1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-09 21:50:45 +01:00

QedFVol: Implement exact O(alpha) vacuum polarisation.

This commit is contained in:
James Harrison 2017-05-09 11:46:25 +01:00
parent 6cb563a40c
commit 914f180fa3
2 changed files with 85 additions and 37 deletions

View File

@ -30,8 +30,6 @@ std::vector<std::string> TScalarVP::getOutput(void)
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
out.push_back(getName() + "_propQ_" + std::to_string(mu)); out.push_back(getName() + "_propQ_" + std::to_string(mu));
out.push_back(getName() + "_propSun_" + std::to_string(mu));
out.push_back(getName() + "_propTad_" + std::to_string(mu));
for (unsigned int nu = 0; nu < env().getNd(); ++nu) for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{ {
@ -54,16 +52,12 @@ void TScalarVP::setup(void)
phaseName_.clear(); phaseName_.clear();
muPropQName_.clear(); muPropQName_.clear();
muPropSunName_.clear();
muPropTadName_.clear();
vpTensorName_.clear(); vpTensorName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
phaseName_.push_back("_shiftphase_" + std::to_string(mu)); phaseName_.push_back("_shiftphase_" + std::to_string(mu));
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu)); muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
muPropSunName_.push_back(getName() + "_propSun_" + std::to_string(mu));
muPropTadName_.push_back(getName() + "_propTad_" + std::to_string(mu));
std::vector<std::string> vpTensorName_mu; std::vector<std::string> vpTensorName_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu) for (unsigned int nu = 0; nu < env().getNd(); ++nu)
@ -99,16 +93,8 @@ void TScalarVP::setup(void)
env().registerLattice<ScalarField>(muPropQName_[mu]); env().registerLattice<ScalarField>(muPropQName_[mu]);
} }
env().registerLattice<ScalarField>(propSunName_); env().registerLattice<ScalarField>(propSunName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropSunName_[mu]);
}
env().registerLattice<ScalarField>(propTadName_); env().registerLattice<ScalarField>(propTadName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
env().registerLattice<ScalarField>(muPropTadName_[mu]);
}
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
for (unsigned int nu = 0; nu < env().getNd(); ++nu) for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{ {
@ -191,17 +177,16 @@ void TScalarVP::execute(void)
chargedProp(propQ, propSun, propTad, *GFSrc_, fft); chargedProp(propQ, propSun, propTad, *GFSrc_, fft);
// Propagators from shifted sources // Propagators from shifted sources
std::vector<ScalarField *> muPropQ_, muPropSun_, muPropTad_; std::vector<ScalarField> muPropQ;
ScalarField buf(env().getGrid());
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
muPropQ_.push_back(env().createLattice<ScalarField>(muPropQName_[mu])); muPropQ.push_back(*env().createLattice<ScalarField>(muPropQName_[mu]));
muPropSun_.push_back(env().createLattice<ScalarField>(muPropSunName_[mu]));
muPropTad_.push_back(env().createLattice<ScalarField>(muPropTadName_[mu]));
buf = adj(*phase_[mu])*(*GFSrc_); // -G*momD1*G*F*tau_mu*Src (momD1 = F*D1*Finv)
chargedProp(*(muPropQ_[mu]), *(muPropSun_[mu]), *(muPropTad_[mu]), muPropQ[mu] = adj(*phase_[mu])*(*GFSrc_);
buf, fft); momD1(muPropQ[mu], fft);
muPropQ[mu] = -(*freeMomProp_)*muPropQ[mu];
fft.FFT_all_dim(muPropQ[mu], muPropQ[mu], FFT::backward);
} }
// CONTRACTIONS // CONTRACTIONS
@ -221,33 +206,94 @@ void TScalarVP::execute(void)
TComplex Anu0; TComplex Anu0;
std::vector<int> coor0 = {0, 0, 0, 0}; std::vector<int> coor0 = {0, 0, 0, 0};
prop1 = *GFSrc_ + q*propQ + q*q*propSun + q*q*propTad; // Free VP
fft.FFT_all_dim(prop1, prop1, FFT::backward);
// Charged VP
for (unsigned int nu = 0; nu < env().getNd(); ++nu) for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{ {
peekSite(Anu0, peekLorentz(A, nu), coor0); peekSite(Anu0, peekLorentz(A, nu), coor0);
prop2 = adj(*phase_[nu])*(*GFSrc_) + q*(*(muPropQ_[nu]))
+ q*q*(*(muPropSun_[nu]) + *(muPropTad_[nu]));
fft.FFT_all_dim(prop2, prop2, FFT::backward);
std::vector<ScalarField> pi_nu;
for (unsigned int mu = 0; mu < env().getNd(); ++mu) for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{ {
LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..." LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
<< std::endl; << std::endl;
Amu = peekLorentz(A, mu); Amu = peekLorentz(A, mu);
vpTensor[mu][nu] = adj(prop2)
* (1.0 + ci*q*Amu - 0.5*q*q*Amu*Amu) // "Exchange" terms
