mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Separated out everything SU specific
This commit is contained in:
parent
6e750ecb0e
commit
921e23e83c
@ -32,11 +32,25 @@ directory
|
||||
#ifndef QCD_UTIL_SUN_H
|
||||
#define QCD_UTIL_SUN_H
|
||||
|
||||
#define ONLY_IF_SU \
|
||||
typename dummy_name = group_name, \
|
||||
typename = std::enable_if_t<is_su<dummy_name>::value>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
namespace GroupName {
|
||||
class SU {};
|
||||
} // namespace GroupName
|
||||
|
||||
template <typename group_name>
|
||||
struct is_su {
|
||||
static const bool value = false;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct is_su<GroupName::SU> {
|
||||
static const bool value = true;
|
||||
};
|
||||
|
||||
template <int ncolour, class group_name = GroupName::SU>
|
||||
class GaugeGroup;
|
||||
|
||||
@ -50,36 +64,35 @@ class GaugeGroup {
|
||||
static const int AdjointDimension = ncolour * ncolour - 1;
|
||||
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
template <typename vtype>
|
||||
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
|
||||
template <typename vtype>
|
||||
using iSUnAlgebraVector =
|
||||
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
||||
using iGroupMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
template <typename vtype>
|
||||
using iAlgebraVector = iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
|
||||
// SU<2>::LatticeMatrix etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef iSUnMatrix<Complex> Matrix;
|
||||
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||
typedef iGroupMatrix<Complex> Matrix;
|
||||
typedef iGroupMatrix<ComplexF> MatrixF;
|
||||
typedef iGroupMatrix<ComplexD> MatrixD;
|
||||
|
||||
typedef iSUnMatrix<vComplex> vMatrix;
|
||||
typedef iSUnMatrix<vComplexF> vMatrixF;
|
||||
typedef iSUnMatrix<vComplexD> vMatrixD;
|
||||
typedef iGroupMatrix<vComplex> vMatrix;
|
||||
typedef iGroupMatrix<vComplexF> vMatrixF;
|
||||
typedef iGroupMatrix<vComplexD> vMatrixD;
|
||||
|
||||
// For the projectors to the algebra
|
||||
// these should be real...
|
||||
// keeping complex for consistency with the SIMD vector types
|
||||
typedef iSUnAlgebraVector<Complex> AlgebraVector;
|
||||
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
|
||||
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
|
||||
typedef iAlgebraVector<Complex> AlgebraVector;
|
||||
typedef iAlgebraVector<ComplexF> AlgebraVectorF;
|
||||
typedef iAlgebraVector<ComplexD> AlgebraVectorD;
|
||||
|
||||
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
|
||||
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
|
||||
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
|
||||
typedef iAlgebraVector<vComplex> vAlgebraVector;
|
||||
typedef iAlgebraVector<vComplexF> vAlgebraVectorF;
|
||||
typedef iAlgebraVector<vComplexD> vAlgebraVectorD;
|
||||
|
||||
typedef Lattice<vMatrix> LatticeMatrix;
|
||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||
@ -101,462 +114,7 @@ class GaugeGroup {
|
||||
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
||||
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
||||
// generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
||||
// delta_{i,i1} delta_{j,i2})
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
||||
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <class cplx>
|
||||
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = ncolour * (ncolour - 1);
|
||||
if (lieIndex >= NNm1) {
|
||||
diagIndex = lieIndex - NNm1;
|
||||
generatorDiagonal(diagIndex, ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex & 0x1; // even or odd
|
||||
su2Index = lieIndex >> 1;
|
||||
if (sigxy)
|
||||
generatorSigmaY(su2Index, ta);
|
||||
else
|
||||
generatorSigmaX(su2Index, ta);
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = 1.0;
|
||||
ta()()(i2, i1) = 1.0;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = i;
|
||||
ta()()(i2, i1) = -i;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
|
||||
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
||||
ta = Zero();
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
||||
ta()()(i, i) = 1.0;
|
||||
}
|
||||
ta()()(k, k) = -k; // indexing starts from 0
|
||||
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
||||
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2 = i1 + 1 + spare;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx>
|
||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index) {
|
||||
GridBase *grid(source.Grid());
|
||||
conformable(subgroup, source);
|
||||
conformable(subgroup, Determinant);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
autoView(subgroup_v, subgroup, AcceleratorWrite);
|
||||
autoView(source_v, source, AcceleratorRead);
|
||||
autoView(Determinant_v, Determinant, AcceleratorWrite);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
||||
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
||||
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
||||
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
||||
|
||||
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
||||
|
||||
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
||||
|
||||
subgroup_v[ss] = Sigma;
|
||||
|
||||
// this should be purely real
|
||||
Determinant_v[ss] =
|
||||
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set matrix to one and insert a pauli subgroup
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx>
|
||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
|
||||
GridBase *grid(dest.Grid());
|
||||
conformable(subgroup, dest);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
dest = 1.0; // start out with identity
|
||||
autoView(dest_v, dest, AcceleratorWrite);
|
||||
autoView(subgroup_v, subgroup, AcceleratorRead);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
||||
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
||||
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
||||
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
||||
});
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Generate e^{ Re Tr Staple Link} dlink
|
||||
//
|
||||
// *** Note Staple should be appropriate linear compbination between all
|
||||
// staples.
