mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Merge pull request #409 from giltirn/feature/dirichlet-gparity-stage
Import round 5
This commit is contained in:
		@@ -147,13 +147,20 @@ public:
 | 
			
		||||
  RealD                             _coarse_relax_tol;
 | 
			
		||||
  std::vector<FineField>        &_subspace;
 | 
			
		||||
 | 
			
		||||
  int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
 | 
			
		||||
                                //As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
 | 
			
		||||
                                //To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
 | 
			
		||||
                                //out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
 | 
			
		||||
                                //NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
 | 
			
		||||
  
 | 
			
		||||
  ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField>   &Poly,
 | 
			
		||||
					   OperatorFunction<FineField>   &smoother,
 | 
			
		||||
					   LinearOperatorBase<FineField> &Linop,
 | 
			
		||||
					   std::vector<FineField>        &subspace,
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3) 
 | 
			
		||||
					   RealD coarse_relax_tol=5.0e3,
 | 
			
		||||
					   int largestEvalIdxForReport=-1) 
 | 
			
		||||
    : _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol)  
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
			
		||||
@@ -179,6 +186,12 @@ public:
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
 | 
			
		||||
    if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
 | 
			
		||||
      std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
 | 
			
		||||
      RealD tmp_eval;
 | 
			
		||||
      ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    int conv=0;
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
@@ -409,7 +422,7 @@ public:
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax); 
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1); 
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 
 | 
			
		||||
@@ -99,7 +99,7 @@ public:
 | 
			
		||||
	// using wilson flow by default here
 | 
			
		||||
	WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
 | 
			
		||||
	WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
 | 
			
		||||
	Real T0   = WF.energyDensityPlaquette(Usmear);
 | 
			
		||||
	Real T0   = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
 | 
			
		||||
	std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
 | 
			
		||||
		  << "T0                : [ " << traj << " ] "<< T0 << std::endl;
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
@@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
@@ -33,28 +34,44 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
class WilsonFlow: public Smear<Gimpl>{
 | 
			
		||||
  unsigned int Nstep;
 | 
			
		||||
  unsigned int measure_interval;
 | 
			
		||||
  mutable RealD epsilon, taus;
 | 
			
		||||
public:
 | 
			
		||||
  //Store generic measurements to take during smearing process using std::function
 | 
			
		||||
  typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType;  //int: step,  RealD: flow time,  GaugeField : the gauge field
 | 
			
		||||
  
 | 
			
		||||
private:
 | 
			
		||||
  unsigned int Nstep;
 | 
			
		||||
  RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
 | 
			
		||||
 
 | 
			
		||||
  std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
 | 
			
		||||
 | 
			
		||||
  mutable WilsonGaugeAction<Gimpl> SG;
 | 
			
		||||
 | 
			
		||||
  void evolve_step(typename Gimpl::GaugeField&) const;
 | 
			
		||||
  void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
 | 
			
		||||
  RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
 | 
			
		||||
  //Evolve the gauge field by 1 step and update tau
 | 
			
		||||
  void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
 | 
			
		||||
  //Evolve the gauge field by 1 step and update tau and the current time step eps
 | 
			
		||||
  void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  INHERIT_GIMPL_TYPES(Gimpl)
 | 
			
		||||
 | 
			
		||||
  void resetActions(){ functions.clear(); }
 | 
			
		||||
 | 
			
		||||
  void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
 | 
			
		||||
 | 
			
		||||
  //Set the class to perform the default measurements: 
 | 
			
		||||
  //the plaquette energy density every step
 | 
			
		||||
  //the plaquette topological charge every 'topq_meas_interval' steps
 | 
			
		||||
  //and output to stdout
 | 
			
		||||
  void setDefaultMeasurements(int topq_meas_interval = 1);
 | 
			
		||||
 | 
			
		||||
  explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
 | 
			
		||||
  Nstep(Nstep),
 | 
			
		||||
    epsilon(epsilon),
 | 
			
		||||
    measure_interval(interval),
 | 
			
		||||
    SG(WilsonGaugeAction<Gimpl>(3.0)) {
 | 
			
		||||
    // WilsonGaugeAction with beta 3.0
 | 
			
		||||
    assert(epsilon > 0.0);
 | 
			
		||||
    LogMessage();
 | 
			
		||||
    setDefaultMeasurements(interval);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void LogMessage() {
 | 
			
		||||
@@ -73,9 +90,29 @@ public:
 | 
			
		||||
    // undefined for WilsonFlow
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
 | 
			
		||||
  RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
 | 
			
		||||
  RealD energyDensityPlaquette(const GaugeField& U) const;
 | 
			
		||||
  void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
 | 
			
		||||
 | 
			
		||||
  //Compute t^2 <E(t)> for time t from the plaquette
 | 
			
		||||
  static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
 | 
			
		||||
 | 
			
		||||
  //Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
 | 
			
		||||
  //t is the Wilson flow time
 | 
			
		||||
  static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
 | 
			
		||||
  
 | 
			
		||||
  //Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
 | 
			
		||||
  //The smeared field is output as V
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
  //Version that does not return the smeared field
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
 | 
			
		||||
  //The smeared field is output as V
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
 | 
			
		||||
  //Version that does not return the smeared field
 | 
			
		||||
  std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -83,7 +120,7 @@ public:
 | 
			
		||||
// Implementations
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
  GaugeField tmp(U.Grid());
 | 
			
		||||
  SG.deriv(U, Z);
 | 
			
		||||
@@ -99,12 +136,13 @@ void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
  tau += epsilon;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
 | 
			
		||||
  if (maxTau - taus < epsilon){
 | 
			
		||||
    epsilon = maxTau-taus;
 | 
			
		||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
 | 
			
		||||
  if (maxTau - tau < eps){
 | 
			
		||||
    eps = maxTau-tau;
 | 
			
		||||
  }
 | 
			
		||||
  //std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
 | 
			
		||||
  GaugeField Z(U.Grid());
 | 
			
		||||
@@ -114,95 +152,151 @@ void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, Real
 | 
			
		||||
  SG.deriv(U, Z);
 | 
			
		||||
  Zprime = -Z;
 | 
			
		||||
  Z *= 0.25;                                  // Z0 = 1/4 * F(U)
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // U = W1 = exp(ep*Z0)*W0
 | 
			
		||||
 | 
			
		||||
  Z *= -17.0/8.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // -17/32*Z0 +Z1
 | 
			
		||||
  Zprime += 2.0*tmp;
 | 
			
		||||
  Z *= 8.0/9.0;                               // Z = -17/36*Z0 +8/9*Z1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // U_= W2 = exp(ep*Z)*W1
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  Z *= -4.0/3.0;
 | 
			
		||||
  SG.deriv(U, tmp); Z += tmp;                 // 4/3*(17/36*Z0 -8/9*Z1) +Z2
 | 
			
		||||
  Z *= 3.0/4.0;                               // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*epsilon);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
  Gimpl::update_field(Z, U, -2.0*eps);    // V(t+e) = exp(ep*Z)*W2
 | 
			
		||||
 | 
			
		||||
  // Ramos 
 | 
			
		||||
  Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
 | 
			
		||||
  Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
 | 
			
		||||
  // Compute distance as norm^2 of the difference
 | 
			
		||||
  GaugeField diffU = U - Uprime;
 | 
			
		||||
  RealD diff = norm2(diffU);
 | 
			
		||||
  // adjust integration step
 | 
			
		||||
    
 | 
			
		||||
  taus += epsilon;
 | 
			
		||||
  tau += eps;
 | 
			
		||||
  //std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
 | 
			
		||||
  eps = eps*0.95*std::pow(1e-4/diff,1./3.);
 | 
			
		||||
  //std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
 | 
			
		||||
  RealD td = tau(step);
 | 
			
		||||
  return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
 | 
			
		||||
  static WilsonGaugeAction<Gimpl> SG(3.0);
 | 
			
		||||
  return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
 | 
			
		||||
  typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
  typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  //E = 1/2 tr( F_munu F_munu )
 | 
			
		||||
  //However as  F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
 | 
			
		||||
  //F_01 F_02 F_03   F_12 F_13  F_23
 | 
			
		||||
  GaugeMat F(U.Grid());
 | 
			
		||||
  LatticeComplexD R(U.Grid());
 | 
			
		||||
  R = Zero();
 | 
			
		||||
  
 | 
			
		||||
  for(int mu=0;mu<3;mu++){
 | 
			
		||||
    for(int nu=mu+1;nu<4;nu++){
 | 
			
		||||
      WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
 | 
			
		||||
      R = R + trace(F*F);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  ComplexD out = sum(R);
 | 
			
		||||
  out = t*t*out / RealD(U.Grid()->gSites());
 | 
			
		||||
  return -real(out); //minus sign necessary for +ve energy
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
 | 
			
		||||
  std::vector<RealD> out;
 | 
			
		||||
  resetActions();
 | 
			
		||||
  addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){ 
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
 | 
			
		||||
      out.push_back( energyDensityPlaquette(t,U) );
 | 
			
		||||
    });      
 | 
			
		||||
  smear(V,U);
 | 
			
		||||
  return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
 | 
			
		||||
  return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
 | 
			
		||||
  GaugeField V(U);
 | 
			
		||||
  return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
 | 
			
		||||
  std::vector<RealD> out;
 | 
			
		||||
  resetActions();
 | 
			
		||||
  addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){ 
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
 | 
			
		||||
      out.push_back( energyDensityCloverleaf(t,U) );
 | 
			
		||||
    });      
 | 
			
		||||
  smear(V,U);
 | 
			
		||||
  return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
 | 
			
		||||
  GaugeField V(U);
 | 
			
		||||
  return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#define WF_TIMING 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
 | 
			
		||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
 | 
			
		||||
  out = in;
 | 
			
		||||
  for (unsigned int step = 1; step <= Nstep; step++) {
 | 
			
		||||
  RealD taus = 0.;
 | 
			
		||||
  for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
 | 
			
		||||
    auto start = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    evolve_step(out);
 | 
			
		||||
    evolve_step(out, taus);
 | 
			
		||||
    auto end = std::chrono::high_resolution_clock::now();
 | 
			
		||||
    std::chrono::duration<double> diff = end - start;
 | 
			
		||||
#ifdef WF_TIMING
 | 
			
		||||
    std::cout << "Time to evolve " << diff.count() << " s\n";
 | 
			
		||||
#endif
 | 
			
		||||
    std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
 | 
			
		||||
		  << step << "  " << tau(step) << "  " 
 | 
			
		||||
	      << energyDensityPlaquette(step,out) << std::endl;
 | 
			
		||||
    if( step % measure_interval == 0){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "
 | 
			
		||||
		<< step << "  " 
 | 
			
		||||
		<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    //Perform measurements
 | 
			
		||||
    for(auto const &meas : functions)
 | 
			
		||||
      if( step % meas.first == 0 ) meas.second(step,taus,out);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
 | 
			
		||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
 | 
			
		||||
  out = in;
 | 
			
		||||
  taus = epsilon;
 | 
			
		||||
  RealD taus = 0.;
 | 
			
		||||
  RealD eps = epsilon;
 | 
			
		||||
  unsigned int step = 0;
 | 
			
		||||
  do{
 | 
			
		||||
    step++;
 | 
			
		||||
    //std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
 | 
			
		||||
    evolve_step_adaptive(out, maxTau);
 | 
			
		||||
    std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
 | 
			
		||||
		  << step << "  " << taus << "  "
 | 
			
		||||
	      << energyDensityPlaquette(out) << std::endl;
 | 
			
		||||
    if( step % measure_interval == 0){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "
 | 
			
		||||
		<< step << "  " 
 | 
			
		||||
		<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    evolve_step_adaptive(out, taus, eps, maxTau);
 | 
			
		||||
    //Perform measurements
 | 
			
		||||
    for(auto const &meas : functions)
 | 
			
		||||
      if( step % meas.first == 0 ) meas.second(step,taus,out);
 | 
			
		||||
  } while (taus < maxTau);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class Gimpl>
 | 
			
		||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
 | 
			
		||||
  addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "  << step << "  " << t << "  " << energyDensityPlaquette(t,U) << std::endl;
 | 
			
		||||
    });
 | 
			
		||||
  addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
 | 
			
		||||
      std::cout << GridLogMessage << "[WilsonFlow] Top. charge           : "  << step << "  " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
 | 
			
		||||
    });
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -208,5 +208,46 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//Copy a single lane of a SIMD tensor type from one object to another
 | 
			
		||||
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class vobjOut, class vobjIn>
 | 
			
		||||
accelerator_inline 
 | 
			
		||||
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
 | 
			
		||||
{
 | 
			
		||||
  static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
 | 
			
		||||
 | 
			
		||||
  typedef typename vobjOut::vector_type ovector_type;  
 | 
			
		||||
  typedef typename vobjIn::vector_type ivector_type;  
 | 
			
		||||
  constexpr int owords=sizeof(vobjOut)/sizeof(ovector_type);
 | 
			
		||||
  constexpr int iwords=sizeof(vobjIn)/sizeof(ivector_type);
 | 
			
		||||
  static_assert( owords == iwords, "copyLane: Expected number of vector words in input and output objects to be equal" );
 | 
			
		||||
 | 
			
		||||
  typedef typename vobjOut::scalar_type oscalar_type;  
 | 
			
		||||
  typedef typename vobjIn::scalar_type iscalar_type;  
 | 
			
		||||
  typedef typename ExtractTypeMap<oscalar_type>::extract_type oextract_type;
 | 
			
		||||
  typedef typename ExtractTypeMap<iscalar_type>::extract_type iextract_type;
 | 
			
		||||
 | 
			
		||||
  typedef oextract_type * opointer;
 | 
			
		||||
  typedef iextract_type * ipointer;
 | 
			
		||||
 | 
			
		||||
  constexpr int oNsimd=ovector_type::Nsimd();
 | 
			
		||||
  constexpr int iNsimd=ivector_type::Nsimd();
 | 
			
		||||
 | 
			
		||||
  iscalar_type itmp;
 | 
			
		||||
  oscalar_type otmp;
 | 
			
		||||
 | 
			
		||||
  opointer __restrict__  op = (opointer)&vecOut;
 | 
			
		||||
  ipointer __restrict__  ip = (ipointer)&vecIn;
 | 
			
		||||
  for(int w=0;w<owords;w++){
 | 
			
		||||
    memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) );
 | 
			
		||||
    otmp = itmp; //potential precision change
 | 
			
		||||
    memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) );
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										918
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										918
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_40ID.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,918 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//Production binary for the 40ID G-parity ensemble
 | 
			
		||||
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EOFAparameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
 | 
			
		||||
				  OneFlavourRationalParams, rat_params,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  double, action_mixcg_inner_tolerance,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  double, md_mixcg_inner_tolerance);
 | 
			
		||||
 | 
			
		||||
  EOFAparameters() { 
 | 
			
		||||
    action_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    md_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
 | 
			
		||||
    rat_params.lo = 1.0;
 | 
			
		||||
    rat_params.hi = 25.0;
 | 
			
		||||
    rat_params.MaxIter  = 50000;
 | 
			
		||||
    rat_params.tolerance= 1.0e-9;
 | 
			
		||||
    rat_params.degree   = 14;
 | 
			
		||||
    rat_params.precision= 50;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
				  RealD, TrajectoryLength,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  std::vector<EOFAparameters>, eofa_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s,
 | 
			
