1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00

Still one issue on write

This commit is contained in:
Michael Marshall 2019-02-28 19:06:25 +00:00
parent 3b05f91f5c
commit 91be028507
3 changed files with 127 additions and 149 deletions

View File

@ -73,7 +73,7 @@ namespace Grid {
template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && is_container<typename T::Scalar>::value, void>::type> : public std::true_type {}; template<typename T> struct is_tensor_of_container<T, typename std::enable_if<is_tensor<T>::value && is_container<typename T::Scalar>::value, void>::type> : public std::true_type {};
// Is this a fixed-size Eigen tensor // Is this a fixed-size Eigen tensor
template<typename T, typename C = void> struct is_tensor_fixed : public std::false_type {}; template<typename T> struct is_tensor_fixed : public std::false_type {};
template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType> template<typename Scalar_, typename Dimensions_, int Options_, typename IndexType>
struct is_tensor_fixed<Eigen::TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType>> struct is_tensor_fixed<Eigen::TensorFixedSize<Scalar_, Dimensions_, Options_, IndexType>>
: public std::true_type {}; : public std::true_type {};
@ -89,86 +89,81 @@ namespace Grid {
&& !is_tensor_fixed<T>::value, void>::type> : public std::true_type {}; && !is_tensor_fixed<T>::value, void>::type> : public std::true_type {};
// These traits describe the Eigen tensor scalar and container objects supported for IO // These traits describe the Eigen tensor scalar and container objects supported for IO
// Containers arbitrarily deeply nested compositions of fixed size objects: // Containers are arbitrarily deeply nested compositions of fixed size objects,
// ... grid tensors (iScalar, iVector, and iMatrix) and fixed size arrays // ... grid tensors (iScalar, iVector, and iMatrix) and std::array
// EigenIO::Traits are not defined for Eigen tensors, but rather their top-level scalar
// This is because Eigen tensors have a dynamic size flavour, but the scalars are all fixed size
// This allows the traits to all be defined as constexpr
template <typename T, typename C = void> struct Traits {}; // C needed for specialisation template <typename T, typename C = void> struct Traits {}; // C needed for specialisation
// This defines the bottom level - i.e. it's a description of the underlying scalar // This defines the bottom level - i.e. it's a description of the underlying scalar
template <typename T> struct Traits<T, typename std::enable_if<is_scalar<T>::value, void>::type> { template <typename T> struct Traits<T, typename std::enable_if<is_scalar<T>::value, void>::type> {
using scalar_type = T; // Type of the underlying scalar using scalar_type = T; // Type of the underlying scalar
using scalar_real = typename RealType<scalar_type>::type; // real type underlying scalar_type using scalar_real = typename RealType<scalar_type>::type; // real type underlying scalar_type
static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used) static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used)
static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1 //static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1
static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions) static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions)
static constexpr std::size_t scalar_size = sizeof(T); // Size of the underlying scalar in bytes static constexpr std::size_t scalar_size = sizeof(T); // Size of the underlying scalar in bytes
static constexpr std::size_t size = scalar_size * count; // total size of elements in bytes static constexpr std::size_t size = scalar_size * count; // total size of elements in bytes
static constexpr std::size_t Dimension(unsigned int dim) { return 0; } // Dimension size static constexpr std::size_t Dimension(unsigned int dim) { return 0; } // Dimension size
static constexpr std::size_t DimensionNT(unsigned int dim) { return 0; } // non-trivial dim size //static constexpr std::size_t DimensionNT(unsigned int dim) { return 0; } // non-trivial dim size
// e.g. iScalar<iVector<Complex,1>> // e.g. iScalar<iVector<Complex,1>>
// depth = 2 // rank = 2
// rank = 1
// rank_non_trivial = 0 // rank_non_trivial = 0
// count = 1 // count = 1
// e.g. iVector<iMatrix<Complex,3>,4> // e.g. iVector<iMatrix<Complex,3>,1>
// depth = 2
// rank = 3 // rank = 3
// rank_non_trivial = 2
// count = 9
// e.g. iScalar<iVector<iMatrix<Complex,3>,4>>
// rank = 4
// rank_non_trivial = 3 // rank_non_trivial = 3
// count = 36 // count = 36
// e.g. iScalar<iVector<iMatrix<Complex,4>,3>>
// depth = 3
// rank = 3
// rank_non_trivial = 3
