mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-14 13:57:07 +01:00
Merge branch 'feature/hadrons' into feature/qed-fvol
# Conflicts: # extras/Hadrons/Modules.hpp # extras/Hadrons/Modules/MGauge/StochEm.cc # extras/Hadrons/Modules/MScalar/ChargedProp.cc # extras/Hadrons/Modules/MScalar/ChargedProp.hpp # extras/Hadrons/modules.inc # lib/communicator/Communicator_mpi.cc
This commit is contained in:
@ -39,6 +39,7 @@ namespace QCD {
|
||||
static const int Zdir = 2;
|
||||
static const int Tdir = 3;
|
||||
|
||||
|
||||
static const int Xp = 0;
|
||||
static const int Yp = 1;
|
||||
static const int Zp = 2;
|
||||
@ -420,15 +421,16 @@ namespace QCD {
|
||||
//////////////////////////////////////////////
|
||||
// Fermion <-> propagator assignements
|
||||
//////////////////////////////////////////////
|
||||
template <class Prop, class Ferm>
|
||||
void FermToProp(Prop &p, const Ferm &f, const int s, const int c)
|
||||
//template <class Prop, class Ferm>
|
||||
template <class Fimpl>
|
||||
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
|
||||
{
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
{
|
||||
auto pjs = peekSpin(p, j, s);
|
||||
auto fj = peekSpin(f, j);
|
||||
|
||||
for(int i = 0; i < Nc; ++i)
|
||||
for(int i = 0; i < Fimpl::Dimension; ++i)
|
||||
{
|
||||
pokeColour(pjs, peekColour(fj, i), i, c);
|
||||
}
|
||||
@ -436,15 +438,16 @@ namespace QCD {
|
||||
}
|
||||
}
|
||||
|
||||
template <class Prop, class Ferm>
|
||||
void PropToFerm(Ferm &f, const Prop &p, const int s, const int c)
|
||||
//template <class Prop, class Ferm>
|
||||
template <class Fimpl>
|
||||
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
|
||||
{
|
||||
for(int j = 0; j < Ns; ++j)
|
||||
{
|
||||
auto pjs = peekSpin(p, j, s);
|
||||
auto fj = peekSpin(f, j);
|
||||
|
||||
for(int i = 0; i < Nc; ++i)
|
||||
for(int i = 0; i < Fimpl::Dimension; ++i)
|
||||
{
|
||||
pokeColour(fj, peekColour(pjs, i, c), i);
|
||||
}
|
||||
@ -492,41 +495,17 @@ namespace QCD {
|
||||
return traceIndex<ColourIndex>(lhs);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Current types
|
||||
//////////////////////////////////////////
|
||||
GRID_SERIALIZABLE_ENUM(Current, undef,
|
||||
Vector, 0,
|
||||
Axial, 1,
|
||||
Tadpole, 2);
|
||||
|
||||
} //namespace QCD
|
||||
} // Grid
|
||||
|
||||
/*
|
||||
<<<<<<< HEAD
|
||||
#include <Grid/qcd/utils/SpaceTimeGrid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/spin/TwoSpinor.h>
|
||||
#include <Grid/qcd/utils/LinalgUtils.h>
|
||||
#include <Grid/qcd/utils/CovariantCshift.h>
|
||||
|
||||
// Include representations
|
||||
#include <Grid/qcd/utils/SUn.h>
|
||||
#include <Grid/qcd/utils/SUnAdjoint.h>
|
||||
#include <Grid/qcd/utils/SUnTwoIndex.h>
|
||||
#include <Grid/qcd/representations/hmc_types.h>
|
||||
|
||||
// Scalar field
|
||||
#include <Grid/qcd/utils/ScalarObjs.h>
|
||||
|
||||
#include <Grid/qcd/action/Actions.h>
|
||||
|
||||
#include <Grid/qcd/smearing/Smearing.h>
|
||||
|
||||
#include <Grid/qcd/hmc/integrators/Integrator.h>
|
||||
#include <Grid/qcd/hmc/integrators/Integrator_algorithm.h>
|
||||
#include <Grid/qcd/observables/hmc_observable.h>
|
||||
#include <Grid/qcd/hmc/HMC.h>
|
||||
|
||||
|
||||
//#include <Grid/qcd/modules/mods.h>
|
||||
=======
|
||||
|
||||
>>>>>>> develop
|
||||
*/
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -50,11 +50,13 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
////////////////////////////////////////////
|
||||
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
|
||||
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
|
||||
#include <Grid/qcd/action/fermion/WilsonTMFermion.h> // 4d wilson like
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h> // 4d wilson clover fermions
|
||||
#include <Grid/qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
|
||||
//#include <Grid/qcd/action/fermion/CloverFermion.h>
|
||||
|
||||
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion.h>
|
||||
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
|
||||
|
||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h> // Cayley types
|
||||
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
|
||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
|
||||
@ -104,10 +106,33 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermi
|
||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
|
||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
|
||||
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonTwoIndexAntiSymmetricFermionR;
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Twisted mass fermion
|
||||
typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR;
|
||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
|
||||
|
||||
// Clover fermions
|
||||
typedef WilsonCloverFermion<WilsonImplR> WilsonCloverFermionR;
|
||||
typedef WilsonCloverFermion<WilsonImplF> WilsonCloverFermionF;
|
||||
typedef WilsonCloverFermion<WilsonImplD> WilsonCloverFermionD;
|
||||
|
||||
typedef WilsonCloverFermion<WilsonAdjImplR> WilsonCloverAdjFermionR;
|
||||
typedef WilsonCloverFermion<WilsonAdjImplF> WilsonCloverAdjFermionF;
|
||||
typedef WilsonCloverFermion<WilsonAdjImplD> WilsonCloverAdjFermionD;
|
||||
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
|
||||
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonCloverFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Domain Wall fermions
|
||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
|
||||
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
|
||||
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
|
||||
|
@ -70,7 +70,9 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
|
||||
#define TwoIndexFermOpTemplateInstantiate(A) \
|
||||
template class A<WilsonTwoIndexSymmetricImplF>; \
|
||||
template class A<WilsonTwoIndexSymmetricImplD>;
|
||||
template class A<WilsonTwoIndexSymmetricImplD>; \
|
||||
template class A<WilsonTwoIndexAntiSymmetricImplF>; \
|
||||
template class A<WilsonTwoIndexAntiSymmetricImplD>;
|
||||
|
||||
#define FermOp5dVecTemplateInstantiate(A) \
|
||||
template class A<DomainWallVec5dImplF>; \
|
||||
|
@ -47,6 +47,7 @@ namespace Grid {
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
FermionOperator(const ImplParams &p= ImplParams()) : Impl(p) {};
|
||||
virtual ~FermionOperator(void) = default;
|
||||
|
||||
virtual FermionField &tmp(void) = 0;
|
||||
|
||||
@ -112,6 +113,21 @@ namespace Grid {
|
||||
///////////////////////////////////////////////
|
||||
virtual void ImportGauge(const GaugeField & _U)=0;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Conserved currents, either contract at sink or insert sequentially.
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
virtual void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu)=0;
|
||||
virtual void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax)=0;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -164,6 +164,7 @@ namespace QCD {
|
||||
public:
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=false;
|
||||
static const int Nhcs = Options::Nhcs;
|
||||
|
||||
@ -212,6 +213,13 @@ namespace QCD {
|
||||
StencilImpl &St) {
|
||||
mult(&phi(), &U(mu), &chi());
|
||||
}
|
||||
|
||||
inline void multLinkProp(SitePropagator &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SitePropagator &chi,
|
||||
int mu) {
|
||||
mult(&phi(), &U(mu), &chi());
|
||||
}
|
||||
|
||||
template <class ref>
|
||||
inline void loadLinkElement(Simd ®, ref &memory) {
|
||||
@ -254,8 +262,22 @@ namespace QCD {
|
||||
GaugeLinkField link(mat._grid);
|
||||
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
|
||||
PokeIndex<LorentzIndex>(mat,link,mu);
|
||||
}
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &B, const FermionField &A){
|
||||
mat = outerProduct(B,A);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
mat = TraceIndex<SpinIndex>(P);
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
mat[mu] = PeekIndex<LorentzIndex>(Uds, mu);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu){
|
||||
|
||||
int Ls=Btilde._grid->_fdimensions[0];
|
||||
@ -277,27 +299,28 @@ namespace QCD {
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Single flavour four spinors with colour index, 5d redblack
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class S,int Nrepresentation=Nc, class Options=CoeffReal>
|
||||
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepresentation> > {
|
||||
template<class S,class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Representation::Dimension> > {
|
||||
public:
|
||||
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl;
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > Gimpl;
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
static const int Dimension = Nrepresentation;
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=true;
|
||||
static const int Nhcs = Options::Nhcs;
|
||||
|
||||
typedef typename Options::_Coeff_t Coeff_t;
|
||||
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Nrepresentation>, Ns> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhcs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nd>;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
@ -333,14 +356,27 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
|
||||
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
|
||||
StencilImpl &St) {
|
||||
SiteGaugeLink UU;
|
||||
for (int i = 0; i < Nrepresentation; i++) {
|
||||
for (int j = 0; j < Nrepresentation; j++) {
|
||||
for (int i = 0; i < Dimension; i++) {
|
||||
for (int j = 0; j < Dimension; j++) {
|
||||
vsplat(UU()()(i, j), U(mu)()(i, j));
|
||||
}
|
||||
}
|
||||
mult(&phi(), &UU(), &chi());
|
||||
}
|
||||
|
||||
|
||||
inline void multLinkProp(SitePropagator &phi,
|
||||
const SiteDoubledGaugeField &U,
|
||||
const SitePropagator &chi,
|
||||
int mu) {
|
||||
SiteGaugeLink UU;
|
||||
for (int i = 0; i < Dimension; i++) {
|
||||
for (int j = 0; j < Dimension; j++) {
|
||||
vsplat(UU()()(i, j), U(mu)()(i, j));
|
||||
}
|
||||
}
|
||||
mult(&phi(), &UU(), &chi());
|
||||
}
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
SiteScalarGaugeField ScalarUmu;
|
||||
@ -373,6 +409,19 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
assert(0);
|
||||
@ -425,25 +474,26 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Flavour doubled spinors; is Gparity the only? what about C*?
