diff --git a/lib/qcd/action/fermion/PartialFractionFermion5D.cc b/lib/qcd/action/fermion/PartialFractionFermion5D.cc
index 3a78e043..3151e9b4 100644
--- a/lib/qcd/action/fermion/PartialFractionFermion5D.cc
+++ b/lib/qcd/action/fermion/PartialFractionFermion5D.cc
@@ -1,4 +1,4 @@
-    /*************************************************************************************
+/*************************************************************************************
 
     Grid physics library, www.github.com/paboyle/Grid 
 
@@ -24,415 +24,412 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 
     See the full license in the file "LICENSE" in the top level distribution directory
-    *************************************************************************************/
-    /*  END LEGAL */
+*************************************************************************************/
+/*  END LEGAL */
 #include <Grid/qcd/action/fermion/FermionCore.h>
 #include <Grid/qcd/action/fermion/PartialFractionFermion5D.h>
 
-namespace Grid {
-  namespace QCD {
+NAMESPACE_BEGIN(Grid);
 
+template<class Impl>
+void  PartialFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
+  // this does both dag and undag but is trivial; make a common helper routing
 
-    template<class Impl>
-    void  PartialFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
-      // this does both dag and undag but is trivial; make a common helper routing
+  int sign = 1;
+  int Ls = this->Ls;
 
-      int sign = 1;
-      int Ls = this->Ls;
+  this->DhopDir(psi,chi,dir,disp);
 
-      this->DhopDir(psi,chi,dir,disp);
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s); 
+    ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1); 
+  }
+  ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
 
-      int nblock=(Ls-1)/2;
-      for(int b=0;b<nblock;b++){
-	int s = 2*b;
-	ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s); 
-	ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1); 
-      }
-      ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
+}
+template<class Impl>
+void   PartialFractionFermion5D<Impl>::Meooe_internal(const FermionField &psi, FermionField &chi,int dag)
+{
+  int Ls = this->Ls;
+  int sign = dag ? (-1) : 1;
 
-    }
-    template<class Impl>
-    void   PartialFractionFermion5D<Impl>::Meooe_internal(const FermionField &psi, FermionField &chi,int dag)
-    {
-      int Ls = this->Ls;
-      int sign = dag ? (-1) : 1;
+  if ( psi.checkerboard == Odd ) {
+    this->DhopEO(psi,chi,DaggerNo);
+  } else {
+    this->DhopOE(psi,chi,DaggerNo);
+  }
 
-      if ( psi.checkerboard == Odd ) {
-	this->DhopEO(psi,chi,DaggerNo);
-      } else {
-	this->DhopOE(psi,chi,DaggerNo);
-      }
-
-      int nblock=(Ls-1)/2;
-      for(int b=0;b<nblock;b++){
-	int s = 2*b;
-	ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s); 
-	ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1); 
-      }
-      ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
-    }
-
-    template<class Impl>
-    void   PartialFractionFermion5D<Impl>::Mooee_internal(const FermionField &psi, FermionField &chi,int dag)
-    {
-      // again dag and undag are trivially related
-      int sign = dag ? (-1) : 1;
-      int Ls = this->Ls;
-      
-      int nblock=(Ls-1)/2;
-      for(int b=0;b<nblock;b++){
-	
-	int s = 2*b;
-	RealD pp = p[nblock-1-b];
-	RealD qq = q[nblock-1-b];
-	
-	// Do each 2x2 block aligned at s and multiplies Dw site diagonal by G5 so Hw
