::TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType>>
: public std::true_type {};
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType,
int MapOptions_, template <class> class MapPointer_>
struct is_tensor_fixed<Eigen::TensorMap<Eigen::TensorFixedSize<Scalar_, Dimensions_,
Options_, IndexType>, MapOptions_, MapPointer_>>
: public std::true_type {};
// Is this a variable-size Eigen tensor
template<typename T, typename V = void> struct is_tensor_variable : public std::false_type {};
template<typename T> struct is_tensor_variable<T, typename std::enable_if<is_tensor<T>::value
&& !is_tensor_fixed<T>::value>::type> : public std::true_type {};
}
// Abstract writer/reader classes //////////////////////////////////////////// // Abstract writer/reader classes ////////////////////////////////////////////
// static polymorphism implemented using CRTP idiom // static polymorphism implemented using CRTP idiom
class Serializable; class Serializable;
@ -49,10 +113,10 @@ namespace Grid {
void push(const std::string &s); void push(const std::string &s);
void pop(void); void pop(void);
template <typename U> template <typename U>
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type typename std::enable_if<std::is_base_of<Serializable, U>::value>::type
write(const std::string& s, const U &output); write(const std::string& s, const U &output);
template <typename U> template <typename U>
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type typename std::enable_if<!std::is_base_of<Serializable, U>::value && !EigenIO::is_tensor<U>::value>::type
write(const std::string& s, const U &output); write(const std::string& s, const U &output);
template <typename U> template <typename U>
void write(const std::string &s, const iScalar<U> &output); void write(const std::string &s, const iScalar<U> &output);
@ -60,6 +124,42 @@ namespace Grid {
void write(const std::string &s, const iVector<U, N> &output); void write(const std::string &s, const iVector<U, N> &output);
template <typename U, int N> template <typename U, int N>
void write(const std::string &s, const iMatrix<U, N> &output); void write(const std::string &s, const iMatrix<U, N> &output);
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value>::type
write(const std::string &s, const ETensor &output);
// Helper functions for Scalar vs Container specialisations
template <typename ETensor>
inline typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value,
const typename ETensor::Scalar *>::type
getFirstScalar(const ETensor &output)
{
return output.data();
}
template <typename ETensor>
inline typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value,
const typename EigenIO::Traits<ETensor>::scalar_type *>::type
getFirstScalar(const ETensor &output)
{
return output.data()->begin();
}
template <typename S>
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
copyScalars(S * &pCopy, const S &Source)
{
* pCopy ++ = Source;
}
template <typename S>
inline typename std::enable_if<isGridTensor<S>::value, void>::type
copyScalars(typename GridTypeMapper<S>::scalar_type * &pCopy, const S &Source)
{
for( const typename GridTypeMapper<S>::scalar_type &item : Source )
* pCopy ++ = item;
}
void scientificFormat(const bool set); void scientificFormat(const bool set);
bool isScientific(void); bool isScientific(void);
void setPrecision(const unsigned int prec); void setPrecision(const unsigned int prec);
@ -83,7 +183,8 @@ namespace Grid {
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
read(const std::string& s, U &output); read(const std::string& s, U &output);
template <typename U> template <typename U>
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type typename std::enable_if<!std::is_base_of<Serializable, U>::value
&& !EigenIO::is_tensor<U>::value, void>::type
read(const std::string& s, U &output); read(const std::string& s, U &output);
template <typename U> template <typename U>
void read(const std::string &s, iScalar<U> &output); void read(const std::string &s, iScalar<U> &output);
@ -91,6 +192,32 @@ namespace Grid {
void read(const std::string &s, iVector<U, N> &output); void read(const std::string &s, iVector<U, N> &output);
template <typename U, int N> template <typename U, int N>
void read(const std::string &s, iMatrix<U, N> &output); void read(const std::string &s, iMatrix<U, N> &output);
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
read(const std::string &s, ETensor &output);
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, void>::type
Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims );
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims );
// Helper functions for Scalar vs Container specialisations
template <typename S>
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
copyScalars(S &Dest, const S * &pSource)
{
Dest = * pSource ++;
}
template <typename S>
inline typename std::enable_if<isGridTensor<S>::value, void>::type
copyScalars(S &Dest, const typename GridTypeMapper<S>::scalar_type * &pSource)
{
for( typename GridTypeMapper<S>::scalar_type &item : Dest )
item = * pSource ++;
}
protected: protected:
template <typename U> template <typename U>
void fromString(U &output, const std::string &s); void fromString(U &output, const std::string &s);
@ -135,12 +262,14 @@ namespace Grid {
template <typename T> template <typename T>
template <typename U> template <typename U>
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type typename std::enable_if<!std::is_base_of<Serializable, U>::value
&& !EigenIO::is_tensor<U>::value, void>::type
Writer<T>::write(const std::string &s, const U &output) Writer<T>::write(const std::string &s, const U &output)
{ {
upcast->writeDefault(s, output); upcast->writeDefault(s, output);
} }
template <typename T> template <typename T>
template <typename U> template <typename U>
void Writer<T>::write(const std::string &s, const iScalar<U> &output) void Writer<T>::write(const std::string &s, const iScalar<U> &output)
@ -162,6 +291,57 @@ namespace Grid {
upcast->writeDefault(s, tensorToVec(output)); upcast->writeDefault(s, tensorToVec(output));
} }
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; // NB: could be same as scalar
using Traits = EigenIO::Traits<ETensor>;
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices};
constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
const Index NumElements{output.size()};
assert( NumElements > 0 );
// Get the dimensionality of the tensor
std::vector<std::size_t> TotalDims(TotalRank);
for(auto i = 0; i < TensorRank; i++ ) {
auto dim = output.dimension(i);
TotalDims[i] = static_cast<size_t>(dim);
assert( TotalDims[i] == dim ); // check we didn't lose anything in the conversion
}
for(auto i = 0; i < ContainerRank; i++ )
TotalDims[TensorRank + i] = Traits::Dimension(i);
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{NumElements > 1 && ETensor::Layout != Eigen::StorageOptions::RowMajor};
const Scalar * pWriteBuffer;
std::vector<Scalar> CopyBuffer;
const Index TotalNumElements = NumElements * Traits::count;
if( !CopyData ) {
pWriteBuffer = getFirstScalar( output );
} else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
CopyBuffer.resize( TotalNumElements );
Scalar * pCopy = &CopyBuffer[0];
pWriteBuffer = pCopy;
std::array<Index, TensorRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
for( auto n = 0; n < NumElements; n++ ) {
const Container & c = output( MyIndex );
copyScalars( pCopy, c );
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
}
}
upcast->template writeMultiDim<Scalar>(s, TotalDims, pWriteBuffer, TotalNumElements);
}
template <typename T> template <typename T>
void Writer<T>::scientificFormat(const bool set) void Writer<T>::scientificFormat(const bool set)
{ {
@ -215,7 +395,8 @@ namespace Grid {
template <typename T> template <typename T>
template <typename U> template <typename U>
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type typename std::enable_if<!std::is_base_of<Serializable, U>::value
&& !EigenIO::is_tensor<U>::value, void>::type
Reader<T>::read(const std::string &s, U &output) Reader<T>::read(const std::string &s, U &output)
{ {
upcast->readDefault(s, output); upcast->readDefault(s, output);
@ -251,6 +432,79 @@ namespace Grid {
vecToTensor(output, v); vecToTensor(output, v);
} }
template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
Reader<T>::read(const std::string &s, ETensor &output)
{
using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; // NB: could be same as scalar
using Traits = EigenIO::Traits<ETensor>;
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices};
constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
using ETDims = std::array<Index, TensorRank>; // Dimensions of the tensor
// read the (flat) data and dimensionality
std::vector<std::size_t> dimData;
std::vector<Scalar> buf;
upcast->readMultiDim( s, buf, dimData );
assert(dimData.size() == TotalRank && "EigenIO: Tensor rank mismatch" );
// Make sure that the number of elements read matches dimensions read
std::size_t NumContainers = 1;
for( auto i = 0 ; i < TensorRank ; i++ )
NumContainers *= dimData[i];
// If our scalar object is a Container, make sure it's dimensions match what we read back
std::size_t ElementsPerContainer = 1;
for( auto i = 0 ; i < ContainerRank ; i++ ) {
assert( dimData[TensorRank+i] == Traits::Dimension(i) && "Tensor Container dimensions don't match data" );
ElementsPerContainer *= dimData[TensorRank+i];
}
assert( NumContainers * ElementsPerContainer == buf.size() && "EigenIO: Number of elements != product of dimensions" );
// Now see whether the tensor is the right shape, or can be made to be
const auto & dims = output.dimensions();
bool bShapeOK = (output.data() != nullptr);
for( auto i = 0; bShapeOK && i < TensorRank ; i++ )
if( dims[i] != dimData[i] )
bShapeOK = false;
// Make the tensor the same size as the data read
ETDims MyIndex;
if( !bShapeOK ) {
for( auto i = 0 ; i < TensorRank ; i++ )
MyIndex[i] = dimData[i];
Reshape(output, MyIndex);
}
// Copy the data into the tensor
for( auto &d : MyIndex ) d = 0;
const Scalar * pSource = &buf[0];
for( std::size_t n = 0 ; n < NumContainers ; n++ ) {
Container & c = output( MyIndex );
copyScalars( c, pSource );
// Now increment the index
for( int i = TensorRank - 1; i != -1 && ++MyIndex[i] == dims[i]; i-- )
MyIndex[i] = 0;
}
assert( pSource == &buf[NumContainers * ElementsPerContainer] );
}
template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, void>::type
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
{
assert( 0 && "EigenIO: Fixed tensor dimensions can't be changed" );
}
template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, void>::type
Reader<T>::Reshape(ETensor &t, const std::array<typename ETensor::Index, ETensor::NumDimensions> &dims )
{
//t.reshape( dims );
t.resize( dims );
}
template <typename T> template <typename T>
template <typename U> template <typename U>
void Reader<T>::fromString(U &output, const std::string &s) void Reader<T>::fromString(U &output, const std::string &s)
@ -289,6 +543,68 @@ namespace Grid {
{ {
return os; return os;
} }
template <typename T1, typename T2>
static inline typename std::enable_if<!EigenIO::is_tensor<T1>::value || !EigenIO::is_tensor<T2>::value, bool>::type
CompareMember(const T1 &lhs, const T2 &rhs) {
return lhs == rhs;
}
template <typename T1, typename T2>
static inline typename std::enable_if<EigenIO::is_tensor<T1>::value && EigenIO::is_tensor<T2>::value, bool>::type
CompareMember(const T1 &lhs, const T2 &rhs) {
// First check whether dimensions match (Eigen tensor library will assert if they don't match)
bool bReturnValue = (T1::NumIndices == T2::NumIndices);
for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ )
bReturnValue = ( lhs.dimension(i) == rhs.dimension(i) );
if( bReturnValue ) {
Eigen::Tensor<bool, 0, T1::Options> bResult = (lhs == rhs).all();
bReturnValue = bResult(0);
}
return bReturnValue;
}
template <typename T>
static inline typename std::enable_if<EigenIO::is_tensor<T>::value, bool>::type
CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) {
const auto NumElements = lhs.size();
bool bResult = ( NumElements == rhs.size() );
for( auto i = 0 ; i < NumElements && bResult ; i++ )
bResult = CompareMember(lhs[i], rhs[i]);
return bResult;
}
template <typename T>
static inline typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
WriteMember(std::ostream &os, const T &object) {
os << object;
}
template <typename T>
static inline typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
WriteMember(std::ostream &os, const T &object) {
using Index = typename T::Index;
const Index NumElements{object.size()};
assert( NumElements > 0 );
Index count = 1;
os << "T<";
for( int i = 0; i < T::NumIndices; i++ ) {
Index dim = object.dimension(i);
count *= dim;
if( i )
os << ",";
os << dim;
}
assert( count == NumElements && "Number of elements doesn't match tensor dimensions" );
os << ">{";
const typename T::Scalar * p = object.data();
for( Index i = 0; i < count; i++ ) {
if( i )
os << ",";
os << *p++;
}
os << "}";
}
}; };
// Generic writer interface ////////////////////////////////////////////////// // Generic writer interface //////////////////////////////////////////////////