		||||
				  RatQuoParameters, rat_quo_DSDR);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
    TrajectoryLength = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 50000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr, int action_or_md){
 | 
			
		||||
  assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
 | 
			
		||||
  
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
 | 
			
		||||
  PowerMethod<FermionFieldD> power_method;
 | 
			
		||||
  RealD lambda_max;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
 | 
			
		||||
 | 
			
		||||
  lambda_max = power_method(MdagM,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
 | 
			
		||||
  lambda_max = power_method(VdagV,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 0 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 1 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 50000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
	       GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
  gaussian(rng,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
  //Use the inbuilt check
 | 
			
		||||
  EOFA.refresh(latt, eta);
 | 
			
		||||
  EOFA.S(latt);
 | 
			
		||||
  std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
 | 
			
		||||
  EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Applications of M^{-1} cost the same as M for EOFA!
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
 | 
			
		||||
  EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    MixedPrecisionConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
						    Integer maxinnerit, 
 | 
			
		||||
						    Integer maxouterit, 
 | 
			
		||||
						    GridBase* _sp_grid4, 
 | 
			
		||||
						    GridBase* _sp_grid5, 
 | 
			
		||||
						    FermionOperatorF &_FermOpF,
 | 
			
		||||
						    FermionOperatorD &_FermOpD,
 | 
			
		||||
						    SchurOperatorF   &_LinOpF,
 | 
			
		||||
						    SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      InnerTolerance(tol), 
 | 
			
		||||
      MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5),
 | 
			
		||||
      OuterLoopNormMult(100.) 
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      MPCG.InnerTolerance = InnerTolerance;
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
 | 
			
		||||
    RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
								  RealD delta,
 | 
			
		||||
								  Integer maxit, 
 | 
			
		||||
								  GridBase* _sp_grid4, 
 | 
			
		||||
								  GridBase* _sp_grid5, 
 | 
			
		||||
								  FermionOperatorF &_FermOpF,
 | 
			
		||||
								  FermionOperatorD &_FermOpD,
 | 
			
		||||
								  SchurOperatorF   &_LinOpF,
 | 
			
		||||
								  SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      Delta(delta),
 | 
			
		||||
      MaxIterations(maxit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5)
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
      ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
 | 
			
		||||
  std::string serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  std::string parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
 | 
			
		||||
  int i=1;
 | 
			
		||||
  while(i < argc){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
      i+=2;
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
      i++;
 | 
			
		||||
    }else if(sarg == "--set_seeds"){ //set the rng seeds. Expects two vector args, e.g.  --set_seeds 1.2.3.4 5.6.7.8
 | 
			
		||||
      assert(i < argc-2);
 | 
			
		||||
      std::vector<int> tmp;
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+1],tmp);
 | 
			
		||||
      {
 | 
			
		||||
	std::stringstream ss;
 | 
			
		||||
	for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
 | 
			
		||||
	ss << tmp.back();
 | 
			
		||||
	serial_seeds = ss.str();
 | 
			
		||||
      }
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+2],tmp);
 | 
			
		||||
      {
 | 
			
		||||
	std::stringstream ss;
 | 
			
		||||
	for(int j=0;j<tmp.size()-1;j++) ss << tmp[j] << " ";
 | 
			
		||||
	ss << tmp.back();
 | 
			
		||||
	parallel_seeds = ss.str();
 | 
			
		||||
      }
 | 
			
		||||
      i+=3;
 | 
			
		||||
      std::cout << GridLogMessage << "Set serial seeds to " << serial_seeds << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Set parallel seeds to " << parallel_seeds << std::endl;
 | 
			
		||||
      
 | 
			
		||||
    }else{
 | 
			
		||||
      i++;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    {
 | 
			
		||||
      Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
      write(wr, "Params", user_params);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionD EOFAactionD;
 | 
			
		||||
  typedef GparityMobiusFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionF EOFAactionF;
 | 
			
		||||
  typedef GparityMobiusFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
 | 
			
		||||
  // typedef ConjugateHMCRunnerD<ForceGradient> HMCWrapper;
 | 
			
		||||
  // MD.name    = std::string("ForceGradient");
 | 
			
		||||
  
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = user_params.TrajectoryLength;
 | 
			
		||||
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = serial_seeds;
 | 
			
		||||
  RNGpar.parallel_seeds = parallel_seeds;
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
  //aiming for ainv=1.723 GeV
 | 
			
		||||
  //                                  me         bob
 | 
			
		||||
  //Estimated  a(ml+mres) [40ID] = 0.001305    0.00131
 | 
			
		||||
  //           a(mh+mres) [40ID] = 0.035910    0.03529
 | 
			
		||||
  //Estimate Ls=12, b+c=2  mres~0.0011
 | 
			
		||||
 | 
			
		||||
  //1/24/2022 initial mres measurement gives mres=0.001,  adjusted light quark mass to 0.0003 from 0.0001
 | 
			
		||||
  
 | 
			
		||||
  const int Ls      = 12;
 | 
			
		||||
  Real beta         = 1.848;
 | 
			
		||||
  Real light_mass   = 0.0003;
 | 
			
		||||
  Real strange_mass = 0.0342;
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD mobius_scale = 2.; //b+c
 | 
			
		||||
 | 
			
		||||
  RealD mob_bmc = 1.0;
 | 
			
		||||
  RealD mob_b = (mobius_scale + mob_bmc)/2.;
 | 
			
		||||
  RealD mob_c = (mobius_scale - mob_bmc)/2.;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage
 | 
			
		||||
	    << "Ensemble parameters:" << std::endl
 | 
			
		||||
	    << "Ls=" << Ls << std::endl
 | 
			
		||||
	    << "beta=" << beta << std::endl
 | 
			
		||||
	    << "light_mass=" << light_mass << std::endl
 | 
			
		||||
	    << "strange_mass=" << strange_mass << std::endl
 | 
			
		||||
	    << "mobius_scale=" << mobius_scale << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto UGridD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto UrbGridD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(UGridD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(UGridF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(2); //gauge
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light EOFA action
 | 
			
		||||
  // have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
 | 
			
		||||
  typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
 | 
			
		||||
  typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
 | 
			
		||||
  typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eofa_light_masses = { light_mass ,  0.004,   0.016,   0.064,   0.256    };
 | 
			
		||||
  std::vector<RealD> eofa_pv_masses =    { 0.004       , 0.016,   0.064,   0.256,   1.0      };
 | 
			
		||||
  int n_light_hsb = 5;
 | 
			
		||||
  assert(user_params.eofa_l.size() == n_light_hsb);
 | 
			
		||||
  
 | 
			
		||||
  EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
    RealD iml = eofa_light_masses[i];
 | 
			
		||||
    RealD ipv = eofa_pv_masses[i];
 | 
			
		||||
 | 
			
		||||
    EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
 | 
			
		||||
    EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
 | 
			
		||||
    EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
 | 
			
		||||
    
 | 
			
		||||
    EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
 | 
			
		||||
    EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
    //Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance  as Delta for now
 | 
			
		||||
    EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
    EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 50000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
 | 
			
		||||
							*LopD, *RopD, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*DerivMCG_L, *DerivMCG_R, 
 | 
			
		||||
							user_params.eofa_l[i].rat_params, true);
 | 
			
		||||
    EOFA_pfactions[i] = EOFA;
 | 
			
		||||
    Level1.push_back(EOFA);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 50000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // DSDR action
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  RealD dsdr_mass=-1.8;   
 | 
			
		||||
  //Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
 | 
			
		||||
  RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
 | 
			
		||||
  RealD dsdr_epsilon_b = 0.5; 
 | 
			
		||||
  GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
 | 
			
		||||
  GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
 
 | 
			
		||||
  RationalActionParams rat_act_params_DSDR;
 | 
			
		||||
  rat_act_params_DSDR.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_DSDR.precision= 60;
 | 
			
		||||
  rat_act_params_DSDR.MaxIter  = 50000;
 | 
			
		||||
  user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
 | 
			
		||||
  std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
 | 
			
		||||
  Level2.push_back(&Quotient_DSDR);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool 
 | 
			
		||||
    tune_rhmc_s=false, eigenrange_s=false, 
 | 
			
		||||
    tune_rhmc_DSDR=false, eigenrange_DSDR=false, 
 | 
			
		||||
    check_eofa=false, 
 | 
			
		||||
    upper_bound_eofa=false, lower_bound_eofa(false);
 | 
			
		||||
 | 
			
		||||
  std::string lanc_params_s;
 | 
			
		||||
  std::string lanc_params_DSDR;
 | 
			
		||||
  int tune_rhmc_s_action_or_md;
 | 
			
		||||
  int tune_rhmc_DSDR_action_or_md;
 | 
			
		||||
  int eofa_which_hsb;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_s=true;
 | 
			
		||||
      tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--tune_rhmc_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_DSDR=true;
 | 
			
		||||
      tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_DSDR=true;
 | 
			
		||||
      lanc_params_DSDR = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--check_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      check_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
 | 
			
		||||
      assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--upper_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      upper_bound_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--lower_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      lower_bound_eofa = true;      
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
 | 
			
		||||
    std::cout << GridLogMessage << "Running checks" << std::endl;
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
    if(check_eofa){
 | 
			
		||||
      if(eofa_which_hsb >= 0){
 | 
			
		||||
	std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
	checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
	  std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	  checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	  std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }	  
 | 
			
		||||
    if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange",  tune_rhmc_s_action_or_md);
 | 
			
		||||
    if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
							
								
								
									
										873
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										873
									
								
								HMC/Mobius2p1fIDSDRGparityEOFA_48ID.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,873 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./HMC/Mobius2p1fIDSDRGparityEOFA.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2016
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//Production binary for the 40ID G-parity ensemble
 | 
			
		||||
 | 
			
		||||
struct RatQuoParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(RatQuoParameters,
 | 
			
		||||
				  double, bnd_lo,
 | 
			
		||||
				  double, bnd_hi,
 | 
			
		||||
				  Integer, action_degree,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  Integer, md_degree,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  Integer, reliable_update_freq,
 | 
			
		||||
				  Integer, bnd_check_freq);
 | 
			
		||||
  RatQuoParameters() { 
 | 
			
		||||
    bnd_lo = 1e-2;
 | 
			
		||||
    bnd_hi = 30;
 | 
			
		||||
    action_degree = 10;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_degree = 10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    bnd_check_freq = 20;
 | 
			
		||||
    reliable_update_freq = 50;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void Export(RationalActionParams &into) const{
 | 
			
		||||
    into.lo = bnd_lo;
 | 
			
		||||
    into.hi = bnd_hi;
 | 
			
		||||
    into.action_degree = action_degree;
 | 
			
		||||
    into.action_tolerance = action_tolerance;
 | 
			
		||||
    into.md_degree = md_degree;
 | 
			
		||||
    into.md_tolerance = md_tolerance;
 | 
			
		||||
    into.BoundsCheckFreq = bnd_check_freq;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EOFAparameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EOFAparameters,
 | 
			
		||||
				  OneFlavourRationalParams, rat_params,
 | 
			
		||||
				  double, action_tolerance,
 | 
			
		||||
				  double, action_mixcg_inner_tolerance,
 | 
			
		||||
				  double, md_tolerance,
 | 
			
		||||
				  double, md_mixcg_inner_tolerance);
 | 
			
		||||
 | 
			
		||||
  EOFAparameters() { 
 | 
			
		||||
    action_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
    action_tolerance = 1e-10;
 | 
			
		||||
    md_tolerance = 1e-8;
 | 
			
		||||
    md_mixcg_inner_tolerance = 1e-8;
 | 
			
		||||
 | 
			
		||||
    rat_params.lo = 1.0;
 | 
			
		||||
    rat_params.hi = 25.0;
 | 
			
		||||
    rat_params.MaxIter  = 10000;
 | 
			
		||||
    rat_params.tolerance= 1.0e-9;
 | 
			
		||||
    rat_params.degree   = 14;
 | 
			
		||||
    rat_params.precision= 50;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct EvolParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(EvolParameters,
 | 
			
		||||
                                  Integer, StartTrajectory,
 | 
			
		||||
                                  Integer, Trajectories,
 | 
			
		||||
				  Integer, SaveInterval,
 | 
			
		||||
				  Integer, Steps,
 | 
			
		||||
				  RealD, TrajectoryLength,
 | 
			
		||||
                                  bool, MetropolisTest,
 | 
			
		||||
				  std::string, StartingType,
 | 
			
		||||
				  std::vector<Integer>, GparityDirs,
 | 
			
		||||
				  std::vector<EOFAparameters>, eofa_l,
 | 
			
		||||
				  RatQuoParameters, rat_quo_s,
 | 
			
		||||
				  RatQuoParameters, rat_quo_DSDR);
 | 
			
		||||
 | 
			
		||||
  EvolParameters() {
 | 
			
		||||
    //For initial thermalization; afterwards user should switch Metropolis on and use StartingType=CheckpointStart
 | 
			
		||||
    MetropolisTest    = false;
 | 
			
		||||
    StartTrajectory   = 0;
 | 
			
		||||
    Trajectories      = 50;
 | 
			
		||||
    SaveInterval = 5;
 | 
			
		||||
    StartingType      = "ColdStart";
 | 
			
		||||
    GparityDirs.resize(3, 1); //1 for G-parity, 0 for periodic
 | 
			
		||||
    Steps = 5;
 | 
			
		||||
    TrajectoryLength = 1.0;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
bool fileExists(const std::string &fn){
 | 
			
		||||
  std::ifstream f(fn);
 | 
			
		||||
  return f.good();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
struct LanczosParameters: Serializable {
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
 | 
			
		||||
				  double, alpha,
 | 
			
		||||
				  double, beta,
 | 
			
		||||
				  double, mu,
 | 
			
		||||
				  int, ord,
 | 
			
		||||
				  int, n_stop,
 | 
			
		||||
				  int, n_want,
 | 
			
		||||
				  int, n_use,
 | 
			
		||||
				  double, tolerance);
 | 
			
		||||
 | 
			
		||||
  LanczosParameters() {
 | 
			
		||||
    alpha = 35;
 | 
			
		||||
    beta = 5;
 | 
			
		||||
    mu = 0;
 | 
			
		||||
    ord = 100;
 | 
			
		||||
    n_stop = 10;
 | 
			
		||||
    n_want = 10;
 | 
			
		||||
    n_use = 15;
 | 
			
		||||
    tolerance = 1e-6;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD>
 | 
			
		||||
void computeEigenvalues(std::string param_file,
 | 
			
		||||
			GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
			FermionActionD &action, GridParallelRNG &rng){
 | 
			
		||||
  
 | 
			
		||||
  LanczosParameters params;
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "LanczosParameters", params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
    write(wr, "LanczosParameters", params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  action.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<FermionActionD, FermionFieldD> hermop(action);
 | 
			
		||||
  PlainHermOp<FermionFieldD> hermop_wrap(hermop);
 | 
			
		||||
  //ChebyshevLanczos<FermionFieldD> Cheb(params.alpha, params.beta, params.mu, params.ord);
 | 
			