|
||||
////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class S, int Nrepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
|
||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||
public:
|
||||
|
||||
static const int Dimension = Nrepresentation;
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const int Nhcs = Options::Nhcs;
|
||||
static const bool LsVectorised=false;
|
||||
|
||||
typedef ConjugateGaugeImpl< GaugeImplTypes<S,Nrepresentation> > Gimpl;
|
||||
typedef ConjugateGaugeImpl< GaugeImplTypes<S,Dimension> > Gimpl;
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Options::_Coeff_t Coeff_t;
|
||||
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
|
||||
|
||||
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Nrepresentation>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhcs>, Ngp>;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
|
||||
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Dimension>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Dimension>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Dimension>, Nhs>, Ngp>;
|
||||
template <typename vtype> using iImplHalfCommSpinor = iVector<iVector<iVector<vtype, Dimension>, Nhcs>, Ngp>;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>, Ngp>;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
@ -537,7 +587,12 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Fixme: Gparity prop * link
|
||||
inline void multLinkProp(SitePropagator &phi, const SiteDoubledGaugeField &U,
|
||||
const SitePropagator &chi, int mu)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template <class ref>
|
||||
inline void loadLinkElement(Simd ®, ref &memory) {
|
||||
@ -611,6 +666,25 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
|
||||
return;
|
||||
}
|
||||
|
||||
inline void outerProductImpl(PropagatorField &mat, const FermionField &Btilde, const FermionField &A){
|
||||
//mat = outerProduct(Btilde, A);
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void TraceSpinImpl(GaugeLinkField &mat, PropagatorField&P) {
|
||||
assert(0);
|
||||
/*
|
||||
auto tmp = TraceIndex<SpinIndex>(P);
|
||||
parallel_for(auto ss = tmp.begin(); ss < tmp.end(); ss++) {
|
||||
mat[ss]() = tmp[ss](0, 0) + conjugate(tmp[ss](1, 1));
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
int Ls = Btilde._grid->_fdimensions[0];
|
||||
@ -640,6 +714,7 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
|
||||
|
||||
typedef RealD _Coeff_t ;
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=false;
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
|
||||
|
||||
@ -751,8 +826,8 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
|
||||
GaugeLinkField link(mat._grid);
|
||||
link = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
|
||||
PokeIndex<LorentzIndex>(mat,link,mu);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã,int mu){
|
||||
assert (0);
|
||||
// Must never hit
|
||||
@ -768,6 +843,7 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
|
||||
public:
|
||||
|
||||
static const int Dimension = Representation::Dimension;
|
||||
static const bool isFundamental = Representation::isFundamental;
|
||||
static const bool LsVectorised=true;
|
||||
typedef RealD Coeff_t ;
|
||||
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
|
||||
@ -958,29 +1034,33 @@ typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation, CoeffReal > Wilso
|
||||
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplD; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,Nc, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,Nc, CoeffReal> DomainWallVec5dImplF; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,Nc, CoeffReal> DomainWallVec5dImplD; // Double
|
||||
typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplF; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffReal> DomainWallVec5dImplD; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,Nc, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,Nc, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,Nc, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,Nc,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,Nc,CoeffComplex> ZDomainWallVec5dImplF; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,Nc,CoeffComplex> ZDomainWallVec5dImplD; // Double
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplF; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplex> ZDomainWallVec5dImplD; // Double
|
||||
|
||||
typedef DomainWallVec5dImpl<vComplex ,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
|
||||
typedef DomainWallVec5dImpl<vComplex ,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
|
||||
typedef DomainWallVec5dImpl<vComplexF,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
|
||||
typedef DomainWallVec5dImpl<vComplexD,FundamentalRepresentation,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
|
||||
|
||||
typedef GparityWilsonImpl<vComplex , Nc,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
|
||||
typedef GparityWilsonImpl<vComplexF, Nc,CoeffReal> GparityWilsonImplF; // Float
|
||||
typedef GparityWilsonImpl<vComplexD, Nc,CoeffReal> GparityWilsonImplD; // Double
|
||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
|
||||
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffReal> GparityWilsonImplF; // Float
|
||||
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffReal> GparityWilsonImplD; // Double
|
||||
|
||||
typedef GparityWilsonImpl<vComplex , Nc,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
|
||||
typedef GparityWilsonImpl<vComplexF, Nc,CoeffRealHalfComms> GparityWilsonImplFH; // Float
|
||||
typedef GparityWilsonImpl<vComplexD, Nc,CoeffRealHalfComms> GparityWilsonImplDF; // Double
|
||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
|
||||
typedef GparityWilsonImpl<vComplexF, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplFH; // Float
|
||||
typedef GparityWilsonImpl<vComplexD, FundamentalRepresentation,CoeffRealHalfComms> GparityWilsonImplDF; // Double
|
||||
|
||||
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
|
||||
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
|
||||
|
@ -393,6 +393,31 @@ void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Conserved current - not yet implemented.
|
||||
////////////////////////////////////////////////////////
|
||||
template <class Impl>
|
||||
void ImprovedStaggeredFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void ImprovedStaggeredFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
FermOpStaggeredTemplateInstantiate(ImprovedStaggeredFermion);
|
||||
|
||||
//AdjointFermOpTemplateInstantiate(ImprovedStaggeredFermion);
|
||||
|
@ -157,6 +157,22 @@ class ImprovedStaggeredFermion : public StaggeredKernels<Impl>, public ImprovedS
|
||||
|
||||
LebesgueOrder Lebesgue;
|
||||
LebesgueOrder LebesgueEvenOdd;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Conserved current utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu);
|
||||
void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax);
|
||||
};
|
||||
|
||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
|
||||
|
@ -405,6 +405,30 @@ void ImprovedStaggeredFermion5D<Impl>::MooeeInvDag(const FermionField &in,
|
||||
MooeeInv(in, out);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Conserved current - not yet implemented.
|
||||
////////////////////////////////////////////////////////
|
||||
template <class Impl>
|
||||
void ImprovedStaggeredFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void ImprovedStaggeredFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
FermOpStaggeredTemplateInstantiate(ImprovedStaggeredFermion5D);
|
||||
FermOpStaggeredVec5dTemplateInstantiate(ImprovedStaggeredFermion5D);
|
||||
|
@ -170,6 +170,21 @@ namespace QCD {
|
||||
// Comms buffer
|
||||
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Conserved current utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu);
|
||||
void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax);
|
||||
};
|
||||
|
||||
}}
|
||||
|
243
lib/qcd/action/fermion/WilsonCloverFermion.cc
Normal file
243
lib/qcd/action/fermion/WilsonCloverFermion.cc
Normal file
@ -0,0 +1,243 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/Eigen/Dense>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
|
||||
namespace Grid
|
||||
{
|
||||
namespace QCD
|
||||
{
|
||||
|
||||
// *NOT* EO
|
||||
template <class Impl>
|
||||
RealD WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
|
||||
{
|
||||
FermionField temp(out._grid);
|
||||
|
||||
// Wilson term
|
||||
out.checkerboard = in.checkerboard;
|
||||
this->Dhop(in, out, DaggerNo);
|
||||
|
||||
// Clover term
|
||||
Mooee(in, temp);
|
||||
|
||||
out += temp;
|
||||
return norm2(out);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
RealD WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
FermionField temp(out._grid);
|
||||
|
||||
// Wilson term
|
||||
out.checkerboard = in.checkerboard;
|
||||
this->Dhop(in, out, DaggerYes);
|
||||
|
||||
// Clover term
|
||||
MooeeDag(in, temp);
|
||||
|
||||
out += temp;
|
||||
return norm2(out);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||
{
|
||||
WilsonFermion<Impl>::ImportGauge(_Umu);
|
||||
GridBase *grid = _Umu._grid;
|
||||
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
||||
|
||||
// Compute the field strength terms mu>nu
|
||||
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
|
||||
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
|
||||
|
||||
// Compute the Clover Operator acting on Colour and Spin
|
||||
// multiply here by the clover coefficients for the anisotropy
|
||||
CloverTerm = fillCloverYZ(Bx) * csw_r;
|
||||
CloverTerm += fillCloverXZ(By) * csw_r;
|
||||
CloverTerm += fillCloverXY(Bz) * csw_r;
|
||||
CloverTerm += fillCloverXT(Ex) * csw_t;
|
||||
CloverTerm += fillCloverYT(Ey) * csw_t;
|
||||
CloverTerm += fillCloverZT(Ez) * csw_t;
|
||||
CloverTerm += diag_mass;
|
||||
|
||||
int lvol = _Umu._grid->lSites();
|
||||
int DimRep = Impl::Dimension;
|
||||
|
||||
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
|
||||
std::vector<int> lcoor;
|
||||
typename SiteCloverType::scalar_object Qx = zero, Qxinv = zero;
|
||||
|
||||
for (int site = 0; site < lvol; site++)
|
||||
{
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
||||
peekLocalSite(Qx, CloverTerm, lcoor);
|
||||
Qxinv = zero;
|
||||
//if (csw!=0){
|
||||
for (int j = 0; j < Ns; j++)
|
||||
for (int k = 0; k < Ns; k++)
|
||||
for (int a = 0; a < DimRep; a++)
|
||||
for (int b = 0; b < DimRep; b++)
|
||||
EigenCloverOp(a + j * DimRep, b + k * DimRep) = Qx()(j, k)(a, b);
|
||||
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
|
||||
|
||||
EigenInvCloverOp = EigenCloverOp.inverse();
|
||||
//std::cout << EigenInvCloverOp << std::endl;
|
||||
for (int j = 0; j < Ns; j++)
|
||||
for (int k = 0; k < Ns; k++)
|
||||
for (int a = 0; a < DimRep; a++)
|
||||
for (int b = 0; b < DimRep; b++)
|
||||
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
|
||||
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
|
||||
// }
|
||||
pokeLocalSite(Qxinv, CloverTermInv, lcoor);
|
||||
}
|
||||
|
||||
// Separate the even and odd parts
|
||||
pickCheckerboard(Even, CloverTermEven, CloverTerm);
|
||||
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
|
||||
|
||||
pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm));
|
||||
pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm));
|
||||
|
||||
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
|
||||
pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv);
|
||||
|
||||
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
|
||||
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerNo, InverseNo);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerYes, InverseNo);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
|
||||
{
|
||||
this->MooeeInternal(in, out, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
|
||||
{
|
||||
out.checkerboard = in.checkerboard;
|
||||
CloverFieldType *Clover;
|
||||
assert(in.checkerboard == Odd || in.checkerboard == Even);
|
||||
|
||||
if (dag)
|
||||
{
|
||||
if (in._grid->_isCheckerBoarded)
|
||||
{
|
||||
if (in.checkerboard == Odd)
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInvDagOdd : &CloverTermDagOdd;
|
||||
}
|
||||
else
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
|
||||
}
|
||||
out = *Clover * in;
|
||||
}
|
||||
else
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
||||
out = adj(*Clover) * in;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (in._grid->_isCheckerBoarded)
|
||||
{
|
||||
|
||||
if (in.checkerboard == Odd)
|
||||
{
|
||||
// std::cout << "Calling clover term Odd" << std::endl;
|
||||
Clover = (inv) ? &CloverTermInvOdd : &CloverTermOdd;
|
||||
}
|
||||
else
|
||||
{
|
||||
// std::cout << "Calling clover term Even" << std::endl;
|
||||
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
|
||||
}
|
||||
out = *Clover * in;
|
||||
// std::cout << GridLogMessage << "*Clover.checkerboard " << (*Clover).checkerboard << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
||||
out = *Clover * in;
|
||||
}
|
||||
}
|
||||
|
||||
} // MooeeInternal
|
||||
|
||||
|
||||
// Derivative parts
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Derivative parts
|
||||
template <class Impl>
|
||||
void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
|
||||
{
|
||||
assert(0); // not implemented yet
|
||||
}
|
||||
|
||||
FermOpTemplateInstantiate(WilsonCloverFermion);
|
||||
AdjointFermOpTemplateInstantiate(WilsonCloverFermion);
|
||||
TwoIndexFermOpTemplateInstantiate(WilsonCloverFermion);
|
||||
//GparityFermOpTemplateInstantiate(WilsonCloverFermion);
|
||||
}
|
||||
}
|
366
lib/qcd/action/fermion/WilsonCloverFermion.h
Normal file
366
lib/qcd/action/fermion/WilsonCloverFermion.h
Normal file
@ -0,0 +1,366 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: David Preti <>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef GRID_QCD_WILSON_CLOVER_FERMION_H
|
||||
#define GRID_QCD_WILSON_CLOVER_FERMION_H
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
namespace Grid
|
||||
{
|
||||
namespace QCD
|
||||
{
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Wilson Clover
|
||||
//
|
||||
// Operator ( with anisotropy coefficients):
|
||||
//
|
||||
// Q = 1 + (Nd-1)/xi_0 + m
|
||||
// + W_t + (nu/xi_0) * W_s
|
||||
// - 1/2*[ csw_t * sum_s (sigma_ts F_ts) + (csw_s/xi_0) * sum_ss (sigma_ss F_ss) ]
|
||||
//
|
||||
// s spatial, t temporal directions.