// count = 48
}; };
template <typename T> struct Traits<iScalar<T>> { template <typename T> struct Traits<iScalar<T>> {
using scalar_type = typename Traits<T>::scalar_type; using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type; using scalar_real = typename RealType<scalar_type>::type;
static constexpr unsigned int rank = 1 + Traits<T>::rank; static constexpr unsigned int rank = 1 + Traits<T>::rank;
static constexpr unsigned int rank_non_trivial = 0 + Traits<T>::rank_non_trivial; //static constexpr unsigned int rank_non_trivial = 0 + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = 1 * Traits<T>::count; static constexpr unsigned int count = 1 * Traits<T>::count;
static constexpr std::size_t scalar_size = Traits<T>::scalar_size; static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
static constexpr std::size_t size = scalar_size * count; static constexpr std::size_t size = scalar_size * count;
static constexpr std::size_t Dimension(unsigned int dim) { static constexpr std::size_t Dimension(unsigned int dim) {
return ( dim == 0 ) ? 1 : Traits<T>::Dimension(dim - 1); } return ( dim == 0 ) ? 1 : Traits<T>::Dimension(dim - 1); }
static constexpr std::size_t DimensionNT(unsigned int dim) { //static constexpr std::size_t DimensionNT(unsigned int dim) {
return Traits<T>::DimensionNT(dim); } //return Traits<T>::DimensionNT(dim); }
}; };
template <typename T, int N> struct Traits<iVector<T, N>> { template <typename T, int N> struct Traits<iVector<T, N>> {
using scalar_type = typename Traits<T>::scalar_type; using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type; using scalar_real = typename RealType<scalar_type>::type;
static constexpr unsigned int rank = 1 + Traits<T>::rank; static constexpr unsigned int rank = 1 + Traits<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + Traits<T>::rank_non_trivial; //static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = N * Traits<T>::count; static constexpr unsigned int count = N * Traits<T>::count;
static constexpr std::size_t scalar_size = Traits<T>::scalar_size; static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
static constexpr std::size_t size = scalar_size * count; static constexpr std::size_t size = scalar_size * count;
static constexpr std::size_t Dimension(unsigned int dim) { static constexpr std::size_t Dimension(unsigned int dim) {
return ( dim == 0 ) ? N : Traits<T>::Dimension(dim - 1); } return ( dim == 0 ) ? N : Traits<T>::Dimension(dim - 1); }
static constexpr std::size_t DimensionNT(unsigned int dim) { //static constexpr std::size_t DimensionNT(unsigned int dim) {
return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 ) ? N : Traits<T>::DimensionNT(dim - 1); //return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 ) ? N : Traits<T>::DimensionNT(dim - 1);
} //}
}; };
template <typename T, int N> struct Traits<iMatrix<T, N>> { template <typename T, int N> struct Traits<iMatrix<T, N>> {
using scalar_type = typename Traits<T>::scalar_type; using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type; using scalar_real = typename RealType<scalar_type>::type;
static constexpr unsigned int rank = 2 + Traits<T>::rank; static constexpr unsigned int rank = 2 + Traits<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + Traits<T>::rank_non_trivial; //static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = N * N * Traits<T>::count; static constexpr unsigned int count = N * N * Traits<T>::count;
static constexpr std::size_t scalar_size = Traits<T>::scalar_size; static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
static constexpr std::size_t size = scalar_size * count; static constexpr std::size_t size = scalar_size * count;
static constexpr std::size_t Dimension(unsigned int dim) { static constexpr std::size_t Dimension(unsigned int dim) {
return ( dim == 0 || dim == 1 ) ? N : Traits<T>::Dimension(dim - 2); } return ( dim == 0 || dim == 1 ) ? N : Traits<T>::Dimension(dim - 2); }
static constexpr std::size_t DimensionNT(unsigned int dim) { //static constexpr std::size_t DimensionNT(unsigned int dim) {
return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 || dim == 1 ) ? N : Traits<T>::DimensionNT(dim - 2); //return ( N == 1 ) ? Traits<T>::DimensionNT(dim) : ( dim == 0 || dim == 1 ) ? N : Traits<T>::DimensionNT(dim - 2);
} //}
}; };
template <typename T, int N> struct Traits<std::array<T, N>> : Traits<iVector<T, N>> {}; template <typename T, int N> struct Traits<std::array<T, N>> : Traits<iVector<T, N>> {};
// Tensors have the same traits as their top-level scalar
// Shouldn't be necessary ... but I make the mistake of getting traits of the tensor so often
// that I am tempted to define this.