View File

@ -51,6 +51,8 @@ namespace Grid {
template <typename U> template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x); void writeDefault(const std::string &s, const std::vector<U> &x);
void writeDefault(const std::string &s, const char *x); void writeDefault(const std::string &s, const char *x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
private: private:
std::ofstream file_; std::ofstream file_;
}; };
@ -66,6 +68,8 @@ namespace Grid {
void readDefault(const std::string &s, U &output); void readDefault(const std::string &s, U &output);
template <typename U> template <typename U>
void readDefault(const std::string &s, std::vector<U> &output); void readDefault(const std::string &s, std::vector<U> &output);
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
private: private:
std::ifstream file_; std::ifstream file_;
}; };
@ -92,6 +96,27 @@ namespace Grid {
} }
} }
template <typename U>
void BinaryWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
uint64_t rank = static_cast<uint64_t>( Dimensions.size() );
uint64_t tmp = 1;
for( auto i = 0 ; i < rank ; i++ )
tmp *= Dimensions[i];
assert( tmp == NumElements && "Dimensions don't match size of data being written" );
// Total number of elements
write("", tmp);
// Number of dimensions
write("", rank);
// Followed by each dimension
for( auto i = 0 ; i < rank ; i++ ) {
tmp = Dimensions[i];
write("", tmp);
}
for( auto i = 0; i < NumElements; ++i)
write("", pDataRowMajor[i]);
}
// Reader template implementation //////////////////////////////////////////// // Reader template implementation ////////////////////////////////////////////
template <typename U> template <typename U>
void BinaryReader::readDefault(const std::string &s, U &output) void BinaryReader::readDefault(const std::string &s, U &output)
@ -114,6 +139,30 @@ namespace Grid {
read("", output[i]); read("", output[i]);
} }
} }
template <typename U>
void BinaryReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
{
// Number of elements
uint64_t NumElements;
read("", NumElements);
// Number of dimensions
uint64_t rank;
read("", rank);
// Followed by each dimension
uint64_t count = 1;
dim.resize(rank);
uint64_t tmp;
for( auto i = 0 ; i < rank ; i++ ) {
read("", tmp);
dim[i] = tmp;
count *= tmp;
}
assert( count == NumElements && "Dimensions don't match size of data being read" );
buf.resize(count);
for( auto i = 0; i < count; ++i)
read("", buf[i]);
}
} }
#endif #endif

View File

@ -3,6 +3,7 @@
#include <stack> #include <stack>
#include <string> #include <string>
#include <list>
#include <vector> #include <vector>
#include <H5Cpp.h> #include <H5Cpp.h>
#include <Grid/tensors/Tensors.h> #include <Grid/tensors/Tensors.h>
@ -38,6 +39,8 @@ namespace Grid
template <typename U> template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
writeDefault(const std::string &s, const std::vector<U> &x); writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
H5NS::Group & getGroup(void); H5NS::Group & getGroup(void);
private: private:
template <typename U> template <typename U>
@ -48,7 +51,7 @@ namespace Grid
std::vector<std::string> path_; std::vector<std::string> path_;
H5NS::H5File file_; H5NS::H5File file_;
H5NS::Group group_; H5NS::Group group_;
unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES}; const unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES};
}; };
class Hdf5Reader: public Reader<Hdf5Reader> class Hdf5Reader: public Reader<Hdf5Reader>
@ -66,6 +69,8 @@ namespace Grid
template <typename U> template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
readDefault(const std::string &s, std::vector<U> &x); readDefault(const std::string &s, std::vector<U> &x);
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
H5NS::Group & getGroup(void); H5NS::Group & getGroup(void);
private: private:
template <typename U> template <typename U>
@ -101,6 +106,75 @@ namespace Grid
template <> template <>
void Hdf5Writer::writeDefault(const std::string &s, const std::string &x); void Hdf5Writer::writeDefault(const std::string &s, const std::string &x);
template <typename U>
void Hdf5Writer::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
// Hdf5 needs the dimensions as hsize_t
const int rank = static_cast<int>(Dimensions.size());
std::vector<hsize_t> dim(rank);
for(int i = 0; i < rank; i++)
dim[i] = Dimensions[i];
// write the entire dataset to file
H5NS::DataSpace dataSpace(rank, dim.data());
if (NumElements > dataSetThres_)
{
// Make sure 1) each dimension; and 2) chunk size is < 4GB
const hsize_t MaxElements = ( sizeof( U ) == 1 ) ? 0xffffffff : 0x100000000 / sizeof( U );
hsize_t ElementsPerChunk = 1;
bool bTooBig = false;
for( int i = rank - 1 ; i != -1 ; i-- ) {
auto &d = dim[i];
if( bTooBig )
d = 1; // Chunk size is already as big as can be - remaining dimensions = 1
else {
// If individual dimension too big, reduce by prime factors if possible
while( d > MaxElements && ( d & 1 ) == 0 )
d >>= 1;
const char ErrorMsg[] = " dimension > 4GB and not divisible by 2^n. "
"Hdf5IO chunk size will be inefficient. NB Serialisation is not intended for large datasets - please consider alternatives.";
if( d > MaxElements ) {
std::cout << GridLogWarning << "Individual" << ErrorMsg << std::endl;
hsize_t quotient = d / MaxElements;
if( d % MaxElements )
quotient++;
d /= quotient;
}
// Now make sure overall size is not too big
hsize_t OverflowCheck = ElementsPerChunk;
ElementsPerChunk *= d;
assert( OverflowCheck == ElementsPerChunk / d && "Product of dimensions overflowed hsize_t" );
// If product of dimensions too big, reduce by prime factors
while( ElementsPerChunk > MaxElements && ( ElementsPerChunk & 1 ) == 0 ) {
bTooBig = true;
d >>= 1;
ElementsPerChunk >>= 1;
}
if( ElementsPerChunk > MaxElements ) {
std::cout << GridLogWarning << "Product of" << ErrorMsg << std::endl;
hsize_t quotient = ElementsPerChunk / MaxElements;
if( ElementsPerChunk % MaxElements )
quotient++;
d /= quotient;
ElementsPerChunk /= quotient;
}
}
}
H5NS::DataSet dataSet;
H5NS::DSetCreatPropList plist;
plist.setChunk(rank, dim.data());
plist.setFletcher32();
dataSet = group_.createDataSet(s, Hdf5Type<U>::type(), dataSpace, plist);
dataSet.write(pDataRowMajor, Hdf5Type<U>::type());
}
else
{
H5NS::Attribute attribute;
attribute = group_.createAttribute(s, Hdf5Type<U>::type(), dataSpace);
attribute.write(Hdf5Type<U>::type(), pDataRowMajor);
}
}
template <typename U> template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type typename std::enable_if<element<std::vector<U>>::is_number, void>::type
Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x) Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x)
@ -110,34 +184,11 @@ namespace Grid
// flatten the vector and getting dimensions // flatten the vector and getting dimensions
Flatten<std::vector<U>> flat(x); Flatten<std::vector<U>> flat(x);
std::vector<hsize_t> dim; std::vector<size_t> dim;
const auto &flatx = flat.getFlatVector(); const auto &flatx = flat.getFlatVector();
for (auto &d: flat.getDim()) for (auto &d: flat.getDim())
{
dim.push_back(d); dim.push_back(d);
} writeMultiDim<Element>(s, dim, &flatx[0], flatx.size());
// write to file
H5NS::DataSpace dataSpace(dim.size(), dim.data());
if (flatx.size() > dataSetThres_)
{
H5NS::DataSet dataSet;
H5NS::DSetCreatPropList plist;
plist.setChunk(dim.size(), dim.data());
plist.setFletcher32();
dataSet = group_.createDataSet(s, Hdf5Type<Element>::type(), dataSpace, plist);
dataSet.write(flatx.data(), Hdf5Type<Element>::type());
}
else
{
H5NS::Attribute attribute;
attribute = group_.createAttribute(s, Hdf5Type<Element>::type(), dataSpace);
attribute.write(Hdf5Type<Element>::type(), flatx.data());
}
} }
template <typename U> template <typename U>
@ -175,8 +226,7 @@ namespace Grid
void Hdf5Reader::readDefault(const std::string &s, std::string &x); void Hdf5Reader::readDefault(const std::string &s, std::string &x);
template <typename U> template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type void Hdf5Reader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
{ {
// alias to element type // alias to element type
typedef typename element<std::vector<U>>::type Element; typedef typename element<std::vector<U>>::type Element;
@ -184,7 +234,6 @@ namespace Grid
// read the dimensions // read the dimensions
H5NS::DataSpace dataSpace; H5NS::DataSpace dataSpace;
std::vector<hsize_t> hdim; std::vector<hsize_t> hdim;
std::vector<size_t> dim;
hsize_t size = 1; hsize_t size = 1;
if (group_.attrExists(s)) if (group_.attrExists(s))
@ -204,7 +253,7 @@ namespace Grid
} }
// read the flat vector // read the flat vector
std::vector<Element> buf(size); buf.resize(size);
if (size > dataSetThres_) if (size > dataSetThres_)
{ {
@ -220,6 +269,18 @@ namespace Grid
attribute = group_.openAttribute(s); attribute = group_.openAttribute(s);
attribute.read(Hdf5Type<Element>::type(), buf.data()); attribute.read(Hdf5Type<Element>::type(), buf.data());
} }
}
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
{
// alias to element type
typedef typename element<std::vector<U>>::type Element;
std::vector<size_t> dim;
std::vector<Element> buf;
readMultiDim( s, buf, dim );
// reconstruct the multidimensional vector // reconstruct the multidimensional vector
Reconstruct<std::vector<U>> r(buf, dim); Reconstruct<std::vector<U>> r(buf, dim);

View File

@ -109,8 +109,8 @@ THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define GRID_MACRO_MEMBER(A,B) A B; #define GRID_MACRO_MEMBER(A,B) A B;
#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and (lhs. B == rhs. B)); #define GRID_MACRO_COMP_MEMBER(A,B) result = (result and CompareMember(lhs. B, rhs. B));
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = " << obj. B << " ; " <<std::endl; #define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = "; WriteMember( os, obj. B ); os << " ; " <<std::endl;
#define GRID_MACRO_READ_MEMBER(A,B) Grid::read(RD,#B,obj. B); #define GRID_MACRO_READ_MEMBER(A,B) Grid::read(RD,#B,obj. B);
#define GRID_MACRO_WRITE_MEMBER(A,B) Grid::write(WR,#B,obj. B); #define GRID_MACRO_WRITE_MEMBER(A,B) Grid::write(WR,#B,obj. B);

View File

@ -51,6 +51,8 @@ namespace Grid
void writeDefault(const std::string &s, const U &x); void writeDefault(const std::string &s, const U &x);
template <typename U> template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x); void writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
private: private:
void indent(void); void indent(void);
private: private:
@ -69,6 +71,8 @@ namespace Grid
void readDefault(const std::string &s, U &output); void readDefault(const std::string &s, U &output);
template <typename U> template <typename U>
void readDefault(const std::string &s, std::vector<U> &output); void readDefault(const std::string &s, std::vector<U> &output);
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
private: private:
void checkIndent(void); void checkIndent(void);
private: private:
@ -96,6 +100,17 @@ namespace Grid
} }
} }
template <typename U>
void TextWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
uint64_t Rank = Dimensions.size();
write(s, Rank);
for( uint64_t d : Dimensions )
write(s, d);
while( NumElements-- )
write(s, *pDataRowMajor++);
}
// Reader template implementation //////////////////////////////////////////// // Reader template implementation ////////////////////////////////////////////
template <typename U> template <typename U>
void TextReader::readDefault(const std::string &s, U &output) void TextReader::readDefault(const std::string &s, U &output)
@ -121,6 +136,23 @@ namespace Grid
read("", output[i]); read("", output[i]);
} }
} }
template <typename U>
void TextReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
{
const char sz[] = "";
uint64_t Rank;
read(sz, Rank);
dim.resize( Rank );
size_t NumElements = 1;
for( auto &d : dim ) {
read(sz, d);
NumElements *= d;
}
buf.resize( NumElements );
for( auto &x : buf )
read(s, x);
}
} }
#endif #endif