|
||||
// where W_t and W_s are the temporal and spatial components of the
|
||||
// Wilson Dirac operator
|
||||
//
|
||||
// csw_r = csw_t to recover the isotropic version
|
||||
//////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
class WilsonCloverFermion : public WilsonFermion<Impl>
|
||||
{
|
||||
public:
|
||||
// Types definitions
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
template <typename vtype>
|
||||
using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
|
||||
typedef iImplClover<Simd> SiteCloverType;
|
||||
typedef Lattice<SiteCloverType> CloverFieldType;
|
||||
|
||||
public:
|
||||
typedef WilsonFermion<Impl> WilsonBase;
|
||||
|
||||
virtual void Instantiatable(void){};
|
||||
// Constructors
|
||||
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
GridRedBlackCartesian &Hgrid,
|
||||
const RealD _mass,
|
||||
const RealD _csw_r = 0.0,
|
||||
const RealD _csw_t = 0.0,
|
||||
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
|
||||
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
|
||||
Fgrid,
|
||||
Hgrid,
|
||||
_mass, impl_p, clover_anisotropy),
|
||||
CloverTerm(&Fgrid),
|
||||
CloverTermInv(&Fgrid),
|
||||
CloverTermEven(&Hgrid),
|
||||
CloverTermOdd(&Hgrid),
|
||||
CloverTermInvEven(&Hgrid),
|
||||
CloverTermInvOdd(&Hgrid),
|
||||
CloverTermDagEven(&Hgrid),
|
||||
CloverTermDagOdd(&Hgrid),
|
||||
CloverTermInvDagEven(&Hgrid),
|
||||
CloverTermInvDagOdd(&Hgrid)
|
||||
{
|
||||
assert(Nd == 4); // require 4 dimensions
|
||||
|
||||
if (clover_anisotropy.isAnisotropic)
|
||||
{
|
||||
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
|
||||
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
|
||||
}
|
||||
else
|
||||
{
|
||||
csw_r = _csw_r * 0.5;
|
||||
diag_mass = 4.0 + _mass;
|
||||
}
|
||||
csw_t = _csw_t * 0.5;
|
||||
|
||||
if (csw_r == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
|
||||
if (csw_t == 0)
|
||||
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
|
||||
|
||||
ImportGauge(_Umu);
|
||||
}
|
||||
|
||||
virtual RealD M(const FermionField &in, FermionField &out);
|
||||
virtual RealD Mdag(const FermionField &in, FermionField &out);
|
||||
|
||||
virtual void Mooee(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out);
|
||||
virtual void MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv);
|
||||
|
||||
//virtual void MDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
|
||||
virtual void MooDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
|
||||
virtual void MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag);
|
||||
|
||||
void ImportGauge(const GaugeField &_Umu);
|
||||
|
||||
// Derivative parts unpreconditioned pseudofermions
|
||||
void MDeriv(GaugeField &force, const FermionField &X, const FermionField &Y, int dag)
|
||||
{
|
||||
conformable(X._grid, Y._grid);
|
||||
conformable(X._grid, force._grid);
|
||||
GaugeLinkField force_mu(force._grid), lambda(force._grid);
|
||||
GaugeField clover_force(force._grid);
|
||||
PropagatorField Lambda(force._grid);
|
||||
|
||||
// Guido: Here we are hitting some performance issues:
|
||||
// need to extract the components of the DoubledGaugeField
|
||||
// for each call
|
||||
// Possible solution
|
||||
// Create a vector object to store them? (cons: wasting space)
|
||||
std::vector<GaugeLinkField> U(Nd, this->Umu._grid);
|
||||
|
||||
Impl::extractLinkField(U, this->Umu);
|
||||
|
||||
force = zero;
|
||||
// Derivative of the Wilson hopping term
|
||||
this->DhopDeriv(force, X, Y, dag);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Clover term derivative
|
||||
///////////////////////////////////////////////////////////
|
||||
Impl::outerProductImpl(Lambda, X, Y);
|
||||
//std::cout << "Lambda:" << Lambda << std::endl;
|
||||
|
||||
Gamma::Algebra sigma[] = {
|
||||
Gamma::Algebra::SigmaXY,
|
||||
Gamma::Algebra::SigmaXZ,
|
||||
Gamma::Algebra::SigmaXT,
|
||||
Gamma::Algebra::MinusSigmaXY,
|
||||
Gamma::Algebra::SigmaYZ,
|
||||
Gamma::Algebra::SigmaYT,
|
||||
Gamma::Algebra::MinusSigmaXZ,
|
||||
Gamma::Algebra::MinusSigmaYZ,
|
||||
Gamma::Algebra::SigmaZT,
|
||||
Gamma::Algebra::MinusSigmaXT,
|
||||
Gamma::Algebra::MinusSigmaYT,
|
||||
Gamma::Algebra::MinusSigmaZT};
|
||||
|
||||
/*
|
||||
sigma_{\mu \nu}=
|
||||
| 0 sigma[0] sigma[1] sigma[2] |
|
||||
| sigma[3] 0 sigma[4] sigma[5] |
|
||||
| sigma[6] sigma[7] 0 sigma[8] |
|
||||
| sigma[9] sigma[10] sigma[11] 0 |
|
||||
*/
|
||||
|
||||
int count = 0;
|
||||
clover_force = zero;
|
||||
for (int mu = 0; mu < 4; mu++)
|
||||
{
|
||||
force_mu = zero;
|
||||
for (int nu = 0; nu < 4; nu++)
|
||||
{
|
||||
if (mu == nu)
|
||||
continue;
|
||||
|
||||
RealD factor;
|
||||
if (nu == 4 || mu == 4)
|
||||
{
|
||||
factor = 2.0 * csw_t;
|
||||
}
|
||||
else
|
||||
{
|
||||
factor = 2.0 * csw_r;
|
||||
}
|
||||
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
|
||||
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
|
||||
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
|
||||
count++;
|
||||
}
|
||||
|
||||
pokeLorentz(clover_force, U[mu] * force_mu, mu);
|
||||
}
|
||||
//clover_force *= csw;
|
||||
force += clover_force;
|
||||
}
|
||||
|
||||
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
|
||||
GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu)
|
||||
{
|
||||
conformable(lambda._grid, U[0]._grid);
|
||||
GaugeLinkField out(lambda._grid), tmp(lambda._grid);
|
||||
// insertion in upper staple
|
||||
// please check redundancy of shift operations
|
||||
|
||||
// C1+
|
||||
tmp = lambda * U[nu];
|
||||
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C2+
|
||||
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
||||
|
||||
// C3+
|
||||
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
|
||||
|
||||
// C4+
|
||||
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * lambda;
|
||||
|
||||
// insertion in lower staple
|
||||
// C1-
|
||||
out -= Impl::ShiftStaple(lambda, mu) * Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C2-
|
||||
tmp = adj(lambda) * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
|
||||
// C3-
|
||||
tmp = lambda * U[nu];
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
|
||||
|
||||
// C4-
|
||||
out -= Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * lambda;
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
private:
|
||||
// here fixing the 4 dimensions, make it more general?