		||||
  assert(params.mu == 0.0);
 | 
			
		||||
 | 
			
		||||
  Chebyshev<FermionFieldD> Cheb(params.beta*params.beta, params.alpha*params.alpha, params.ord+1);
 | 
			
		||||
  FunctionHermOp<FermionFieldD> Cheb_wrap(Cheb, hermop);
 | 
			
		||||
 | 
			
		||||
  std::cout << "IRL: alpha=" << params.alpha << " beta=" << params.beta << " mu=" << params.mu << " ord=" << params.ord << std::endl;
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionFieldD> IRL(Cheb_wrap, hermop_wrap, params.n_stop, params.n_want, params.n_use, params.tolerance, 10000);
 | 
			
		||||
 | 
			
		||||
  std::vector<RealD> eval(params.n_use);
 | 
			
		||||
  std::vector<FermionFieldD> evec(params.n_use, rbGrid);
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval, evec, gauss_o, Nconv);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Eigenvalues:" << std::endl;
 | 
			
		||||
  for(int i=0;i<params.n_want;i++){
 | 
			
		||||
    std::cout << i << " " << eval[i] << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Check the quality of the RHMC approx
 | 
			
		||||
//action_or_md toggles checking the action (0), MD (1) or both (2) setups
 | 
			
		||||
template<typename FermionActionD, typename FermionFieldD, typename RHMCtype>
 | 
			
		||||
void checkRHMC(GridCartesian* Grid, GridRedBlackCartesian* rbGrid, const LatticeGaugeFieldD &latt,  //expect lattice to have been initialized to something
 | 
			
		||||
	       FermionActionD &numOp, FermionActionD &denOp, RHMCtype &rhmc, GridParallelRNG &rng,
 | 
			
		||||
	       int inv_pow, const std::string &quark_descr, int action_or_md){
 | 
			
		||||
  assert(action_or_md == 0 || action_or_md == 1 || action_or_md == 2);
 | 
			
		||||
  
 | 
			
		||||
  FermionFieldD gauss_o(rbGrid);
 | 
			
		||||
  FermionFieldD gauss(Grid);
 | 
			
		||||
  gaussian(rng, gauss);
 | 
			
		||||
  pickCheckerboard(Odd, gauss_o, gauss);
 | 
			
		||||
 | 
			
		||||
  numOp.ImportGauge(latt);
 | 
			
		||||
  denOp.ImportGauge(latt);
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> MdagM(numOp);
 | 
			
		||||
  SchurDifferentiableOperator<FermionImplPolicyD> VdagV(denOp);
 | 
			
		||||
 | 
			
		||||
  PowerMethod<FermionFieldD> power_method;
 | 
			
		||||
  RealD lambda_max;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " numerator" << std::endl;
 | 
			
		||||
 | 
			
		||||
  lambda_max = power_method(MdagM,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << "Starting: Get RHMC high bound approx for " << quark_descr << " denominator" << std::endl;
 | 
			
		||||
  lambda_max = power_method(VdagV,gauss_o);
 | 
			
		||||
  std::cout << GridLogMessage << "Got lambda_max "<<lambda_max<<std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 0 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerAction); //use large tolerance to prevent exit on fail; we are trying to tune here!
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerAction);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC action approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "-------------------------------------------------------------------------------" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if(action_or_md == 1 || action_or_md == 2){
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegPowerMD); 
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, MdagM,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark numerator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << inv_pow << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << "Starting: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
    InversePowerBoundsCheck(2*inv_pow, 10000, 1e16, VdagV,gauss_o, rhmc.ApproxNegHalfPowerMD);
 | 
			
		||||
    std::cout << "Finished: Checking quality of RHMC MD approx for " << quark_descr << " quark denominator and power -1/" << 2*inv_pow << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void checkEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
	       GridCartesian* FGrid, GridParallelRNG &rng, const LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA action/bounds check" << std::endl;
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  RealD scale = std::sqrt(0.5);
 | 
			
		||||
  gaussian(rng,eta); eta = eta * scale;
 | 
			
		||||
 | 
			
		||||
  //Use the inbuilt check
 | 
			
		||||
  EOFA.refresh(latt, eta);
 | 
			
		||||
  EOFA.S(latt);
 | 
			
		||||
  std::cout << GridLogMessage << "Finished EOFA upper action/bounds check" << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAlinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAlinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.Meofa(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void upperBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA upper bound compute" << std::endl;
 | 
			
		||||
  EOFAlinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Upper bound of EOFA operator " << lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Applications of M^{-1} cost the same as M for EOFA!
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
class EOFAinvLinop: public LinearOperatorBase<typename FermionImplPolicy::FermionField>{
 | 
			
		||||
  ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA;
 | 
			
		||||
  LatticeGaugeFieldD &U;
 | 
			
		||||
public:
 | 
			
		||||
  EOFAinvLinop(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA, LatticeGaugeFieldD &U): EOFA(EOFA), U(U){}
 | 
			
		||||
 | 
			
		||||
  typedef typename FermionImplPolicy::FermionField Field;
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); } 
 | 
			
		||||
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
 | 
			
		||||
  void HermOp(const Field &in, Field &out){ EOFA.MeofaInv(U, in, out); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<typename FermionImplPolicy>
 | 
			
		||||
void lowerBoundEOFA(ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> &EOFA,
 | 
			
		||||
		    GridCartesian* FGrid, GridParallelRNG &rng, LatticeGaugeFieldD &latt){
 | 
			
		||||
  std::cout << GridLogMessage << "Starting EOFA lower bound compute using power method on M^{-1}. Inverse of highest eigenvalue is the lowest eigenvalue of M" << std::endl;
 | 
			
		||||
  EOFAinvLinop<FermionImplPolicy> linop(EOFA, latt);
 | 
			
		||||
  typename FermionImplPolicy::FermionField eta(FGrid);
 | 
			
		||||
  gaussian(rng,eta);
 | 
			
		||||
  PowerMethod<typename FermionImplPolicy::FermionField> power_method;
 | 
			
		||||
  auto lambda_max = power_method(linop,eta);
 | 
			
		||||
  std::cout << GridLogMessage << "Lower bound of EOFA operator " << 1./lambda_max << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD   Tolerance;
 | 
			
		||||
    RealD   InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
 | 
			
		||||
    Integer MaxInnerIterations;
 | 
			
		||||
    Integer MaxOuterIterations;
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
    RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
 | 
			
		||||
    MixedPrecisionConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
						    Integer maxinnerit, 
 | 
			
		||||
						    Integer maxouterit, 
 | 
			
		||||
						    GridBase* _sp_grid4, 
 | 
			
		||||
						    GridBase* _sp_grid5, 
 | 
			
		||||
						    FermionOperatorF &_FermOpF,
 | 
			
		||||
						    FermionOperatorD &_FermOpD,
 | 
			
		||||
						    SchurOperatorF   &_LinOpF,
 | 
			
		||||
						    SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      InnerTolerance(tol), 
 | 
			
		||||
      MaxInnerIterations(maxinnerit), 
 | 
			
		||||
      MaxOuterIterations(maxouterit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5),
 | 
			
		||||
      OuterLoopNormMult(100.) 
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision CG wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      MixedPrecisionConjugateGradient<FieldD,FieldF> MPCG(Tolerance,MaxInnerIterations,MaxOuterIterations,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      MPCG.InnerTolerance = InnerTolerance;
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template<class FermionOperatorD, class FermionOperatorF, class SchurOperatorD, class  SchurOperatorF> 
 | 
			
		||||
  class MixedPrecisionReliableUpdateConjugateGradientOperatorFunction : public OperatorFunction<typename FermionOperatorD::FermionField> {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef typename FermionOperatorD::FermionField FieldD;
 | 
			
		||||
    typedef typename FermionOperatorF::FermionField FieldF;
 | 
			
		||||
 | 
			
		||||
    using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
 | 
			
		||||
    RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
    GridBase* SinglePrecGrid4; //Grid for single-precision fields
 | 
			
		||||
    GridBase* SinglePrecGrid5; //Grid for single-precision fields
 | 
			
		||||
 | 
			
		||||
    FermionOperatorF &FermOpF;
 | 
			
		||||
    FermionOperatorD &FermOpD;;
 | 
			
		||||
    SchurOperatorF &LinOpF;
 | 
			
		||||
    SchurOperatorD &LinOpD;
 | 
			
		||||
    
 | 
			
		||||
    MixedPrecisionReliableUpdateConjugateGradientOperatorFunction(RealD tol, 
 | 
			
		||||
								  RealD delta,
 | 
			
		||||
								  Integer maxit, 
 | 
			
		||||
								  GridBase* _sp_grid4, 
 | 
			
		||||
								  GridBase* _sp_grid5, 
 | 
			
		||||
								  FermionOperatorF &_FermOpF,
 | 
			
		||||
								  FermionOperatorD &_FermOpD,
 | 
			
		||||
								  SchurOperatorF   &_LinOpF,
 | 
			
		||||
								  SchurOperatorD   &_LinOpD): 
 | 
			
		||||
      LinOpF(_LinOpF),
 | 
			
		||||
      LinOpD(_LinOpD),
 | 
			
		||||
      FermOpF(_FermOpF),
 | 
			
		||||
      FermOpD(_FermOpD),
 | 
			
		||||
      Tolerance(tol), 
 | 
			
		||||
      Delta(delta),
 | 
			
		||||
      MaxIterations(maxit), 
 | 
			
		||||
      SinglePrecGrid4(_sp_grid4),
 | 
			
		||||
      SinglePrecGrid5(_sp_grid5)
 | 
			
		||||
    { 
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    void operator()(LinearOperatorBase<FieldD> &LinOpU, const FieldD &src, FieldD &psi) {
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << " Mixed precision reliable CG update wrapper operator() "<<std::endl;
 | 
			
		||||
 | 
			
		||||
      SchurOperatorD * SchurOpU = static_cast<SchurOperatorD *>(&LinOpU);
 | 
			
		||||
      assert(&(SchurOpU->_Mat)==&(LinOpD._Mat));
 | 
			
		||||
 | 
			
		||||
      precisionChange(FermOpF.Umu, FermOpD.Umu);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,FermOpF.UmuEven,FermOpF.Umu);
 | 
			
		||||
      pickCheckerboard(Odd ,FermOpF.UmuOdd ,FermOpF.Umu);
 | 
			
		||||
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Make a mixed precision conjugate gradient
 | 
			
		||||
      ////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
      ConjugateGradientReliableUpdate<FieldD,FieldF> MPCG(Tolerance,MaxIterations,Delta,SinglePrecGrid5,LinOpF,LinOpD);
 | 
			
		||||
      std::cout << GridLogMessage << "Calling mixed precision reliable update Conjugate Gradient" <<std::endl;
 | 
			
		||||
      MPCG(src,psi);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv) {
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
  // here make a routine to print all the relevant information on the run
 | 
			
		||||
  std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::string param_file = "params.xml";
 | 
			
		||||
  bool file_load_check = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--param_file"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      param_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_check"){ //check the fields load correctly and pass checksum/plaquette repro
 | 
			
		||||
      file_load_check = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Read the user parameters
 | 
			
		||||
  EvolParameters user_params;
 | 
			
		||||
  
 | 
			
		||||
  if(fileExists(param_file)){
 | 
			
		||||
    std::cout << GridLogMessage << " Reading " << param_file << std::endl;
 | 
			
		||||
    Grid::XmlReader rd(param_file);
 | 
			
		||||
    read(rd, "Params", user_params);
 | 
			
		||||
  }else if(!GlobalSharedMemory::WorldRank){
 | 
			
		||||
    std::cout << GridLogMessage << " File " << param_file << " does not exist" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " Writing xml template to " << param_file << ".templ" << std::endl;
 | 
			
		||||
    {
 | 
			
		||||
      Grid::XmlWriter wr(param_file + ".templ");
 | 
			
		||||
      write(wr, "Params", user_params);
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Check the parameters
 | 
			
		||||
  if(user_params.GparityDirs.size() != Nd-1){
 | 
			
		||||
    std::cerr << "Error in input parameters: expect GparityDirs to have size = " << Nd-1 << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<Nd-1;i++)
 | 
			
		||||
    if(user_params.GparityDirs[i] != 0 && user_params.GparityDirs[i] != 1){
 | 
			
		||||
      std::cerr << "Error in input parameters: expect GparityDirs values to be 0 (periodic) or 1 (G-parity)" << std::endl;
 | 
			
		||||
      exit(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionD EOFAactionD;
 | 
			
		||||
  typedef GparityMobiusFermionD FermionActionD;
 | 
			
		||||
  typedef typename FermionActionD::Impl_t FermionImplPolicyD;
 | 
			
		||||
  typedef typename FermionActionD::FermionField FermionFieldD;
 | 
			
		||||
 | 
			
		||||
  typedef GparityMobiusEOFAFermionF EOFAactionF;
 | 
			
		||||
  typedef GparityMobiusFermionF FermionActionF;
 | 
			
		||||
  typedef typename FermionActionF::Impl_t FermionImplPolicyF;
 | 
			
		||||
  typedef typename FermionActionF::FermionField FermionFieldF;
 | 
			
		||||
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<FermionImplPolicyD,FermionImplPolicyF> MixedPrecRHMC;
 | 
			
		||||
  typedef GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicyD> DoublePrecRHMC;
 | 
			
		||||
 | 
			
		||||
  //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
 | 
			
		||||
  IntegratorParameters MD;
 | 
			
		||||
  typedef ConjugateHMCRunnerD<MinimumNorm2> HMCWrapper; //NB: This is the "Omelyan integrator"
 | 
			
		||||
  typedef HMCWrapper::ImplPolicy GaugeImplPolicy;
 | 
			
		||||
  MD.name    = std::string("MinimumNorm2");
 | 
			
		||||
  MD.MDsteps = user_params.Steps;
 | 
			
		||||
  MD.trajL   = user_params.TrajectoryLength;
 | 
			
		||||
 | 
			
		||||
  HMCparameters HMCparams;
 | 
			
		||||
  HMCparams.StartTrajectory  = user_params.StartTrajectory;
 | 
			
		||||
  HMCparams.Trajectories     = user_params.Trajectories;
 | 
			
		||||
  HMCparams.NoMetropolisUntil= 0;
 | 
			
		||||
  HMCparams.StartingType     = user_params.StartingType;
 | 
			
		||||
  HMCparams.MetropolisTest = user_params.MetropolisTest;
 | 
			
		||||
  HMCparams.MD = MD;
 | 
			
		||||
  HMCWrapper TheHMC(HMCparams);
 | 
			
		||||
 | 
			
		||||
  // Grid from the command line arguments --grid and --mpi
 | 
			
		||||
  TheHMC.Resources.AddFourDimGrid("gauge"); // use default simd lanes decomposition
 | 
			