View File

@ -1,3 +1,32 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./Grid/serialisation/VectorUtils.h
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_SERIALISATION_VECTORUTILS_H #ifndef GRID_SERIALISATION_VECTORUTILS_H
#define GRID_SERIALISATION_VECTORUTILS_H #define GRID_SERIALISATION_VECTORUTILS_H
@ -53,6 +82,17 @@ namespace Grid {
return os; return os;
} }
// std::vector<std:vector<...>> nested to specified Rank //////////////////////////////////
template<typename T, unsigned int Rank>
struct NestedStdVector {
typedef typename std::vector<typename NestedStdVector<T, Rank - 1>::type> type;
};
template<typename T>
struct NestedStdVector<T,0> {
typedef T type;
};
// Grid scalar tensors to nested std::vectors ////////////////////////////////// // Grid scalar tensors to nested std::vectors //////////////////////////////////
template <typename T> template <typename T>
struct TensorToVec struct TensorToVec

View File

@ -57,6 +57,8 @@ namespace Grid
void writeDefault(const std::string &s, const U &x); void writeDefault(const std::string &s, const U &x);
template <typename U> template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x); void writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
std::string docString(void); std::string docString(void);
std::string string(void); std::string string(void);
private: private:
@ -79,6 +81,8 @@ namespace Grid
void readDefault(const std::string &s, U &output); void readDefault(const std::string &s, U &output);
template <typename U> template <typename U>
void readDefault(const std::string &s, std::vector<U> &output); void readDefault(const std::string &s, std::vector<U> &output);
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
void readCurrentSubtree(std::string &s); void readCurrentSubtree(std::string &s);
private: private:
void checkParse(const pugi::xml_parse_result &result, const std::string name); void checkParse(const pugi::xml_parse_result &result, const std::string name);
@ -122,9 +126,41 @@ namespace Grid
void XmlWriter::writeDefault(const std::string &s, const std::vector<U> &x) void XmlWriter::writeDefault(const std::string &s, const std::vector<U> &x)
{ {
push(s); push(s);
for (auto &x_i: x) for( auto &u : x )
{ {
write("elem", x_i); write("elem", u);
}
pop();
}
template <typename U>
void XmlWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
push(s);
size_t count = 1;
const int Rank = static_cast<int>( Dimensions.size() );
write("rank", Rank );
std::vector<size_t> MyIndex( Rank );
for( auto d : Dimensions ) {
write("dim", d);
count *= d;
}
assert( count == NumElements && "XmlIO : element count doesn't match dimensions" );
static const char sName[] = "tensor";
for( int i = 0 ; i < Rank ; i++ ) {
MyIndex[i] = 0;
push(sName);
}
while (NumElements--) {
write("elem", *pDataRowMajor++);
int i;
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == Dimensions[i] ; i-- )
MyIndex[i] = 0;
int Rollover = Rank - 1 - i;
for( i = 0 ; i < Rollover ; i++ )
pop();
for( i = 0 ; NumElements && i < Rollover ; i++ )
push(sName);
} }
pop(); pop();
} }
@ -145,25 +181,66 @@ namespace Grid
template <typename U> template <typename U>
void XmlReader::readDefault(const std::string &s, std::vector<U> &output) void XmlReader::readDefault(const std::string &s, std::vector<U> &output)
{ {
std::string buf;
unsigned int i = 0;
if (!push(s)) if (!push(s))
{ {
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'"; std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
std::cout << std::endl; std::cout << std::endl;
} else {
return; for(unsigned int i = 0; node_.child("elem"); )
}
while (node_.child("elem"))
{ {
output.resize(i + 1); output.resize(i + 1);
read("elem", output[i]); read("elem", output[i++]);
node_.child("elem").set_name("elem-done"); node_.child("elem").set_name("elem-done");
i++;
} }
pop(); pop();
} }
}
template <typename U>
void XmlReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
{
if (!push(s))
{
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
std::cout << std::endl;
} else {
static const char sName[] = "tensor";
static const char sNameDone[] = "tensor-done";
int Rank;
read("rank", Rank);
dim.resize( Rank );
size_t NumElements = 1;
for( auto &d : dim )
{
read("dim", d);
node_.child("dim").set_name("dim-done");
NumElements *= d;
}
buf.resize( NumElements );
std::vector<size_t> MyIndex( Rank );
for( int i = 0 ; i < Rank ; i++ ) {
MyIndex[i] = 0;
push(sName);
}
for( auto &x : buf )
{
NumElements--;
read("elem", x);
node_.child("elem").set_name("elem-done");
int i;
for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == dim[i] ; i-- )
MyIndex[i] = 0;
int Rollover = Rank - 1 - i;
for( i = 0 ; i < Rollover ; i++ ) {
node_.set_name(sNameDone);
pop();
}
for( i = 0 ; NumElements && i < Rollover ; i++ )
push(sName);
}
pop();
}
}
} }
#endif #endif

View File

@ -10,6 +10,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Guido Cossu <cossu@iroiro-pc.kek.jp> Author: Guido Cossu <cossu@iroiro-pc.kek.jp>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp> Author: neo <cossu@post.kek.jp>
Author: Michael Marshall <michael.marshall@ed.ac.au>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -89,17 +90,25 @@ template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<st
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Check for complexity with type traits // Check for complexity with type traits
template <typename T> struct is_complex : public std::false_type {}; template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<std::complex<double> > : public std::true_type {}; template <> struct is_complex<ComplexD> : public std::true_type {};
template <> struct is_complex<std::complex<float> > : public std::true_type {}; template <> struct is_complex<ComplexF> : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >; template<typename T, typename V=void> struct is_real : public std::false_type {};
template<typename T> struct is_real<T, typename std::enable_if<std::is_floating_point<T>::value,
void>::type> : public std::true_type {};
template<typename T, typename V=void> struct is_integer : public std::false_type {};
template<typename T> struct is_integer<T, typename std::enable_if<std::is_integral<T>::value,
void>::type> : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<is_real<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >; template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >; template <typename T> using IfInteger = Invoke<std::enable_if<is_integer<T>::value, int> >;
template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >; template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >;
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >; template <typename T> using IfNotReal = Invoke<std::enable_if<!is_real<T>::value, int> >;
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >; template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >; template <typename T> using IfNotInteger = Invoke<std::enable_if<!is_integer<T>::value, int> >;
template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >; template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >;
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
@ -857,8 +866,10 @@ template <typename T>
struct is_simd : public std::false_type {}; struct is_simd : public std::false_type {};
template <> struct is_simd<vRealF> : public std::true_type {}; template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {}; template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vRealH> : public std::true_type {};
template <> struct is_simd<vComplexF> : public std::true_type {}; template <> struct is_simd<vComplexF> : public std::true_type {};
template <> struct is_simd<vComplexD> : public std::true_type {}; template <> struct is_simd<vComplexD> : public std::true_type {};
template <> struct is_simd<vComplexH> : public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {}; template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >; template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;

View File

@ -5,6 +5,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.au>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -42,27 +43,26 @@ namespace Grid {
// //
class GridTensorBase {}; class GridTensorBase {};
// Too late to remove these traits from Grid Tensors, so inherit from GridTypeMapper
#define GridVector_CopyTraits \
using element = vtype; \
using scalar_type = typename Traits::scalar_type; \
using vector_type = typename Traits::vector_type; \
using vector_typeD = typename Traits::vector_typeD; \
using tensor_reduced = typename Traits::tensor_reduced; \
using scalar_object = typename Traits::scalar_object; \
using Complexified = typename Traits::Complexified; \
using Realified = typename Traits::Realified; \
using DoublePrecision = typename Traits::DoublePrecision; \
static constexpr int TensorLevel = Traits::TensorLevel
template <class vtype> template <class vtype>
class iScalar { class iScalar {
public: public:
vtype _internal; vtype _internal;
typedef vtype element; using Traits = GridTypeMapper<iScalar<vtype> >;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; GridVector_CopyTraits;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
// get double precision version
typedef iScalar<typename GridTypeMapper<vtype>::DoublePrecision> DoublePrecision;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
// Scalar no action // Scalar no action
// template<int Level> using tensor_reduce_level = typename // template<int Level> using tensor_reduce_level = typename
@ -173,7 +173,10 @@ class iScalar {
return stream; return stream;
}; };
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(&_internal); }
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(&_internal); }
strong_inline const scalar_type * end() const { return begin() + Traits::count; }
strong_inline scalar_type * end() { return begin() + Traits::count; }
}; };
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
// Allows to turn scalar<scalar<scalar<double>>>> back to double. // Allows to turn scalar<scalar<scalar<double>>>> back to double.
@ -194,21 +197,8 @@ class iVector {
public: public:
vtype _internal[N]; vtype _internal[N];
typedef vtype element; using Traits = GridTypeMapper<iVector<vtype, N> >;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; GridVector_CopyTraits;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iVector<recurse_scalar_object, N> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iVector<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
typedef iVector<typename GridTypeMapper<vtype>::Realified, N> Realified;
// get double precision version
typedef iVector<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr> * = nullptr>
@ -218,7 +208,6 @@ class iVector {
return *this; return *this;
} }
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
iVector(const Zero &z) { *this = zero; }; iVector(const Zero &z) { *this = zero; };
iVector() = default; iVector() = default;
/* /*
@ -303,6 +292,11 @@ class iVector {
// strong_inline vtype && operator ()(int i) { // strong_inline vtype && operator ()(int i) {
// return _internal[i]; // return _internal[i];
// } // }
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal); }
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal); }
strong_inline const scalar_type * end() const { return begin() + Traits::count; }
strong_inline scalar_type * end() { return begin() + Traits::count; }
}; };
template <class vtype, int N> template <class vtype, int N>
@ -310,25 +304,8 @@ class iMatrix {
public: public:
vtype _internal[N][N]; vtype _internal[N][N];
typedef vtype element; using Traits = GridTypeMapper<iMatrix<vtype, N> >;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; GridVector_CopyTraits;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
typedef iMatrix<typename GridTypeMapper<vtype>::Realified, N> Realified;
// get double precision version
typedef iMatrix<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
// Tensor removal
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object, N> scalar_object;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
iMatrix(const Zero &z) { *this = zero; }; iMatrix(const Zero &z) { *this = zero; };
iMatrix() = default; iMatrix() = default;
@ -458,6 +435,11 @@ class iMatrix {
// strong_inline vtype && operator ()(int i,int j) { // strong_inline vtype && operator ()(int i,int j) {
// return _internal[i][j]; // return _internal[i][j];
// } // }
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal[0]); }
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal[0]); }
strong_inline const scalar_type * end() const { return begin() + Traits::count; }
strong_inline scalar_type * end() { return begin() + Traits::count; }
}; };
template <class v> template <class v>
@ -480,6 +462,3 @@ void vprefetch(const iMatrix<v, N> &vv) {
} }
} }
#endif #endif