-	ag5xpby_ssp(chi,-dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s  ,s+1); 
-	ag5xpby_ssp(chi, dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s+1,s);
-	axpby_ssp  (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
-      }
-      
-      {
-	RealD R=(1+mass)/(1-mass);
-	//R g5 psi[Ls-1] + p[0] H
-	ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale*dw_diag/amax,psi,Ls-1,Ls-1);
-	
-	for(int b=0;b<nblock;b++){
-	  int s = 2*b+1;
-	  RealD pp = p[nblock-1-b];
-	  axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
-	}
-      }
-    }
-
-    template<class Impl>
-    void   PartialFractionFermion5D<Impl>::MooeeInv_internal(const FermionField &psi, FermionField &chi,int dag)
-    {
-      int sign = dag ? (-1) : 1;
-      int Ls = this->Ls;
-
-      FermionField tmp(psi._grid);
-      
-      ///////////////////////////////////////////////////////////////////////////////////////
-      //Linv
-      ///////////////////////////////////////////////////////////////////////////////////////
-      int nblock=(Ls-1)/2;
-
-      axpy(chi,0.0,psi,psi); // Identity piece
-      
-      for(int b=0;b<nblock;b++){
-	int s = 2*b;
-	RealD pp = p[nblock-1-b];
-	RealD qq = q[nblock-1-b];
-	RealD coeff1=sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
-	RealD coeff2=sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
-	axpby_ssp  (chi,1.0,chi,coeff1,psi,Ls-1,s);
-	axpbg5y_ssp(chi,1.0,chi,coeff2,psi,Ls-1,s+1);
-      }
-      
-      ///////////////////////////////////////////////////////////////////////////////////////
-      //Dinv (note D isn't really diagonal -- just diagonal enough that we can still invert)
-      // Compute Seeinv (coeff of gamma5)
-      ///////////////////////////////////////////////////////////////////////////////////////
-      RealD R=(1+mass)/(1-mass);
-      RealD Seeinv = R + p[nblock]*dw_diag/amax;
-      for(int b=0;b<nblock;b++){
-	Seeinv += p[nblock-1-b]*dw_diag/amax / ( dw_diag*dw_diag/amax/amax + q[nblock-1-b]);
-      }    
-      Seeinv = 1.0/Seeinv;
-      
-      for(int b=0;b<nblock;b++){
-	int s = 2*b;
-	RealD pp = p[nblock-1-b];
-	RealD qq = q[nblock-1-b];
-	RealD coeff1=dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
-	RealD coeff2=amax*sqrt(qq) / ( dw_diag*dw_diag + amax*amax* qq);
-	ag5xpby_ssp  (tmp,-coeff1,chi,coeff2,chi,s,s+1);
-	ag5xpby_ssp  (tmp, coeff1,chi,coeff2,chi,s+1,s);
-      }
-      ag5xpby_ssp  (tmp, Seeinv,chi,0.0,chi,Ls-1,Ls-1);
-      
-      ///////////////////////////////////////////////////////////////////////////////////////
-      // Uinv
-      ///////////////////////////////////////////////////////////////////////////////////////
-      for(int b=0;b<nblock;b++){
-	int s = 2*b;
-	RealD pp = p[nblock-1-b];
-	RealD qq = q[nblock-1-b];
-	RealD coeff1=-sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
-	RealD coeff2=-sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
-	axpby_ssp  (chi,1.0/scale,tmp,coeff1/scale,tmp,s,Ls-1);
-	axpbg5y_ssp(chi,1.0/scale,tmp,coeff2/scale,tmp,s+1,Ls-1);
-      }
-      axpby_ssp  (chi, 1.0/scale,tmp,0.0,tmp,Ls-1,Ls-1);
-    }
-
-    template<class Impl>
-    void   PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, FermionField &chi,int dag)
-    {
-      FermionField D(psi._grid);
-  
-      int Ls = this->Ls;
-      int sign = dag ? (-1) : 1;
-
-      // For partial frac Hw case (b5=c5=1) chroma quirkily computes
-      //
-      // Conventions for partfrac appear to be a mess.