		||||
 | 
			
		||||
  CheckpointerParameters CPparams;
 | 
			
		||||
  CPparams.config_prefix = "ckpoint_lat";
 | 
			
		||||
  CPparams.rng_prefix    = "ckpoint_rng";
 | 
			
		||||
  CPparams.saveInterval  = user_params.SaveInterval;
 | 
			
		||||
  CPparams.format        = "IEEE64BIG";
 | 
			
		||||
  TheHMC.Resources.LoadNerscCheckpointer(CPparams);
 | 
			
		||||
 | 
			
		||||
  //Note that checkpointing saves the RNG state so that this initialization is required only for the very first configuration
 | 
			
		||||
  RNGModuleParameters RNGpar;
 | 
			
		||||
  RNGpar.serial_seeds = "1 2 3 4 5";
 | 
			
		||||
  RNGpar.parallel_seeds = "6 7 8 9 10";
 | 
			
		||||
  TheHMC.Resources.SetRNGSeeds(RNGpar);
 | 
			
		||||
 | 
			
		||||
  typedef PlaquetteMod<GaugeImplPolicy> PlaqObs;
 | 
			
		||||
  TheHMC.Resources.AddObservable<PlaqObs>();
 | 
			
		||||
  //////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  //aiming for ainv=2.068             me          Bob
 | 
			
		||||
  //Estimated  a(ml+mres) [48ID] = 0.001048    0.00104 
 | 
			
		||||
  //           a(mh+mres) [48ID] = 0.028847    0.02805
 | 
			
		||||
  //Estimate Ls=12, b+c=2  mres~0.0003
 | 
			
		||||
 | 
			
		||||
  const int Ls      = 12;
 | 
			
		||||
  Real beta         = 1.946;
 | 
			
		||||
  Real light_mass   = 0.00074;   //0.00104 - mres_approx;
 | 
			
		||||
  Real strange_mass = 0.02775;    //0.02805 - mres_approx
 | 
			
		||||
  Real pv_mass      = 1.0;
 | 
			
		||||
  RealD M5  = 1.8;
 | 
			
		||||
  RealD mobius_scale = 2.; //b+c
 | 
			
		||||
 | 
			
		||||
  RealD mob_bmc = 1.0;
 | 
			
		||||
  RealD mob_b = (mobius_scale + mob_bmc)/2.;
 | 
			
		||||
  RealD mob_c = (mobius_scale - mob_bmc)/2.;
 | 
			
		||||
 | 
			
		||||
  //Setup the Grids
 | 
			
		||||
  auto UGridD   = TheHMC.Resources.GetCartesian();
 | 
			
		||||
  auto UrbGridD = TheHMC.Resources.GetRBCartesian();
 | 
			
		||||
  auto FGridD     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridD);
 | 
			
		||||
  auto FrbGridD   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridD);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
 | 
			
		||||
  auto FGridF     = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
 | 
			
		||||
  auto FrbGridF   = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
 | 
			
		||||
 | 
			
		||||
  ConjugateIwasakiGaugeActionD GaugeAction(beta);
 | 
			
		||||
 | 
			
		||||
  // temporarily need a gauge field
 | 
			
		||||
  LatticeGaugeFieldD Ud(UGridD);
 | 
			
		||||
  LatticeGaugeFieldF Uf(UGridF);
 | 
			
		||||
 
 | 
			
		||||
  //Setup the BCs
 | 
			
		||||
  FermionActionD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = user_params.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
 | 
			
		||||
  std::vector<int> dirs4(Nd);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) dirs4[i] = user_params.GparityDirs[i];
 | 
			
		||||
  dirs4[Nd-1] = 0; //periodic gauge BC in time
 | 
			
		||||
 | 
			
		||||
  GaugeImplPolicy::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  //Run optional gauge field checksum checker and exit
 | 
			
		||||
  if(file_load_check){
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Collect actions
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level1(1); //light quark + strange quark
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level2(4); //DSDR
 | 
			
		||||
  ActionLevel<HMCWrapper::Field> Level3(2); //gauge
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Light EOFA action
 | 
			
		||||
  // have to be careful with the parameters, cf. Test_dwf_gpforce_eofa.cc
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionD,FermionFieldD> EOFAschuropD;
 | 
			
		||||
  typedef SchurDiagMooeeOperator<EOFAactionF,FermionFieldF> EOFAschuropF;
 | 
			
		||||
  typedef ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction<FermionImplPolicyD, FermionImplPolicyF> EOFAmixPrecPFaction;
 | 
			
		||||
  typedef MixedPrecisionConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_mxCG;
 | 
			
		||||
  typedef MixedPrecisionReliableUpdateConjugateGradientOperatorFunction<EOFAactionD, EOFAactionF, EOFAschuropD, EOFAschuropF> EOFA_relupCG;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<RealD> eofa_light_masses = { light_mass ,  0.004,   0.016,   0.064,   0.256    };
 | 
			
		||||
  std::vector<RealD> eofa_pv_masses =    { 0.004       , 0.016,   0.064,   0.256,   1.0      };
 | 
			
		||||
  int n_light_hsb = 5;
 | 
			
		||||
  assert(user_params.eofa_l.size() == n_light_hsb);
 | 
			
		||||
  
 | 
			
		||||
  EOFAmixPrecPFaction* EOFA_pfactions[n_light_hsb];
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
    RealD iml = eofa_light_masses[i];
 | 
			
		||||
    RealD ipv = eofa_pv_masses[i];
 | 
			
		||||
 | 
			
		||||
    EOFAactionD* LopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* LopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, iml, iml, ipv, 0.0, -1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionD* RopD = new EOFAactionD(Ud, *FGridD, *FrbGridD, *UGridD, *UrbGridD, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
    EOFAactionF* RopF = new EOFAactionF(Uf, *FGridF, *FrbGridF, *UGridF, *UrbGridF, ipv, iml, ipv, -1.0, 1, M5, mob_b, mob_c, Params);
 | 
			
		||||
 | 
			
		||||
    EOFAschuropD* linopL_D = new EOFAschuropD(*LopD);
 | 
			
		||||
    EOFAschuropD* linopR_D = new EOFAschuropD(*RopD);
 | 
			
		||||
    
 | 
			
		||||
    EOFAschuropF* linopL_F = new EOFAschuropF(*LopF);
 | 
			
		||||
    EOFAschuropF* linopR_F = new EOFAschuropF(*RopF);
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
    //Note reusing user_params.eofa_l.action(|md)_mixcg_inner_tolerance  as Delta for now
 | 
			
		||||
    EOFA_relupCG* ActionMCG_L = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* ActionMCG_R = new EOFA_relupCG(user_params.eofa_l[i].action_tolerance, user_params.eofa_l[i].action_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
    EOFA_relupCG* DerivMCG_L = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    EOFA_relupCG* DerivMCG_R = new EOFA_relupCG(user_params.eofa_l[i].md_tolerance, user_params.eofa_l[i].md_mixcg_inner_tolerance, 50000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* ActionMCG_L = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    ActionMCG_L->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* ActionMCG_R = new EOFA_mxCG(user_params.eofa_l[i].action_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    ActionMCG_R->InnerTolerance = user_params.eofa_l[i].action_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_L = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *LopF, *LopD, *linopL_F, *linopL_D);
 | 
			
		||||
    DerivMCG_L->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    EOFA_mxCG* DerivMCG_R = new EOFA_mxCG(user_params.eofa_l[i].md_tolerance, 10000, 1000, UGridF, FrbGridF, *RopF, *RopD, *linopR_F, *linopR_D);
 | 
			
		||||
    DerivMCG_R->InnerTolerance = user_params.eofa_l[i].md_mixcg_inner_tolerance;
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA action solver action tolerance outer=" << ActionMCG_L->Tolerance << " inner=" << ActionMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Set EOFA MD solver tolerance outer=" << DerivMCG_L->Tolerance << " inner=" << DerivMCG_L->InnerTolerance << std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    EOFAmixPrecPFaction* EOFA = new EOFAmixPrecPFaction(*LopF, *RopF,
 | 
			
		||||
							*LopD, *RopD, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*ActionMCG_L, *ActionMCG_R, 
 | 
			
		||||
							*DerivMCG_L, *DerivMCG_R, 
 | 
			
		||||
							user_params.eofa_l[i].rat_params, true);
 | 
			
		||||
    EOFA_pfactions[i] = EOFA;
 | 
			
		||||
    Level1.push_back(EOFA);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // Strange action
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  FermionActionD Numerator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionD Denominator_sD(Ud,*FGridD,*FrbGridD,*UGridD,*UrbGridD, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  FermionActionF Numerator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF,strange_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
  FermionActionF Denominator_sF(Uf,*FGridF,*FrbGridF,*UGridF,*UrbGridF, pv_mass,M5,mob_b,mob_c,Params);
 | 
			
		||||
 | 
			
		||||
  RationalActionParams rat_act_params_s;
 | 
			
		||||
  rat_act_params_s.inv_pow  = 4; // (M^dag M)^{1/4}
 | 
			
		||||
  rat_act_params_s.precision= 60;
 | 
			
		||||
  rat_act_params_s.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_s.Export(rat_act_params_s);
 | 
			
		||||
  std::cout << GridLogMessage << " Heavy quark bounds check every " << rat_act_params_s.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //MixedPrecRHMC Quotient_s(Denominator_sD, Numerator_sD, Denominator_sF, Numerator_sF, rat_act_params_s, user_params.rat_quo_s.reliable_update_freq); 
 | 
			
		||||
  DoublePrecRHMC Quotient_s(Denominator_sD, Numerator_sD, rat_act_params_s); 
 | 
			
		||||
  Level1.push_back(&Quotient_s);  
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  // DSDR action
 | 
			
		||||
  ///////////////////////////////////
 | 
			
		||||
  RealD dsdr_mass=-1.8;   
 | 
			
		||||
  //Use same DSDR twists as https://arxiv.org/pdf/1208.4412.pdf
 | 
			
		||||
  RealD dsdr_epsilon_f = 0.02; //numerator (in determinant)
 | 
			
		||||
  RealD dsdr_epsilon_b = 0.5; 
 | 
			
		||||
  GparityWilsonTMFermionD Numerator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Numerator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_f, Params);
 | 
			
		||||
 | 
			
		||||
  GparityWilsonTMFermionD Denominator_DSDR_D(Ud, *UGridD, *UrbGridD, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
  GparityWilsonTMFermionF Denominator_DSDR_F(Uf, *UGridF, *UrbGridF, dsdr_mass, dsdr_epsilon_b, Params);
 | 
			
		||||
 
 | 
			
		||||
  RationalActionParams rat_act_params_DSDR;
 | 
			
		||||
  rat_act_params_DSDR.inv_pow  = 2; // (M^dag M)^{1/2}
 | 
			
		||||
  rat_act_params_DSDR.precision= 60;
 | 
			
		||||
  rat_act_params_DSDR.MaxIter  = 10000;
 | 
			
		||||
  user_params.rat_quo_DSDR.Export(rat_act_params_DSDR);
 | 
			
		||||
  std::cout << GridLogMessage << "DSDR quark bounds check every " << rat_act_params_DSDR.BoundsCheckFreq << " trajectories (avg)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  DoublePrecRHMC Quotient_DSDR(Denominator_DSDR_D, Numerator_DSDR_D, rat_act_params_DSDR);
 | 
			
		||||
  Level2.push_back(&Quotient_DSDR);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  // Gauge action
 | 
			
		||||
  /////////////////////////////////////////////////////////////
 | 
			
		||||
  Level3.push_back(&GaugeAction);
 | 
			
		||||
 | 
			
		||||
  TheHMC.TheAction.push_back(Level1);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level2);
 | 
			
		||||
  TheHMC.TheAction.push_back(Level3);
 | 
			
		||||
  std::cout << GridLogMessage << " Action complete "<< std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Action tuning
 | 
			
		||||
  bool 
 | 
			
		||||
    tune_rhmc_s=false, eigenrange_s=false, 
 | 
			
		||||
    tune_rhmc_DSDR=false, eigenrange_DSDR=false, 
 | 
			
		||||
    check_eofa=false, 
 | 
			
		||||
    upper_bound_eofa=false, lower_bound_eofa(false);
 | 
			
		||||
 | 
			
		||||
  std::string lanc_params_s;
 | 
			
		||||
  std::string lanc_params_DSDR;
 | 
			
		||||
  int tune_rhmc_s_action_or_md;
 | 
			
		||||
  int tune_rhmc_DSDR_action_or_md;
 | 
			
		||||
  int eofa_which_hsb;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--tune_rhmc_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_s=true;
 | 
			
		||||
      tune_rhmc_s_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_s"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_s=true;
 | 
			
		||||
      lanc_params_s = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--tune_rhmc_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      tune_rhmc_DSDR=true;
 | 
			
		||||
      tune_rhmc_DSDR_action_or_md = std::stoi(argv[i+1]);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--eigenrange_DSDR"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      eigenrange_DSDR=true;
 | 
			
		||||
      lanc_params_DSDR = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--check_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      check_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]); //-1 indicates all hasenbusch
 | 
			
		||||
      assert(eofa_which_hsb == -1 || (eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb) );
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--upper_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      upper_bound_eofa = true;
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
    else if(sarg == "--lower_bound_eofa"){
 | 
			
		||||
      assert(i < argc-1);
 | 
			
		||||
      lower_bound_eofa = true;      
 | 
			
		||||
      eofa_which_hsb = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(eofa_which_hsb >= 0 && eofa_which_hsb < n_light_hsb);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(tune_rhmc_s || eigenrange_s || tune_rhmc_DSDR || eigenrange_DSDR ||check_eofa || upper_bound_eofa || lower_bound_eofa) {
 | 
			
		||||
    std::cout << GridLogMessage << "Running checks" << std::endl;
 | 
			
		||||
    TheHMC.initializeGaugeFieldAndRNGs(Ud);
 | 
			
		||||
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA action solver action tolerance outer=" << ActionMCG_L.Tolerance << " inner=" << ActionMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
    //std::cout << GridLogMessage << "EOFA MD solver tolerance outer=" << DerivMCG_L.Tolerance << " inner=" << DerivMCG_L.InnerTolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if(check_eofa){
 | 
			
		||||
      if(eofa_which_hsb >= 0){
 | 
			
		||||
	std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
	checkEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << eofa_which_hsb << std::endl;
 | 
			
		||||
      }else{
 | 
			
		||||
	for(int i=0;i<n_light_hsb;i++){
 | 
			
		||||
	  std::cout << GridLogMessage << "Starting checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	  checkEOFA(*EOFA_pfactions[i], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
	  std::cout << GridLogMessage << "Finished checking EOFA Hasenbusch " << i << std::endl;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }	  
 | 
			
		||||
    if(upper_bound_eofa) upperBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(lower_bound_eofa) lowerBoundEOFA(*EOFA_pfactions[eofa_which_hsb], FGridD, TheHMC.Resources.GetParallelRNG(), Ud);
 | 
			
		||||
    if(eigenrange_s) computeEigenvalues<FermionActionD, FermionFieldD>(lanc_params_s, FGridD, FrbGridD, Ud, Numerator_sD, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_s) checkRHMC<FermionActionD, FermionFieldD, decltype(Quotient_s)>(FGridD, FrbGridD, Ud, Numerator_sD, Denominator_sD, Quotient_s, TheHMC.Resources.GetParallelRNG(), 4, "strange",  tune_rhmc_s_action_or_md);
 | 
			
		||||
    if(eigenrange_DSDR) computeEigenvalues<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField>(lanc_params_DSDR, UGridD, UrbGridD, Ud, Numerator_DSDR_D, TheHMC.Resources.GetParallelRNG());
 | 
			
		||||
    if(tune_rhmc_DSDR) checkRHMC<GparityWilsonTMFermionD, GparityWilsonTMFermionD::FermionField, decltype(Quotient_DSDR)>(UGridD, UrbGridD, Ud, Numerator_DSDR_D, Denominator_DSDR_D, Quotient_DSDR, TheHMC.Resources.GetParallelRNG(), 2, "DSDR", tune_rhmc_DSDR_action_or_md);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Run the HMC
 | 
			
		||||
  std::cout << GridLogMessage << " Running the HMC "<< std::endl;
 | 
			
		||||
  TheHMC.Run();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << " Done" << std::endl;
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  return 0;
 | 
			
		||||
} // main
 | 
			
		||||
							
								
								