// HOWEVER, Eigen tensors have a dynamic size flavour, but the scalars are (currently) all fixed size
//template <typename T> struct Traits<T, typename std::enable_if<is_tensor<T>::value, void>::type> : Traits<T> {};
} }
// for_all helper function to call the lambda // for_all helper function to call the lambda for scalar
template <typename ETensor, typename Lambda> template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq, for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
@ -177,19 +172,19 @@ namespace Grid {
lambda( scalar, Seq++, MyIndex ); lambda( scalar, Seq++, MyIndex );
} }
// for_all helper function to call the lambda // for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda> template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq, for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex) std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{ {
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later using Traits = EigenIO::Traits<typename ETensor::Scalar>;
const auto InnerRank = EigenIO::Traits<Scalar>::rank_non_trivial;
const auto rank{ETensor::NumIndices}; const auto rank{ETensor::NumIndices};
for( typename EigenIO::Traits<Scalar>::scalar_type &Source : scalar ) { const auto InnerRank = Traits::rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex ); lambda(Source, Seq++, MyIndex );
// Now increment SubIndex // Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == EigenIO::Traits<Scalar>::DimensionNT(i); i-- ) for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
MyIndex[rank + i] = 0; MyIndex[rank + i] = 0;
} }
} }
@ -257,23 +252,43 @@ namespace Grid {
// Would have preferred to define template variables for this, but that's c++ 17 // Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor> template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc = 1 ) SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc = 1,
unsigned short Precision = 0 )
{ {
using Traits = EigenIO::Traits<typename ETensor::Scalar>; using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type; using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank_non_trivial> &Dims ) { for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
c = Inc * static_cast<scalar_type>(n); scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << x;
s >> x;
}
c = x;
} ); } );
} }
template <typename ETensor> template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc={1,-1}) SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc={1,-1},
unsigned short Precision = 0 )
{ {
using Traits = EigenIO::Traits<typename ETensor::Scalar>; using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type; using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) { for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
c = Inc * static_cast<typename RealType<scalar_type>::type>(n); auto re = Inc.real();
auto im = Inc.imag();
re *= n;
im *= n;
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << re;
s >> re;
s.clear();
s << im;
s >> im;
}
c = scalar_type(re,im);
} ); } );
} }
@ -561,7 +576,7 @@ namespace Grid {
Writer<T>::write(const std::string &s, const ETensor &output) Writer<T>::write(const std::string &s, const ETensor &output)
{ {
using Index = typename ETensor::Index; using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; // NB: could be same as Scalar using Container = typename ETensor::Scalar; // NB: could be same as scalar
using Traits = EigenIO::Traits<Container>; using Traits = EigenIO::Traits<Container>;
using Scalar = typename Traits::scalar_type; // type of the underlying scalar using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices}; constexpr unsigned int TensorRank{ETensor::NumIndices};
@ -711,85 +726,49 @@ namespace Grid {
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
Reader<T>::read(const std::string &s, ETensor &output) Reader<T>::read(const std::string &s, ETensor &output)
{ {
// alias to element type using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; using Container = typename ETensor::Scalar; // NB: could be same as scalar
using Traits = EigenIO::Traits<Container>; using Traits = EigenIO::Traits<Container>;