|
||||
|
||||
RealD csw_r; // Clover coefficient - spatial
|
||||
RealD csw_t; // Clover coefficient - temporal
|
||||
RealD diag_mass; // Mass term
|
||||
CloverFieldType CloverTerm, CloverTermInv; // Clover term
|
||||
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
|
||||
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
|
||||
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
|
||||
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
|
||||
|
||||
// eventually these can be compressed into 6x6 blocks instead of the 12x12
|
||||
// using the DeGrand-Rossi basis for the gamma matrices
|
||||
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F._grid);
|
||||
T = zero;
|
||||
PARALLEL_FOR_LOOP
|
||||
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
||||
{
|
||||
T._odata[i]()(0, 1) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(1, 0) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(2, 3) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(3, 2) = timesMinusI(F._odata[i]()());
|
||||
}
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXZ(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F._grid);
|
||||
T = zero;
|
||||
PARALLEL_FOR_LOOP
|
||||
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
||||
{
|
||||
T._odata[i]()(0, 1) = -F._odata[i]()();
|
||||
T._odata[i]()(1, 0) = F._odata[i]()();
|
||||
T._odata[i]()(2, 3) = -F._odata[i]()();
|
||||
T._odata[i]()(3, 2) = F._odata[i]()();
|
||||
}
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXY(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F._grid);
|
||||
T = zero;
|
||||
PARALLEL_FOR_LOOP
|
||||
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
||||
{
|
||||
|
||||
T._odata[i]()(0, 0) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(1, 1) = timesI(F._odata[i]()());
|
||||
T._odata[i]()(2, 2) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(3, 3) = timesI(F._odata[i]()());
|
||||
}
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverXT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F._grid);
|
||||
T = zero;
|
||||
PARALLEL_FOR_LOOP
|
||||
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
||||
{
|
||||
T._odata[i]()(0, 1) = timesI(F._odata[i]()());
|
||||
T._odata[i]()(1, 0) = timesI(F._odata[i]()());
|
||||
T._odata[i]()(2, 3) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(3, 2) = timesMinusI(F._odata[i]()());
|
||||
}
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverYT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F._grid);
|
||||
T = zero;
|
||||
PARALLEL_FOR_LOOP
|
||||
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
||||
{
|
||||
T._odata[i]()(0, 1) = -(F._odata[i]()());
|
||||
T._odata[i]()(1, 0) = (F._odata[i]()());
|
||||
T._odata[i]()(2, 3) = (F._odata[i]()());
|
||||
T._odata[i]()(3, 2) = -(F._odata[i]()());
|
||||
}
|
||||
|
||||
return T;
|
||||
}
|
||||
|
||||
CloverFieldType fillCloverZT(const GaugeLinkField &F)
|
||||
{
|
||||
CloverFieldType T(F._grid);
|
||||
T = zero;
|
||||
PARALLEL_FOR_LOOP
|
||||
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
||||
{
|
||||
T._odata[i]()(0, 0) = timesI(F._odata[i]()());
|
||||
T._odata[i]()(1, 1) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(2, 2) = timesMinusI(F._odata[i]()());
|
||||
T._odata[i]()(3, 3) = timesI(F._odata[i]()());
|
||||
}
|
||||
|
||||
return T;
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#endif // GRID_QCD_WILSON_CLOVER_FERMION_H
|
@ -265,7 +265,6 @@ public:
|
||||
if ( timer3 ) std::cout << GridLogMessage << " timer3 (commsMergeShm) " <<timer3/calls <<std::endl;
|
||||
if ( timer4 ) std::cout << GridLogMessage << " timer4 " <<timer4 <<std::endl;
|
||||
}
|
||||
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
|
||||
|
||||
std::vector<int> same_node;
|
||||
std::vector<int> surface_list;
|
||||
|
@ -47,7 +47,8 @@ int WilsonFermionStatic::HandOptDslash;
|
||||
template <class Impl>
|
||||
WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
GridRedBlackCartesian &Hgrid, RealD _mass,
|
||||
const ImplParams &p)
|
||||
const ImplParams &p,
|
||||
const WilsonAnisotropyCoefficients &anis)
|
||||
: Kernels(p),
|
||||
_grid(&Fgrid),
|
||||
_cbgrid(&Hgrid),
|
||||
@ -60,16 +61,41 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
Umu(&Fgrid),
|
||||
UmuEven(&Hgrid),
|
||||
UmuOdd(&Hgrid),
|
||||
_tmp(&Hgrid)
|
||||
_tmp(&Hgrid),
|
||||
anisotropyCoeff(anis)
|
||||
{
|
||||
// Allocate the required comms buffer
|
||||
ImportGauge(_Umu);
|
||||
if (anisotropyCoeff.isAnisotropic){
|
||||
diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0);
|
||||
} else {
|
||||
diag_mass = 4.0 + mass;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu) {
|
||||
GaugeField HUmu(_Umu._grid);
|
||||
HUmu = _Umu * (-0.5);
|
||||
|
||||
//Here multiply the anisotropy coefficients
|
||||
if (anisotropyCoeff.isAnisotropic)
|
||||
{
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++)
|
||||
{
|
||||
GaugeLinkField U_dir = (-0.5)*PeekIndex<LorentzIndex>(_Umu, mu);
|
||||
if (mu != anisotropyCoeff.t_direction)
|
||||
U_dir *= (anisotropyCoeff.nu / anisotropyCoeff.xi_0);
|
||||
|
||||
PokeIndex<LorentzIndex>(HUmu, U_dir, mu);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
HUmu = _Umu * (-0.5);
|
||||
}
|
||||
Impl::DoubleStore(GaugeGrid(), Umu, HUmu);
|
||||
pickCheckerboard(Even, UmuEven, Umu);
|
||||
pickCheckerboard(Odd, UmuOdd, Umu);
|
||||
@ -83,14 +109,14 @@ template <class Impl>
|
||||
RealD WilsonFermion<Impl>::M(const FermionField &in, FermionField &out) {
|
||||
out.checkerboard = in.checkerboard;
|
||||
Dhop(in, out, DaggerNo);
|
||||
return axpy_norm(out, 4 + mass, in, out);
|
||||
return axpy_norm(out, diag_mass, in, out);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
RealD WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
|
||||
out.checkerboard = in.checkerboard;
|
||||
Dhop(in, out, DaggerYes);
|
||||
return axpy_norm(out, 4 + mass, in, out);
|
||||
return axpy_norm(out, diag_mass, in, out);
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
@ -114,7 +140,7 @@ void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out) {
|
||||
template <class Impl>
|
||||
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out) {
|
||||
out.checkerboard = in.checkerboard;
|
||||
typename FermionField::scalar_type scal(4.0 + mass);
|
||||
typename FermionField::scalar_type scal(diag_mass);
|
||||
out = scal * in;
|
||||
}
|
||||
|
||||
@ -127,7 +153,7 @@ void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
|
||||
template<class Impl>
|
||||
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
|
||||
out.checkerboard = in.checkerboard;
|
||||
out = (1.0/(4.0+mass))*in;
|
||||
out = (1.0/(diag_mass))*in;
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -204,7 +230,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
|
||||
|
||||
FermionField Btilde(B._grid);
|
||||
FermionField Atilde(B._grid);
|
||||
Atilde = A;
|
||||
Atilde = A;//redundant
|
||||
|
||||
st.HaloExchange(B, compressor);
|
||||
|
||||
@ -345,6 +371,112 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
|
||||
}
|
||||
};
|
||||
|
||||
/*******************************************************************************
|
||||
* Conserved current utilities for Wilson fermions, for contracting propagators
|
||||
* to make a conserved current sink or inserting the conserved current
|
||||
* sequentially.
|
||||
******************************************************************************/
|
||||
template <class Impl>
|
||||
void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu)
|
||||
{
|
||||
Gamma g5(Gamma::Algebra::Gamma5);
|
||||
conformable(_grid, q_in_1._grid);
|
||||
conformable(_grid, q_in_2._grid);
|
||||
conformable(_grid, q_out._grid);
|
||||
PropagatorField tmp1(_grid), tmp2(_grid);
|
||||
q_out = zero;
|
||||
|
||||
// Forward, need q1(x + mu), q2(x). Backward, need q1(x), q2(x + mu).
|
||||
// Inefficient comms method but not performance critical.
|
||||
tmp1 = Cshift(q_in_1, mu, 1);
|
||||
tmp2 = Cshift(q_in_2, mu, 1);
|
||||
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
|
||||
{
|
||||
Kernels::ContractConservedCurrentSiteFwd(tmp1._odata[sU],
|
||||
q_in_2._odata[sU],
|
||||
q_out._odata[sU],
|
||||
Umu, sU, mu);
|
||||
Kernels::ContractConservedCurrentSiteBwd(q_in_1._odata[sU],
|
||||
tmp2._odata[sU],
|
||||
q_out._odata[sU],
|
||||
Umu, sU, mu);
|
||||
}
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax)
|
||||
{
|
||||
conformable(_grid, q_in._grid);
|
||||
conformable(_grid, q_out._grid);
|
||||
Lattice<iSinglet<Simd>> ph(_grid), coor(_grid);
|
||||
ComplexD i(0.0,1.0);
|
||||
PropagatorField tmpFwd(_grid), tmpBwd(_grid), tmp(_grid);
|
||||
unsigned int tshift = (mu == Tp) ? 1 : 0;
|
||||
unsigned int LLt = GridDefaultLatt()[Tp];
|
||||
|
||||
// Momentum projection
|
||||
ph = zero;
|
||||
for(unsigned int mu = 0; mu < Nd - 1; mu++)
|
||||
{
|
||||
LatticeCoordinate(coor, mu);
|
||||
ph = ph + mom[mu]*coor*((1./(_grid->_fdimensions[mu])));
|
||||
}
|
||||
ph = exp((RealD)(2*M_PI)*i*ph);
|
||||
|
||||
q_out = zero;
|
||||
LatticeInteger coords(_grid);
|
||||
LatticeCoordinate(coords, Tp);
|
||||
|
||||
// Need q(x + mu) and q(x - mu).
|
||||
tmp = Cshift(q_in, mu, 1);
|
||||
tmpFwd = tmp*ph;
|
||||
tmp = ph*q_in;
|
||||
tmpBwd = Cshift(tmp, mu, -1);
|
||||
|
||||
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
|
||||
{
|
||||
// Compute the sequential conserved current insertion only if our simd
|
||||
// object contains a timeslice we need.
|
||||
vInteger t_mask = ((coords._odata[sU] >= tmin) &&
|
||||
(coords._odata[sU] <= tmax));
|
||||
Integer timeSlices = Reduce(t_mask);
|
||||
|
||||
if (timeSlices > 0)
|
||||
{
|
||||
Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sU],
|
||||
q_out._odata[sU],
|
||||
Umu, sU, mu, t_mask);
|
||||
}
|
||||
|
||||
// Repeat for backward direction.
|
||||
t_mask = ((coords._odata[sU] >= (tmin + tshift)) &&
|
||||
(coords._odata[sU] <= (tmax + tshift)));
|
||||
|
||||
//if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3)
|
||||
unsigned int t0 = 0;
|
||||
if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 ));
|
||||
|
||||
timeSlices = Reduce(t_mask);
|
||||
|
||||
if (timeSlices > 0)
|
||||
{
|
||||
Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sU],
|
||||
q_out._odata[sU],
|
||||
Umu, sU, mu, t_mask);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
FermOpTemplateInstantiate(WilsonFermion);
|
||||
AdjointFermOpTemplateInstantiate(WilsonFermion);
|
||||
TwoIndexFermOpTemplateInstantiate(WilsonFermion);
|
||||
|
@ -44,6 +44,21 @@ class WilsonFermionStatic {
|
||||
static const int npoint = 8;
|
||||
};
|
||||
|
||||
struct WilsonAnisotropyCoefficients: Serializable
|
||||
{
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonAnisotropyCoefficients,
|
||||
bool, isAnisotropic,
|
||||
int, t_direction,
|
||||
double, xi_0,
|
||||
double, nu);
|
||||
|
||||
WilsonAnisotropyCoefficients():
|
||||
isAnisotropic(false),
|
||||
t_direction(Nd-1),
|
||||
xi_0(1.0),
|
||||
nu(1.0){}
|
||||
};
|
||||
|
||||
template <class Impl>
|
||||
class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
|
||||
public:
|
||||
@ -65,8 +80,8 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
|
||||
// override multiply; cut number routines if pass dagger argument
|
||||
// and also make interface more uniformly consistent
|
||||
//////////////////////////////////////////////////////////////////
|
||||
RealD M(const FermionField &in, FermionField &out);
|
||||
RealD Mdag(const FermionField &in, FermionField &out);
|
||||
virtual RealD M(const FermionField &in, FermionField &out);
|
||||
virtual RealD Mdag(const FermionField &in, FermionField &out);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// half checkerboard operations
|
||||
@ -117,8 +132,9 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
|
||||
|
||||
// Constructor
|
||||
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||
GridRedBlackCartesian &Hgrid, RealD _mass,
|
||||
const ImplParams &p = ImplParams());
|
||||
GridRedBlackCartesian &Hgrid, RealD _mass,
|
||||
const ImplParams &p = ImplParams(),
|
||||
const WilsonAnisotropyCoefficients &anis = WilsonAnisotropyCoefficients() );
|
||||
|
||||
// DoubleStore impl dependent
|
||||
void ImportGauge(const GaugeField &_Umu);
|
||||
@ -130,6 +146,7 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
|
||||
// protected:
|
||||
public:
|
||||
RealD mass;
|
||||
RealD diag_mass;
|
||||
|
||||
GridBase *_grid;
|
||||
GridBase *_cbgrid;
|
||||
@ -146,6 +163,24 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
|
||||
|
||||
LebesgueOrder Lebesgue;
|
||||
LebesgueOrder LebesgueEvenOdd;
|
||||
|
||||
WilsonAnisotropyCoefficients anisotropyCoeff;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Conserved current utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu);
|
||||
void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax);
|
||||
};
|
||||
|
||||
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
|
||||
|
@ -12,6 +12,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -702,6 +703,168 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
|
||||
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Conserved current utilities for Wilson fermions, for contracting propagators
|
||||
* to make a conserved current sink or inserting the conserved current
|
||||
* sequentially.
|
||||
******************************************************************************/
|
||||
|
||||
// Helper macro to reverse Simd vector. Fixme: slow, generic implementation.