									
										184
									
								
								tests/IO/Test_field_array_io.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										184
									
								
								tests/IO/Test_field_array_io.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,184 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/IO/Test_field_array_io.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//This test demonstrates and checks a single-file write of an arbitrary array of fields
 | 
			
		||||
 | 
			
		||||
uint64_t writeHeader(const uint32_t size, const uint32_t checksum, const std::string &format, const std::string &file){
 | 
			
		||||
  std::ofstream fout(file,std::ios::out|std::ios::in);
 | 
			
		||||
  fout.seekp(0,std::ios::beg);
 | 
			
		||||
  fout << std::setw(10) << size << std::endl;
 | 
			
		||||
  fout << std::hex << std::setw(10) << checksum << std::endl;
 | 
			
		||||
  fout << format << std::endl;
 | 
			
		||||
  return fout.tellp();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
uint64_t readHeader(uint32_t &size, uint32_t &checksum, std::string &format, const std::string &file){
 | 
			
		||||
  std::ifstream fin(file);
 | 
			
		||||
  std::string line;
 | 
			
		||||
  getline(fin,line);
 | 
			
		||||
  {
 | 
			
		||||
    std::stringstream ss; ss <<line ; ss >> size;
 | 
			
		||||
  }
 | 
			
		||||
  getline(fin,line);
 | 
			
		||||
  {
 | 
			
		||||
    std::stringstream ss; ss <<line ; ss >> std::hex >> checksum;
 | 
			
		||||
  }
 | 
			
		||||
  getline(fin,format);
 | 
			
		||||
  removeWhitespace(format);
 | 
			
		||||
      
 | 
			
		||||
  return fin.tellg();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
template<typename FieldType>
 | 
			
		||||
void writeFieldArray(const std::string &file, const std::vector<FieldType> &data){
 | 
			
		||||
  typedef typename FieldType::vector_object vobj;
 | 
			
		||||
  typedef typename FieldType::scalar_object sobj;
 | 
			
		||||
  GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
 | 
			
		||||
  BinarySimpleMunger<sobj, sobj> munge; //straight copy
 | 
			
		||||
 | 
			
		||||
  //We need a 2-pass header write, first to establish the size, the second pass writes the checksum
 | 
			
		||||
  std::string format = getFormatString<typename FieldType::vector_object>();
 | 
			
		||||
 | 
			
		||||
  uint64_t offset; //leave 64 bits for header
 | 
			
		||||
  if ( grid->IsBoss() ) { 
 | 
			
		||||
    NerscIO::truncate(file);
 | 
			
		||||
    offset = writeHeader(data.size(), 0, format, file);
 | 
			
		||||
  }
 | 
			
		||||
  grid->Broadcast(0,(void *)&offset,sizeof(offset)); //use as a barrier
 | 
			
		||||
 | 
			
		||||
  std::cout << "Data offset write " << offset << std::endl;
 | 
			
		||||
  std::cout << "Data size write " << data.size() << std::endl;
 | 
			
		||||
  uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
 | 
			
		||||
  std::cout << "Field size = " << field_size << " B" << std::endl;
 | 
			
		||||
 | 
			
		||||
  uint32_t checksum = 0;
 | 
			
		||||
  for(int i=0;i<data.size();i++){
 | 
			
		||||
    std::cout << "Data field write " << i << " offset " << offset << std::endl;
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(const_cast<FieldType &>(data[i]),file,munge,offset,format,
 | 
			
		||||
					    nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    offset += field_size;
 | 
			
		||||
    checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << "Write checksum " << checksum << std::endl;
 | 
			
		||||
 | 
			
		||||
  if ( grid->IsBoss() ) { 
 | 
			
		||||
    writeHeader(data.size(), checksum, format, file);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename FieldType>
 | 
			
		||||
void readFieldArray(std::vector<FieldType> &data, const std::string &file){
 | 
			
		||||
  typedef typename FieldType::vector_object vobj;
 | 
			
		||||
  typedef typename FieldType::scalar_object sobj;
 | 
			
		||||
  assert(data.size() > 0);
 | 
			
		||||
  GridBase* grid = data[0].Grid(); //assume all fields have the same Grid
 | 
			
		||||
  BinarySimpleUnmunger<sobj, sobj> munge; //straight copy
 | 
			
		||||
  
 | 
			
		||||
  uint32_t hdr_checksum, hdr_size;
 | 
			
		||||
  std::string format;
 | 
			
		||||
  uint64_t offset = readHeader(hdr_size, hdr_checksum, format, file);
 | 
			
		||||
  
 | 
			
		||||
  std::cout << "Data offset read " << offset << std::endl;  
 | 
			
		||||
  std::cout << "Data size read " << hdr_size << std::endl;
 | 
			
		||||
  assert(data.size() == hdr_size);
 | 
			
		||||
 | 
			
		||||
  uint64_t field_size = uint64_t(grid->gSites()) * sizeof(sobj);
 | 
			
		||||
 | 
			
		||||
  uint32_t checksum = 0;
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<data.size();i++){
 | 
			
		||||
    std::cout << "Data field read " << i << " offset " << offset << std::endl;
 | 
			
		||||
    uint32_t nersc_csum,scidac_csuma,scidac_csumb;
 | 
			
		||||
    BinaryIO::readLatticeObject<vobj,sobj>(data[i],file,munge,offset,format,
 | 
			
		||||
					   nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
    offset += field_size;
 | 
			
		||||
    checksum ^= nersc_csum + 0x9e3779b9 + (checksum<<6) + (checksum>>2);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << "Header checksum " << hdr_checksum << std::endl;    
 | 
			
		||||
  std::cout << "Read checksum " << checksum << std::endl;
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  assert( hdr_checksum == checksum );
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  Coordinate latt   = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
 | 
			
		||||
  const int Ls=8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(latt, simd_layout, mpi_layout);
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid   = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> seeds4({1,2,3,4});
 | 
			
		||||
  std::vector<int> seeds5({5,6,7,8});
 | 
			
		||||
  GridParallelRNG RNG5(FGrid);  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGrid);  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  typedef DomainWallFermionD::FermionField FermionField;
 | 
			
		||||
 | 
			
		||||
  int nfield = 20;
 | 
			
		||||
  std::vector<FermionField> data(nfield, FGrid);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<data.size();i++)
 | 
			
		||||
    gaussian(RNG5, data[i]);
 | 
			
		||||
  
 | 
			
		||||
  std::string file = "test_field_array_io.0";
 | 
			
		||||
  writeFieldArray(file, data);
 | 
			
		||||
 | 
			
		||||
  std::vector<FermionField> data_r(nfield, FGrid);
 | 
			
		||||
  readFieldArray(data_r, file);
 | 
			
		||||
  
 | 
			
		||||
  for(int i=0;i<nfield;i++){
 | 
			
		||||
    FermionField diff = data_r[i] - data[i];
 | 
			
		||||
    RealD norm_diff = norm2(diff);
 | 
			
		||||
    std::cout << "Norm2 of difference between stored and loaded data index " << i << " : " << norm_diff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  std::cout << "Done" << std::endl;
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										485
									
								
								tests/lanczos/Test_compressed_lanczos_gparity.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										485
									
								
								tests/lanczos/Test_compressed_lanczos_gparity.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,485 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_compressed_lanczos_gparity.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Leans heavily on Christoph Lehner's code
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
/*
 | 
			
		||||
 *  Reimplement the badly named "multigrid" lanczos as compressed Lanczos using the features 
 | 
			
		||||
 *  in Grid that were intended to be used to support blocked Aggregates, from
 | 
			
		||||
 */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
 | 
			
		||||
void readConfiguration(LatticeGaugeFieldD &U,
 | 
			
		||||
		       const std::string &config,
 | 
			
		||||
		       bool is_cps_cfg = false){
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
 | 
			
		||||
 | 
			
		||||
  typedef GaugeStatistics<ConjugateGimplD> GaugeStats;
 | 
			
		||||
     
 | 
			
		||||
  FieldMetaData header;
 | 
			
		||||
  NerscIO::readConfiguration<GaugeStats>(U, header, config);
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Lanczos parameters in CPS conventions
 | 
			
		||||
struct CPSLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
 | 
			
		||||
				  RealD, alpha,
 | 
			
		||||
				  RealD, beta,
 | 
			
		||||
				  int, ch_ord,
 | 
			
		||||
				  int, N_use,
 | 
			
		||||
				  int, N_get,
 | 
			
		||||
				  int, N_true_get,
 | 
			
		||||
				  RealD, stop_rsd,
 | 
			
		||||
				  int, maxits);
 | 
			
		||||
 | 
			
		||||
  //Translations
 | 
			
		||||
  ChebyParams getChebyParams() const{
 | 
			
		||||
    ChebyParams out;
 | 
			
		||||
    out.alpha = beta*beta; //aka lo
 | 
			
		||||
    out.beta = alpha*alpha; //aka hi
 | 
			
		||||
    out.Npoly = ch_ord+1;
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  int Nstop() const{ return N_true_get; }
 | 
			
		||||
  int Nm() const{ return N_use; }
 | 
			
		||||
  int Nk() const{ return N_get; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//Maybe this class should be in the main library?
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class LocalCoherenceLanczosScidac : public LocalCoherenceLanczos<Fobj,CComplex,nbasis>
 | 
			
		||||
{ 
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<CComplex>   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<Fobj>          FineField;
 | 
			
		||||
 | 
			
		||||
  LocalCoherenceLanczosScidac(GridBase *FineGrid,GridBase *CoarseGrid,
 | 
			
		||||
			      LinearOperatorBase<FineField> &FineOp,
 | 
			
		||||
			      int checkerboard) 
 | 
			
		||||
    // Base constructor
 | 
			
		||||
    : LocalCoherenceLanczos<Fobj,CComplex,nbasis>(FineGrid,CoarseGrid,FineOp,checkerboard) 
 | 
			
		||||
  {};
 | 
			
		||||
 | 
			
		||||
  void checkpointFine(std::string evecs_file,std::string evals_file)
 | 
			
		||||
  {
 | 
			
		||||
    assert(this->subspace.size()==nbasis);
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacWriter WR(this->_FineGrid->IsBoss());
 | 
			
		||||
    WR.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<nbasis;k++) {
 | 
			
		||||
      WR.writeScidacFieldRecord(this->subspace[k],record);
 | 
			
		||||
    }
 | 
			
		||||
    WR.close();
 | 
			
		||||
    
 | 
			
		||||
    XmlWriter WRx(evals_file);
 | 
			
		||||
    write(WRx,"evals",this->evals_fine);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void checkpointFineRestore(std::string evecs_file,std::string evals_file)
 | 
			
		||||
  {
 | 
			
		||||
    this->evals_fine.resize(nbasis);
 | 
			
		||||
    this->subspace.resize(nbasis,this->_FineGrid);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointFineRestore:  Reading evals from "<<evals_file<<std::endl;
 | 
			
		||||
    XmlReader RDx(evals_file);
 | 
			
		||||
    read(RDx,"evals",this->evals_fine);
 | 
			
		||||
 | 
			
		||||
    if(this->evals_fine.size() < nbasis) assert(0 && "Not enough fine evals to complete basis");
 | 
			
		||||
    if(this->evals_fine.size() > nbasis){ //allow the use of precomputed evecs with a larger #evecs
 | 
			
		||||
      std::cout << GridLogMessage << "Truncating " << this->evals_fine.size() << " evals to basis size " << nbasis << std::endl;
 | 
			
		||||
      this->evals_fine.resize(nbasis);
 | 
			
		||||
    }     
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointFineRestore:  Reading evecs from "<<evecs_file<<std::endl;
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacReader RD ;
 | 
			
		||||
    RD.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<nbasis;k++) {
 | 
			
		||||
      this->subspace[k].Checkerboard()=this->_checkerboard;
 | 
			
		||||
      RD.readScidacFieldRecord(this->subspace[k],record);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    RD.close();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void checkpointCoarse(std::string evecs_file,std::string evals_file)
 | 
			
		||||
  {
 | 
			
		||||
    int n = this->evec_coarse.size();
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacWriter WR(this->_CoarseGrid->IsBoss());
 | 
			
		||||
    WR.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<n;k++) {
 | 
			
		||||
      WR.writeScidacFieldRecord(this->evec_coarse[k],record);
 | 
			
		||||
    }
 | 
			
		||||
    WR.close();
 | 
			
		||||
    
 | 
			
		||||
    XmlWriter WRx(evals_file);
 | 
			
		||||
    write(WRx,"evals",this->evals_coarse);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void checkpointCoarseRestore(std::string evecs_file,std::string evals_file,int nvec)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "resizing coarse vecs to " << nvec<< std::endl;
 | 
			
		||||
    this->evals_coarse.resize(nvec);
 | 
			
		||||
    this->evec_coarse.resize(nvec,this->_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointCoarseRestore:  Reading evals from "<<evals_file<<std::endl;
 | 
			
		||||
    XmlReader RDx(evals_file);
 | 
			
		||||
    read(RDx,"evals",this->evals_coarse);
 | 
			
		||||
 | 
			
		||||
    assert(this->evals_coarse.size()==nvec);
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    std::cout << GridLogIRL<< "checkpointCoarseRestore:  Reading evecs from "<<evecs_file<<std::endl;
 | 
			
		||||
    Grid::ScidacReader RD ;
 | 
			
		||||
    RD.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<nvec;k++) {
 | 
			
		||||
      RD.readScidacFieldRecord(this->evec_coarse[k],record);
 | 
			
		||||
    }
 | 
			
		||||
    RD.close();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct Options{
 | 
			
		||||
  std::vector<int> blockSize;
 | 
			
		||||
  std::vector<int> GparityDirs;
 | 
			
		||||
  int Ls;
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD M5;
 | 
			
		||||
  RealD mobius_scale;
 | 
			
		||||
  std::string config;
 | 
			
		||||
  bool is_cps_cfg;
 | 
			
		||||
 | 
			
		||||
  double coarse_relax_tol;
 | 
			
		||||
  int smoother_ord;
 | 
			
		||||
  
 | 
			
		||||
  CPSLanczosParams fine;
 | 
			
		||||
  CPSLanczosParams coarse;
 | 
			
		||||
 | 
			
		||||
  bool write_fine = false;
 | 
			
		||||
  std::string write_fine_file;
 | 
			
		||||
 | 
			
		||||
  bool read_fine = false;
 | 
			
		||||
  std::string read_fine_file;
 | 
			
		||||
 | 
			
		||||
  bool write_coarse = false;
 | 
			
		||||
  std::string write_coarse_file;
 | 
			
		||||
 | 
			
		||||
  bool read_coarse = false;
 | 
			
		||||
  std::string read_coarse_file;
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  Options(){
 | 
			