using Scalar = typename Traits::scalar_type; using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices};
constexpr unsigned int ContainerRank{Traits::rank}; // Only non-zero for containers
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
using ETDims = std::array<Index, TensorRank>; // Dimensions of the tensor
// read the (flat) data and dimensionality // read the (flat) data and dimensionality
std::vector<std::size_t> dimData; std::vector<std::size_t> dimData;
std::vector<Scalar> buf; std::vector<Scalar> buf;
upcast->readMultiDim( s, buf, dimData ); upcast->readMultiDim( s, buf, dimData );
assert(dimData.size() == TotalRank && "EigenIO: Tensor rank mismatch" );
// Make sure that the number of elements read matches dimensions read // Make sure that the number of elements read matches dimensions read
std::size_t NumElements = 1; std::size_t NumElements = 1;
std::size_t RankRequired = 0; for( auto d : dimData )
std::vector<typename ETensor::Index> dimNonTrivial;
dimNonTrivial.reserve(dimData.size());
for( auto d : dimData ) {
NumElements *= d; NumElements *= d;
if( d > 1 ) { assert( NumElements == buf.size() && "EigenIO: Number of elements != product of dimensions" );
RankRequired++;
dimNonTrivial.push_back(d);
}
}
assert( NumElements == buf.size() && "Number of elements read back <> product of dimensions" );
// If our scalar object is a Container, make sure it's dimensions match what we read back // If our scalar object is a Container, make sure it's dimensions match what we read back
const auto InnerRank{Traits::rank_non_trivial}; for( auto i = 0 ; i < ContainerRank ; i++ )
if ( InnerRank > 0 ) { assert( dimData[TensorRank+i] == Traits::Dimension(i) && "Tensor Container dimensions don't match data" );
assert( RankRequired >= InnerRank && "Tensor Container too complex for data" ); // Now see whether the tensor is the right shape, or can be made to be
for( auto i = InnerRank - 1 ; i != -1 ; i-- ) {
auto d = dimNonTrivial[--RankRequired];
assert( d == Traits::DimensionNT(i) && "Tensor Container dimensions don't match data" );
NumElements /= d;
dimNonTrivial.pop_back();
}
}
// Make sure our object has the right rank
assert( ETensor::NumDimensions >= RankRequired );
bool bShapeOK = true;
std::size_t RankNonTrivial = 0;
const auto & dims{output.dimensions()}; const auto & dims{output.dimensions()};
using ETDims = std::array<typename ETensor::Index, ETensor::NumDimensions>; bool bShapeOK = (output.data() != nullptr);
ETDims dimsNew; for( auto i = 0; bShapeOK && i < TensorRank ; i++ )
// Make sure fixed dimension objects have allocated memory if( dims[i] != dimData[i] )
/*if constexpr( EigenIO::is_tensor_fixed<ETensor>::value ) {
for( auto &d : dimsNew ) d = 0;
output( dimsNew ) = 0;
}*/
for( auto i = 0, j = 0 ; bShapeOK && i < ETensor::NumDimensions ; i++ ) {
auto d = dims[i];
if( d < 1 )
bShapeOK = false; bShapeOK = false;
else if( d > 1 ) {
RankNonTrivial++;
if( d != dimNonTrivial[j] )
bShapeOK = false;
j++;
}
dimsNew[i] = d;
}
//if( RankNonTrivial == 0 ) RankNonTrivial++;
// Make the tensor the same size as the data read // Make the tensor the same size as the data read
if ( !bShapeOK || RankNonTrivial != RankRequired ) { ETDims MyIndex;
for( auto i = 0 ; i < ETensor::NumDimensions ; i++ ) if( !bShapeOK ) {
dimsNew[i] = ( i < RankRequired ) ? dimNonTrivial[i] : 1; for( auto i = 0 ; i < TensorRank ; i++ )
Reshape(output, dimsNew); MyIndex[i] = dimData[i];
Reshape(output, MyIndex);
} }
// Copy the data into the tensor // Copy the data into the tensor
ETDims MyIndex;
for( auto &d : MyIndex ) d = 0; for( auto &d : MyIndex ) d = 0;
const Scalar * pSource = &buf[0]; const Scalar * pSource = &buf[0];
for( auto n = 0 ; n < NumElements ; n++ ) { for( auto n = 0 ; n < NumElements ; n++ ) {
Container & c = output( MyIndex ); Container & c = output( MyIndex );
/*if constexpr ( EigenIO::is_scalar<Container>::value ) {
c = buf[idx++];
} else {
for( Scalar & s : c )
s = buf[idx++];
}*/
copyScalars( c, pSource ); copyScalars( c, pSource );
// Now increment the index // Now increment the index