-      // Tony's Nara lectures have
-      //
-      // BlockDiag(  H/p_i  1             | 1       )    
-      //          (  1      p_i H / q_i^2 | 0       )  
-      //           ---------------------------------
-      //           ( -1      0                | R  +p0 H  )
-      //
-      //Chroma     ( -2H    2sqrt(q_i)    |   0         )
-      //           (2 sqrt(q_i)   2H      |  2 sqrt(p_i) )
-      //           ---------------------------------
-      //           ( 0     -2 sqrt(p_i)   |  2 R gamma_5 + p0 2H
-      //
-      // Edwards/Joo/Kennedy/Wenger
-      //
-      // Here, the "beta's" selected by chroma to scale the unphysical bulk constraint fields
-      // incorporate the approx scale factor. This is obtained by propagating the
-      // scale on "H" out to the off diagonal elements as follows:
-      //
-      // BlockDiag(  H/p_i  1             | 1       ) 
-      //          (  1      p_i H / q_i^2 | 0       )  
-      //           ---------------------------------
-      //          ( -1      0                | R  + p_0 H  )
-      //
-      // becomes:
-      // BlockDiag(  H/ sp_i  1               | 1             ) 
-      //          (  1      sp_i H / s^2q_i^2 | 0             )  
-      //           ---------------------------------
-      //           ( -1      0                | R + p_0/s H   )
-      //
-      //
-      // This is implemented in Chroma by
-      //           p0' = p0/approxMax
-      //           p_i' = p_i*approxMax
-      //           q_i' = q_i*approxMax*approxMax
-      //
-      // After the equivalence transform is applied the matrix becomes
-      // 
-      //Chroma     ( -2H    sqrt(q'_i)    |   0         )
-      //           (sqrt(q'_i)   2H       |   sqrt(p'_i) )
-      //           ---------------------------------
-      //           ( 0     -sqrt(p'_i)    |  2 R gamma_5 + p'0 2H
-      //
-      //     =     ( -2H    sqrt(q_i)amax    |   0              )
-      //           (sqrt(q_i)amax   2H       |   sqrt(p_i*amax) )
-      //           ---------------------------------
-      //           ( 0     -sqrt(p_i)*amax   |  2 R gamma_5 + p0/amax 2H
-      //
-
-      this->DW(psi,D,DaggerNo); 
-
-      int nblock=(Ls-1)/2;
-      for(int b=0;b<nblock;b++){
-	
-	int s = 2*b;
-	double pp = p[nblock-1-b];
-	double qq = q[nblock-1-b];
-	
-	// Do each 2x2 block aligned at s and
-	ag5xpby_ssp(chi,-1.0*scale,D,amax*sqrt(qq)*scale,psi, s  ,s+1); // Multiplies Dw by G5 so Hw
-	ag5xpby_ssp(chi, 1.0*scale,D,amax*sqrt(qq)*scale,psi, s+1,s);
-	
-	// Pick up last column
-	axpby_ssp  (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
-      }
-	
-      {
-	double R=(1+this->mass)/(1-this->mass);
-	//R g5 psi[Ls] + p[0] H
-	ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
-	
-	for(int b=0;b<nblock;b++){
-	  int s = 2*b+1;
-	  double pp = p[nblock-1-b];
-	  axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
-	}
-      }
-
-    }
-
-    template<class Impl>
-    RealD  PartialFractionFermion5D<Impl>::M    (const FermionField &in, FermionField &out)
-    {
-      M_internal(in,out,DaggerNo);
-      return norm2(out);
-    }
-    template<class Impl>
-    RealD  PartialFractionFermion5D<Impl>::Mdag (const FermionField &in, FermionField &out)
-    {
-      M_internal(in,out,DaggerYes);
-      return norm2(out);
-    }
-
-    template<class Impl>
-    void PartialFractionFermion5D<Impl>::Meooe       (const FermionField &in, FermionField &out)
-    {
-      Meooe_internal(in,out,DaggerNo);
-    }
-    template<class Impl>
-    void PartialFractionFermion5D<Impl>::MeooeDag    (const FermionField &in, FermionField &out)
-    {
-      Meooe_internal(in,out,DaggerYes);
-    }
-    template<class Impl>
-    void PartialFractionFermion5D<Impl>::Mooee       (const FermionField &in, FermionField &out)
-    {
-      Mooee_internal(in,out,DaggerNo);
-    }
-    template<class Impl>
-    void PartialFractionFermion5D<Impl>::MooeeDag    (const FermionField &in, FermionField &out)
-    {