|
||||
#define REVERSE_LS(qSite, qSiteRev, Nsimd) \
|
||||
{ \
|
||||
std::vector<typename SitePropagator::scalar_object> qSiteVec(Nsimd); \
|
||||
extract(qSite, qSiteVec); \
|
||||
for (int i = 0; i < Nsimd / 2; ++i) \
|
||||
{ \
|
||||
typename SitePropagator::scalar_object tmp = qSiteVec[i]; \
|
||||
qSiteVec[i] = qSiteVec[Nsimd - i - 1]; \
|
||||
qSiteVec[Nsimd - i - 1] = tmp; \
|
||||
} \
|
||||
merge(qSiteRev, qSiteVec); \
|
||||
}
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu)
|
||||
{
|
||||
conformable(q_in_1._grid, FermionGrid());
|
||||
conformable(q_in_1._grid, q_in_2._grid);
|
||||
conformable(_FourDimGrid, q_out._grid);
|
||||
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
|
||||
unsigned int LLs = q_in_1._grid->_rdimensions[0];
|
||||
q_out = zero;
|
||||
|
||||
// Forward, need q1(x + mu, s), q2(x, Ls - 1 - s). Backward, need q1(x, s),
|
||||
// q2(x + mu, Ls - 1 - s). 5D lattice so shift 4D coordinate mu by one.
|
||||
tmp1 = Cshift(q_in_1, mu + 1, 1);
|
||||
tmp2 = Cshift(q_in_2, mu + 1, 1);
|
||||
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
|
||||
{
|
||||
unsigned int sF1 = sU * LLs;
|
||||
unsigned int sF2 = (sU + 1) * LLs - 1;
|
||||
|
||||
for (unsigned int s = 0; s < LLs; ++s)
|
||||
{
|
||||
bool axial_sign = ((curr_type == Current::Axial) && \
|
||||
(s < (LLs / 2)));
|
||||
SitePropagator qSite2, qmuSite2;
|
||||
|
||||
// If vectorised in 5th dimension, reverse q2 vector to match up
|
||||
// sites correctly.
|
||||
if (Impl::LsVectorised)
|
||||
{
|
||||
REVERSE_LS(q_in_2._odata[sF2], qSite2, Ls / LLs);
|
||||
REVERSE_LS(tmp2._odata[sF2], qmuSite2, Ls / LLs);
|
||||
}
|
||||
else
|
||||
{
|
||||
qSite2 = q_in_2._odata[sF2];
|
||||
qmuSite2 = tmp2._odata[sF2];
|
||||
}
|
||||
Kernels::ContractConservedCurrentSiteFwd(tmp1._odata[sF1],
|
||||
qSite2,
|
||||
q_out._odata[sU],
|
||||
Umu, sU, mu, axial_sign);
|
||||
Kernels::ContractConservedCurrentSiteBwd(q_in_1._odata[sF1],
|
||||
qmuSite2,
|
||||
q_out._odata[sU],
|
||||
Umu, sU, mu, axial_sign);
|
||||
sF1++;
|
||||
sF2--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class Impl>
|
||||
void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax)
|
||||
{
|
||||
conformable(q_in._grid, FermionGrid());
|
||||
conformable(q_in._grid, q_out._grid);
|
||||
Lattice<iSinglet<Simd>> ph(FermionGrid()), coor(FermionGrid());
|
||||
PropagatorField tmpFwd(FermionGrid()), tmpBwd(FermionGrid()),
|
||||
tmp(FermionGrid());
|
||||
ComplexD i(0.0, 1.0);
|
||||
unsigned int tshift = (mu == Tp) ? 1 : 0;
|
||||
unsigned int LLs = q_in._grid->_rdimensions[0];
|
||||
unsigned int LLt = GridDefaultLatt()[Tp];
|
||||
|
||||
// Momentum projection.
|
||||
ph = zero;
|
||||
for(unsigned int nu = 0; nu < Nd - 1; nu++)
|
||||
{
|
||||
// Shift coordinate lattice index by 1 to account for 5th dimension.
|
||||
LatticeCoordinate(coor, nu + 1);
|
||||
ph = ph + mom[nu]*coor*((1./(_FourDimGrid->_fdimensions[nu])));
|
||||
}
|
||||
ph = exp((RealD)(2*M_PI)*i*ph);
|
||||
|
||||
q_out = zero;
|
||||
LatticeInteger coords(_FourDimGrid);
|
||||
LatticeCoordinate(coords, Tp);
|
||||
|
||||
// Need q(x + mu, s) and q(x - mu, s). 5D lattice so shift 4D coordinate mu
|
||||
// by one.
|
||||
tmp = Cshift(q_in, mu + 1, 1);
|
||||
tmpFwd = tmp*ph;
|
||||
tmp = ph*q_in;
|
||||
tmpBwd = Cshift(tmp, mu + 1, -1);
|
||||
|
||||
parallel_for (unsigned int sU = 0; sU < Umu._grid->oSites(); ++sU)
|
||||
{
|
||||
// Compute the sequential conserved current insertion only if our simd
|
||||
// object contains a timeslice we need.
|
||||
vInteger t_mask = ((coords._odata[sU] >= tmin) &&
|
||||
(coords._odata[sU] <= tmax));
|
||||
Integer timeSlices = Reduce(t_mask);
|
||||
|
||||
if (timeSlices > 0)
|
||||
{
|
||||
unsigned int sF = sU * LLs;
|
||||
for (unsigned int s = 0; s < LLs; ++s)
|
||||
{
|
||||
bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2)));
|
||||
Kernels::SeqConservedCurrentSiteFwd(tmpFwd._odata[sF],
|
||||
q_out._odata[sF], Umu, sU,
|
||||
mu, t_mask, axial_sign);
|
||||
++sF;
|
||||
}
|
||||
}
|
||||
|
||||
// Repeat for backward direction.
|
||||
t_mask = ((coords._odata[sU] >= (tmin + tshift)) &&
|
||||
(coords._odata[sU] <= (tmax + tshift)));
|
||||
|
||||
//if tmax = LLt-1 (last timeslice) include timeslice 0 if the time is shifted (mu=3)
|
||||
unsigned int t0 = 0;
|
||||
if((tmax==LLt-1) && (tshift==1)) t_mask = (t_mask || (coords._odata[sU] == t0 ));
|
||||
|
||||
timeSlices = Reduce(t_mask);
|
||||
|
||||
if (timeSlices > 0)
|
||||
{
|
||||
unsigned int sF = sU * LLs;
|
||||
for (unsigned int s = 0; s < LLs; ++s)
|
||||
{
|
||||
bool axial_sign = ((curr_type == Current::Axial) && (s < (LLs / 2)));
|
||||
Kernels::SeqConservedCurrentSiteBwd(tmpBwd._odata[sF],
|
||||
q_out._odata[sF], Umu, sU,
|
||||
mu, t_mask, axial_sign);
|
||||
++sF;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
FermOpTemplateInstantiate(WilsonFermion5D);
|
||||
GparityFermOpTemplateInstantiate(WilsonFermion5D);
|
||||
|
||||
|
@ -214,6 +214,21 @@ namespace QCD {
|
||||
// Comms buffer
|
||||
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Conserved current utilities
|
||||
///////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||
PropagatorField &q_in_2,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu);
|
||||
void SeqConservedCurrent(PropagatorField &q_in,
|
||||
PropagatorField &q_out,
|
||||
Current curr_type,
|
||||
unsigned int mu,
|
||||
std::vector<Real> mom,
|
||||
unsigned int tmin,
|
||||
unsigned int tmax);
|
||||
};
|
||||
|
||||
}}
|
||||
|
@ -281,6 +281,172 @@ void WilsonKernels<Impl>::DhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHal
|
||||
vstream(out._odata[sF], result);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Conserved current utilities for Wilson fermions, for contracting propagators
|
||||
* to make a conserved current sink or inserting the conserved current
|
||||
* sequentially. Common to both 4D and 5D.
|
||||
******************************************************************************/
|
||||
// N.B. Functions below assume a -1/2 factor within U.
|
||||
#define WilsonCurrentFwd(expr, mu) ((expr - Gamma::gmu[mu]*expr))
|
||||
#define WilsonCurrentBwd(expr, mu) ((expr + Gamma::gmu[mu]*expr))
|
||||
|
||||
/*******************************************************************************
|
||||
* Name: ContractConservedCurrentSiteFwd
|
||||
* Operation: (1/2) * q2[x] * U(x) * (g[mu] - 1) * q1[x + mu]
|
||||
* Notes: - DoubledGaugeField U assumed to contain -1/2 factor.
|
||||
* - Pass in q_in_1 shifted in +ve mu direction.
|
||||
******************************************************************************/
|
||||
template<class Impl>
|
||||
void WilsonKernels<Impl>::ContractConservedCurrentSiteFwd(
|
||||
const SitePropagator &q_in_1,
|
||||
const SitePropagator &q_in_2,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
bool switch_sign)
|
||||
{
|
||||
SitePropagator result, tmp;
|
||||
Gamma g5(Gamma::Algebra::Gamma5);
|
||||
Impl::multLinkProp(tmp, U._odata[sU], q_in_1, mu);
|
||||
result = g5 * adj(q_in_2) * g5 * WilsonCurrentFwd(tmp, mu);
|
||||
if (switch_sign)
|
||||
{
|
||||
q_out -= result;
|
||||
}
|
||||
else
|
||||
{
|
||||
q_out += result;
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Name: ContractConservedCurrentSiteBwd
|
||||
* Operation: (1/2) * q2[x + mu] * U^dag(x) * (g[mu] + 1) * q1[x]
|
||||
* Notes: - DoubledGaugeField U assumed to contain -1/2 factor.
|
||||
* - Pass in q_in_2 shifted in +ve mu direction.
|
||||
******************************************************************************/
|
||||
template<class Impl>
|
||||
void WilsonKernels<Impl>::ContractConservedCurrentSiteBwd(
|
||||
const SitePropagator &q_in_1,
|
||||
const SitePropagator &q_in_2,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
bool switch_sign)
|
||||
{
|
||||
SitePropagator result, tmp;
|
||||
Gamma g5(Gamma::Algebra::Gamma5);
|
||||
Impl::multLinkProp(tmp, U._odata[sU], q_in_1, mu + Nd);
|
||||
result = g5 * adj(q_in_2) * g5 * WilsonCurrentBwd(tmp, mu);
|
||||
if (switch_sign)
|
||||
{
|
||||
q_out += result;
|
||||
}
|
||||
else
|
||||
{
|
||||
q_out -= result;
|
||||
}
|
||||
}
|
||||
|
||||
// G-parity requires more specialised implementation.