for( int i = ETensor::NumDimensions - 1; i >= 0 && ++MyIndex[i] == dims[i]; i-- ) for( int i = TensorRank - 1; i != -1 && ++MyIndex[i] == dims[i]; i-- )
MyIndex[i] = 0; MyIndex[i] = 0;
} }
} }
@ -811,22 +790,6 @@ namespace Grid {
t.resize( dims ); t.resize( dims );
} }
/*template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_fixed<ETensor>::value, std::size_t>::type
Reader<T>::DimSize(ETensor &t, std::size_t dim )
{
return 0;//ETensor::Dimension[dim];
}
template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_variable<ETensor>::value, std::size_t>::type
Reader<T>::DimSize(ETensor &t, std::size_t dim )
{
return t.dimension(dim);
}*/
template <typename T> template <typename T>
template <typename U> template <typename U>
void Reader<T>::fromString(U &output, const std::string &s) void Reader<T>::fromString(U &output, const std::string &s)
@ -880,21 +843,24 @@ namespace Grid {
for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ ) for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ )
bReturnValue = ( lhs.dimension(i)) == rhs.dimension(i); bReturnValue = ( lhs.dimension(i)) == rhs.dimension(i);
if( bReturnValue ) { if( bReturnValue ) {
Eigen::Tensor<bool, 0, T1::Options> bResult = (lhs == rhs).all(); using Traits = EigenIO::Traits<typename T1::Scalar>;
bReturnValue = bResult(0); using scalar_type = typename Traits::scalar_type;
for_all( lhs, [&](scalar_type &c, typename T1::Index n, const std::array<size_t, T1::NumIndices + Traits::rank> &Dims ) {
scalar_type x = c - rhs[Dims];
if( x < 1e-10 )
bReturnValue = false;
} );
} }
return bReturnValue; return bReturnValue;
} }
template <typename T> template <typename T>
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type static inline typename std::enable_if<EigenIO::is_tensor<T>::value, bool>::type
CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) { CompareMember(const std::vector<T> &lhs, const std::vector<T> &rhs) {
const auto NumElements{lhs.size()}; const auto NumElements{lhs.size()};
bool bResult = ( NumElements == rhs.size() ); bool bResult = ( NumElements == rhs.size() );
for( auto i = 0 ; i < NumElements && bResult ; i++ ) { for( auto i = 0 ; i < NumElements && bResult ; i++ )
Eigen::Tensor<bool, 0, T::Options> b = (lhs[i] == rhs[i]).all(); bResult = CompareMember(lhs[i], rhs[i]);
bResult = b(0);
}
return bResult; return bResult;
} }

View File

@ -143,9 +143,9 @@ namespace Grid
d /= Primes[PrimeIdx]; d /= Primes[PrimeIdx];
} }
const char ErrorMsg[] = " dimension > 4GB without small prime factors. " const char ErrorMsg[] = " dimension > 4GB without small prime factors. "
"Hdf5IO chunk size will be inefficient."; "Hdf5IO chunk size will be inefficient. NB Serialisation is not intended for large datasets - please consider alternatives.";
if( d > MaxElements ) { if( d > MaxElements ) {
std::cout << GridLogMessage << "Individual" << ErrorMsg << std::endl; std::cout << GridLogWarning << "Individual" << ErrorMsg << std::endl;
hsize_t quotient = d / MaxElements; hsize_t quotient = d / MaxElements;
if( d % MaxElements ) if( d % MaxElements )
quotient++; quotient++;

View File

@ -80,17 +80,19 @@ double d = 2*M_PI;
bool b = false; bool b = false;
template <typename W, typename R, typename O> template <typename W, typename R, typename O>
void ioTest(const std::string &filename, const O &object, const std::string &name, const char * tag = "testobject" ) void ioTest(const std::string &filename, const O &object, const std::string &name,
const char * tag = "testobject", unsigned short Precision = 0 )
{ {
std::cout << "IO test: " << name << " -> " << filename << " ..."; std::cout << "IO test: " << name << " -> " << filename << " ...";
// writer needs to be destroyed so that writing physically happens // writer needs to be destroyed so that writing physically happens
{ {
W writer(filename); W writer(filename);
writer.setPrecision(std::numeric_limits<double>::digits10 + 1); if( Precision )
writer.setPrecision(Precision);
write(writer, tag , object); write(writer, tag , object);
} }
std::cout << " done. reading..."; std::cout << " done. reading ...";