		||||
    blockSize = std::vector<int> ({2,2,2,2,2});
 | 
			
		||||
    GparityDirs = std::vector<int> ({1,1,1}); //1 for each GP direction
 | 
			
		||||
    
 | 
			
		||||
    Ls = 12;
 | 
			
		||||
    mass = 0.01;
 | 
			
		||||
    M5 = 1.8;
 | 
			
		||||
    is_cps_cfg = false;
 | 
			
		||||
    mobius_scale = 2.0;
 | 
			
		||||
    
 | 
			
		||||
    fine.alpha = 2;
 | 
			
		||||
    fine.beta = 0.1;
 | 
			
		||||
    fine.ch_ord = 100;
 | 
			
		||||
    fine.N_use = 70;
 | 
			
		||||
    fine.N_get = 60;
 | 
			
		||||
    fine.N_true_get = 60;
 | 
			
		||||
    fine.stop_rsd = 1e-8;
 | 
			
		||||
    fine.maxits = 10000;
 | 
			
		||||
 | 
			
		||||
    coarse.alpha = 2;
 | 
			
		||||
    coarse.beta = 0.1;
 | 
			
		||||
    coarse.ch_ord = 100;
 | 
			
		||||
    coarse.N_use = 200;
 | 
			
		||||
    coarse.N_get = 190;
 | 
			
		||||
    coarse.N_true_get = 190;
 | 
			
		||||
    coarse.stop_rsd = 1e-8;
 | 
			
		||||
    coarse.maxits = 10000;
 | 
			
		||||
 | 
			
		||||
    coarse_relax_tol = 1e5;
 | 
			
		||||
    smoother_ord = 20;
 | 
			
		||||
 | 
			
		||||
    write_fine = false;
 | 
			
		||||
    read_fine = false;
 | 
			
		||||
    write_coarse = false;
 | 
			
		||||
    read_coarse = false;
 | 
			
		||||
  }
 | 
			
		||||
};  
 | 
			
		||||
 | 
			
		||||
template<int nbasis>
 | 
			
		||||
void runTest(const Options &opt){
 | 
			
		||||
	        //Fine grids
 | 
			
		||||
  GridCartesian         * UGrid     = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),  GridDefaultSimd(Nd,vComplex::Nsimd()),   GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid   = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid     = SpaceTimeGrid::makeFiveDimGrid(opt.Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid   = SpaceTimeGrid::makeFiveDimRedBlackGrid(opt.Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  //Setup G-parity BCs
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  std::vector<int> dirs4(4);
 | 
			
		||||
  for(int i=0;i<3;i++) dirs4[i] = opt.GparityDirs[i];
 | 
			
		||||
  dirs4[3] = 0; //periodic gauge BC in time
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
 | 
			
		||||
  ConjugateGimplD::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  GparityWilsonImplD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = opt.GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
  std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  //Read the gauge field
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);  
 | 
			
		||||
  readConfiguration(Umu, opt.config, opt.is_cps_cfg);
 | 
			
		||||
 | 
			
		||||
  //Setup the coarse grids  
 | 
			
		||||
  auto fineLatt     = GridDefaultLatt();
 | 
			
		||||
  Coordinate coarseLatt(4);
 | 
			
		||||
  for (int d=0;d<4;d++){
 | 
			
		||||
    coarseLatt[d] = fineLatt[d]/opt.blockSize[d];    assert(coarseLatt[d]*opt.blockSize[d]==fineLatt[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<< " 5d coarse lattice is ";
 | 
			
		||||
  for (int i=0;i<4;i++){
 | 
			
		||||
    std::cout << coarseLatt[i]<<"x";
 | 
			
		||||
  } 
 | 
			
		||||
  int cLs = opt.Ls/opt.blockSize[4]; assert(cLs*opt.blockSize[4]==opt.Ls);
 | 
			
		||||
  std::cout << cLs<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  GridCartesian         * CoarseGrid4    = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * CoarseGrid4rb  = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
 | 
			
		||||
  GridCartesian         * CoarseGrid5    = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
 | 
			
		||||
 | 
			
		||||
  //Dirac operator
 | 
			
		||||
  double bmc =  1.;      
 | 
			
		||||
  double b = (opt.mobius_scale + bmc)/2.;  // b = 1/2 [ (b+c) + (b-c) ]
 | 
			
		||||
  double c = (opt.mobius_scale - bmc)/2.;  // c = 1/2 [ (b+c) - (b-c) ]
 | 
			
		||||
  
 | 
			
		||||
  GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, opt.mass, opt.M5, b,c,Params);
 | 
			
		||||
  typedef GparityMobiusFermionD::FermionField FermionField;
 | 
			
		||||
  
 | 
			
		||||
  SchurDiagTwoOperator<GparityMobiusFermionD, FermionField> SchurOp(action);
 | 
			
		||||
 | 
			
		||||
  typedef GparityWilsonImplD::SiteSpinor SiteSpinor;
 | 
			
		||||
 | 
			
		||||
  const CPSLanczosParams &fine = opt.fine;
 | 
			
		||||
  const CPSLanczosParams &coarse = opt.coarse;
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Keep " << fine.N_true_get   << " fine   vectors" << std::endl;
 | 
			
		||||
  std::cout << GridLogMessage << "Keep " << coarse.N_true_get << " coarse vectors" << std::endl;
 | 
			
		||||
  assert(coarse.N_true_get >= fine.N_true_get);
 | 
			
		||||
 | 
			
		||||
  assert(nbasis<=fine.N_true_get);
 | 
			
		||||
  LocalCoherenceLanczosScidac<SiteSpinor,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5,SchurOp,Odd);
 | 
			
		||||
  std::cout << GridLogMessage << "Constructed LocalCoherenceLanczos" << std::endl;
 | 
			
		||||
 
 | 
			
		||||
  //Compute and/or read fine evecs
 | 
			
		||||
  if(opt.read_fine){
 | 
			
		||||
    _LocalCoherenceLanczos.checkpointFineRestore(opt.read_fine_file + "_evecs.scidac", opt.read_fine_file + "_evals.xml");
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << GridLogMessage << "Performing fine grid IRL" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Using Chebyshev alpha=" << fine.alpha << " beta=" << fine.beta << " ord=" << fine.ch_ord << std::endl;
 | 
			
		||||
    _LocalCoherenceLanczos.calcFine(fine.getChebyParams(),
 | 
			
		||||
				    fine.Nstop(),fine.Nk(),fine.Nm(),
 | 
			
		||||
				    fine.stop_rsd,fine.maxits,0,0);
 | 
			
		||||
    if(opt.write_fine){
 | 
			
		||||
      std::cout << GridLogIRL<<"Checkpointing Fine evecs"<<std::endl;
 | 
			
		||||
      _LocalCoherenceLanczos.checkpointFine(opt.write_fine_file + "_evecs.scidac", opt.write_fine_file + "_evals.xml");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Block orthonormalise (this should be part of calcFine?)
 | 
			
		||||
  std::cout << GridLogIRL<<"Orthogonalising"<<std::endl;
 | 
			
		||||
  _LocalCoherenceLanczos.Orthogonalise();
 | 
			
		||||
  std::cout << GridLogIRL<<"Orthogonaled"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  ChebyParams smoother = fine.getChebyParams();
 | 
			
		||||
  smoother.Npoly = opt.smoother_ord+1;
 | 
			
		||||
 | 
			
		||||
  if(opt.read_coarse){
 | 
			
		||||
    _LocalCoherenceLanczos.checkpointCoarseRestore(opt.read_coarse_file + "_evecs.scidac", opt.read_coarse_file + "_evals.xml",coarse.Nstop());
 | 
			
		||||
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << GridLogMessage << "Performing coarse grid IRL" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Using Chebyshev alpha=" << coarse.alpha << " beta=" << coarse.beta << " ord=" << coarse.ch_ord << std::endl;	
 | 
			
		||||
    _LocalCoherenceLanczos.calcCoarse(coarse.getChebyParams(), smoother, opt.coarse_relax_tol,
 | 
			
		||||
				      coarse.Nstop(), coarse.Nk() ,coarse.Nm(),
 | 
			
		||||
				      coarse.stop_rsd, coarse.maxits, 
 | 
			
		||||
				      0,0);
 | 
			
		||||
 | 
			
		||||
    if(opt.write_coarse){
 | 
			
		||||
      std::cout << GridLogIRL<<"Checkpointing Coarse evecs"<<std::endl;
 | 
			
		||||
      _LocalCoherenceLanczos.checkpointCoarse(opt.write_coarse_file + "_evecs.scidac", opt.write_coarse_file + "_evals.xml");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Test the eigenvectors
 | 
			
		||||
  //To remove high-frequency noise we apply a Chebyshev smoothing
 | 
			
		||||
  Chebyshev<FermionField> cheb_smoother(smoother);
 | 
			
		||||
    
 | 
			
		||||
  FermionField evec(FrbGrid);
 | 
			
		||||
  FermionField evec_sm(FrbGrid); //smoothed
 | 
			
		||||
  FermionField tmp(FrbGrid);
 | 
			
		||||
  RealD eval;
 | 
			
		||||
  
 | 
			
		||||
  for(int i=0;i<coarse.N_true_get;i++){    
 | 
			
		||||
    _LocalCoherenceLanczos.getFineEvecEval(evec, eval, i);
 | 
			
		||||
 | 
			
		||||
    //Check unsmoothed evec
 | 
			
		||||
    SchurOp.HermOp(evec, tmp);
 | 
			
		||||
    tmp = tmp - eval*evec;
 | 
			
		||||
    RealD norm_unsmoothed = sqrt(norm2(tmp));
 | 
			
		||||
    
 | 
			
		||||
    //Check smoothed evec
 | 
			
		||||
    cheb_smoother(SchurOp, evec, evec_sm);   
 | 
			
		||||
    SchurOp.HermOp(evec_sm, tmp);
 | 
			
		||||
    tmp = tmp - eval*evec_sm;
 | 
			
		||||
    RealD norm_smoothed = sqrt(norm2(tmp));
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogMessage << "Eval " << eval << " unsmoothed resid " << norm_unsmoothed << " smoothed resid " << norm_smoothed << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Note:  because we rely upon physical properties we must use a "real" gauge configuration
 | 
			
		||||
int main (int argc, char ** argv) {
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
  GridLogIRL.TimingMode(1);
 | 
			
		||||
 | 
			
		||||
  Options opt;
 | 
			
		||||
  int basis_size = 100;
 | 
			
		||||
  
 | 
			
		||||
  if(argc < 3){
 | 
			
		||||
    std::cout << GridLogMessage << "Usage: <exe> <config> <gparity dirs> <options>" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Options:" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents  (default 2.2.2.2.2)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_irl_coarse <filename>: Real the parameters file for the coarse Lanczos" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_coarse <filename stub>: Write coarse evecs/evals to filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_coarse <filename stub>: Read coarse evecs/evals from filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--smoother_ord :  Set the Chebyshev order of the smoother (default 20)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--basis_size : Select the basis size from 100,200,300,350 (default 100)" << std::endl;
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
  opt.config = argv[1];
 | 
			
		||||
  GridCmdOptionIntVector(argv[2], opt.GparityDirs);
 | 
			
		||||
  assert(opt.GparityDirs.size() == 3);
 | 
			
		||||
 | 
			
		||||
  for(int i=3;i<argc;i++){
 | 
			
		||||
    std::string sarg = argv[i];
 | 
			
		||||
    if(sarg == "--Ls"){
 | 
			
		||||
      opt.Ls = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set Ls to " << opt.Ls << std::endl;
 | 
			
		||||
    }else if(sarg == "--mass"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> opt.mass;
 | 
			
		||||
      std::cout << GridLogMessage << "Set quark mass to " << opt.mass << std::endl;
 | 
			
		||||
    }else if(sarg == "--block"){
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+1], opt.blockSize);
 | 
			
		||||
      assert(opt.blockSize.size() == 5);
 | 
			
		||||
      std::cout << GridLogMessage << "Set block size to ";
 | 
			
		||||
      for(int q=0;q<5;q++) std::cout << opt.blockSize[q] << " ";
 | 
			
		||||
      std::cout << std::endl;      
 | 
			
		||||
    }else if(sarg == "--is_cps_cfg"){
 | 
			
		||||
      opt.is_cps_cfg = true;
 | 
			
		||||
    }else if(sarg == "--write_irl_templ"){
 | 
			
		||||
      XmlWriter writer("irl_templ.xml");
 | 
			
		||||
      write(writer,"Params", opt.fine);
 | 
			
		||||
      Grid_finalize();
 | 
			
		||||
      return 0;
 | 
			
		||||
    }else if(sarg == "--read_irl_fine"){
 | 
			
		||||
      std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
 | 
			
		||||
      XmlReader reader(argv[i+1]);
 | 
			
		||||
      read(reader, "Params", opt.fine);
 | 
			
		||||
    }else if(sarg == "--read_irl_coarse"){
 | 
			
		||||
      std::cout << GridLogMessage << "Reading coarse IRL params from " << argv[i+1] << std::endl;
 | 
			
		||||
      XmlReader reader(argv[i+1]);
 | 
			
		||||
      read(reader, "Params", opt.coarse);
 | 
			
		||||
    }else if(sarg == "--write_fine"){
 | 
			
		||||
      opt.write_fine = true;
 | 
			
		||||
      opt.write_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_fine"){
 | 
			
		||||
      opt.read_fine = true;
 | 
			
		||||
      opt.read_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--write_coarse"){
 | 
			
		||||
      opt.write_coarse = true;
 | 
			
		||||
      opt.write_coarse_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_coarse"){
 | 
			
		||||
      opt.read_coarse = true;
 | 
			
		||||
      opt.read_coarse_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--smoother_ord"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> opt.smoother_ord;
 | 
			
		||||
      std::cout << GridLogMessage << "Set smoother order to " << opt.smoother_ord << std::endl;
 | 
			
		||||
    }else if(sarg == "--coarse_relax_tol"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> opt.coarse_relax_tol;
 | 
			
		||||
      std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << opt.coarse_relax_tol << std::endl;
 | 
			
		||||
    }else if(sarg == "--mobius_scale"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> opt.mobius_scale;
 | 
			
		||||
      std::cout << GridLogMessage << "Set Mobius scale to " << opt.mobius_scale << std::endl;
 | 
			
		||||
    }else if(sarg == "--basis_size"){
 | 
			
		||||
      basis_size = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set basis size to " << basis_size << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  switch(basis_size){
 | 
			