|
||||
#define NO_CURR_SITE(Impl) \
|
||||
template <> \
|
||||
void WilsonKernels<Impl>::ContractConservedCurrentSiteFwd( \
|
||||
const SitePropagator &q_in_1, \
|
||||
const SitePropagator &q_in_2, \
|
||||
SitePropagator &q_out, \
|
||||
DoubledGaugeField &U, \
|
||||
unsigned int sU, \
|
||||
unsigned int mu, \
|
||||
bool switch_sign) \
|
||||
{ \
|
||||
assert(0); \
|
||||
} \
|
||||
template <> \
|
||||
void WilsonKernels<Impl>::ContractConservedCurrentSiteBwd( \
|
||||
const SitePropagator &q_in_1, \
|
||||
const SitePropagator &q_in_2, \
|
||||
SitePropagator &q_out, \
|
||||
DoubledGaugeField &U, \
|
||||
unsigned int mu, \
|
||||
unsigned int sU, \
|
||||
bool switch_sign) \
|
||||
{ \
|
||||
assert(0); \
|
||||
}
|
||||
|
||||
NO_CURR_SITE(GparityWilsonImplF);
|
||||
NO_CURR_SITE(GparityWilsonImplD);
|
||||
NO_CURR_SITE(GparityWilsonImplFH);
|
||||
NO_CURR_SITE(GparityWilsonImplDF);
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
* Name: SeqConservedCurrentSiteFwd
|
||||
* Operation: (1/2) * U(x) * (g[mu] - 1) * q[x + mu]
|
||||
* Notes: - DoubledGaugeField U assumed to contain -1/2 factor.
|
||||
* - Pass in q_in shifted in +ve mu direction.
|
||||
******************************************************************************/
|
||||
template<class Impl>
|
||||
void WilsonKernels<Impl>::SeqConservedCurrentSiteFwd(const SitePropagator &q_in,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
vInteger t_mask,
|
||||
bool switch_sign)
|
||||
{
|
||||
SitePropagator result;
|
||||
Impl::multLinkProp(result, U._odata[sU], q_in, mu);
|
||||
result = WilsonCurrentFwd(result, mu);
|
||||
|
||||
// Zero any unwanted timeslice entries.
|
||||
result = predicatedWhere(t_mask, result, 0.*result);
|
||||
|
||||
if (switch_sign)
|
||||
{
|
||||
q_out -= result;
|
||||
}
|
||||
else
|
||||
{
|
||||
q_out += result;
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Name: SeqConservedCurrentSiteFwd
|
||||
* Operation: (1/2) * U^dag(x) * (g[mu] + 1) * q[x - mu]
|
||||
* Notes: - DoubledGaugeField U assumed to contain -1/2 factor.
|
||||
* - Pass in q_in shifted in -ve mu direction.
|
||||
******************************************************************************/
|
||||
template<class Impl>
|
||||
void WilsonKernels<Impl>::SeqConservedCurrentSiteBwd(const SitePropagator &q_in,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
vInteger t_mask,
|
||||
bool switch_sign)
|
||||
{
|
||||
SitePropagator result;
|
||||
Impl::multLinkProp(result, U._odata[sU], q_in, mu + Nd);
|
||||
result = WilsonCurrentBwd(result, mu);
|
||||
|
||||
// Zero any unwanted timeslice entries.
|
||||
result = predicatedWhere(t_mask, result, 0.*result);
|
||||
|
||||
if (switch_sign)
|
||||
{
|
||||
q_out += result;
|
||||
}
|
||||
else
|
||||
{
|
||||
q_out -= result;
|
||||
}
|
||||
}
|
||||
|
||||
FermOpTemplateInstantiate(WilsonKernels);
|
||||
AdjointFermOpTemplateInstantiate(WilsonKernels);
|
||||
TwoIndexFermOpTemplateInstantiate(WilsonKernels);
|
||||
|
@ -55,7 +55,7 @@ template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public
|
||||
public:
|
||||
|
||||
template <bool EnableBool = true>
|
||||
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 &&EnableBool, void>::type
|
||||
typename std::enable_if<Impl::isFundamental==true && Nc == 3 &&EnableBool, void>::type
|
||||
DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1)
|
||||
{
|
||||
@ -99,7 +99,7 @@ public:
|
||||
}
|
||||
|
||||
template <bool EnableBool = true>
|
||||
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool, void>::type
|
||||
typename std::enable_if<(Impl::isFundamental==false || (Impl::isFundamental==true && Nc != 3)) && EnableBool, void>::type
|
||||
DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1 ) {
|
||||
// no kernel choice
|
||||
@ -116,7 +116,7 @@ public:
|
||||
}
|
||||
|
||||
template <bool EnableBool = true>
|
||||
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 && EnableBool,void>::type
|
||||
typename std::enable_if<Impl::isFundamental==true && Nc == 3 && EnableBool,void>::type
|
||||
DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1)
|
||||
{
|
||||
@ -161,7 +161,7 @@ public:
|
||||
}
|
||||
|
||||
template <bool EnableBool = true>
|
||||
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool,void>::type
|
||||
typename std::enable_if<(Impl::isFundamental==false || (Impl::isFundamental==true && Nc != 3)) && EnableBool,void>::type
|
||||
DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,SiteHalfSpinor * buf,
|
||||
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1) {
|
||||
|
||||
@ -180,6 +180,38 @@ public:
|
||||
void DhopDir(StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor * buf,
|
||||
int sF, int sU, const FermionField &in, FermionField &out, int dirdisp, int gamma);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Utilities for inserting Wilson conserved current.
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
void ContractConservedCurrentSiteFwd(const SitePropagator &q_in_1,
|
||||
const SitePropagator &q_in_2,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
bool switch_sign = false);
|
||||
void ContractConservedCurrentSiteBwd(const SitePropagator &q_in_1,
|
||||
const SitePropagator &q_in_2,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
bool switch_sign = false);
|
||||
void SeqConservedCurrentSiteFwd(const SitePropagator &q_in,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
vInteger t_mask,
|
||||
bool switch_sign = false);
|
||||
void SeqConservedCurrentSiteBwd(const SitePropagator &q_in,
|
||||
SitePropagator &q_out,
|
||||
DoubledGaugeField &U,
|
||||
unsigned int sU,
|
||||
unsigned int mu,
|
||||
vInteger t_mask,
|
||||
bool switch_sign = false);
|
||||
|
||||
private:
|
||||
// Specialised variants
|
||||
void GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||
|
@ -946,5 +946,6 @@ INSTANTIATE_THEM(DomainWallVec5dImplFH);
|
||||
INSTANTIATE_THEM(DomainWallVec5dImplDF);
|
||||
INSTANTIATE_THEM(ZDomainWallVec5dImplFH);
|
||||
INSTANTIATE_THEM(ZDomainWallVec5dImplDF);
|
||||
|
||||
INSTANTIATE_THEM(WilsonTwoIndexAntiSymmetricImplF);
|
||||
INSTANTIATE_THEM(WilsonTwoIndexAntiSymmetricImplD);
|
||||
}}
|
||||
|
@ -16,12 +16,12 @@ class ScalarImplTypes {
|
||||
typedef iImplField<Simd> SiteField;
|
||||
typedef SiteField SitePropagator;
|
||||
typedef SiteField SiteComplex;
|
||||
|
||||
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Field ComplexField;
|
||||
typedef Field FermionField;
|
||||
typedef Field PropagatorField;
|
||||
|
||||
|
||||
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG){
|
||||
gaussian(pRNG, P);
|
||||
}
|
||||
@ -47,54 +47,60 @@ class ScalarImplTypes {
|
||||
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
U = 1.0;
|
||||
}
|
||||
|
||||
|
||||
static void MomentumSpacePropagator(Field &out, RealD m)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
Field kmu(grid), one(grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
std::vector<int> &l = grid->_fdimensions;
|
||||
|
||||
|
||||
one = Complex(1.0,0.0);
|
||||
out = m*m;
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
Real twoPiL = M_PI*2./l[mu];
|
||||
|
||||
|
||||
LatticeCoordinate(kmu,mu);
|
||||
kmu = 2.*sin(.5*twoPiL*kmu);
|
||||
out = out + kmu*kmu;
|
||||
}
|
||||
out = one/out;
|
||||
}
|
||||
|
||||
|
||||
static void FreePropagator(const Field &in, Field &out,
|
||||
const Field &momKernel)
|
||||
{
|
||||
FFT fft((GridCartesian *)in._grid);
|
||||
Field inFT(in._grid);
|
||||
|
||||
|
||||
fft.FFT_all_dim(inFT, in, FFT::forward);
|
||||
inFT = inFT*momKernel;
|
||||
fft.FFT_all_dim(out, inFT, FFT::backward);
|
||||
}
|
||||
|
||||
|
||||
static void FreePropagator(const Field &in, Field &out, RealD m)
|
||||
{
|
||||
Field momKernel(in._grid);
|
||||
|
||||
|
||||
MomentumSpacePropagator(momKernel, m);
|
||||
FreePropagator(in, out, momKernel);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
#ifdef USE_FFT_ACCELERATION
|
||||
#ifndef FFT_MASS
|
||||
#error "USE_FFT_ACCELERATION is defined but not FFT_MASS"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
template <class S, unsigned int N>
|
||||
class ScalarAdjMatrixImplTypes {
|
||||
public:
|
||||
typedef S Simd;
|
||||
typedef QCD::SU<N> Group;
|
||||
|
||||
|
||||
template <typename vtype>
|
||||
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
|
||||
template <typename vtype>
|
||||
@ -103,24 +109,119 @@ class ScalarImplTypes {
|
||||
typedef iImplField<Simd> SiteField;
|
||||
typedef SiteField SitePropagator;
|
||||
typedef iImplComplex<Simd> SiteComplex;
|
||||
|
||||
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Lattice<SiteComplex> ComplexField;
|
||||
typedef Field FermionField;
|
||||
typedef Field PropagatorField;
|
||||
|
||||
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG) {
|
||||
static void MomentaSquare(ComplexField &out)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
const std::vector<int> &l = grid->FullDimensions();
|
||||
ComplexField kmu(grid);
|
||||
|
||||
for (int mu = 0; mu < grid->Nd(); mu++)
|
||||
{
|
||||
Real twoPiL = M_PI * 2.0 / l[mu];
|
||||
LatticeCoordinate(kmu, mu);
|
||||
kmu = 2.0 * sin(0.5 * twoPiL * kmu);
|
||||
out += kmu * kmu;
|
||||
}
|
||||
}
|
||||
|
||||
static void MomentumSpacePropagator(ComplexField &out, RealD m)
|
||||
{
|
||||
GridBase *grid = out._grid;
|
||||
ComplexField one(grid);
|
||||
one = Complex(1.0, 0.0);
|
||||
out = m * m;
|
||||
MomentaSquare(out);
|
||||
out = one / out;
|
||||
}
|
||||
|
||||
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
|
||||
{
|
||||
#ifndef USE_FFT_ACCELERATION
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
|
||||
#else
|
||||
|
||||
Field Pgaussian(P._grid), Pp(P._grid);
|
||||
ComplexField p2(P._grid); p2 = zero;
|
||||
RealD M = FFT_MASS;
|
||||
|
||||
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pgaussian);
|
||||
|
||||
FFT theFFT((GridCartesian*)P._grid);
|
||||
theFFT.FFT_all_dim(Pp, Pgaussian, FFT::forward);
|
||||
MomentaSquare(p2);
|
||||
p2 += M * M;
|
||||
p2 = sqrt(p2);
|
||||
Pp *= p2;
|
||||
theFFT.FFT_all_dim(P, Pp, FFT::backward);
|
||||
|
||||
#endif //USE_FFT_ACCELERATION
|
||||
}
|
||||
|
||||
static inline Field projectForce(Field& P) {return P;}
|
||||
|
||||
static inline void update_field(Field& P, Field& U, double ep) {
|
||||
U += P*ep;
|
||||
static inline void update_field(Field &P, Field &U, double ep)
|
||||
{
|
||||
#ifndef USE_FFT_ACCELERATION
|
||||
double t0=usecond();
|
||||
U += P * ep;
|
||||
double t1=usecond();
|
||||
double total_time = (t1-t0)/1e6;
|
||||
std::cout << GridLogIntegrator << "Total time for updating field (s) : " << total_time << std::endl;
|
||||
#else
|
||||
// FFT transform P(x) -> P(p)
|
||||
// divide by (M^2+p^2) M external parameter (how to pass?)