-      Mooee_internal(in,out,DaggerYes);
-    }
-
-    template<class Impl>
-    void PartialFractionFermion5D<Impl>::MooeeInv    (const FermionField &in, FermionField &out)
-    {
-      MooeeInv_internal(in,out,DaggerNo);
-    }
-    template<class Impl>
-    void PartialFractionFermion5D<Impl>::MooeeInvDag (const FermionField &in, FermionField &out)
-    {
-      MooeeInv_internal(in,out,DaggerYes);
-    }
-
-
-  // force terms; five routines; default to Dhop on diagonal
-    template<class Impl>
-   void PartialFractionFermion5D<Impl>::MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
-  {
-    int Ls = this->Ls;
-
-    FermionField D(V._grid);
-
-    int nblock=(Ls-1)/2;
-    for(int b=0;b<nblock;b++){
-      int s = 2*b;
-      ag5xpby_ssp(D,-scale,U,0.0,U,s,s); 
-      ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1); 
-    }
-    ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
-
-    this->DhopDeriv(mat,D,V,DaggerNo); 
-  };
-    template<class Impl>
-   void PartialFractionFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
-  {
-    int Ls = this->Ls;
-
-    FermionField D(V._grid);
-
-    int nblock=(Ls-1)/2;
-    for(int b=0;b<nblock;b++){
-      int s = 2*b;
-      ag5xpby_ssp(D,-scale,U,0.0,U,s,s); 
-      ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1); 
-    }
-    ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
-
-    this->DhopDerivOE(mat,D,V,DaggerNo); 
-  };
-    template<class Impl>
-   void PartialFractionFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
-  {
-    int Ls = this->Ls;
-
-    FermionField D(V._grid);
-
-    int nblock=(Ls-1)/2;
-    for(int b=0;b<nblock;b++){
-      int s = 2*b;
-      ag5xpby_ssp(D,-scale,U,0.0,U,s,s); 
-      ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1); 
-    }
-    ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
-
-    this->DhopDerivEO(mat,D,V,DaggerNo); 
-  };
-
-    template<class Impl>
-    void  PartialFractionFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
-      SetCoefficientsZolotarev(1.0/scale,zdata);
-    }
-    template<class Impl>
-    void  PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
-
-      // check on degree matching
-      //      std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
-      //      std::cout<<GridLogMessage << zdata->n  << " - n"<<std::endl;
-      //      std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
-      //      std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
-      //      std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
-      //      std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
-      int Ls = this->Ls;
-
-      assert(Ls == (2*zdata->da -1) );
-
-      // Part frac
-      //      RealD R;
-      R=(1+mass)/(1-mass);
-      dw_diag = (4.0-this->M5);
-
-      //      std::vector<RealD> p; 
-      //      std::vector<RealD> q;
-      p.resize(zdata->da);
-      q.resize(zdata->dd);
-	
-      for(int n=0;n<zdata->da;n++){
-	p[n] = zdata -> alpha[n];
-      }
-      for(int n=0;n<zdata->dd;n++){
-	q[n] = -zdata -> ap[n];
-      }
-      
-      scale= part_frac_chroma_convention ? 2.0 : 1.0; // Chroma conventions annoy me
-
-      amax=zolo_hi;
-    }
-
-      // Constructors
-    template<class Impl>
-    PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
-							     GridCartesian         &FiveDimGrid,
-							     GridRedBlackCartesian &FiveDimRedBlackGrid,
-							     GridCartesian         &FourDimGrid,
-							     GridRedBlackCartesian &FourDimRedBlackGrid,
-							     RealD _mass,RealD M5,
-							     const ImplParams &p) :
-      WilsonFermion5D<Impl>(_Umu,
-			    FiveDimGrid, FiveDimRedBlackGrid,
-			    FourDimGrid, FourDimRedBlackGrid,M5,p),
-      mass(_mass)
-
-    {
-      int Ls = this->Ls;
-
-      assert((Ls&0x1)==1); // Odd Ls required
-      int nrational=Ls-1;
-
-
-      Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);
-
-      // NB: chroma uses a cast to "float" for the zolotarev range(!?).