		||||
  case 100:
 | 
			
		||||
    runTest<100>(opt); break;
 | 
			
		||||
  case 200:
 | 
			
		||||
    runTest<200>(opt); break;
 | 
			
		||||
  case 300:
 | 
			
		||||
    runTest<300>(opt); break;
 | 
			
		||||
  case 350:
 | 
			
		||||
    runTest<350>(opt); break;
 | 
			
		||||
  default:
 | 
			
		||||
    std::cout << GridLogMessage << "Unsupported basis size " << basis_size << std::endl;
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										582
									
								
								tests/lanczos/Test_evec_compression.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										582
									
								
								tests/lanczos/Test_evec_compression.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,582 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_evec_compression.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
/*
 | 
			
		||||
 *
 | 
			
		||||
 * This test generates eigenvectors using the Lanczos algorithm then attempts to use local coherence compression
 | 
			
		||||
 * to express those vectors in terms of a basis formed from a subset. This test is useful for finding the optimal
 | 
			
		||||
 * blocking and basis size for performing a Local Coherence Lanczos
 | 
			
		||||
 */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
//For the CPS configurations we have to manually seed the RNG and deal with an incorrect factor of 2 in the plaquette metadata
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
void readConfiguration(LatticeGaugeFieldD &U,
 | 
			
		||||
		       const std::string &config,
 | 
			
		||||
		       bool is_cps_cfg = false){
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = false;
 | 
			
		||||
 | 
			
		||||
  typedef GaugeStatistics<Gimpl> GaugeStats;
 | 
			
		||||
     
 | 
			
		||||
  FieldMetaData header;
 | 
			
		||||
  NerscIO::readConfiguration<GaugeStats>(U, header, config);
 | 
			
		||||
 | 
			
		||||
  if(is_cps_cfg) NerscIO::exitOnReadPlaquetteMismatch() = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//Lanczos parameters in CPS conventions
 | 
			
		||||
struct CPSLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(CPSLanczosParams,
 | 
			
		||||
				  RealD, alpha,
 | 
			
		||||
				  RealD, beta,
 | 
			
		||||
				  int, ch_ord,
 | 
			
		||||
				  int, N_use,
 | 
			
		||||
				  int, N_get,
 | 
			
		||||
				  int, N_true_get,
 | 
			
		||||
				  RealD, stop_rsd,
 | 
			
		||||
				  int, maxits);
 | 
			
		||||
 | 
			
		||||
  //Translations
 | 
			
		||||
  ChebyParams getChebyParams() const{
 | 
			
		||||
    ChebyParams out;
 | 
			
		||||
    out.alpha = beta*beta; //aka lo
 | 
			
		||||
    out.beta = alpha*alpha; //aka hi
 | 
			
		||||
    out.Npoly = ch_ord+1;
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  int Nstop() const{ return N_true_get; }
 | 
			
		||||
  int Nm() const{ return N_use; }
 | 
			
		||||
  int Nk() const{ return N_get; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
class LocalCoherenceCompressor{
 | 
			
		||||
public:
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar; // used for inner products on fine field
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<Fobj>                       FineField;
 | 
			
		||||
  
 | 
			
		||||
  void compress(std::vector<FineField> &basis,
 | 
			
		||||
		std::vector<CoarseField> &compressed_evecs,
 | 
			
		||||
		const std::vector<FineField> &evecs_in,
 | 
			
		||||
		GridBase *FineGrid,
 | 
			
		||||
		GridBase *CoarseGrid){
 | 
			
		||||
    int nevecs = evecs_in.size();
 | 
			
		||||
    assert(nevecs > nbasis);
 | 
			
		||||
    
 | 
			
		||||
    //Construct the basis
 | 
			
		||||
    basis.resize(nbasis, FineGrid);
 | 
			
		||||
    for(int b=0;b<nbasis;b++) basis[b] = evecs_in[b];
 | 
			
		||||
 | 
			
		||||
    //Block othornormalize basis
 | 
			
		||||
    CoarseScalar InnerProd(CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,basis);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
 | 
			
		||||
    blockOrthogonalise(InnerProd,basis);
 | 
			
		||||
 | 
			
		||||
    //The coarse grid representation is the field of vectors of block inner products
 | 
			
		||||
    std::cout << GridLogMessage << "Compressing eigevectors" << std::endl;
 | 
			
		||||
    compressed_evecs.resize(nevecs, CoarseGrid);
 | 
			
		||||
    for(int i=0;i<nevecs;i++) blockProject(compressed_evecs[i], evecs_in[i], basis);
 | 
			
		||||
    std::cout << GridLogMessage << "Compression complete" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void uncompress(FineField &evec, const int i, const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs) const{
 | 
			
		||||
    blockPromote(compressed_evecs[i],evec,basis);  
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Test uncompressed eigenvectors of Linop.HermOp to precision 'base_tolerance' for i<nbasis and 'base_tolerance*relax' for i>=nbasis
 | 
			
		||||
  //Because the uncompressed evec has a lot of high mode noise (unimportant for deflation) we apply a smoother before testing.
 | 
			
		||||
  //The Chebyshev used by the Lanczos should be sufficient as a smoother
 | 
			
		||||
  bool testCompression(LinearOperatorBase<FineField> &Linop, OperatorFunction<FineField>   &smoother,
 | 
			
		||||
		       const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<RealD> &evals,
 | 
			
		||||
		       const RealD base_tolerance, const RealD relax){
 | 
			
		||||
    std::cout << GridLogMessage << "Testing quality of uncompressed evecs (after smoothing)" << std::endl;
 | 
			
		||||
   
 | 
			
		||||
    GridBase* FineGrid = basis[0].Grid();
 | 
			
		||||
    GridBase* CoarseGrid = compressed_evecs[0].Grid();
 | 
			
		||||
 | 
			
		||||
    bool fail = false;
 | 
			
		||||
    FineField evec(FineGrid), Mevec(FineGrid), evec_sm(FineGrid);
 | 
			
		||||
    for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
      std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
 | 
			
		||||
      uncompress(evec, i, basis, compressed_evecs);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Smoothing evec " << i << std::endl;
 | 
			
		||||
      smoother(Linop, evec, evec_sm);
 | 
			
		||||
      
 | 
			
		||||
      std::cout << GridLogMessage << "Computing residual for evec " << i << std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "Linop" << std::endl;
 | 
			
		||||
      Linop.HermOp(evec_sm, Mevec);
 | 
			
		||||
      std::cout << GridLogMessage << "Linalg" << std::endl;
 | 
			
		||||
      Mevec = Mevec - evals[i]*evec_sm;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Resid" << std::endl;
 | 
			
		||||
      RealD tol = base_tolerance * (i<nbasis ? 1. : relax);
 | 
			
		||||
      RealD res = sqrt(norm2(Mevec));
 | 
			
		||||
      std::cout << GridLogMessage << "Evec idx " << i << " res " << res << " tol " << tol << std::endl;
 | 
			
		||||
      if(res > tol) fail = true;
 | 
			
		||||
    }
 | 
			
		||||
    return fail;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Compare uncompressed evecs to original evecs
 | 
			
		||||
  void compareEvecs(const std::vector<FineField> &basis, const std::vector<CoarseField> &compressed_evecs, const std::vector<FineField> &orig_evecs){
 | 
			
		||||
    std::cout << GridLogMessage << "Comparing uncompressed evecs to original evecs" << std::endl;
 | 
			
		||||
    
 | 
			
		||||
    GridBase* FineGrid = basis[0].Grid();
 | 
			
		||||
    GridBase* CoarseGrid = compressed_evecs[0].Grid();
 | 
			
		||||
 | 
			
		||||
    FineField evec(FineGrid), diff(FineGrid);
 | 
			
		||||
    for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
      std::cout << GridLogMessage << "Uncompressing evec " << i << std::endl;
 | 
			
		||||
      uncompress(evec, i, basis, compressed_evecs);
 | 
			
		||||
      diff = orig_evecs[i] - evec;
 | 
			
		||||
      RealD res = sqrt(norm2(diff));
 | 
			
		||||
      std::cout << GridLogMessage << "Evec idx " << i << " res " << res << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class Fobj,class CComplex,int nbasis>
 | 
			
		||||
void compareBlockPromoteTimings(const std::vector<Lattice<Fobj> > &basis, const std::vector<Lattice<iVector<CComplex,nbasis > > > &compressed_evecs){
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar; 
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
  typedef Lattice<Fobj>                       FineField;
 | 
			
		||||
 | 
			
		||||
  GridStopWatch timer;
 | 
			
		||||
  
 | 
			
		||||
  GridBase* FineGrid = basis[0].Grid();
 | 
			
		||||
  GridBase* CoarseGrid = compressed_evecs[0].Grid();
 | 
			
		||||
 | 
			
		||||
  FineField v1(FineGrid), v2(FineGrid);
 | 
			
		||||
 | 
			
		||||
  //Start with a cold start
 | 
			
		||||
  for(int i=0;i<basis.size();i++){
 | 
			
		||||
    autoView( b_ , basis[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
    autoView( b_ , compressed_evecs[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    autoView( b_, v1, CpuWrite );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  timer.Start();
 | 
			
		||||
  blockPromote(compressed_evecs[0],v1,basis);  
 | 
			
		||||
  timer.Stop();
 | 
			
		||||
  std::cout << GridLogMessage << "Time for cold blockPromote v1 " << timer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Test to ensure it is actually doing a cold start by repeating
 | 
			
		||||
  for(int i=0;i<basis.size();i++){
 | 
			
		||||
    autoView( b_ , basis[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  for(int i=0;i<compressed_evecs.size();i++){
 | 
			
		||||
    autoView( b_ , compressed_evecs[i], CpuWrite);
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    autoView( b_, v1, CpuWrite );
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  timer.Reset();
 | 
			
		||||
  timer.Start();
 | 
			
		||||
  blockPromote(compressed_evecs[0],v1,basis);  
 | 
			
		||||
  timer.Stop();
 | 
			
		||||
  std::cout << GridLogMessage << "Time for cold blockPromote v1 repeat (should be the same as above) " << timer.Elapsed() << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct Args{
 | 
			
		||||
  int Ls;
 | 
			
		||||
  RealD mass;
 | 
			
		||||
  RealD M5;
 | 
			
		||||
  bool is_cps_cfg;
 | 
			
		||||
  RealD mobius_scale; //b+c
 | 
			
		||||
  
 | 
			
		||||
  CPSLanczosParams fine;
 | 
			
		||||
  double coarse_relax_tol;
 | 
			
		||||
 | 
			
		||||
  std::vector<int> blockSize;
 | 
			
		||||
  std::vector<int> GparityDirs;
 | 
			
		||||
 | 
			
		||||
  bool write_fine;
 | 
			
		||||
  std::string write_fine_file;
 | 
			
		||||
  bool read_fine;
 | 
			
		||||
  std::string read_fine_file;
 | 
			
		||||
 | 
			
		||||
  int basis_size;
 | 
			
		||||
  
 | 
			
		||||
  Args(){
 | 
			
		||||
    blockSize = {2,2,2,2,2};
 | 
			
		||||
    GparityDirs = {1,1,1}; //1 for each GP direction
 | 
			
		||||
    
 | 
			
		||||
    Ls = 12;
 | 
			
		||||
    mass = 0.01;
 | 
			
		||||
    M5 = 1.8;
 | 
			
		||||
    is_cps_cfg = false;
 | 
			
		||||
    mobius_scale = 2;
 | 
			
		||||
    
 | 
			
		||||
    fine.alpha = 2;
 | 
			
		||||
    fine.beta = 0.1;
 | 
			
		||||
    fine.ch_ord = 100;
 | 
			
		||||
    fine.N_use = 70;
 | 
			
		||||
    fine.N_get = 60;
 | 
			
		||||
    fine.N_true_get = 60;
 | 
			
		||||
    fine.stop_rsd = 1e-8;
 | 
			
		||||
    fine.maxits = 10000;
 | 
			
		||||
 | 
			
		||||
    coarse_relax_tol = 1e5;
 | 
			
		||||
 | 
			
		||||
    write_fine = false;
 | 
			
		||||
    read_fine = false;
 | 
			
		||||
 | 
			
		||||
    basis_size = 100;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
GparityWilsonImplD::ImplParams setupGparityParams(const std::vector<int> &GparityDirs){
 | 
			
		||||
  //Setup G-parity BCs
 | 
			
		||||
  assert(Nd == 4);
 | 
			
		||||
  std::vector<int> dirs4(4);
 | 
			
		||||
  for(int i=0;i<3;i++) dirs4[i] = GparityDirs[i];
 | 
			
		||||
  dirs4[3] = 0; //periodic gauge BC in time
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Gauge BCs: " << dirs4 << std::endl;
 | 
			
		||||
  ConjugateGimplD::setDirections(dirs4); //gauge BC
 | 
			
		||||
 | 
			
		||||
  GparityWilsonImplD::ImplParams Params;
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.twists[i] = GparityDirs[i]; //G-parity directions
 | 
			
		||||
  Params.twists[Nd-1] = 1; //APBC in time direction
 | 
			
		||||
  std::cout << GridLogMessage << "Fermion BCs: " << Params.twists << std::endl;
 | 
			
		||||
  return Params;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
WilsonImplD::ImplParams setupParams(){
 | 
			
		||||
  WilsonImplD::ImplParams Params;
 | 
			
		||||
  Complex one(1.0);
 | 
			
		||||
  Complex mone(-1.0);
 | 
			
		||||
  for(int i=0;i<Nd-1;i++) Params.boundary_phases[i] = one;
 | 
			
		||||
  Params.boundary_phases[Nd-1] = mone;
 | 
			
		||||
  return Params;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<int nbasis, typename ActionType>
 | 
			
		||||
void run_b(ActionType &action, const std::string &config, const Args &args){
 | 
			
		||||
  //Fine grids
 | 
			
		||||
  GridCartesian         * UGrid     = (GridCartesian*)action.GaugeGrid();
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid   = (GridRedBlackCartesian*)action.GaugeRedBlackGrid();
 | 
			
		||||
  GridCartesian         * FGrid     = (GridCartesian*)action.FermionGrid();
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid   = (GridRedBlackCartesian*)action.FermionRedBlackGrid();
 | 
			
		||||
 | 
			
		||||
  //Setup the coarse grids  
 | 
			
		||||
  auto fineLatt     = GridDefaultLatt();
 | 
			
		||||
  Coordinate coarseLatt(4);
 | 
			
		||||
  for (int d=0;d<4;d++){
 | 
			
		||||
    coarseLatt[d] = fineLatt[d]/args.blockSize[d];    assert(coarseLatt[d]*args.blockSize[d]==fineLatt[d]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage<< " 5d coarse lattice is ";
 | 
			
		||||
  for (int i=0;i<4;i++){
 | 
			
		||||
    std::cout << coarseLatt[i]<<"x";
 | 
			
		||||
  } 
 | 
			
		||||
  int cLs = args.Ls/args.blockSize[4]; assert(cLs*args.blockSize[4]==args.Ls);
 | 
			
		||||
  std::cout << cLs<<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  GridCartesian         * CoarseGrid4    = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * CoarseGrid4rb  = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
 | 
			
		||||
  GridCartesian         * CoarseGrid5    = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
 | 
			