R reader(filename); R reader(filename);
std::unique_ptr<O> buf( new O ); // In case object too big for stack std::unique_ptr<O> buf( new O ); // In case object too big for stack
@ -99,7 +101,7 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
if (!good) { if (!good) {
std::cout << " failure!" << std::endl; std::cout << " failure!" << std::endl;
if (EigenIO::is_tensor<O>::value) if (EigenIO::is_tensor<O>::value)
dump_tensor(*buf,"???"); dump_tensor(*buf);
exit(EXIT_FAILURE); exit(EXIT_FAILURE);
} }
std::cout << " done." << std::endl; std::cout << " done." << std::endl;
@ -108,16 +110,17 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
#ifdef HAVE_HDF5 #ifdef HAVE_HDF5
typedef std::complex<double> TestScalar; typedef std::complex<double> TestScalar;
typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>> TensorRank5UShort; typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>> TensorRank5UShort;
typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2>, Eigen::StorageOptions::RowMajor> TensorRank5UShortAlt; typedef Eigen::TensorFixedSize<unsigned short, Eigen::Sizes<5,4,3,2,1>, Eigen::StorageOptions::RowMajor> TensorRank5UShortAlt;
typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank3; typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank3;
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2; typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2;
typedef std::vector<Tensor_9_4_2> aTensor_9_4_2; typedef std::vector<Tensor_9_4_2> aTensor_9_4_2;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor; typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor;
#ifndef DEBUG #ifndef NO_STRESS_TESTS
typedef Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>, Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor> LCMTensor; typedef Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>, Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor> LCMTensor;
#endif #endif
class PerambIOTestClass: Serializable { class PerambIOTestClass: Serializable {
Grid_complex<double> Flag;
public: public:
using PerambTensor = Eigen::Tensor<SpinColourVector, 6, Eigen::StorageOptions::RowMajor>; using PerambTensor = Eigen::Tensor<SpinColourVector, 6, Eigen::StorageOptions::RowMajor>;
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass GRID_SERIALIZABLE_CLASS_MEMBERS(PerambIOTestClass
@ -134,45 +137,52 @@ public:
, LSCTensor, MyLSCTensor , LSCTensor, MyLSCTensor
); );
PerambIOTestClass() PerambIOTestClass()
: DistilParameterNames {"alpha", "beta", "gamma", "delta", "epsilon", "zeta"} : DistilParameterNames {"do", "androids", "dream", "of", "electric", "sheep?"}
, DistilParameterValues{2,3,1,4,5,1} , DistilParameterValues{2,3,1,4,5,1}
, Perambulator(2,3,1,4,5,1) , Perambulator(2,3,1,4,5,1)
, Perambulator2(7,1,6,1,5,1) , Perambulator2(7,1,6,1,5,1)
, tensorRank3(7,3,2) , tensorRank3(7,3,2)
, atensor_9_4_2(3) , atensor_9_4_2(3)
//, Flag(1,-3.1415927)
, Flag(1,-1)
{ {
//Grid_complex<double> Flag{1,-3.1415927}; // Gives errors on readback for text types
Grid_complex<double> Flag{1,-1};
SequentialInit(Perambulator, Flag); SequentialInit(Perambulator, Flag);
SequentialInit(Perambulator2, Flag); SequentialInit(Perambulator2, Flag);
SequentialInit(tensorRank5UShort); SequentialInit(tensorRank5UShort);
SequentialInit(tensorRank3, Flag); SequentialInit(tensorRank3, Flag);
SequentialInit(tensor_9_4_2, Flag); SequentialInit(tensor_9_4_2, Flag);
for( auto &t : atensor_9_4_2 ) SequentialInit(t, Flag); for( auto &t : atensor_9_4_2 ) SequentialInit(t, Flag);
SequentialInit( MyLSCTensor ); SequentialInit( MyLSCTensor, Flag );
} }
}; };
#define TensorWriteReadInnerNoInit( T ) \ #define TensorWriteReadInnerNoInit( T ) \
filename = "iotest_" + std::to_string(++TestNum) + "_" #T + pszExtension; \ filename = "iotest_" + std::to_string(++TestNum) + "_" #T + pszExtension; \
ioTest<WTR_, RDR_, T>(filename, t, #T, #T); ioTest<WTR_, RDR_, T>(filename, t, #T, #T);
#define TensorWriteReadInner( T ) SequentialInit( t ); TensorWriteReadInnerNoInit( T ) #define TensorWriteReadInner( T ) SequentialInit( t, Flag, Precision ); TensorWriteReadInnerNoInit( T )