View File

@ -5,6 +5,7 @@
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk> Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@phys.columbia.edu> Author: Christopher Kelly <ckelly@phys.columbia.edu>
Author: Michael Marshall <michael.marshall@ed.ac.au>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
@ -26,6 +27,17 @@ Author: Christopher Kelly <ckelly@phys.columbia.edu>
namespace Grid { namespace Grid {
// Forward declarations
template<class T> class iScalar;
template<class T, int N> class iVector;
template<class T, int N> class iMatrix;
// These are the Grid tensors
template<typename T> struct isGridTensor : public std::false_type { static constexpr bool notvalue = true; };
template<class T> struct isGridTensor<iScalar<T>> : public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iVector<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iMatrix<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
// Want to recurse: GridTypeMapper<Matrix<vComplexD> >::scalar_type == ComplexD. // Want to recurse: GridTypeMapper<Matrix<vComplexD> >::scalar_type == ComplexD.
// Use of a helper class like this allows us to template specialise and "dress" // Use of a helper class like this allows us to template specialise and "dress"
@ -41,24 +53,25 @@ namespace Grid {
// //
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
template <class T> class GridTypeMapper { // This saves repeating common properties for supported Grid Scalar types
public: // TensorLevel How many nested grid tensors
typedef typename T::scalar_type scalar_type; // Rank Rank of the grid tensor
typedef typename T::vector_type vector_type; // count Total number of elements, i.e. product of dimensions
typedef typename T::vector_typeD vector_typeD; // Dimension(dim) Size of dimension dim
typedef typename T::tensor_reduced tensor_reduced; struct GridTypeMapper_Base {
typedef typename T::scalar_object scalar_object; static constexpr int TensorLevel = 0;
typedef typename T::Complexified Complexified; static constexpr int Rank = 0;
typedef typename T::Realified Realified; static constexpr std::size_t count = 1;
typedef typename T::DoublePrecision DoublePrecision; static constexpr int Dimension(int dim) { return 0; }
enum { TensorLevel = T::TensorLevel };
}; };
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
// Recursion stops with these template specialisations // Recursion stops with these template specialisations
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
template<> class GridTypeMapper<RealF> {
public: template<typename T> struct GridTypeMapper {};
template<> struct GridTypeMapper<RealF> : public GridTypeMapper_Base {
typedef RealF scalar_type; typedef RealF scalar_type;
typedef RealF vector_type; typedef RealF vector_type;
typedef RealD vector_typeD; typedef RealD vector_typeD;
@ -67,10 +80,8 @@ namespace Grid {
typedef ComplexF Complexified; typedef ComplexF Complexified;
typedef RealF Realified; typedef RealF Realified;
typedef RealD DoublePrecision; typedef RealD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<RealD> { template<> struct GridTypeMapper<RealD> : public GridTypeMapper_Base {
public:
typedef RealD scalar_type; typedef RealD scalar_type;
typedef RealD vector_type; typedef RealD vector_type;
typedef RealD vector_typeD; typedef RealD vector_typeD;
@ -79,10 +90,8 @@ namespace Grid {
typedef ComplexD Complexified; typedef ComplexD Complexified;
typedef RealD Realified; typedef RealD Realified;
typedef RealD DoublePrecision; typedef RealD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<ComplexF> { template<> struct GridTypeMapper<ComplexF> : public GridTypeMapper_Base {
public:
typedef ComplexF scalar_type; typedef ComplexF scalar_type;
typedef ComplexF vector_type; typedef ComplexF vector_type;
typedef ComplexD vector_typeD; typedef ComplexD vector_typeD;
@ -91,10 +100,8 @@ namespace Grid {
typedef ComplexF Complexified; typedef ComplexF Complexified;
typedef RealF Realified; typedef RealF Realified;
typedef ComplexD DoublePrecision; typedef ComplexD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<ComplexD> { template<> struct GridTypeMapper<ComplexD> : public GridTypeMapper_Base {
public:
typedef ComplexD scalar_type; typedef ComplexD scalar_type;
typedef ComplexD vector_type; typedef ComplexD vector_type;
typedef ComplexD vector_typeD; typedef ComplexD vector_typeD;
@ -103,10 +110,8 @@ namespace Grid {
typedef ComplexD Complexified; typedef ComplexD Complexified;
typedef RealD Realified; typedef RealD Realified;
typedef ComplexD DoublePrecision; typedef ComplexD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<Integer> { template<> struct GridTypeMapper<Integer> : public GridTypeMapper_Base {
public:
typedef Integer scalar_type; typedef Integer scalar_type;
typedef Integer vector_type; typedef Integer vector_type;
typedef Integer vector_typeD; typedef Integer vector_typeD;
@ -115,11 +120,9 @@ namespace Grid {
typedef void Complexified; typedef void Complexified;
typedef void Realified; typedef void Realified;
typedef void DoublePrecision; typedef void DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vRealF> { template<> struct GridTypeMapper<vRealF> : public GridTypeMapper_Base {
public:
typedef RealF scalar_type; typedef RealF scalar_type;
typedef vRealF vector_type; typedef vRealF vector_type;
typedef vRealD vector_typeD; typedef vRealD vector_typeD;
@ -128,10 +131,8 @@ namespace Grid {
typedef vComplexF Complexified; typedef vComplexF Complexified;
typedef vRealF Realified; typedef vRealF Realified;
typedef vRealD DoublePrecision; typedef vRealD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vRealD> { template<> struct GridTypeMapper<vRealD> : public GridTypeMapper_Base {
public:
typedef RealD scalar_type; typedef RealD scalar_type;
typedef vRealD vector_type; typedef vRealD vector_type;
typedef vRealD vector_typeD; typedef vRealD vector_typeD;
@ -140,10 +141,20 @@ namespace Grid {
typedef vComplexD Complexified; typedef vComplexD Complexified;
typedef vRealD Realified; typedef vRealD Realified;
typedef vRealD DoublePrecision; typedef vRealD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vComplexH> { template<> struct GridTypeMapper<vRealH> : public GridTypeMapper_Base {
public: // Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types
typedef RealF scalar_type;
typedef vRealH vector_type;
typedef vRealD vector_typeD;
typedef vRealH tensor_reduced;
typedef RealF scalar_object;
typedef vComplexH Complexified;
typedef vRealH Realified;
typedef vRealD DoublePrecision;
};
template<> struct GridTypeMapper<vComplexH> : public GridTypeMapper_Base {
// Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types
typedef ComplexF scalar_type; typedef ComplexF scalar_type;
typedef vComplexH vector_type; typedef vComplexH vector_type;
typedef vComplexD vector_typeD; typedef vComplexD vector_typeD;
@ -152,10 +163,8 @@ namespace Grid {
typedef vComplexH Complexified; typedef vComplexH Complexified;
typedef vRealH Realified; typedef vRealH Realified;
typedef vComplexD DoublePrecision; typedef vComplexD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vComplexF> { template<> struct GridTypeMapper<vComplexF> : public GridTypeMapper_Base {
public:
typedef ComplexF scalar_type; typedef ComplexF scalar_type;
typedef vComplexF vector_type; typedef vComplexF vector_type;
typedef vComplexD vector_typeD; typedef vComplexD vector_typeD;
@ -164,10 +173,8 @@ namespace Grid {
typedef vComplexF Complexified; typedef vComplexF Complexified;
typedef vRealF Realified; typedef vRealF Realified;
typedef vComplexD DoublePrecision; typedef vComplexD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vComplexD> { template<> struct GridTypeMapper<vComplexD> : public GridTypeMapper_Base {
public:
typedef ComplexD scalar_type; typedef ComplexD scalar_type;
typedef vComplexD vector_type; typedef vComplexD vector_type;
typedef vComplexD vector_typeD; typedef vComplexD vector_typeD;
@ -176,10 +183,8 @@ namespace Grid {
typedef vComplexD Complexified; typedef vComplexD Complexified;
typedef vRealD Realified; typedef vRealD Realified;
typedef vComplexD DoublePrecision; typedef vComplexD DoublePrecision;
enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vInteger> { template<> struct GridTypeMapper<vInteger> : public GridTypeMapper_Base {
public:
typedef Integer scalar_type; typedef Integer scalar_type;
typedef vInteger vector_type; typedef vInteger vector_type;
typedef vInteger vector_typeD; typedef vInteger vector_typeD;
@ -188,57 +193,52 @@ namespace Grid {
typedef void Complexified; typedef void Complexified;
typedef void Realified; typedef void Realified;
typedef void DoublePrecision; typedef void DoublePrecision;
enum { TensorLevel = 0 };
}; };
// First some of my own traits #define GridTypeMapper_RepeatedTypes \
template<typename T> struct isGridTensor { using BaseTraits = GridTypeMapper<T>; \
static const bool value = true; using scalar_type = typename BaseTraits::scalar_type; \
static const bool notvalue = false; using vector_type = typename BaseTraits::vector_type; \
using vector_typeD = typename BaseTraits::vector_typeD; \
static constexpr int TensorLevel = BaseTraits::TensorLevel + 1
template<typename T> struct GridTypeMapper<iScalar<T>> {
GridTypeMapper_RepeatedTypes;
using tensor_reduced = iScalar<typename BaseTraits::tensor_reduced>;
using scalar_object = iScalar<typename BaseTraits::scalar_object>;
using Complexified = iScalar<typename BaseTraits::Complexified>;
using Realified = iScalar<typename BaseTraits::Realified>;
using DoublePrecision = iScalar<typename BaseTraits::DoublePrecision>;
static constexpr int Rank = BaseTraits::Rank + 1;
static constexpr std::size_t count = BaseTraits::count;
static constexpr int Dimension(int dim) {
return ( dim == 0 ) ? 1 : BaseTraits::Dimension(dim - 1); }
}; };
template<> struct isGridTensor<int > {
static const bool value = false; template<typename T, int N> struct GridTypeMapper<iVector<T, N>> {
static const bool notvalue = true; GridTypeMapper_RepeatedTypes;
using tensor_reduced = iScalar<typename BaseTraits::tensor_reduced>;
using scalar_object = iVector<typename BaseTraits::scalar_object, N>;
using Complexified = iVector<typename BaseTraits::Complexified, N>;
using Realified = iVector<typename BaseTraits::Realified, N>;
using DoublePrecision = iVector<typename BaseTraits::DoublePrecision, N>;
static constexpr int Rank = BaseTraits::Rank + 1;
static constexpr std::size_t count = BaseTraits::count * N;
static constexpr int Dimension(int dim) {
return ( dim == 0 ) ? N : BaseTraits::Dimension(dim - 1); }
}; };
template<> struct isGridTensor<RealD > {
static const bool value = false; template<typename T, int N> struct GridTypeMapper<iMatrix<T, N>> {
static const bool notvalue = true; GridTypeMapper_RepeatedTypes;
}; using tensor_reduced = iScalar<typename BaseTraits::tensor_reduced>;
template<> struct isGridTensor<RealF > { using scalar_object = iMatrix<typename BaseTraits::scalar_object, N>;
static const bool value = false; using Complexified = iMatrix<typename BaseTraits::Complexified, N>;
static const bool notvalue = true; using Realified = iMatrix<typename BaseTraits::Realified, N>;
}; using DoublePrecision = iMatrix<typename BaseTraits::DoublePrecision, N>;
template<> struct isGridTensor<ComplexD > { static constexpr int Rank = BaseTraits::Rank + 2;
static const bool value = false; static constexpr std::size_t count = BaseTraits::count * N * N;
static const bool notvalue = true; static constexpr int Dimension(int dim) {
}; return ( dim == 0 || dim == 1 ) ? N : BaseTraits::Dimension(dim - 2); }
template<> struct isGridTensor<ComplexF > {
static const bool value = false;
static const bool notvalue = true;
};
template<> struct isGridTensor<Integer > {
static const bool value = false;
static const bool notvalue = true;
};
template<> struct isGridTensor<vRealD > {
static const bool value = false;
static const bool notvalue = true;
};
template<> struct isGridTensor<vRealF > {
static const bool value = false;
static const bool notvalue = true;
};
template<> struct isGridTensor<vComplexD > {
static const bool value = false;
static const bool notvalue = true;
};
template<> struct isGridTensor<vComplexF > {
static const bool value = false;
static const bool notvalue = true;
};
template<> struct isGridTensor<vInteger > {
static const bool value = false;
static const bool notvalue = true;
}; };
// Match the index // Match the index
@ -263,19 +263,12 @@ namespace Grid {
typedef T type; typedef T type;
}; };
//Query if a tensor or Lattice<Tensor> is SIMD vector or scalar //Query whether a tensor or Lattice<Tensor> is SIMD vector or scalar
template<typename T> template<typename T, typename V=void> struct isSIMDvectorized : public std::false_type {};
class isSIMDvectorized{ template<typename U> struct isSIMDvectorized<U, typename std::enable_if< !std::is_same<
template<typename U> typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type,
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type, typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, void>::type>
typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *); : public std::true_type {};
template<typename U>
static double test(...);
public:
enum {value = sizeof(test<T>(0)) == sizeof(char) };
};
//Get the precision of a Lattice, tensor or scalar type in units of sizeof(float) //Get the precision of a Lattice, tensor or scalar type in units of sizeof(float)
template<typename T> template<typename T>