-      // this creates a real difference in the operator which I do not like but we can replicate here
-      // to demonstrate compatibility
-      //      RealD eps = (zolo_lo / zolo_hi);
-      //      zdata = bfm_zolotarev(eps,nrational,0);
-      
-      SetCoefficientsTanh(zdata,1.0);
-
-      Approx::zolotarev_free(zdata);
-
-    }
- 
-    FermOpTemplateInstantiate(PartialFractionFermion5D);
-
- }
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s); 
+    ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1); 
+  }
+  ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
 }
 
+template<class Impl>
+void   PartialFractionFermion5D<Impl>::Mooee_internal(const FermionField &psi, FermionField &chi,int dag)
+{
+  // again dag and undag are trivially related
+  int sign = dag ? (-1) : 1;
+  int Ls = this->Ls;
+      
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+	
+    int s = 2*b;
+    RealD pp = p[nblock-1-b];
+    RealD qq = q[nblock-1-b];
+	
+    // Do each 2x2 block aligned at s and multiplies Dw site diagonal by G5 so Hw
+    ag5xpby_ssp(chi,-dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s  ,s+1); 
+    ag5xpby_ssp(chi, dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s+1,s);
+    axpby_ssp  (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
+  }
+      
+  {
+    RealD R=(1+mass)/(1-mass);
+    //R g5 psi[Ls-1] + p[0] H
+    ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale*dw_diag/amax,psi,Ls-1,Ls-1);
+	
+    for(int b=0;b<nblock;b++){
+      int s = 2*b+1;
+      RealD pp = p[nblock-1-b];
+      axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
+    }
+  }
+}
+
+template<class Impl>
+void   PartialFractionFermion5D<Impl>::MooeeInv_internal(const FermionField &psi, FermionField &chi,int dag)
+{
+  int sign = dag ? (-1) : 1;
+  int Ls = this->Ls;
+
+  FermionField tmp(psi._grid);
+      
+  ///////////////////////////////////////////////////////////////////////////////////////
+  //Linv
+  ///////////////////////////////////////////////////////////////////////////////////////
+  int nblock=(Ls-1)/2;
+
+  axpy(chi,0.0,psi,psi); // Identity piece
+      
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    RealD pp = p[nblock-1-b];
+    RealD qq = q[nblock-1-b];
+    RealD coeff1=sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
+    RealD coeff2=sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
+    axpby_ssp  (chi,1.0,chi,coeff1,psi,Ls-1,s);
+    axpbg5y_ssp(chi,1.0,chi,coeff2,psi,Ls-1,s+1);
+  }
+      
+  ///////////////////////////////////////////////////////////////////////////////////////
+  //Dinv (note D isn't really diagonal -- just diagonal enough that we can still invert)
+  // Compute Seeinv (coeff of gamma5)
+  ///////////////////////////////////////////////////////////////////////////////////////
+  RealD R=(1+mass)/(1-mass);
+  RealD Seeinv = R + p[nblock]*dw_diag/amax;
+  for(int b=0;b<nblock;b++){
+    Seeinv += p[nblock-1-b]*dw_diag/amax / ( dw_diag*dw_diag/amax/amax + q[nblock-1-b]);
+  }    
+  Seeinv = 1.0/Seeinv;
+      
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    RealD pp = p[nblock-1-b];
+    RealD qq = q[nblock-1-b];
+    RealD coeff1=dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
+    RealD coeff2=amax*sqrt(qq) / ( dw_diag*dw_diag + amax*amax* qq);
+    ag5xpby_ssp  (tmp,-coeff1,chi,coeff2,chi,s,s+1);
+    ag5xpby_ssp  (tmp, coeff1,chi,coeff2,chi,s+1,s);
+  }
+  ag5xpby_ssp  (tmp, Seeinv,chi,0.0,chi,Ls-1,Ls-1);
+      
+  ///////////////////////////////////////////////////////////////////////////////////////
+  // Uinv
+  ///////////////////////////////////////////////////////////////////////////////////////
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    RealD pp = p[nblock-1-b];
+    RealD qq = q[nblock-1-b];
+    RealD coeff1=-sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
+    RealD coeff2=-sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
+    axpby_ssp  (chi,1.0/scale,tmp,coeff1/scale,tmp,s,Ls-1);
+    axpbg5y_ssp(chi,1.0/scale,tmp,coeff2/scale,tmp,s+1,Ls-1);
+  }
+  axpby_ssp  (chi, 1.0/scale,tmp,0.0,tmp,Ls-1,Ls-1);
+}
+
+template<class Impl>
+void   PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, FermionField &chi,int dag)
+{
+  FermionField D(psi._grid);
+  
+  int Ls = this->Ls;
+  int sign = dag ? (-1) : 1;
+
+  // For partial frac Hw case (b5=c5=1) chroma quirkily computes
+  //
+  // Conventions for partfrac appear to be a mess.