|
||||
// P'(p) = P(p)/(M^2+p^2)
|
||||
// Transform back -> P'(x)
|
||||
// U += P'(x)*ep
|
||||
|
||||
Field Pp(U._grid), P_FFT(U._grid);
|
||||
static ComplexField p2(U._grid);
|
||||
RealD M = FFT_MASS;
|
||||
|
||||
FFT theFFT((GridCartesian*)U._grid);
|
||||
theFFT.FFT_all_dim(Pp, P, FFT::forward);
|
||||
|
||||
static bool first_call = true;
|
||||
if (first_call)
|
||||
{
|
||||
// avoid recomputing
|
||||
MomentumSpacePropagator(p2, M);
|
||||
first_call = false;
|
||||
}
|
||||
Pp *= p2;
|
||||
theFFT.FFT_all_dim(P_FFT, Pp, FFT::backward);
|
||||
U += P_FFT * ep;
|
||||
|
||||
#endif //USE_FFT_ACCELERATION
|
||||
}
|
||||
|
||||
static inline RealD FieldSquareNorm(Field& U) {
|
||||
return (TensorRemove(sum(trace(U*U))).real());
|
||||
static inline RealD FieldSquareNorm(Field &U)
|
||||
{
|
||||
#ifndef USE_FFT_ACCELERATION
|
||||
return (TensorRemove(sum(trace(U * U))).real());
|
||||
#else
|
||||
// In case of Fourier acceleration we have to:
|
||||
// compute U(p)*U(p)/(M^2+p^2)) Parseval theorem
|
||||
// 1 FFT needed U(x) -> U(p)
|
||||
// M to be passed
|
||||
|
||||
FFT theFFT((GridCartesian*)U._grid);
|
||||
Field Up(U._grid);
|
||||
|
||||
theFFT.FFT_all_dim(Up, U, FFT::forward);
|
||||
RealD M = FFT_MASS;
|
||||
ComplexField p2(U._grid);
|
||||
MomentumSpacePropagator(p2, M);
|
||||
Field Up2 = Up * p2;
|
||||
// from the definition of the DFT we need to divide by the volume
|
||||
return (-TensorRemove(sum(trace(adj(Up) * Up2))).real() / U._grid->gSites());
|
||||
#endif //USE_FFT_ACCELERATION
|
||||
}
|
||||
|
||||
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
||||
@ -146,7 +247,7 @@ class ScalarImplTypes {
|
||||
typedef ScalarImplTypes<vComplex> ScalarImplCR;
|
||||
typedef ScalarImplTypes<vComplexF> ScalarImplCF;
|
||||
typedef ScalarImplTypes<vComplexD> ScalarImplCD;
|
||||
|
||||
|
||||
// Hardcoding here the size of the matrices
|
||||
typedef ScalarAdjMatrixImplTypes<vComplex, QCD::Nc> ScalarAdjImplR;
|
||||
typedef ScalarAdjMatrixImplTypes<vComplexF, QCD::Nc> ScalarAdjImplF;
|
||||
@ -155,7 +256,7 @@ class ScalarImplTypes {
|
||||
template <int Colours > using ScalarNxNAdjImplR = ScalarAdjMatrixImplTypes<vComplex, Colours >;
|
||||
template <int Colours > using ScalarNxNAdjImplF = ScalarAdjMatrixImplTypes<vComplexF, Colours >;
|
||||
template <int Colours > using ScalarNxNAdjImplD = ScalarAdjMatrixImplTypes<vComplexD, Colours >;
|
||||
|
||||
|
||||
//}
|
||||
}
|
||||
|
||||
|
@ -30,119 +30,179 @@ directory
|
||||
#ifndef SCALAR_INT_ACTION_H
|
||||
#define SCALAR_INT_ACTION_H
|
||||
|
||||
|
||||
// Note: this action can completely absorb the ScalarAction for real float fields
|
||||
// use the scalarObjs to generalise the structure
|
||||
|
||||
namespace Grid {
|
||||
// FIXME drop the QCD namespace everywhere here
|
||||
namespace Grid
|
||||
{
|
||||
// FIXME drop the QCD namespace everywhere here
|
||||
|
||||
template <class Impl, int Ndim >
|
||||
class ScalarInteractionAction : public QCD::Action<typename Impl::Field> {
|
||||
public:
|
||||
INHERIT_FIELD_TYPES(Impl);
|
||||
private:
|
||||
RealD mass_square;
|
||||
RealD lambda;
|
||||
template <class Impl, int Ndim>
|
||||
class ScalarInteractionAction : public QCD::Action<typename Impl::Field>
|
||||
{
|
||||
public:
|
||||
INHERIT_FIELD_TYPES(Impl);
|
||||
|
||||
private:
|
||||
RealD mass_square;
|
||||
RealD lambda;
|
||||
RealD g;
|
||||
const unsigned int N = Impl::Group::Dimension;
|
||||
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef CartesianStencil<vobj,vobj> Stencil;
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef CartesianStencil<vobj, vobj> Stencil;
|
||||
|
||||
SimpleCompressor<vobj> compressor;
|
||||
int npoint = 2*Ndim;
|
||||
std::vector<int> directions;// = {0,1,2,3,0,1,2,3}; // forcing 4 dimensions
|
||||
std::vector<int> displacements;// = {1,1,1,1, -1,-1,-1,-1};
|
||||
SimpleCompressor<vobj> compressor;
|
||||
int npoint = 2 * Ndim;
|
||||
std::vector<int> directions; //
|
||||
std::vector<int> displacements; //
|
||||
|
||||
|
||||
public:
|
||||
|
||||
ScalarInteractionAction(RealD ms, RealD l) : mass_square(ms), lambda(l), displacements(2*Ndim,0), directions(2*Ndim,0){
|
||||
for (int mu = 0 ; mu < Ndim; mu++){
|
||||
directions[mu] = mu; directions[mu+Ndim] = mu;
|
||||
displacements[mu] = 1; displacements[mu+Ndim] = -1;
|
||||
}
|
||||
public:
|
||||
ScalarInteractionAction(RealD ms, RealD l, RealD gval) : mass_square(ms), lambda(l), g(gval), displacements(2 * Ndim, 0), directions(2 * Ndim, 0)
|
||||
{
|
||||
for (int mu = 0; mu < Ndim; mu++)
|
||||
{
|
||||
directions[mu] = mu;
|
||||
directions[mu + Ndim] = mu;
|
||||
displacements[mu] = 1;
|
||||
displacements[mu + Ndim] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
virtual std::string LogParameters() {
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
|
||||
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
virtual std::string LogParameters()
|
||||
{
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "[ScalarAction] lambda : " << lambda << std::endl;
|
||||
sstream << GridLogMessage << "[ScalarAction] mass_square : " << mass_square << std::endl;
|
||||
sstream << GridLogMessage << "[ScalarAction] g : " << g << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual std::string action_name() {return "ScalarAction";}
|
||||
virtual std::string action_name() { return "ScalarAction"; }
|
||||
|
||||
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {}
|
||||
virtual void refresh(const Field &U, GridParallelRNG &pRNG) {}
|
||||
|
||||
virtual RealD S(const Field &p) {
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
|
||||
phisquared = p*p;
|
||||
action = (2.0*Ndim + mass_square)*phisquared - lambda/24.*phisquared*phisquared;
|
||||
for (int mu = 0; mu < Ndim; mu++) {
|
||||
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
|
||||
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
vobj temp2;
|
||||
const vobj *temp, *t_p;
|
||||
|
||||
SE = phiStencil.GetEntry(permute_type, mu, i);
|
||||
t_p = &p._odata[i];
|
||||
if ( SE->_is_local ) {
|
||||
temp = &p._odata[SE->_offset];
|
||||
if ( SE->_permute ) {
|
||||
permute(temp2, *temp, permute_type);
|
||||
action._odata[i] -= temp2*(*t_p) + (*t_p)*temp2;
|
||||
} else {
|
||||
action._odata[i] -= (*temp)*(*t_p) + (*t_p)*(*temp);
|
||||
}
|
||||
} else {
|
||||
action._odata[i] -= phiStencil.CommBuf()[SE->_offset]*(*t_p) + (*t_p)*phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
// action -= pshift*p + p*pshift;
|
||||
}
|
||||
// NB the trace in the algebra is normalised to 1/2
|
||||
// minus sign coming from the antihermitian fields
|
||||
return -(TensorRemove(sum(trace(action)))).real();
|
||||
};
|
||||
|
||||
virtual void deriv(const Field &p, Field &force) {
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
force = (2.0*Ndim + mass_square)*p - lambda/12.*p*p*p;
|
||||
// move this outside
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
|
||||
//for (int mu = 0; mu < QCD::Nd; mu++) force -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
|
||||
for (int point = 0; point < npoint; point++) {
|
||||
parallel_for (int i = 0; i < p._grid->oSites(); i++) {
|
||||
const vobj *temp;
|
||||
vobj temp2;
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
SE = phiStencil.GetEntry(permute_type, point, i);
|
||||
|
||||
if ( SE->_is_local ) {
|
||||
temp = &p._odata[SE->_offset];
|
||||
if ( SE->_permute ) {
|
||||
permute(temp2, *temp, permute_type);
|
||||
force._odata[i] -= temp2;
|
||||
} else {
|
||||
force._odata[i] -= *temp;
|
||||
}
|
||||
} else {
|
||||
force._odata[i] -= phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
virtual RealD S(const Field &p)
|
||||
{
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
Field action(p._grid), pshift(p._grid), phisquared(p._grid);
|
||||
phisquared = p * p;
|
||||
action = (2.0 * Ndim + mass_square) * phisquared - lambda * phisquared * phisquared;
|
||||
for (int mu = 0; mu < Ndim; mu++)
|
||||
{
|
||||
// pshift = Cshift(p, mu, +1); // not efficient, implement with stencils
|
||||
parallel_for(int i = 0; i < p._grid->oSites(); i++)
|
||||
{
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
vobj temp2;
|
||||
const vobj *temp, *t_p;
|
||||
|
||||
SE = phiStencil.GetEntry(permute_type, mu, i);
|
||||
t_p = &p._odata[i];
|
||||
if (SE->_is_local)
|
||||
{
|
||||
temp = &p._odata[SE->_offset];
|
||||
if (SE->_permute)
|
||||
{
|
||||
permute(temp2, *temp, permute_type);
|
||||
action._odata[i] -= temp2 * (*t_p) + (*t_p) * temp2;
|
||||
}
|
||||
else
|
||||
{
|
||||
action._odata[i] -= (*temp) * (*t_p) + (*t_p) * (*temp);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
action._odata[i] -= phiStencil.CommBuf()[SE->_offset] * (*t_p) + (*t_p) * phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
// action -= pshift*p + p*pshift;
|
||||
}
|
||||
// NB the trace in the algebra is normalised to 1/2
|
||||
// minus sign coming from the antihermitian fields
|
||||
return -(TensorRemove(sum(trace(action)))).real() * N / g;
|
||||
};
|
||||
|
||||
} // namespace Grid
|
||||
|
||||
#endif // SCALAR_INT_ACTION_H
|
||||
virtual void deriv(const Field &p, Field &force)
|
||||
{
|
||||
double t0 = usecond();
|
||||
assert(p._grid->Nd() == Ndim);
|
||||
force = (2. * Ndim + mass_square) * p - 2. * lambda * p * p * p;
|
||||
double interm_t = usecond();
|
||||
|
||||
// move this outside
|
||||
static Stencil phiStencil(p._grid, npoint, 0, directions, displacements);
|
||||
|
||||
phiStencil.HaloExchange(p, compressor);
|
||||
double halo_t = usecond();
|
||||
int chunk = 128;
|
||||
//for (int mu = 0; mu < QCD::Nd; mu++) force -= Cshift(p, mu, -1) + Cshift(p, mu, 1);
|
||||
|
||||
// inverting the order of the loops slows down the code(! g++ 7)
|
||||
// cannot try to reduce the number of force writes by factor npoint...