View File

@ -48,6 +48,9 @@ Application::Application(void)
{ {
initLogger(); initLogger();
auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim); auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim);
if (dim.size())
{
locVol_ = 1; locVol_ = 1;
for (unsigned int d = 0; d < dim.size(); ++d) for (unsigned int d = 0; d < dim.size(); ++d)
{ {
@ -70,6 +73,7 @@ Application::Application(void)
<< MACOUT(HADRONS_DEFAULT_LANCZOS_NBASIS) << std::endl; << MACOUT(HADRONS_DEFAULT_LANCZOS_NBASIS) << std::endl;
LOG(Message) << "Schur decomposition : " << MACOUTS(HADRONS_DEFAULT_SCHUR) << std::endl; LOG(Message) << "Schur decomposition : " << MACOUTS(HADRONS_DEFAULT_SCHUR) << std::endl;
LOG(Message) << std::endl; LOG(Message) << std::endl;
}
} }
Application::Application(const Application::GlobalPar &par) Application::Application(const Application::GlobalPar &par)

View File

@ -45,13 +45,11 @@ Environment::Environment(void)
{ {
dim_ = GridDefaultLatt(); dim_ = GridDefaultLatt();
nd_ = dim_.size(); nd_ = dim_.size();
createGrid<vComplex>(1);
vol_ = 1.; vol_ = 1.;
for (auto d: dim_) for (auto d: dim_)
{ {
vol_ *= d; vol_ *= d;
} }
rng4d_.reset(new GridParallelRNG(getGrid()));
} }
// grids /////////////////////////////////////////////////////////////////////// // grids ///////////////////////////////////////////////////////////////////////
@ -76,8 +74,13 @@ double Environment::getVolume(void) const
} }
// random number generator ///////////////////////////////////////////////////// // random number generator /////////////////////////////////////////////////////
GridParallelRNG * Environment::get4dRng(void) const GridParallelRNG * Environment::get4dRng(void)
{ {
if (rng4d_ == nullptr)
{
rng4d_.reset(new GridParallelRNG(getGrid()));
}
return rng4d_.get(); return rng4d_.get();
} }

View File

@ -113,7 +113,7 @@ public:
unsigned int getNd(void) const; unsigned int getNd(void) const;
double getVolume(void) const; double getVolume(void) const;
// random number generator // random number generator
GridParallelRNG * get4dRng(void) const; GridParallelRNG * get4dRng(void);
// general memory management // general memory management
void addObject(const std::string name, void addObject(const std::string name,
const int moduleAddress = -1); const int moduleAddress = -1);
@ -182,7 +182,7 @@ private:
std::map<CoarseGridKey, GridPt> gridCoarse5d_; std::map<CoarseGridKey, GridPt> gridCoarse5d_;
unsigned int nd_; unsigned int nd_;
// random number generator // random number generator
RngPt rng4d_; RngPt rng4d_{nullptr};
// object store // object store
std::vector<ObjInfo> object_; std::vector<ObjInfo> object_;
std::map<std::string, unsigned int> objectAddress_; std::map<std::string, unsigned int> objectAddress_;

View File

@ -112,8 +112,6 @@ void TDWF<FImpl>::setup(void)
<< par().mass << ", M5= " << par().M5 << " and Ls= " << par().mass << ", M5= " << par().M5 << " and Ls= "
<< par().Ls << " using gauge field '" << par().gauge << "'" << par().Ls << " using gauge field '" << par().gauge << "'"
<< std::endl; << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField); auto &g4 = *envGetGrid(FermionField);
@ -121,8 +119,26 @@ void TDWF<FImpl>::setup(void)
auto &g5 = *envGetGrid(FermionField, par().Ls); auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls); auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
typename DomainWallFermion<FImpl>::ImplParams implParams; typename DomainWallFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary); implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist); implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, DomainWallFermion<FImpl>, getName(), par().Ls, U, g5, envCreateDerived(FMat, DomainWallFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, implParams); grb5, g4, grb4, par().mass, par().M5, implParams);
} }

View File

@ -112,8 +112,6 @@ void TMobiusDWF<FImpl>::setup(void)
<< ", b= " << par().b << ", c= " << par().c << ", b= " << par().b << ", c= " << par().c
<< " using gauge field '" << par().gauge << "'" << " using gauge field '" << par().gauge << "'"
<< std::endl; << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField); auto &g4 = *envGetGrid(FermionField);
@ -121,8 +119,26 @@ void TMobiusDWF<FImpl>::setup(void)
auto &g5 = *envGetGrid(FermionField, par().Ls); auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls); auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
typename MobiusFermion<FImpl>::ImplParams implParams; typename MobiusFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary); implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist); implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, MobiusFermion<FImpl>, getName(), par().Ls, U, g5, envCreateDerived(FMat, MobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().b, par().c, grb5, g4, grb4, par().mass, par().M5, par().b, par().c,
implParams); implParams);

View File

@ -111,8 +111,6 @@ void TScaledDWF<FImpl>::setup(void)
<< ", scale= " << par().scale << ", scale= " << par().scale
<< " using gauge field '" << par().gauge << "'" << " using gauge field '" << par().gauge << "'"
<< std::endl; << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField); auto &g4 = *envGetGrid(FermionField);
@ -120,8 +118,26 @@ void TScaledDWF<FImpl>::setup(void)
auto &g5 = *envGetGrid(FermionField, par().Ls); auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls); auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
typename ScaledShamirFermion<FImpl>::ImplParams implParams; typename ScaledShamirFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary); implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist); implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, ScaledShamirFermion<FImpl>, getName(), par().Ls, U, g5, envCreateDerived(FMat, ScaledShamirFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().scale, grb5, g4, grb4, par().mass, par().M5, par().scale,
implParams); implParams);

View File

@ -109,15 +109,31 @@ void TWilson<FImpl>::setup(void)
{ {
LOG(Message) << "Setting up Wilson fermion matrix with m= " << par().mass LOG(Message) << "Setting up Wilson fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl; << " using gauge field '" << par().gauge << "'" << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &grid = *envGetGrid(FermionField); auto &grid = *envGetGrid(FermionField);
auto &gridRb = *envGetRbGrid(FermionField); auto &gridRb = *envGetRbGrid(FermionField);
typename WilsonFermion<FImpl>::ImplParams implParams; typename WilsonFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary); implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist); implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, WilsonFermion<FImpl>, getName(), 1, U, grid, gridRb, envCreateDerived(FMat, WilsonFermion<FImpl>, getName(), 1, U, grid, gridRb,
par().mass, implParams); par().mass, implParams);
} }

View File

@ -112,17 +112,34 @@ void TWilsonClover<FImpl>::setup(void)
{ {
LOG(Message) << "Setting up Wilson clover fermion matrix with m= " << par().mass LOG(Message) << "Setting up Wilson clover fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl; << " using gauge field '" << par().gauge << "'" << std::endl;
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
LOG(Message) << "Clover term csw_r: " << par().csw_r LOG(Message) << "Clover term csw_r: " << par().csw_r
<< " csw_t: " << par().csw_t << " csw_t: " << par().csw_t
<< std::endl; << std::endl;
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &grid = *envGetGrid(FermionField); auto &grid = *envGetGrid(FermionField);
auto &gridRb = *envGetRbGrid(FermionField); auto &gridRb = *envGetRbGrid(FermionField);
typename WilsonCloverFermion<FImpl>::ImplParams implParams; typename WilsonCloverFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary); implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist); implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, WilsonCloverFermion<FImpl>, getName(), 1, U, grid, envCreateDerived(FMat, WilsonCloverFermion<FImpl>, getName(), 1, U, grid,
gridRb, par().mass, par().csw_r, par().csw_t, gridRb, par().mass, par().csw_r, par().csw_t,
par().clover_anisotropy, implParams); par().clover_anisotropy, implParams);

View File

@ -118,10 +118,7 @@ void TZMobiusDWF<FImpl>::setup(void)
{ {
LOG(Message) << " omega[" << i << "]= " << par().omega[i] << std::endl; LOG(Message) << " omega[" << i << "]= " << par().omega[i] << std::endl;
} }
LOG(Message) << "Fermion boundary conditions: " << par().boundary
<< std::endl;
env().createGrid(par().Ls);
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField); auto &g4 = *envGetGrid(FermionField);
auto &grb4 = *envGetRbGrid(FermionField); auto &grb4 = *envGetRbGrid(FermionField);
@ -129,8 +126,26 @@ void TZMobiusDWF<FImpl>::setup(void)
auto &grb5 = *envGetRbGrid(FermionField, par().Ls); auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
auto omega = par().omega; auto omega = par().omega;
typename ZMobiusFermion<FImpl>::ImplParams implParams; typename ZMobiusFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary); implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist); implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, ZMobiusFermion<FImpl>, getName(), par().Ls, U, g5, envCreateDerived(FMat, ZMobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, omega, grb5, g4, grb4, par().mass, par().M5, omega,
par().b, par().c, implParams); par().b, par().c, implParams);

View File

@ -7,6 +7,7 @@ Source file: Hadrons/Modules/MGauge/GaugeFix.hpp
Copyright (C) 2015-2019 Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com> Author: Antonin Portelli <antonin.portelli@me.com>
Author: Nils Asmussen <n.asmussen@soton.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
@ -58,6 +59,7 @@ class TGaugeFix: public Module<GaugeFixPar>
{ {
public: public:
GAUGE_TYPE_ALIASES(GImpl,); GAUGE_TYPE_ALIASES(GImpl,);
typedef typename GImpl::GaugeLinkField GaugeMat;
public: public:
// constructor // constructor
TGaugeFix(const std::string name); TGaugeFix(const std::string name);
@ -94,7 +96,7 @@ std::vector<std::string> TGaugeFix<GImpl>::getInput(void)
template <typename GImpl> template <typename GImpl>
std::vector<std::string> TGaugeFix<GImpl>::getOutput(void) std::vector<std::string> TGaugeFix<GImpl>::getOutput(void)
{ {
std::vector<std::string> out = {getName()}; std::vector<std::string> out = {getName(), getName()+"_xform"};
return out; return out;
} }
@ -103,6 +105,7 @@ template <typename GImpl>
void TGaugeFix<GImpl>::setup(void) void TGaugeFix<GImpl>::setup(void)
{ {
envCreateLat(GaugeField, getName()); envCreateLat(GaugeField, getName());
envCreateLat(GaugeMat, getName()+"_xform");
} }
@ -116,6 +119,7 @@ void TGaugeFix<GImpl>::execute(void)
LOG(Message) << par().gauge << std::endl; LOG(Message) << par().gauge << std::endl;
auto &U = envGet(GaugeField, par().gauge); auto &U = envGet(GaugeField, par().gauge);
auto &Umu = envGet(GaugeField, getName()); auto &Umu = envGet(GaugeField, getName());
auto &xform = envGet(GaugeMat, getName()+"_xform");
LOG(Message) << "Gauge Field fetched" << std::endl; LOG(Message) << "Gauge Field fetched" << std::endl;
//do we allow maxiter etc to be user set? //do we allow maxiter etc to be user set?
Real alpha = par().alpha; Real alpha = par().alpha;
@ -123,8 +127,8 @@ void TGaugeFix<GImpl>::execute(void)
Real Omega_tol = par().Omega_tol; Real Omega_tol = par().Omega_tol;
Real Phi_tol = par().Phi_tol; Real Phi_tol = par().Phi_tol;
bool Fourier = par().Fourier; bool Fourier = par().Fourier;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(U,alpha,maxiter,Omega_tol,Phi_tol,Fourier);
Umu = U; Umu = U;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier);
LOG(Message) << "Gauge Fixed" << std::endl; LOG(Message) << "Gauge Fixed" << std::endl;
} }

View File

@ -0,0 +1,64 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Utilities/HadronsXmlValidate.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Application.hpp>
using namespace Grid;
using namespace QCD;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// parse command line
std::string parameterFileName;
if (argc != 2)
{
std::cerr << "usage: " << argv[0] << " <parameter file>";
std::cerr << std::endl;
std::exit(EXIT_FAILURE);
}
parameterFileName = argv[1];
try
{
Application application(parameterFileName);
application.parseParameterFile(parameterFileName);
auto &vm = VirtualMachine::getInstance();
vm.getModuleGraph();
LOG(Message) << "Application valid (check XML warnings though)"
<< std::endl;
}
catch (const std::exception& e)
{
Exceptions::abort(e);
}
return EXIT_SUCCESS;
}