+  // Tony's Nara lectures have
+  //
+  // BlockDiag(  H/p_i  1             | 1       )    
+  //          (  1      p_i H / q_i^2 | 0       )  
+  //           ---------------------------------
+  //           ( -1      0                | R  +p0 H  )
+  //
+  //Chroma     ( -2H    2sqrt(q_i)    |   0         )
+  //           (2 sqrt(q_i)   2H      |  2 sqrt(p_i) )
+  //           ---------------------------------
+  //           ( 0     -2 sqrt(p_i)   |  2 R gamma_5 + p0 2H
+  //
+  // Edwards/Joo/Kennedy/Wenger
+  //
+  // Here, the "beta's" selected by chroma to scale the unphysical bulk constraint fields
+  // incorporate the approx scale factor. This is obtained by propagating the
+  // scale on "H" out to the off diagonal elements as follows:
+  //
+  // BlockDiag(  H/p_i  1             | 1       ) 
+  //          (  1      p_i H / q_i^2 | 0       )  
+  //           ---------------------------------
+  //          ( -1      0                | R  + p_0 H  )
+  //
+  // becomes:
+  // BlockDiag(  H/ sp_i  1               | 1             ) 
+  //          (  1      sp_i H / s^2q_i^2 | 0             )  
+  //           ---------------------------------
+  //           ( -1      0                | R + p_0/s H   )
+  //
+  //
+  // This is implemented in Chroma by
+  //           p0' = p0/approxMax
+  //           p_i' = p_i*approxMax
+  //           q_i' = q_i*approxMax*approxMax
+  //
+  // After the equivalence transform is applied the matrix becomes
+  // 
+  //Chroma     ( -2H    sqrt(q'_i)    |   0         )
+  //           (sqrt(q'_i)   2H       |   sqrt(p'_i) )
+  //           ---------------------------------
+  //           ( 0     -sqrt(p'_i)    |  2 R gamma_5 + p'0 2H
+  //
+  //     =     ( -2H    sqrt(q_i)amax    |   0              )
+  //           (sqrt(q_i)amax   2H       |   sqrt(p_i*amax) )
+  //           ---------------------------------
+  //           ( 0     -sqrt(p_i)*amax   |  2 R gamma_5 + p0/amax 2H
+  //
+
+  this->DW(psi,D,DaggerNo); 
+
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+	
+    int s = 2*b;
+    double pp = p[nblock-1-b];
+    double qq = q[nblock-1-b];
+	
+    // Do each 2x2 block aligned at s and
+    ag5xpby_ssp(chi,-1.0*scale,D,amax*sqrt(qq)*scale,psi, s  ,s+1); // Multiplies Dw by G5 so Hw
+    ag5xpby_ssp(chi, 1.0*scale,D,amax*sqrt(qq)*scale,psi, s+1,s);
+	
+    // Pick up last column
+    axpby_ssp  (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
+  }
+	
+  {
+    double R=(1+this->mass)/(1-this->mass);
+    //R g5 psi[Ls] + p[0] H
+    ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
+	
+    for(int b=0;b<nblock;b++){
+      int s = 2*b+1;
+      double pp = p[nblock-1-b];
+      axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
+    }
+  }
+
+}
+
+template<class Impl>
+RealD  PartialFractionFermion5D<Impl>::M    (const FermionField &in, FermionField &out)
+{
+  M_internal(in,out,DaggerNo);
+  return norm2(out);
+}
+template<class Impl>
+RealD  PartialFractionFermion5D<Impl>::Mdag (const FermionField &in, FermionField &out)
+{
+  M_internal(in,out,DaggerYes);
+  return norm2(out);
+}
+
+template<class Impl>
+void PartialFractionFermion5D<Impl>::Meooe       (const FermionField &in, FermionField &out)
+{
+  Meooe_internal(in,out,DaggerNo);
+}
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MeooeDag    (const FermionField &in, FermionField &out)
+{
+  Meooe_internal(in,out,DaggerYes);
+}
+template<class Impl>
+void PartialFractionFermion5D<Impl>::Mooee       (const FermionField &in, FermionField &out)
+{
+  Mooee_internal(in,out,DaggerNo);
+}
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MooeeDag    (const FermionField &in, FermionField &out)
+{
+  Mooee_internal(in,out,DaggerYes);
+}
+
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MooeeInv    (const FermionField &in, FermionField &out)
