mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 20:57:06 +01:00
Merge pull request #409 from giltirn/feature/dirichlet-gparity-stage
Import round 5
This commit is contained in:
@ -146,14 +146,21 @@ public:
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
RealD _coarse_relax_tol;
|
||||
std::vector<FineField> &_subspace;
|
||||
|
||||
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
|
||||
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
|
||||
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
|
||||
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
|
||||
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
|
||||
|
||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||
OperatorFunction<FineField> &smoother,
|
||||
LinearOperatorBase<FineField> &Linop,
|
||||
std::vector<FineField> &subspace,
|
||||
RealD coarse_relax_tol=5.0e3)
|
||||
RealD coarse_relax_tol=5.0e3,
|
||||
int largestEvalIdxForReport=-1)
|
||||
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
||||
_coarse_relax_tol(coarse_relax_tol)
|
||||
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
|
||||
{ };
|
||||
|
||||
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||
@ -179,6 +186,12 @@ public:
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
|
||||
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
|
||||
RealD tmp_eval;
|
||||
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
|
||||
}
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
@ -409,7 +422,7 @@ public:
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
@ -99,7 +99,7 @@ public:
|
||||
// using wilson flow by default here
|
||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
||||
Real T0 = WF.energyDensityPlaquette(Usmear);
|
||||
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Gimpl>
|
||||
class WilsonFlow: public Smear<Gimpl>{
|
||||
public:
|
||||
//Store generic measurements to take during smearing process using std::function
|
||||
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||
|
||||
private:
|
||||
unsigned int Nstep;
|
||||
unsigned int measure_interval;
|
||||
mutable RealD epsilon, taus;
|
||||
|
||||
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
|
||||
|
||||
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||
|
||||
mutable WilsonGaugeAction<Gimpl> SG;
|
||||
|
||||
void evolve_step(typename Gimpl::GaugeField&) const;
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
|
||||
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
|
||||
//Evolve the gauge field by 1 step and update tau
|
||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
void resetActions(){ functions.clear(); }
|
||||
|
||||
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||
|
||||
//Set the class to perform the default measurements:
|
||||
//the plaquette energy density every step
|
||||
//the plaquette topological charge every 'topq_meas_interval' steps
|
||||
//and output to stdout
|
||||
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||
|
||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
||||
Nstep(Nstep),
|
||||
epsilon(epsilon),
|
||||
measure_interval(interval),
|
||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||
// WilsonGaugeAction with beta 3.0
|
||||
assert(epsilon > 0.0);
|
||||
LogMessage();
|
||||
setDefaultMeasurements(interval);
|
||||
}
|
||||
|
||||
void LogMessage() {
|
||||
@ -73,9 +90,29 @@ public:
|
||||
// undefined for WilsonFlow
|
||||
}
|
||||
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
|
||||
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
|
||||
RealD energyDensityPlaquette(const GaugeField& U) const;
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the plaquette
|
||||
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
|
||||
//t is the Wilson flow time
|
||||
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
|
||||
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
|
||||
//The smeared field is output as V
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||
|
||||
//Version that does not return the smeared field
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||
};
|
||||
|
||||
|
||||
@ -83,7 +120,7 @@ public:
|
||||
// Implementations
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField tmp(U.Grid());
|
||||
SG.deriv(U, Z);
|
||||
@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
tau += epsilon;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
|
||||
if (maxTau - taus < epsilon){
|
||||
epsilon = maxTau-taus;
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
|
||||
if (maxTau - tau < eps){
|
||||
eps = maxTau-tau;
|
||||
}
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U.Grid());
|
||||
@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
|
||||
SG.deriv(U, Z);
|
||||
Zprime = -Z;
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Zprime += 2.0*tmp;
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||
|
||||
// Ramos
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||
// Compute distance as norm^2 of the difference
|
||||
GaugeField diffU = U - Uprime;
|
||||
RealD diff = norm2(diffU);
|
||||
// adjust integration step
|
||||
|
||||
taus += epsilon;
|
||||
tau += eps;
|
||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
|
||||
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
||||
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
|
||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
|
||||
RealD td = tau(step);
|
||||
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||
}
|
||||
|
||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
assert(Nd == 4);
|
||||
//E = 1/2 tr( F_munu F_munu )
|
||||
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
|
||||
//F_01 F_02 F_03 F_12 F_13 F_23
|
||||
GaugeMat F(U.Grid());
|
||||
LatticeComplexD R(U.Grid());
|
||||
R = Zero();
|
||||
|
||||
for(int mu=0;mu<3;mu++){
|
||||
for(int nu=mu+1;nu<4;nu++){
|
||||
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
|
||||
R = R + trace(F*F);
|
||||
}
|
||||
}
|
||||
ComplexD out = sum(R);
|
||||
out = t*t*out / RealD(U.Grid()->gSites());
|
||||
return -real(out); //minus sign necessary for +ve energy
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityPlaquette(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
|
||||
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||
out.push_back( energyDensityCloverleaf(t,U) );
|
||||
});
|
||||
smear(V,U);
|
||||
return out;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//#define WF_TIMING
|
||||
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
out = in;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) {
|
||||
RealD taus = 0.;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
evolve_step(out);
|
||||
evolve_step(out, taus);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> diff = end - start;
|
||||
#ifdef WF_TIMING
|
||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||
#endif
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << tau(step) << " "
|
||||
<< energyDensityPlaquette(step,out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
|
||||
out = in;
|
||||
taus = epsilon;
|
||||
RealD taus = 0.;
|
||||
RealD eps = epsilon;
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
step++;
|
||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
evolve_step_adaptive(out, maxTau);
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
||||
<< step << " " << taus << " "
|
||||
<< energyDensityPlaquette(out) << std::endl;
|
||||
if( step % measure_interval == 0){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
||||
<< step << " "
|
||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
||||
}
|
||||
evolve_step_adaptive(out, taus, eps, maxTau);
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
} while (taus < maxTau);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////
|
||||
//Copy a single lane of a SIMD tensor type from one object to another
|
||||
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobjOut, class vobjIn>
|
||||
accelerator_inline
|
||||
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
|
||||
{
|
||||
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||
|
||||
typedef typename vobjOut::vector_type ovector_type;
|
||||
typedef typename vobjIn::vector_type ivector_type;
|
||||
constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
|
||||
constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
|
||||
static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
|
||||
|
||||
typedef typename vobjOut::scalar_type oscalar_type;
|
||||
typedef typename vobjIn::scalar_type iscalar_type;
|
||||
typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
|
||||
typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
|
||||
|
||||
typedef oextract_type * opointer;
|
||||
typedef iextract_type * ipointer;
|
||||
|
||||
constexpr int oNsimd=ovector_type::Nsimd();
|
||||
constexpr int iNsimd=ivector_type::Nsimd();
|
||||
|
||||
iscalar_type itmp;
|
||||
oscalar_type otmp;
|
||||
|
||||
opointer __restrict__ op = (opointer)&vecOut;
|
||||
ipointer __restrict__ ip = (ipointer)&vecIn;
|
||||
for(int w=0;w<owords;w++){
|
||||
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
|
||||
otmp = itmp; //potential precision change
|
||||
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
Reference in New Issue
Block a user