View File

@ -1,8 +1,11 @@
bin_PROGRAMS = HadronsXmlRun HadronsFermionEP64To32 HadronsContractor HadronsContractorBenchmark bin_PROGRAMS = HadronsXmlRun HadronsXmlValidate HadronsFermionEP64To32 HadronsContractor HadronsContractorBenchmark
HadronsXmlRun_SOURCES = HadronsXmlRun.cc HadronsXmlRun_SOURCES = HadronsXmlRun.cc
HadronsXmlRun_LDADD = ../libHadrons.a ../../Grid/libGrid.a HadronsXmlRun_LDADD = ../libHadrons.a ../../Grid/libGrid.a
HadronsXmlValidate_SOURCES = HadronsXmlValidate.cc
HadronsXmlValidate_LDADD = ../libHadrons.a ../../Grid/libGrid.a
HadronsFermionEP64To32_SOURCES = EigenPackCast.cc HadronsFermionEP64To32_SOURCES = EigenPackCast.cc
HadronsFermionEP64To32_CXXFLAGS = $(AM_CXXFLAGS) -DFIN=WilsonImplD::FermionField -DFOUT=WilsonImplF::FermionField HadronsFermionEP64To32_CXXFLAGS = $(AM_CXXFLAGS) -DFIN=WilsonImplD::FermionField -DFOUT=WilsonImplF::FermionField
HadronsFermionEP64To32_LDADD = ../libHadrons.a ../../Grid/libGrid.a HadronsFermionEP64To32_LDADD = ../libHadrons.a ../../Grid/libGrid.a

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 254 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 552 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 407 KiB

View File

@ -0,0 +1,422 @@
# Using Xcode with Grid on Mac OS
This guide explains how to use Xcode as an IDE on Mac OS.
# Initial setup
For first time setup of the Xcode and Grid build environment on Mac OS, you will need to do the following, in this order:
1. Install Xcode and the Xcode command-line utilities
2. Set Grid environment variables
3. Install and build Open MPI ***optional***
4. Install and build Grid pre-requisites
5. Install, Configure and Build Grid
Apple's [Xcode website][Xcode] is the go-to reference for 1, and the definitive reference for 4 and 5 is the [Grid Documentation][GridDoc].
[Xcode]: https://developer.apple.com/xcode/
[GridDoc]: https://github.com/paboyle/Grid/blob/develop/documentation/Grid.pdf
The following sections explain these steps in more detail
## 1. Install Xcode and the Xcode command-line utilities
See Apple's [Xcode website][Xcode] for instructions on installing Xcode.
Once Xcode is installed, install the Xcode command-line utilities using:
xcode-select --install
*NB: the screenshots from this guide were generated from Xcode 10.1.*
## 2. Set Grid environment variables
To make sure we can share Xcode projects via git and have them work without requiring modification, we will define Grid environment variables. To make sure these environment variables will be available to the Xcode build system, issue the following command:
defaults write com.apple.dt.Xcode UseSanitizedBuildSystemEnvironment -bool NO
These are the environment variables we will define for Grid:
Variable | Typical Value | Use
--- | --- | ---
`Grid` | `/Users/user_id/src/Grid` | Path to grid source
`GridPre` | `/Users/user_id/bin` | Path to install directory containing grid pre-requisites built from source
`GridPkg` | **MacPorts**=`/opt/local`, **Homebrew**=`/usr/local` | Path to package manager install directory
Choose either of the following ways to do this, and when you're done, log out and in again. To check these have been set:
printenv|grep -i grid
### Method 1 -- Apple Script
* Start *Script Editor* (cmd-space, *script editor*)
* Click on *New Document*. Paste the following into the new script, editing the paths appropriately (just replace `user_id` with your *user_id* if you are unsure):
```apple script
do shell script "launchctl setenv Grid $HOME/src/Grid
launchctl setenv GridPre $HOME/bin
launchctl setenv GridPkg /opt/local"
```
* Save the script inside `~/Applications` and give it the name `GridEnv.app`.
* Open `System Preferences`, `Users & Groups`
* Click on `Login Items`
* Click the plus sign to add a new login item
* Select the `~/Applications` folder and select `GridEnv.app`
Log out and in again.
### Method 2 -- `environment.plist`
Make the file `environment.plist` in `~/Library/LaunchAgents` with the following contents, editing the paths appropriately (just replace `user_id` with your *user_id* if you are unsure):
```html
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>Grid.startup</string>
<key>ProgramArguments</key>
<array>
<string>sh</string>
<string>-c</string>
<string>launchctl setenv Grid $HOME/src/Grid
launchctl setenv GridPre $HOME/bin
launchctl setenv GridPkg /opt/local</string>
</array>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>
```
## 3. Install and build Open MPI -- ***optional***
Download the latest version of [Open MPI][OMPI] version 3.1 (I used 3.1.3).
NB: Grid does not have any dependencies on fortran, however many standard scientific packages do, so you may as well download GNU fortran (e.g. MacPorts ``gfortran`` package) and build Open MPI like so:
[OMPI]: https://www.open-mpi.org/software/ompi/v3.1/
../configure CC=clang CXX=clang++ F77=gfortran FC=gfortran CXXFLAGS=-g --prefix=$GridPre/openmpi-3.1.3
make -j 4 all install
(If you don't want to bother with fortran bindings, just don't include the F77 and FC flags)
## 4. Install and build Grid pre-requisites
To simplify the installation of **Grid pre-requisites**, you can use your favourite package manager, e.g.:
### 1. [MacPorts][MacPorts]
[MacPorts]: https://www.macports.org "MacPorts package manager"
Install [MacPorts][MacPorts] if you haven't done so already, and then install packages with:
sudo port install <portname>
These are the `portname`s for mandatory Grid libraries:
* git
* gmp
* mpfr
and these are the `portname`s for optional Grid libraries:
* fftw-3
* hdf5
* lapack
* doxygen
* OpenBLAS
***Please update this list with any packages I've missed! ... and double-check whether OpenBLAS is really for Grid***
### 2. [Homebrew][Homebrew]
[Homebrew]: https://brew.sh "Homebrew package manager"
Install [Homebrew][Homebrew] if you haven't done so already, and then install packages with:
sudo brew install <packagename>
The same packages are available as from MacPorts.
### Install LIME ***optional***
There isn't currently a port for [C-LIME][C-LIME], so download the source and then build it:
[C-LIME]: https://usqcd-software.github.io/c-lime/ "C-language API for Lattice QCD Interchange Message Encapsulation / Large Internet Message Encapsulation"
../configure --prefix=$GridPre/lime-1.3.2 CC=clang
make -j 4
make install
## 5. Install, Configure and Build Grid
### 5.1 Install Grid
[Grid]: https://github.com/paboyle/Grid
Start by cloning [Grid (from GitHub)][Grid] ***into the directory you specified in*** `$Grid`. Bear in mind that git will create the `Grid` subdirectory to place Grid in, so for example if `$Grid` is set to `~/src/Grid` then install Grid with:
cd ~/src
followed by either:
git clone git@github.com:paboyle/Grid.git
or
git clone https://github.com/paboyle/Grid.git
depending on whether you are using https or ssh.
### 5.2 Configure Grid
The Xcode build system supports multiple configurations for each project, by default: `Debug` and `Release`, but more configurations can be defined. We will create separate Grid build directories for each configuration, using the Grid **Autoconf** build system to make each configuration. NB: it is **not** necessary to run `make install` on them once they are built (IDE features such as *jump to definition* will work better of you don't).
Below are shown the `configure` script invocations for three recommended configurations. You are free to define more, less or different configurations, but as a minimum, be sure to build a `Debug` configuration.
#### 1. `Debug`
This is the build for every day developing and debugging with Xcode. It uses the Xcode clang c++ compiler, without MPI, and defaults to double-precision. Xcode builds the `Debug` configuration with debug symbols for full debugging:
../configure --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre/lime-1.3.2 --enable-simd=GEN --enable-precision=double CXX=clang++ --prefix=$GridPre/GridDebug --enable-comms=none --enable-doxygen-doc
#### 2. `Release`
Since Grid itself doesn't really have debug configurations, the release build is recommended to be the same as `Debug`, except using single-precision (handy for validation):
../configure --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre/lime-1.3.2 --enable-simd=GEN --enable-precision=single CXX=clang++ --prefix=$GridPre/GridRelease --enable-comms=none --enable-doxygen-doc
#### 3. `MPIDebug`
Debug configuration with MPI:
../configure --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre/lime-1.3.2 --enable-simd=GEN --enable-precision=double CXX=clang++ --prefix=$GridPre/GridMPIDebug --enable-comms=mpi-auto MPICXX=$GridPre/openmpi-3.1.3/bin/mpicxx --enable-doxygen-doc
### 5.3 Build Grid
Each configuration must be built before they can be used. You can either:
1. Use automake and the Grid Makefile with `make -j 4` (NB: you **do not** need to run `make install` for these to work with Xcode)
2. Build `Grid` and `Hadrons` under Xcode (see below)
# Make a new application which links to Grid / Hadrons
Making an Xcode project which links to Grid / Hadrons is straightforward:
* Make a new application (in the usual way)
* Configure your application to use Grid (via three project settings:)
1. `HEADER_SEARCH_PATHS`
2. `LIBRARY_SEARCH_PATHS`
3. `OTHER_LDFLAGS`
* Make additional configurations, e.g. `MPIDebug` (NB Xcode will make `Debug` and `Release` by default)