		||||
  typedef vTComplex CComplex; 
 | 
			
		||||
  typedef iVector<CComplex,nbasis >           CoarseSiteVector;
 | 
			
		||||
  typedef Lattice<CComplex>                   CoarseScalar;
 | 
			
		||||
  typedef Lattice<CoarseSiteVector>           CoarseField;
 | 
			
		||||
 | 
			
		||||
  typedef typename ActionType::FermionField FermionField; 
 | 
			
		||||
  
 | 
			
		||||
  SchurDiagTwoOperator<ActionType,FermionField> SchurOp(action);
 | 
			
		||||
 | 
			
		||||
  typedef typename ActionType::SiteSpinor SiteSpinor;
 | 
			
		||||
 | 
			
		||||
  const CPSLanczosParams &fine = args.fine;
 | 
			
		||||
  
 | 
			
		||||
  //Do the fine Lanczos
 | 
			
		||||
  std::vector<RealD> evals;
 | 
			
		||||
  std::vector<FermionField> evecs;
 | 
			
		||||
 | 
			
		||||
  if(args.read_fine){
 | 
			
		||||
    evals.resize(fine.N_true_get);
 | 
			
		||||
    evecs.resize(fine.N_true_get, FrbGrid);
 | 
			
		||||
 | 
			
		||||
    std::string evals_file = args.read_fine_file + "_evals.xml";
 | 
			
		||||
    std::string evecs_file = args.read_fine_file + "_evecs.scidac";
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "Reading evals from "<<evals_file<<std::endl;
 | 
			
		||||
    XmlReader RDx(evals_file);
 | 
			
		||||
    read(RDx,"evals",evals);
 | 
			
		||||
    
 | 
			
		||||
    assert(evals.size()==fine.N_true_get);
 | 
			
		||||
    
 | 
			
		||||
    std::cout << GridLogIRL<< "Reading evecs from "<<evecs_file<<std::endl;
 | 
			
		||||
    emptyUserRecord record;
 | 
			
		||||
    Grid::ScidacReader RD ;
 | 
			
		||||
    RD.open(evecs_file);
 | 
			
		||||
    for(int k=0;k<fine.N_true_get;k++) {
 | 
			
		||||
      evecs[k].Checkerboard()=Odd;
 | 
			
		||||
      RD.readScidacFieldRecord(evecs[k],record);
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
    RD.close();
 | 
			
		||||
  }else{ 
 | 
			
		||||
    int Nstop = fine.Nstop(); //==N_true_get
 | 
			
		||||
    int Nm = fine.Nm();
 | 
			
		||||
    int Nk = fine.Nk();
 | 
			
		||||
    RealD resid = fine.stop_rsd;
 | 
			
		||||
    int MaxIt = fine.maxits;
 | 
			
		||||
    
 | 
			
		||||
    assert(nbasis<=Nm);    
 | 
			
		||||
    Chebyshev<FermionField>      Cheby(fine.getChebyParams());
 | 
			
		||||
    FunctionHermOp<FermionField> ChebyOp(Cheby,SchurOp);
 | 
			
		||||
    PlainHermOp<FermionField>    Op(SchurOp);
 | 
			
		||||
 | 
			
		||||
    evals.resize(Nm);
 | 
			
		||||
    evecs.resize(Nm,FrbGrid);
 | 
			
		||||
    
 | 
			
		||||
    ImplicitlyRestartedLanczos<FermionField> IRL(ChebyOp,Op,Nstop,Nk,Nm,resid,MaxIt,0,0);
 | 
			
		||||
 | 
			
		||||
    FermionField src(FrbGrid); 
 | 
			
		||||
    typedef typename FermionField::scalar_type Scalar;
 | 
			
		||||
    src=Scalar(1.0); 
 | 
			
		||||
    src.Checkerboard() = Odd;
 | 
			
		||||
 | 
			
		||||
    int Nconv;
 | 
			
		||||
    IRL.calc(evals, evecs,src,Nconv,false);
 | 
			
		||||
    if(Nconv < Nstop) assert(0 && "Fine lanczos failed to converge the required number of evecs"); //algorithm doesn't consider this a failure
 | 
			
		||||
    if(Nconv > Nstop){
 | 
			
		||||
      //Yes this potentially throws away some evecs but it is better than having a random number of evecs between Nstop and Nm!
 | 
			
		||||
      evals.resize(Nstop);
 | 
			
		||||
      evecs.resize(Nstop, FrbGrid);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if(args.write_fine){
 | 
			
		||||
      std::string evals_file = args.write_fine_file + "_evals.xml";
 | 
			
		||||
      std::string evecs_file = args.write_fine_file + "_evecs.scidac";
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIRL<< "Writing evecs to "<<evecs_file<<std::endl;
 | 
			
		||||
 | 
			
		||||
      emptyUserRecord record;
 | 
			
		||||
      Grid::ScidacWriter WR(FrbGrid->IsBoss());
 | 
			
		||||
      WR.open(evecs_file);
 | 
			
		||||
      for(int k=0;k<evecs.size();k++) {
 | 
			
		||||
	WR.writeScidacFieldRecord(evecs[k],record);
 | 
			
		||||
      }
 | 
			
		||||
      WR.close();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIRL<< "Writing evals to "<<evals_file<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
      XmlWriter WRx(evals_file);
 | 
			
		||||
      write(WRx,"evals",evals);
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
  //Do the compression
 | 
			
		||||
  LocalCoherenceCompressor<SiteSpinor,vTComplex,nbasis> compressor;
 | 
			
		||||
  std::vector<FermionField> basis(nbasis,FrbGrid);
 | 
			
		||||
  std::vector<CoarseField> compressed_evecs(evecs.size(),CoarseGrid5);
 | 
			
		||||
  
 | 
			
		||||
  compressor.compress(basis, compressed_evecs, evecs, FrbGrid, CoarseGrid5);
 | 
			
		||||
 | 
			
		||||
  compareBlockPromoteTimings(basis, compressed_evecs);
 | 
			
		||||
 | 
			
		||||
  //Compare uncompressed and original evecs
 | 
			
		||||
  compressor.compareEvecs(basis, compressed_evecs, evecs);
 | 
			
		||||
  
 | 
			
		||||
  //Create the smoother
 | 
			
		||||
  Chebyshev<FermionField> smoother(fine.getChebyParams());
 | 
			
		||||
  
 | 
			
		||||
  //Test the quality of the uncompressed evecs
 | 
			
		||||
  assert( compressor.testCompression(SchurOp, smoother, basis, compressed_evecs, evals, fine.stop_rsd, args.coarse_relax_tol) );   
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename ActionType>
 | 
			
		||||
void run(ActionType &action, const std::string &config, const Args &args){
 | 
			
		||||
  switch(args.basis_size){
 | 
			
		||||
  case 50:
 | 
			
		||||
    return run_b<50>(action,config,args);
 | 
			
		||||
  case 100:
 | 
			
		||||
    return run_b<100>(action,config,args);
 | 
			
		||||
  case 150:
 | 
			
		||||
    return run_b<150>(action,config,args);
 | 
			
		||||
  case 200:
 | 
			
		||||
    return run_b<200>(action,config,args);
 | 
			
		||||
  case 250:
 | 
			
		||||
    return run_b<250>(action,config,args);
 | 
			
		||||
  case 300:
 | 
			
		||||
    return run_b<300>(action,config,args);
 | 
			
		||||
  case 350:
 | 
			
		||||
    return run_b<350>(action,config,args);
 | 
			
		||||
  case 400:
 | 
			
		||||
    return run_b<400>(action,config,args);
 | 
			
		||||
  default:
 | 
			
		||||
    assert(0 && "Unsupported basis size: allowed values are 50,100,200,250,300,350,400");
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//Note:  because we rely upon physical properties we must use a "real" gauge configuration
 | 
			
		||||
int main (int argc, char ** argv) {
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
  GridLogIRL.TimingMode(1);
 | 
			
		||||
 | 
			
		||||
  if(argc < 3){
 | 
			
		||||
    std::cout << GridLogMessage << "Usage: <exe> <config file> <gparity dirs> <options>" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "<gparity dirs> should have the format a.b.c where a,b,c are 0,1 depending on whether there are G-parity BCs in that direction" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "Options:" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--Ls <value> : Set Ls (default 12)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--mass <value> : Set the mass (default 0.01)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--block <value> : Set the block size. Format should be a.b.c.d.e where a-e are the block extents  (default 2.2.2.2.2)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--is_cps_cfg : Indicate that the configuration was generated with CPS where until recently the stored plaquette was wrong by a factor of 2" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_irl_templ: Write a template for the parameters file of the Lanczos to \"irl_templ.xml\"" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_irl_fine <filename>: Real the parameters file for the fine Lanczos" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--write_fine <filename stub>: Write fine evecs/evals to filename starting with the stub" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--read_fine <filename stub>: Read fine evecs/evals from filename starting with the stub" << std::endl;    
 | 
			
		||||
    std::cout << GridLogMessage << "--coarse_relax_tol : Set the relaxation parameter for evaluating the residual of the reconstructed eigenvectors outside of the basis (default 1e5)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--action : Set the action from 'DWF', 'Mobius'  (default Mobius)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--mobius_scale : Set the Mobius scale b+c (default 2)" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << "--basis_size : Set the basis size from 50,100,150,200,250,300,350,400 (default 100)" << std::endl;
 | 
			
		||||
 | 
			
		||||
    Grid_finalize();
 | 
			
		||||
    return 1;
 | 
			
		||||
  }
 | 
			
		||||
  std::string config = argv[1];
 | 
			
		||||
 | 
			
		||||
  Args args;
 | 
			
		||||
  GridCmdOptionIntVector(argv[2], args.GparityDirs);
 | 
			
		||||
  assert(args.GparityDirs.size() == 3);
 | 
			
		||||
 | 
			
		||||
  std::string action_s = "Mobius"; 
 | 
			
		||||
  
 | 
			
		||||
  for(int i=3;i<argc;i++){
 | 
			
		||||
    std::string sarg = argv[i];
 | 
			
		||||
    if(sarg == "--Ls"){
 | 
			
		||||
      args.Ls = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set Ls to " << args.Ls << std::endl;
 | 
			
		||||
    }else if(sarg == "--mass"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> args.mass;
 | 
			
		||||
      std::cout << GridLogMessage << "Set quark mass to " << args.mass << std::endl;
 | 
			
		||||
    }else if(sarg == "--block"){
 | 
			
		||||
      GridCmdOptionIntVector(argv[i+1], args.blockSize);
 | 
			
		||||
      assert(args.blockSize.size() == 5);
 | 
			
		||||
      std::cout << GridLogMessage << "Set block size to ";
 | 
			
		||||
      for(int q=0;q<5;q++) std::cout << args.blockSize[q] << " ";
 | 
			
		||||
      std::cout << std::endl;      
 | 
			
		||||
    }else if(sarg == "--is_cps_cfg"){
 | 
			
		||||
      args.is_cps_cfg = true;
 | 
			
		||||
    }else if(sarg == "--write_irl_templ"){
 | 
			
		||||
      XmlWriter writer("irl_templ.xml");
 | 
			
		||||
      write(writer,"Params",args.fine);
 | 
			
		||||
      Grid_finalize();
 | 
			
		||||
      return 0;
 | 
			
		||||
    }else if(sarg == "--read_irl_fine"){
 | 
			
		||||
      std::cout << GridLogMessage << "Reading fine IRL params from " << argv[i+1] << std::endl;
 | 
			
		||||
      XmlReader reader(argv[i+1]);
 | 
			
		||||
      read(reader, "Params", args.fine);
 | 
			
		||||
    }else if(sarg == "--write_fine"){
 | 
			
		||||
      args.write_fine = true;
 | 
			
		||||
      args.write_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--read_fine"){
 | 
			
		||||
      args.read_fine = true;
 | 
			
		||||
      args.read_fine_file = argv[i+1];
 | 
			
		||||
    }else if(sarg == "--coarse_relax_tol"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> args.coarse_relax_tol;
 | 
			
		||||
      std::cout << GridLogMessage << "Set coarse IRL relaxation parameter to " << args.coarse_relax_tol << std::endl;
 | 
			
		||||
    }else if(sarg == "--action"){
 | 
			
		||||
      action_s = argv[i+1];
 | 
			
		||||
      std::cout << "Action set to " << action_s << std::endl;
 | 
			
		||||
    }else if(sarg == "--mobius_scale"){
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> args.mobius_scale;
 | 
			
		||||
      std::cout << GridLogMessage << "Set Mobius scale to " << args.mobius_scale << std::endl;
 | 
			
		||||
    }else if(sarg == "--basis_size"){
 | 
			
		||||
      args.basis_size = std::stoi(argv[i+1]);
 | 
			
		||||
      std::cout << GridLogMessage << "Set basis size to " << args.basis_size << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //Fine grids
 | 
			
		||||
  GridCartesian         * UGrid     = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),  GridDefaultSimd(Nd,vComplex::Nsimd()),   GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian * UrbGrid   = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
 | 
			
		||||
  GridCartesian         * FGrid     = SpaceTimeGrid::makeFiveDimGrid(args.Ls,UGrid);
 | 
			
		||||
  GridRedBlackCartesian * FrbGrid   = SpaceTimeGrid::makeFiveDimRedBlackGrid(args.Ls,UGrid);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeField Umu(UGrid);  
 | 
			
		||||
  
 | 
			
		||||
  bool is_gparity = false;
 | 
			
		||||
  for(auto g : args.GparityDirs) if(g) is_gparity = true;
 | 
			
		||||
 | 
			
		||||
  double bmc =  1.;      
 | 
			
		||||
  double b = (args.mobius_scale + bmc)/2.;  // b = 1/2 [ (b+c) + (b-c) ]
 | 
			
		||||
  double c = (args.mobius_scale - bmc)/2.;  // c = 1/2 [ (b+c) - (b-c) ]
 | 
			
		||||
    
 | 
			
		||||
  if(is_gparity){
 | 
			
		||||
    GparityWilsonImplD::ImplParams Params = setupGparityParams(args.GparityDirs);
 | 
			
		||||
    readConfiguration<ConjugateGimplD>(Umu, config, args.is_cps_cfg);   //Read the gauge field
 | 
			
		||||
    
 | 
			
		||||
    if(action_s == "DWF"){    
 | 
			
		||||
      GparityDomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
 | 
			
		||||
      run(action, config, args);
 | 
			
		||||
    }else if(action_s == "Mobius"){
 | 
			
		||||
      GparityMobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
 | 
			
		||||
      run(action, config, args);	    
 | 
			
		||||
    }      
 | 
			
		||||
  }else{
 | 
			
		||||
    WilsonImplD::ImplParams Params = setupParams();
 | 
			
		||||
    readConfiguration<PeriodicGimplD>(Umu, config, args.is_cps_cfg);   //Read the gauge field
 | 
			
		||||
    
 | 
			
		||||
    if(action_s == "DWF"){    
 | 
			
		||||
      DomainWallFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, Params);
 | 
			
		||||
      run(action, config, args);
 | 
			
		||||
    }else if(action_s == "Mobius"){
 | 
			
		||||
      MobiusFermionD action(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, args.mass, args.M5, b, c, Params);
 | 
			
		||||
      run(action, config, args);	    
 | 
			
		||||
    }
 | 
			
		||||
  } 
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user