#define TensorWriteRead( T ) { T t ; TensorWriteReadInner( T ) } #define TensorWriteRead( T ) { T t ; TensorWriteReadInner( T ) }
#define TensorWriteReadV(T, ... ) { T t( __VA_ARGS__ ); TensorWriteReadInner( T ) } #define TensorWriteReadV(T, ... ) { T t( __VA_ARGS__ ); TensorWriteReadInner( T ) }
#define TensorWriteReadLarge( T ) { std::unique_ptr<T> p{new T}; T &t{*p}; TensorWriteReadInnerNoInit(T) } #define TensorWriteReadLarge( T ) { std::unique_ptr<T> p{new T}; T &t{*p}; TensorWriteReadInnerNoInit(T) }
template <typename WTR_, typename RDR_> template <typename WTR_, typename RDR_>
void EigenHdf5IOTest(const char * pszExtension) void EigenHdf5IOTest(const char * pszExtension, unsigned short Precision = 0)
{ {
unsigned int TestNum = 0; unsigned int TestNum = 0;
std::string filename; std::string filename;
{
int Flag = 7;
unsigned short Precision = 0;
using TensorSingle = Eigen::TensorFixedSize<int, Eigen::Sizes<1>>; using TensorSingle = Eigen::TensorFixedSize<int, Eigen::Sizes<1>>;
TensorWriteRead( TensorSingle ) TensorWriteRead( TensorSingle )
}
TestScalar Flag{1,-3.1415927};
using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,1>, 6>; using TensorSimple = Eigen::Tensor<iMatrix<TestScalar,1>, 6>;
TensorWriteReadV( TensorSimple, 1, 1, 1, 1, 1, 1 ) TensorWriteReadV( TensorSimple, 1, 1, 1, 1, 1, 1 )
TensorWriteReadV( TensorRank3, 6, 3, 2 ) TensorWriteReadV( TensorRank3, 6, 3, 2 )
TensorWriteRead ( Tensor_9_4_2 ) TensorWriteRead ( Tensor_9_4_2 )
{ {
unsigned short Flag = 1;
unsigned short Precision = 0;
TensorRank5UShort t; TensorRank5UShort t;
TensorWriteReadInner ( TensorRank5UShort ); TensorWriteReadInner ( TensorRank5UShort );
std::cout << " Testing alternate memory order read ... "; std::cout << " Testing alternate memory order read ... ";
@ -193,7 +203,7 @@ void EigenHdf5IOTest(const char * pszExtension)
} }
TensorWriteRead ( LSCTensor ) TensorWriteRead ( LSCTensor )
TensorWriteReadLarge( PerambIOTestClass ) TensorWriteReadLarge( PerambIOTestClass )
#ifndef DEBUG #ifndef NO_STRESS_TESTS
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl; std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
TensorWriteReadLarge ( LCMTensor ) TensorWriteReadLarge ( LCMTensor )
// Also write > 4GB of complex numbers (I suspect this will fail inside Hdf5) // Also write > 4GB of complex numbers (I suspect this will fail inside Hdf5)
@ -285,22 +295,24 @@ int main(int argc,char **argv)
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) "); ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)"); ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
//// text //// text
ioTest<JSONWriter, JSONReader>("iotest.json", obj, "JSON (object) "); //ioTest<JSONWriter, JSONReader>("iotest.json", obj, "JSON (object) ");
ioTest<JSONWriter, JSONReader>("iotest.json", vec, "JSON (vector of objects)"); //ioTest<JSONWriter, JSONReader>("iotest.json", vec, "JSON (vector of objects)");
//// HDF5 //// HDF5
#ifdef HAVE_HDF5 #ifdef HAVE_HDF5
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) "); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)"); ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
#endif
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<TextWriter, TextReader>(".dat", 6);
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<XmlWriter, XmlReader>(".xml", 4);
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<BinaryWriter, BinaryReader>(".bin");
#ifdef HAVE_HDF5
std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl; std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<Hdf5Writer, Hdf5Reader>(".h5"); EigenHdf5IOTest<Hdf5Writer, Hdf5Reader>(".h5");
#endif #endif
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<BinaryWriter, BinaryReader>(".bin");
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<TextWriter, TextReader>(".dat");
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<XmlWriter, XmlReader>(".xml");
std::cout << "\n==== vector flattening/reconstruction" << std::endl; std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d; typedef std::vector<std::vector<std::vector<double>>> vec3d;