Detailed instructions follow, but instead of following the instructions in this section, you can clone `HelloGrid` from the [University of Edinburgh GitLab site][HelloGrid].
[HelloGrid]: https://git.ecdf.ed.ac.uk/s1786208/HelloGrid
## Make a new application
To make a hello world application for Grid:
* Start Xcode
* Click 'Create a new project'
* Click macOS, then in the Application section choose Command Line Tool, then click Next
* Choose options for your new project:
* Product Name: HelloGrid
* Team: None
* Organisation Name: sopa
* Organisation Identifier: uk.ac.ed.ph
* Language: C++
* ... then click Next
* Choose a location for your project, e.g. `$HOME/src`. NB: The project and all its files will be created inside `$HOME/src/HelloGrid`. If you are using Git, you can put the new project under Git source control immediately, if you like. Now click Create.
## Configure your new application to use Grid
Click the project name (`HelloGrid`) in the project navigator pane on the left (command-1 if it's not visible), then click the project name (`HelloGrid`) under `PROJECT` in the second pane. Click the `Build Settings` tab on the right, then under that click `All` and `Combined`. You should see:
![Project settings](GridXcFig1.png)
We now need to make changes to two sections (these are listed in alphabetical order), bearing in mind that if you are not using MPI (or you gave your build directories different names) replace `build_mpidebug` and `build_mpirelease` with the directory names you used.
### 1. Search Paths
#### HEADER_SEARCH_PATHS
Obtain a list of header locations required by Grid by running the following from your Grid build directory (choose an MPI configuration if you built one, e.g. `MPIDebug`):
./grid-config --cxxflags
Output should look similar to:
-I$GridPre/openmpi-3.1.3/include -I$GridPkg/include -I$GridPre/lime-1.3.2/include -I$GridPkg/include -I$GridPkg/include -I$GridPkg/include -O3 -g -std=c++11
The header locations follow the `-I` switches. You can ignore the other switches, and you can ignore duplicate entries, which just mean that your package manager has installed multiple packages in the same location.
*Note: `grid-config` will output absolute paths. Make sure to replace absolute paths with environment variables (such as `$GridPre`) in your settings, so that the project will work unmodified for other collaborators downloading the same project from git.*
Set HEADER_SEARCH_PATHS to:
$Grid/build$(CONFIGURATION)/Grid
$Grid
$Grid/Grid
followed by (***the order is important***) the locations reported by `grid-config --cxxflags`, ignoring duplicates, e.g.:
$GridPre/openmpi-3.1.3/include
$GridPkg/include
$GridPre/lime-1.3.2/include
**Note: the easiest way to set this value is to put it all on one line, space separated, and edit the text to the right of `HEADER_SEARCH_PATHS`**, i.e.:
$Grid/build$(CONFIGURATION)/Grid $Grid $Grid/Grid $GridPre/openmpi-3.1.3/include $GridPkg/include $GridPre/lime-1.3.2/include
#### LIBRARY_SEARCH_PATHS
Obtain a list of library locations required by Grid by running the following from your Grid build directory (again, choose an MPI configuration if you built one, e.g. `MPIDebug`):
./grid-config --ldflags
Output should look similar to:
-L$GridPre/openmpi-3.1.3/lib -L$GridPkg/lib -L$GridPre/lime-1.3.2/lib -L$GridPkg/lib -L$GridPkg/lib -L$GridPkg/lib
Paste the output ***with `$Grid/build$(CONFIGURATION)/Grid $Grid/build$(CONFIGURATION)/Hadrons ` prepended*** into `LIBRARY_SEARCH_PATHS`:
$Grid/build$(CONFIGURATION)/Grid $Grid/build$(CONFIGURATION)/Hadrons $GridPre/openmpi-3.1.3/lib $GridPkg/lib $GridPre/lime-1.3.2/lib
### 2. Linking
#### OTHER_LDFLAGS
The easiest way to link to all required libraries is to obtain a list of all libraries required by Grid by running the following from your Grid build directory:
./grid-config --libs
and pasting the output ***with `-lGrid -lHadrons ` prepended*** (including the `-l` switches) directly into `OTHER_LDFLAGS`, e.g.:
-lGrid -lHadrons -lmpi -lhdf5_cpp -lz -lcrypto -llime -lfftw3f -lfftw3 -lmpfr -lgmp -lstdc++ -lm -lz -lhdf5
## Make additional configurations
On the project settings, `Info` tab, click the plus sign underneath configurations:
![Add configurations](GridXcFig4.png)
Choose `Duplicate "Debug" Configuration` (you can choose `Release` if you prefer) and give the new configuration a name, e.g. `MPIDebug`.
## Edit your source code
A hello world for grid is:
```c++
#include <Grid/Grid.h>
using namespace Grid;
int main(int argc, char * argv[]) {
Grid_init(&argc,&argv);
std::cout << GridLogMessage << "Hello Grid" << std::endl;
Grid_finalize();
return 0;
}
```
## Create a `.gitignore` file for Xcode
You can create an up-to-date .gitignore file to ignore all the Xcode temporary build files using [gitignore.io][GIO].
[GIO]: https://www.gitignore.io/api/xcode
NB: If you let Xcode add your project to git when you created it, you probably want to remove your personal scheme selection from git:
git rm --cached HelloGrid.xcodeproj/xcuserdata/$USER.xcuserdatad/xcschemes/xcschememanagement.plist
## Run your program under the Xcode debugger
First, specify command-line arguments. From the menu, select `Product`, then `Scheme`, then `Edit Scheme`. Select `Run` on the left, then select the `Arguments` tab on the right. Add the following to `Arguments passed on Launch`:
--grid 4.4.4.8
If your program will be manipulating files, it's a good idea to specify the working directory on the `Options` tab under `Use Custom Working Directory` (by default, Xcode launches the program inside the Xcode build folder).
Then click `Close`.
Let's set a breakpoint by clicking on:
Grid_finalize();
then from the menu selecting `Debug`, then `Breakpoints`, then `Add Breakpoint at Current Line`.
Now click on the `Play` button (the right pointing triangle just to the right of the maximise button) to run your program under the debugger. (You may see dialog boxes the first couple of times asking whether to allow MPI to receive network requests - say yes to these.)
The debug output pane opens at the bottom of Xcode, with output on the right (ending with `Hello Grid`) and local variables on the left i.e.:
![Running under the debugger](GridXcFig2.png)
See the Xcode documentation to learn about the debugger. When you're done, press `ctl-cmd-Y` to let the program run to completion.
# Debugging multiple MPI processes under Xcode
You could tell Xcode to use mpirun to launch multiple copies of a target executable, however if you do this the debugger will attach to mpirun - not your target process.
Instead:
1. Set a breakpoint just inside `main()` (otherwise your programs may complete before you attach to them all)
2. From the `Debug` menu, select `Attach to Process by PID or Name ...`. In the `PID or Process Name` field, enter the name of your target. Then click `Attach`.
3. From a terminal session, locate and run your executable using `mpirun` (*the mangled name of the project build products will not be exactly the same as this example*):
`$GridPre/openmpi-3.1.3/bin/mpirun -np 2 ~/Library/Developer/Xcode/DerivedData/HelloGrid-fiyyuveptaqelbbvllomcgjyvghr/Build/Products/Debug/HelloGrid --grid 4.4.4.8 --mpi 1.1.1.2`
The Xcode debugger will attach to the first process.
4. From the `Debug` menu in Xcode, select `Attach to Process`, and other running instances of your application will appear at the top of the list. Attach to as many instances as you wish to debug.
5. Click on the first process (which should have stopped at the breakpoint) and restart it with ctl-cmd-y
You are now debugging multiple MPI instances, and the Xcode debugger should look similar to this:
![Debugging multiple MPI instances under the Xcode debugger](GridXcFig3.png)
# Build `Grid` and `Hadrons` libraries under Xcode
If you want to build `Grid` and `Hadrons` libraries using Xcode, you will need to:
1. Make new library targets for `Grid` and `Hadrons`
2. Add Grid source folders to your project:
a. Right click project then `Add files to "project" ...`
b. Choose `$Grid/Grid` folder
c. Select `Create groups` (`folder references` doesn't work)
d. Select `Grid` (containing just the Grid sources, not the entire Git repository) as your target
e. Click `Add`
3. Add Hadrons source folders to your project
a. As per `Grid`, but change the target to `Hadrons`
b. For each source file in `Archive`, remove them from the target (option-command-1, then untick source files)
4. Set the following values for each target in `Build Settings`
Group | Variable | Value
--- | --- | ---
`Deployment` | `DSTROOT` | `$Grid/build$(CONFIGURATION)` *(do this for the entire project)*
`Deployment` | `DEPLOYMENT_LOCATION` | `Yes`
`Deployment` | `INSTALL_PATH` | `$(PRODUCT_NAME)/`
`Deployment` | `SKIP_INSTALL` | `No`
`Linking` | `OTHER_LDFLAGS` | remove `-lGrid -lHadrons` from the list
This ensures that the libraries are copied back into the build folders when they are made (removing the need to run `make -j 4`)
5. For `Grid`, in `Build Settings` in the `Build Options` group, set:
Variable | Configuration | Value
--- | --- | ---
`EXCLUDED_SOURCE_FILE_NAMES` | Non-MPI configurations (`Debug` and `Release`) | `$(Grid)/Grid/communicator/Communicator_mpi3.cc $(Grid)/Grid/communicator/SharedMemoryMPI.cc`
`EXCLUDED_SOURCE_FILE_NAMES` | MPI configurations (`MPIDebug`) | `$(Grid)/Grid/communicator/Communicator_none.cc $(Grid)/Grid/communicator/SharedMemoryNone.cc`
You should now be able to build and debug any configuration.