|
||||
// use cache blocking
|
||||
for (int point = 0; point < npoint; point++)
|
||||
{
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
int permute_type;
|
||||
StencilEntry *SE;
|
||||
const vobj *temp;
|
||||
|
||||
#pragma omp for schedule(static, chunk)
|
||||
for (int i = 0; i < p._grid->oSites(); i++)
|
||||
{
|
||||
SE = phiStencil.GetEntry(permute_type, point, i);
|
||||
// prefetch next p?
|
||||
|
||||
if (SE->_is_local)
|
||||
{
|
||||
temp = &p._odata[SE->_offset];
|
||||
|
||||
if (SE->_permute)
|
||||
{
|
||||
vobj temp2;
|
||||
permute(temp2, *temp, permute_type);
|
||||
force._odata[i] -= temp2;
|
||||
}
|
||||
else
|
||||
{
|
||||
force._odata[i] -= *temp; // slow part. Dominated by this read/write (BW)
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
force._odata[i] -= phiStencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
force *= N / g;
|
||||
|
||||
double t1 = usecond();
|
||||
double total_time = (t1 - t0) / 1e6;
|
||||
double interm_time = (interm_t - t0) / 1e6;
|
||||
double halo_time = (halo_t - interm_t) / 1e6;
|
||||
double stencil_time = (t1 - halo_t) / 1e6;
|
||||
std::cout << GridLogIntegrator << "Total time for force computation (s) : " << total_time << std::endl;
|
||||
std::cout << GridLogIntegrator << "Intermediate time for force computation (s): " << interm_time << std::endl;
|
||||
std::cout << GridLogIntegrator << "Halo time in force computation (s) : " << halo_time << std::endl;
|
||||
std::cout << GridLogIntegrator << "Stencil time in force computation (s) : " << stencil_time << std::endl;
|
||||
double flops = p._grid->gSites() * (14 * N * N * N + 18 * N * N + 2);
|
||||
double flops_no_stencil = p._grid->gSites() * (14 * N * N * N + 6 * N * N + 2);
|
||||
double Gflops = flops / (total_time * 1e9);
|
||||
double Gflops_no_stencil = flops_no_stencil / (interm_time * 1e9);
|
||||
std::cout << GridLogIntegrator << "Flops: " << flops << " - Gflop/s : " << Gflops << std::endl;
|
||||
std::cout << GridLogIntegrator << "Flops NS: " << flops_no_stencil << " - Gflop/s NS: " << Gflops_no_stencil << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Grid
|
||||
|
||||
#endif // SCALAR_INT_ACTION_H
|
||||
|
@ -211,7 +211,7 @@ typedef HMCWrapperTemplate<ScalarAdjImplR, MinimumNorm2, ScalarMatrixFields>
|
||||
ScalarAdjGenericHMCRunner;
|
||||
|
||||
template <int Colours>
|
||||
using ScalarNxNAdjGenericHMCRunner = HMCWrapperTemplate < ScalarNxNAdjImplR<Colours>, MinimumNorm2, ScalarNxNMatrixFields<Colours> >;
|
||||
using ScalarNxNAdjGenericHMCRunner = HMCWrapperTemplate < ScalarNxNAdjImplR<Colours>, ForceGradient, ScalarNxNMatrixFields<Colours> >;
|
||||
|
||||
} // namespace QCD
|
||||
} // namespace Grid
|
||||
|
@ -92,6 +92,19 @@ class PlaquetteMod: public ObservableModule<PlaquetteLogger<Impl>, NoParameters>
|
||||
PlaquetteMod(): ObsBase(NoParameters()){}
|
||||
};
|
||||
|
||||
template < class Impl >
|
||||
class PolyakovMod: public ObservableModule<PolyakovLogger<Impl>, NoParameters>{
|
||||
typedef ObservableModule<PolyakovLogger<Impl>, NoParameters> ObsBase;
|
||||
using ObsBase::ObsBase; // for constructors
|
||||
|
||||
// acquire resource
|
||||
virtual void initialize(){
|
||||
this->ObservablePtr.reset(new PolyakovLogger<Impl>());
|
||||
}
|
||||
public:
|
||||
PolyakovMod(): ObsBase(NoParameters()){}
|
||||
};
|
||||
|
||||
|
||||
template < class Impl >
|
||||
class TopologicalChargeMod: public ObservableModule<TopologicalCharge<Impl>, TopologyObsParameters>{
|
||||
|
@ -45,5 +45,7 @@ class HmcObservable {
|
||||
|
||||
#include "plaquette.h"
|
||||
#include "topological_charge.h"
|
||||
#include "polyakov_loop.h"
|
||||
|
||||
|
||||
#endif // HMC_OBSERVABLE_H
|
||||
|
68
lib/qcd/observables/polyakov_loop.h
Normal file
68
lib/qcd/observables/polyakov_loop.h
Normal file
@ -0,0 +1,68 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/modules/polyakov_line.h
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: David Preti <david.preti@csic.es>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef HMC_POLYAKOV_H
|
||||
#define HMC_POLYAKOV_H
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
// this is only defined for a gauge theory
|
||||
template <class Impl>
|
||||
class PolyakovLogger : public HmcObservable<typename Impl::Field> {
|
||||
public:
|
||||
// here forces the Impl to be of gauge fields
|
||||
// if not the compiler will complain
|
||||
INHERIT_GIMPL_TYPES(Impl);
|
||||
|
||||
// necessary for HmcObservable compatibility
|
||||
typedef typename Impl::Field Field;
|
||||
|
||||
void TrajectoryComplete(int traj,
|
||||
Field &U,
|
||||
GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG) {
|
||||
|
||||
ComplexD polyakov = WilsonLoops<Impl>::avgPolyakovLoop(U);
|
||||
|
||||
int def_prec = std::cout.precision();
|
||||
|
||||
std::cout << GridLogMessage
|
||||
<< std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "Polyakov Loop: [ " << traj << " ] "<< polyakov << std::endl;
|
||||
|
||||
std::cout.precision(def_prec);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace QCD
|
||||
} // namespace Grid
|
||||
|
||||
#endif // HMC_POLYAKOV_H
|
@ -23,6 +23,7 @@ class AdjointRep {
|
||||
typedef typename SU_Adjoint<ncolour>::LatticeAdjMatrix LatticeMatrix;
|
||||
typedef typename SU_Adjoint<ncolour>::LatticeAdjField LatticeField;
|
||||
static const int Dimension = ncolour * ncolour - 1;
|
||||
static const bool isFundamental = false;
|
||||
|
||||
LatticeField U;
|
||||
|
||||
|
@ -19,6 +19,7 @@ template <int ncolour>
|
||||
class FundamentalRep {
|
||||
public:
|
||||
static const int Dimension = ncolour;
|
||||
static const bool isFundamental = true;
|
||||
|
||||
// typdef to be used by the Representations class in HMC to get the
|
||||
// types for the higher representation fields
|
||||
|
@ -29,6 +29,7 @@ class TwoIndexRep {
|
||||
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexMatrix LatticeMatrix;
|
||||
typedef typename SU_TwoIndex<ncolour, S>::LatticeTwoIndexField LatticeField;
|
||||
static const int Dimension = ncolour * (ncolour + S) / 2;
|
||||
static const bool isFundamental = false;
|
||||
|
||||
LatticeField U;
|
||||
|
||||
|
@ -746,7 +746,7 @@ template<typename GaugeField,typename GaugeMat>
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
static void ColdConfiguration(GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
@ -757,6 +757,10 @@ template<typename GaugeField,typename GaugeMat>
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
ColdConfiguration(out);
|
||||
}
|
||||
|
||||
template<typename LatticeMatrixType>
|
||||
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
|
||||
|
@ -123,6 +123,28 @@ public:
|
||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z the temporal loop
|
||||
//////////////////////////////////////////////////
|
||||
static ComplexD avgPolyakovLoop(const GaugeField &Umu) { //assume Nd=4
|
||||
GaugeMat Ut(Umu._grid), P(Umu._grid);
|
||||
ComplexD out;
|
||||
int T = Umu._grid->GlobalDimensions()[3];
|
||||
int X = Umu._grid->GlobalDimensions()[0];
|
||||
int Y = Umu._grid->GlobalDimensions()[1];
|
||||
int Z = Umu._grid->GlobalDimensions()[2];
|
||||
|
||||
Ut = peekLorentz(Umu,3); //Select temporal direction
|
||||
P = Ut;
|
||||
for (int t=1;t<T;t++){
|
||||
P = Gimpl::CovShiftForward(Ut,3,P);
|
||||
}
|
||||
RealD norm = 1.0/(Nc*X*Y*Z*T);
|
||||
out = sum(trace(P))*norm;
|
||||
return out;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over traced single links
|
||||
//////////////////////////////////////////////////
|
||||
@ -291,9 +313,9 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// the sum over all staples on each site in direction mu,nu, lower part
|
||||
//////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void StapleLower(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
|
||||
int nu) {
|
||||
if (nu != mu) {
|
||||
@ -315,7 +337,9 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
//
|
||||
staple = Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu], nu,
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
|
||||
mu);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -325,7 +349,7 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
static void FieldStrength(GaugeMat &FS, const GaugeLorentz &Umu, int mu, int nu){
|
||||
// Fmn +--<--+ Ut +--<--+
|
||||
// | | | |
|
||||
// (x)+-->--+ +-->--+(x)
|
||||
// (x)+-->--+ +-->--+(x) - h.c.
|
||||
// | | | |
|
||||
// +--<--+ +--<--+
|
||||
|
||||
@ -335,7 +359,9 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
GaugeMat v = Vup - Vdn;
|
||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||
GaugeMat vu = v*u;
|
||||
FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Cshift(vu, mu, -1));
|
||||
FS = 0.125*(FS - adj(FS));
|
||||
}
|
||||
|
||||
static Real TopologicalCharge(GaugeLorentz &U){
|
||||
@ -360,6 +386,7 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
return TensorRemove(Tq).real();
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Similar to above for rectangle is required
|
||||
//////////////////////////////////////////////////////
|
||||
|
Reference in New Issue
Block a user