+{
+  MooeeInv_internal(in,out,DaggerNo);
+}
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MooeeInvDag (const FermionField &in, FermionField &out)
+{
+  MooeeInv_internal(in,out,DaggerYes);
+}
+
+
+// force terms; five routines; default to Dhop on diagonal
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MDeriv  (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
+{
+  int Ls = this->Ls;
+
+  FermionField D(V._grid);
+
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    ag5xpby_ssp(D,-scale,U,0.0,U,s,s); 
+    ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1); 
+  }
+  ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
+
+  this->DhopDeriv(mat,D,V,DaggerNo); 
+};
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
+{
+  int Ls = this->Ls;
+
+  FermionField D(V._grid);
+
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    ag5xpby_ssp(D,-scale,U,0.0,U,s,s); 
+    ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1); 
+  }
+  ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
+
+  this->DhopDerivOE(mat,D,V,DaggerNo); 
+};
+template<class Impl>
+void PartialFractionFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
+{
+  int Ls = this->Ls;
+
+  FermionField D(V._grid);
+
+  int nblock=(Ls-1)/2;
+  for(int b=0;b<nblock;b++){
+    int s = 2*b;
+    ag5xpby_ssp(D,-scale,U,0.0,U,s,s); 
+    ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1); 
+  }
+  ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
+
+  this->DhopDerivEO(mat,D,V,DaggerNo); 
+};
+
+template<class Impl>
+void  PartialFractionFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
+  SetCoefficientsZolotarev(1.0/scale,zdata);
+}
+template<class Impl>
+void  PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
+
+  // check on degree matching
+  //      std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
+  //      std::cout<<GridLogMessage << zdata->n  << " - n"<<std::endl;
+  //      std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
+  //      std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
+  //      std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
+  //      std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
+  int Ls = this->Ls;
+
+  assert(Ls == (2*zdata->da -1) );
+
+  // Part frac
+  //      RealD R;
+  R=(1+mass)/(1-mass);
+  dw_diag = (4.0-this->M5);
+
+  //      std::vector<RealD> p; 
+  //      std::vector<RealD> q;
+  p.resize(zdata->da);
+  q.resize(zdata->dd);
+	
+  for(int n=0;n<zdata->da;n++){
+    p[n] = zdata -> alpha[n];
+  }
+  for(int n=0;n<zdata->dd;n++){
+    q[n] = -zdata -> ap[n];
+  }
+      
+  scale= part_frac_chroma_convention ? 2.0 : 1.0; // Chroma conventions annoy me
+
+  amax=zolo_hi;
+}
+
+// Constructors
+template<class Impl>
+PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
+							 GridCartesian         &FiveDimGrid,
+							 GridRedBlackCartesian &FiveDimRedBlackGrid,
+							 GridCartesian         &FourDimGrid,
+							 GridRedBlackCartesian &FourDimRedBlackGrid,
+							 RealD _mass,RealD M5,
+							 const ImplParams &p) :
+  WilsonFermion5D<Impl>(_Umu,
+			FiveDimGrid, FiveDimRedBlackGrid,
+			FourDimGrid, FourDimRedBlackGrid,M5,p),
+  mass(_mass)
+
+{
+  int Ls = this->Ls;
+
+  assert((Ls&0x1)==1); // Odd Ls required
+  int nrational=Ls-1;
+
+
+  Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);
+
+  // NB: chroma uses a cast to "float" for the zolotarev range(!?).
+  // this creates a real difference in the operator which I do not like but we can replicate here
+  // to demonstrate compatibility
+  //      RealD eps = (zolo_lo / zolo_hi);
+  //      zdata = bfm_zolotarev(eps,nrational,0);
+      
+  SetCoefficientsTanh(zdata,1.0);
+
+  Approx::zolotarev_free(zdata);
+
+}
+ 
+FermOpTemplateInstantiate(PartialFractionFermion5D);
+
+NAMESPACE_END(Grid);
+