View File

@ -4,11 +4,12 @@
Source file: ./tests/Test_serialisation.cc Source file: ./tests/Test_serialisation.cc
Copyright (C) 2015-2016 Copyright (C) 2015-2019
Author: Guido Cossu <guido.cossu@ed.ac.uk> Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com> Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk> Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -28,6 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#include <typeinfo>
using namespace Grid; using namespace Grid;
using namespace Grid::QCD; using namespace Grid::QCD;
@ -80,26 +82,159 @@ double d = 2*M_PI;
bool b = false; bool b = false;
template <typename W, typename R, typename O> template <typename W, typename R, typename O>
void ioTest(const std::string &filename, const O &object, const std::string &name) void ioTest(const std::string &filename, const O &object, const std::string &name,
const char * tag = "testobject", unsigned short Precision = 0 )
{ {
std::cout << "IO test: " << name << " -> " << filename << " ...";
// writer needs to be destroyed so that writing physically happens // writer needs to be destroyed so that writing physically happens
{ {
W writer(filename); W writer(filename);
if( Precision )
write(writer, "testobject", object); writer.setPrecision(Precision);
write(writer, tag , object);
} }
std::cout << " done. reading ...";
R reader(filename); R reader(filename);
O buf; std::unique_ptr<O> buf( new O ); // In case object too big for stack
bool good;
read(reader, "testobject", buf); read(reader, tag, *buf);
good = (object == buf); bool good = Serializable::CompareMember(object, *buf);
std::cout << name << " IO test: " << (good ? "success" : "failure"); if (!good) {
std::cout << std::endl; std::cout << " failure!" << std::endl;
if (!good) exit(EXIT_FAILURE); exit(EXIT_FAILURE);
}
std::cout << " done." << std::endl;
} }
// The only way I could get these iterators to work is to put the begin() and end() functions in the Eigen namespace
// So if Eigen ever defines these, we'll have a conflict and have to change this
namespace Eigen {
template <typename ET>
inline typename std::enable_if<EigenIO::is_tensor<ET>::value, typename EigenIO::Traits<ET>::scalar_type *>::type
begin( ET & et ) { return reinterpret_cast<typename Grid::EigenIO::Traits<ET>::scalar_type *>(et.data()); }
template <typename ET>
inline typename std::enable_if<EigenIO::is_tensor<ET>::value, typename EigenIO::Traits<ET>::scalar_type *>::type
end( ET & et ) { return begin(et) + et.size() * EigenIO::Traits<ET>::count; }
}
// Perform I/O tests on a range of tensor types
// Test coverage: scalars, complex and GridVectors in single, double and default precision
class TensorIO : public Serializable {
using TestScalar = ComplexD;
using SR3 = Eigen::Sizes<9,4,2>;
using SR5 = Eigen::Sizes<5,4,3,2,1>;
using ESO = Eigen::StorageOptions;
using TensorRank3 = Eigen::Tensor<ComplexF, 3, ESO::RowMajor>;
using TensorR5 = Eigen::TensorFixedSize<Real, SR5>;
using TensorR5Alt = Eigen::TensorFixedSize<Real, SR5, ESO::RowMajor>;
using Tensor942 = Eigen::TensorFixedSize<TestScalar, SR3, ESO::RowMajor>;
using aTensor942 = std::vector<Tensor942>;
using Perambulator = Eigen::Tensor<SpinColourVector, 6, ESO::RowMajor>;
using LSCTensor = Eigen::TensorFixedSize<SpinColourMatrix, Eigen::Sizes<6,5>>;
static const Real FlagR;
static const Complex Flag;
static const ComplexF FlagF;
static const TestScalar FlagTS;
static const char * const pszFilePrefix;
void Init(unsigned short Precision)
{
for( auto &s : Perambulator1 ) s = Flag;
for( auto &s : Perambulator2 ) s = Flag;
for( auto &s : tensorR5 ) s = FlagR;
for( auto &s : tensorRank3 ) s = FlagF;
for( auto &s : tensor_9_4_2 ) s = FlagTS;
for( auto &t : atensor_9_4_2 )
for( auto &s : t ) s = FlagTS;
for( auto &s : MyLSCTensor ) s = Flag;
}
// Perform an I/O test for a single Eigen tensor (of any type)
template <typename W, typename R, typename T, typename... IndexTypes>
static void TestOne(const char * MyTypeName, unsigned short Precision, std::string &filename,
const char * pszExtension, unsigned int &TestNum,
typename EigenIO::Traits<T>::scalar_type Flag, IndexTypes... otherDims)
{
using Traits = EigenIO::Traits<T>;
using scalar_type = typename Traits::scalar_type;
std::unique_ptr<T> pTensor{new T(otherDims...)};
for( auto &s : * pTensor ) s = Flag;
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
ioTest<W, R, T>(filename, * pTensor, MyTypeName, MyTypeName);
}
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TensorIO
, SpinColourVector, spinColourVector
, SpinColourMatrix, spinColourMatrix
, std::vector<std::string>, DistilParameterNames
, std::vector<int>, DistilParameterValues
, Perambulator, Perambulator1
, Perambulator, Perambulator2
, TensorR5, tensorR5
, TensorRank3, tensorRank3
, Tensor942, tensor_9_4_2
, aTensor942, atensor_9_4_2
, LSCTensor, MyLSCTensor
);
TensorIO()
: DistilParameterNames {"do", "androids", "dream", "of", "electric", "sheep?"}
, DistilParameterValues{2,3,1,4,5,1}
, Perambulator1(2,3,1,4,5,1)
, Perambulator2(7,1,6,1,5,1)
, tensorRank3(7,3,2)
, atensor_9_4_2(3) {}
#define TEST_PARAMS( T ) #T, Precision, filename, pszExtension, TestNum
// Perform a series of I/O tests for Eigen tensors, including a serialisable object
template <typename WTR_, typename RDR_>
static void Test(const char * pszExtension, unsigned short Precision = 0)
{
// Perform a series of tests on progressively more complex tensors
unsigned int TestNum = 0;
std::string filename;
// Rank 1 tensor containing a single integer
using TensorSingle = Eigen::TensorFixedSize<Integer, Eigen::Sizes<1>>;
TestOne<WTR_, RDR_, TensorSingle>( TEST_PARAMS( TensorSingle ), 7 ); // lucky!
// Rather convoluted way of defining four complex numbers
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,2>, 6>;
using I = typename TensorSimple::Index; // NB: Never specified, so same for all my test tensors
// Try progressively more complicated tensors
TestOne<WTR_, RDR_, TensorSimple, I,I,I,I,I,I>( TEST_PARAMS( TensorSimple ), FlagTS, 1,1,1,1,1,1 );
TestOne<WTR_, RDR_, TensorRank3, I, I, I>( TEST_PARAMS( TensorRank3 ), FlagF, 6, 3, 2 );
TestOne<WTR_, RDR_, Tensor942>(TEST_PARAMS( Tensor942 ), FlagTS);
TestOne<WTR_, RDR_, LSCTensor>(TEST_PARAMS( LSCTensor ), Flag );
TestOne<WTR_, RDR_, TensorR5>(TEST_PARAMS( TensorR5 ), FlagR);
// Now test a serialisable object containing a number of tensors
{
static const char MyTypeName[] = "TensorIO";
filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension;
std::unique_ptr<TensorIO> pObj{new TensorIO()};
pObj->Init(Precision);
ioTest<WTR_, RDR_, TensorIO>(filename, * pObj, MyTypeName, MyTypeName, Precision);
}
// Stress test. Too large for the XML or text readers and writers!
#ifdef STRESS_TEST
const std::type_info &tw = typeid( WTR_ );
if( tw == typeid( Hdf5Writer ) || tw == typeid( BinaryWriter ) ) {
using LCMTensor=Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>,
Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor>;
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
TestOne<WTR_, RDR_, LCMTensor>(TEST_PARAMS( LCMTensor ), Flag);
}
#endif
}
};
const Real TensorIO::FlagR {1};
const Complex TensorIO::Flag {1,-1};
const ComplexF TensorIO::FlagF {1,-1};
const TensorIO::TestScalar TensorIO::FlagTS{1,-1};
const char * const TensorIO::pszFilePrefix = "tensor_";
template <typename T> template <typename T>
void tensorConvTestFn(GridSerialRNG &rng, const std::string label) void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
{ {
@ -121,12 +256,12 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
int main(int argc,char **argv) int main(int argc,char **argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean
GridSerialRNG rng; GridSerialRNG rng;
rng.SeedFixedIntegers(std::vector<int>({42,10,81,9})); rng.SeedFixedIntegers(std::vector<int>({42,10,81,9}));
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml"); XmlWriter WR("bother.xml");
// test basic type writing // test basic type writing
@ -146,7 +281,6 @@ int main(int argc,char **argv)
// test serializable class writing // test serializable class writing
myclass obj(1234); // non-trivial constructor myclass obj(1234); // non-trivial constructor
std::vector<myclass> vec; std::vector<myclass> vec;
std::pair<myenum, myenum> pair;
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl; std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj); write(WR,"obj",obj);
@ -154,15 +288,15 @@ int main(int argc,char **argv)
vec.push_back(obj); vec.push_back(obj);
vec.push_back(myclass(5678)); vec.push_back(myclass(5678));
vec.push_back(myclass(3838)); vec.push_back(myclass(3838));
pair = std::make_pair(myenum::red, myenum::blue);
write(WR, "objvec", vec); write(WR, "objvec", vec);
std::cout << "-- serialisable class writing to std::cout:" << std::endl; std::cout << "-- serialisable class writing to std::cout:" << std::endl;
std::cout << obj << std::endl; std::cout << obj << std::endl;
std::cout << "-- serialisable class comparison:" << std::endl; std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl; std::cout << "vec[0] == obj: " << (vec[0] == obj) << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl; std::cout << "vec[1] == obj: " << (vec[1] == obj) << std::endl;
std::cout << "-- pair writing to std::cout:" << std::endl; std::cout << "-- pair writing to std::cout:" << std::endl;
std::pair<myenum, myenum> pair = std::make_pair(myenum::red, myenum::blue);
std::cout << pair << std::endl; std::cout << pair << std::endl;
// read tests // read tests
@ -184,7 +318,15 @@ int main(int argc,char **argv)
#ifdef HAVE_HDF5 #ifdef HAVE_HDF5
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) "); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)"); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<Hdf5Writer, Hdf5Reader>(".h5");
#endif #endif
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<BinaryWriter, BinaryReader>(".bin");
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<XmlWriter, XmlReader>(".xml", 6);
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
TensorIO::Test<TextWriter, TextReader>(".dat", 5);
std::cout << "\n==== vector flattening/reconstruction" << std::endl; std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d; typedef std::vector<std::vector<std::vector<double>>> vec3d;
@ -227,4 +369,6 @@ int main(int argc,char **argv)
tensorConvTest(rng, ColourVector); tensorConvTest(rng, ColourVector);
tensorConvTest(rng, SpinMatrix); tensorConvTest(rng, SpinMatrix);
tensorConvTest(rng, SpinVector); tensorConvTest(rng, SpinVector);
Grid_finalize();
} }

View File

@ -0,0 +1,73 @@
/*
*
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_cg_prec.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid);
// SU3::HotConfiguration(pRNG,Umu);
SU3::ColdConfiguration(Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
std::vector<int> site({4,4,0,0});
src=zero;
SpinColourVector scv;
scv=zero;
scv()(0)(0) = 1.0;
pokeSite(scv,src,site);
CovariantSmearing<PeriodicGimplR>::GaussianSmear(U, src, 2.0, 50, Tdir);
std::cout << src <<std::endl;
}

View File

@ -0,0 +1,194 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_mg_mp.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* */
#include <Grid/Grid.h>
#include <Test_multigrid_common.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
// clang-format off
GridCartesian *FGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
GridCartesian *FGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_d);
GridRedBlackCartesian *FrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_f);
// clang-format on
std::vector<int> fSeeds({1, 2, 3, 4});
GridParallelRNG fPRNG(FGrid_d);
fPRNG.SeedFixedIntegers(fSeeds);
// clang-format off
LatticeFermionD src_d(FGrid_d); gaussian(fPRNG, src_d);
LatticeFermionD resultMGD_d(FGrid_d); resultMGD_d = zero;
LatticeFermionD resultMGF_d(FGrid_d); resultMGF_d = zero;
LatticeGaugeFieldD Umu_d(FGrid_d);
#if 0
{
FieldMetaData header;
std::string file("./qcdsf.769.00399.lime");
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
std::cout <<GridLogMessage<<"** Reading back ILDG conf *********"<<std::endl;
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
IldgReader _IldgReader;
_IldgReader.open(file);
_IldgReader.readConfiguration(Umu_d,header);
_IldgReader.close();
}
#else
{
FieldMetaData header;
std::string file("./ckpoint_lat.IEEE64BIG.1100");
NerscIO::readConfiguration(Umu_d,header,file);
}
#endif
// SU3::HotConfiguration(fPRNG, Umu_d);
LatticeGaugeFieldF Umu_f(FGrid_f); precisionChange(Umu_f, Umu_d);
// clang-format on
RealD mass = -0.25;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
MultiGridParams mgParams;
std::string inputXml{"./mg_params.xml"};
if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) {
inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml");
assert(inputXml.length() != 0);
}
{
XmlWriter writer("mg_params_template.xml");
write(writer, "Params", mgParams);
std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl;
XmlReader reader(inputXml);
read(reader, "Params", mgParams);
std::cout << GridLogMessage << "Read in " << inputXml << std::endl;
}
checkParameterValidity(mgParams);
std::cout << mgParams << std::endl;
LevelInfo levelInfo_d(FGrid_d, mgParams);
LevelInfo levelInfo_f(FGrid_f, mgParams);
// Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used
const int nbasis = 40;
WilsonCloverFermionD Dwc_d(Umu_d, *FGrid_d, *FrbGrid_d, mass, csw_r, csw_t);
WilsonCloverFermionF Dwc_f(Umu_f, *FGrid_f, *FrbGrid_f, mass, csw_r, csw_t);
MdagMLinearOperator<WilsonCloverFermionD, LatticeFermionD> MdagMOpDwc_d(Dwc_d);
MdagMLinearOperator<WilsonCloverFermionF, LatticeFermionF> MdagMOpDwc_f(Dwc_f);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing single-precision Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDwc_f = createMGInstance<vSpinColourVectorF, vTComplexF, nbasis, WilsonCloverFermionF>(mgParams, levelInfo_f, Dwc_f, Dwc_f);
MGPreconDwc_f->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDwc_f->runChecks(1e-6);
}
MixedPrecisionFlexibleGeneralisedMinimalResidual<LatticeFermionD, LatticeFermionF> MPFGMRESPREC(
1.0e-12, 50000, FGrid_f, *MGPreconDwc_f, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
MPFGMRESPREC(MdagMOpDwc_d, src_d, resultMGF_d);
MGPreconDwc_f->reportTimings();
if(GridCmdOptionExists(argv, argv + argc, "--docomparison")) {
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing double-precision Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDwc_d = createMGInstance<vSpinColourVectorD, vTComplexD, nbasis, WilsonCloverFermionD>(mgParams, levelInfo_d, Dwc_d, Dwc_d);
MGPreconDwc_d->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDwc_d->runChecks(1e-13);
}
FlexibleGeneralisedMinimalResidual<LatticeFermionD> FGMRESPREC(1.0e-12, 50000, *MGPreconDwc_d, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
FGMRESPREC(MdagMOpDwc_d, src_d, resultMGD_d);
MGPreconDwc_d->reportTimings();
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Comparing single-precision Multigrid with double-precision one for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
LatticeFermionD diffFullSolver(FGrid_d);
RealD deviationFullSolver = axpy_norm(diffFullSolver, -1.0, resultMGF_d, resultMGD_d);
// clang-format off
LatticeFermionF src_f(FGrid_f); precisionChange(src_f, src_d);
LatticeFermionF resMGF_f(FGrid_f); resMGF_f = zero;
LatticeFermionD resMGD_d(FGrid_d); resMGD_d = zero;
// clang-format on
(*MGPreconDwc_f)(src_f, resMGF_f);
(*MGPreconDwc_d)(src_d, resMGD_d);
LatticeFermionD diffOnlyMG(FGrid_d);
LatticeFermionD resMGF_d(FGrid_d);
precisionChange(resMGF_d, resMGF_f);
RealD deviationOnlyPrec = axpy_norm(diffOnlyMG, -1.0, resMGF_d, resMGD_d);
// clang-format off
std::cout << GridLogMessage << "Absolute difference between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver << std::endl;
std::cout << GridLogMessage << "Relative deviation between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver / norm2(resultMGD_d) << std::endl;
std::cout << GridLogMessage << "Absolute difference between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec << std::endl;
std::cout << GridLogMessage << "Relative deviation between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec / norm2(resMGD_d) << std::endl;
// clang-format on
}
Grid_finalize();
}