* Cshift(prop1, mu, 1) prop1 = *prop0_ + q*propQ;
* (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0); prop2 = Cshift(*prop0_, nu, -1) + q*muPropQ[nu];
vpTensor[mu][nu] = adj(prop2) * (1.0 + ci*q*Amu)
* Cshift(prop1, mu, 1) * (1.0 + ci*q*Anu0);
vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * (1.0 - ci*q*Amu)
* prop1 * (1.0 + ci*q*Anu0);
// Subtract O(alpha^2) term
prop1 = q*propQ;
prop2 = q*muPropQ[nu];
vpTensor[mu][nu] -= adj(prop2) * ci*q*Amu
* Cshift(prop1, mu, 1) * ci*q*Anu0;
vpTensor[mu][nu] += Cshift(adj(prop2), mu, 1) * (-ci)*q*Amu
* prop1 * ci*q*Anu0;
// Sunset+tadpole from source
prop1 = q*q*(propSun + propTad);
prop2 = Cshift(*prop0_, nu, -1);
vpTensor[mu][nu] += adj(prop2) * Cshift(prop1, mu, 1);
vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) * prop1;
// Sunset+tadpole from shifted source
prop1 = Cshift(prop1, nu, -1);
vpTensor[mu][nu] += Cshift(adj(*prop0_), mu, 1) * prop1;
vpTensor[mu][nu] -= adj(*prop0_) * Cshift(prop1, mu, 1);
// Source tadpole
prop1 = *prop0_;
vpTensor[mu][nu] += adj(prop2)
* Cshift(prop1, mu, 1)
* (-0.5)*q*q*Anu0*Anu0;
vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1) vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1)
* (1.0 - ci*q*Amu - 0.5*q*q*Amu*Amu)
* prop1 * prop1
* (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0); * (-0.5)*q*q*Anu0*Anu0;
// Sink tadpole
vpTensor[mu][nu] += adj(prop2)
* (-0.5)*q*q*Amu*Amu
* Cshift(prop1, mu, 1);
vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1)
* (-0.5)*q*q*Amu*Amu
* prop1;
vpTensor[mu][nu] = 2.0*real(vpTensor[mu][nu]); vpTensor[mu][nu] = 2.0*real(vpTensor[mu][nu]);
} }
} }
// prop1 = *GFSrc_ + q*propQ + q*q*propSun + q*q*propTad;
// fft.FFT_all_dim(prop1, prop1, FFT::backward);
// for (unsigned int nu = 0; nu < env().getNd(); ++nu)
// {
// peekSite(Anu0, peekLorentz(A, nu), coor0);
// prop2 = adj(*phase_[nu])*(*GFSrc_) + q*(*(muPropQ_[nu]))
// + q*q*(*(muPropSun_[nu]) + *(muPropTad_[nu]));
// fft.FFT_all_dim(prop2, prop2, FFT::backward);
// std::vector<ScalarField> pi_nu;
// for (unsigned int mu = 0; mu < env().getNd(); ++mu)
// {
// LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
// << std::endl;
// Amu = peekLorentz(A, mu);
// vpTensor[mu][nu] = adj(prop2)
// * (1.0 + ci*q*Amu - 0.5*q*q*Amu*Amu)
// * Cshift(prop1, mu, 1)
// * (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0);
// vpTensor[mu][nu] -= Cshift(adj(prop2), mu, 1)
// * (1.0 - ci*q*Amu - 0.5*q*q*Amu*Amu)
// * prop1
// * (1.0 + ci*q*Anu0 - 0.5*q*q*Anu0*Anu0);
// vpTensor[mu][nu] = 2.0*real(vpTensor[mu][nu]);
// }
// }
// OUTPUT IF NECESSARY // OUTPUT IF NECESSARY
if (!par().output.empty()) if (!par().output.empty())
{ {
@ -281,7 +327,7 @@ void TScalarVP::execute(void)
} }
} }
// Calculate O(q) and O(q^2) terms of momentum-space charged propagator // Calculate O(q) and O(q^2) terms of position-space charged propagator
void TScalarVP::chargedProp(ScalarField &prop_q, ScalarField &prop_sun, void TScalarVP::chargedProp(ScalarField &prop_q, ScalarField &prop_sun,
ScalarField &prop_tad, ScalarField &GFSrc, ScalarField &prop_tad, ScalarField &GFSrc,
FFT &fft) FFT &fft)
@ -300,15 +346,18 @@ void TScalarVP::chargedProp(ScalarField &prop_q, ScalarField &prop_sun,
momD1(buf, fft); momD1(buf, fft);
buf = G*buf; buf = G*buf;
prop_q = -buf; prop_q = -buf;
fft.FFT_all_dim(prop_q, prop_q, FFT::backward);
// G*momD1*G*momD1*G*F*Src // G*momD1*G*momD1*G*F*Src
momD1(buf, fft); momD1(buf, fft);
prop_sun = G*buf; prop_sun = G*buf;
fft.FFT_all_dim(prop_sun, prop_sun, FFT::backward);
// -G*momD2*G*F*Src (momD2 = F*D2*Finv) // -G*momD2*G*F*Src (momD2 = F*D2*Finv)
buf = GFSrc; buf = GFSrc;
momD2(buf, fft); momD2(buf, fft);
prop_tad = -G*buf; prop_tad = -G*buf;
fft.FFT_all_dim(prop_tad, prop_tad, FFT::backward);
} }
void TScalarVP::momD1(ScalarField &s, FFT &fft) void TScalarVP::momD1(ScalarField &s, FFT &fft)

View File

@ -51,8 +51,7 @@ private:
std::string freeMomPropName_, GFSrcName_, std::string freeMomPropName_, GFSrcName_,
prop0Name_, propQName_, prop0Name_, propQName_,
propSunName_, propTadName_; propSunName_, propTadName_;
std::vector<std::string> phaseName_, muPropQName_, std::vector<std::string> phaseName_, muPropQName_;
muPropSunName_, muPropTadName_;
std::vector<std::vector<std::string> > vpTensorName_; std::vector<std::vector<std::string> > vpTensorName_;
ScalarField *freeMomProp_, *GFSrc_, ScalarField *freeMomProp_, *GFSrc_,
*prop0_; *prop0_;