|
||||
// *** If already by beta pass coefficient 1.0.
|
||||
// *** This routine applies the additional 1/Nc factor that comes after trace
|
||||
// in action.
|
||||
//
|
||||
///////////////////////////////////////////////
|
||||
static void SubGroupHeatBath(
|
||||
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
||||
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
|
||||
GridBase *grid = link.Grid();
|
||||
|
||||
const RealD twopi = 2.0 * M_PI;
|
||||
|
||||
LatticeMatrix staple(grid);
|
||||
|
||||
staple = barestaple * (beta / ncolour);
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link * staple;
|
||||
|
||||
// Subgroup manipulation in the lie algebra space
|
||||
LatticeSU2Matrix u(
|
||||
grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||
LatticeSU2Matrix uinv(grid);
|
||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||
|
||||
// Some handy constant fields
|
||||
LatticeComplex ones(grid);
|
||||
ones = 1.0;
|
||||
LatticeComplex zeros(grid);
|
||||
zeros = Zero();
|
||||
LatticeReal rones(grid);
|
||||
rones = 1.0;
|
||||
LatticeReal rzeros(grid);
|
||||
rzeros = Zero();
|
||||
LatticeComplex udet(grid); // determinant of real(staple)
|
||||
LatticeInteger mask_true(grid);
|
||||
mask_true = 1;
|
||||
LatticeInteger mask_false(grid);
|
||||
mask_false = 0;
|
||||
|
||||
/*
|
||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||
|
||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||
passed to this routine has "beta" already multiplied in
|
||||
|
||||
Action linear in links h and of form:
|
||||
|
||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||
|
||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||
|
||||
beta S = const - beta/Nc Re Tr h Sigma'
|
||||
= const - Re Tr h Sigma
|
||||
|
||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
||||
arbitrary.
|
||||
|
||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||
|
||||
Normalised re Sigma_j = xi u_j
|
||||
|
||||
With u_j a unit vector and U can be in SU(2);
|
||||
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||
|
||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
xi = sqrt(Det)/2;
|
||||
|
||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||
|
||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Real part of Pauli decomposition
|
||||
// Note a subgroup can project to zero in cold start
|
||||
////////////////////////////////////////////////////////
|
||||
su2Extract(udet, u, V, su2_subgroup);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Normalising this vector if possible; else identity
|
||||
//////////////////////////////////////////////////////
|
||||
LatticeComplex xi(grid);
|
||||
|
||||
LatticeSU2Matrix lident(grid);
|
||||
|
||||
SU2Matrix ident = Complex(1.0);
|
||||
SU2Matrix pauli1;
|
||||
SU<2>::generator(0, pauli1);
|
||||
SU2Matrix pauli2;
|
||||
SU<2>::generator(1, pauli2);
|
||||
SU2Matrix pauli3;
|
||||
SU<2>::generator(2, pauli3);
|
||||
pauli1 = timesI(pauli1) * 2.0;
|
||||
pauli2 = timesI(pauli2) * 2.0;
|
||||
pauli3 = timesI(pauli3) * 2.0;
|
||||
|
||||
LatticeComplex cone(grid);
|
||||
LatticeReal adet(grid);
|
||||
adet = abs(toReal(udet));
|
||||
lident = Complex(1.0);
|
||||
cone = Complex(1.0);
|
||||
Real machine_epsilon = 1.0e-7;
|
||||
u = where(adet > machine_epsilon, u, lident);
|
||||
udet = where(adet > machine_epsilon, udet, cone);
|
||||
|
||||
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 0.5 * u *
|
||||
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
// Debug test for sanity
|
||||
uinv = adj(u);
|
||||
b = u * uinv - 1.0;
|
||||
assert(norm2(b) < 1.0e-4);
|
||||
|
||||
/*
|
||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||
In polars:
|
||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
||||
r) )
|
||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||
|
||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta
|
||||
enters through xi = e^{2 xi (h.u)} dh = e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
|
||||
xi h2u2}.e^{2 xi h3u3} dh
|
||||
|
||||
Therefore for each site, take xi for that site
|
||||
i) generate |a0|<1 with dist
|
||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||
|
||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm];
|
||||
hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
|
||||
pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
|
||||
-(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
|
||||
another uniform random number in [0,1] ; D. Set A = XC; E. Let d = X'+A;
|
||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
G. Set a0 = 1 - d;
|
||||
|
||||
Note that in step D setting B ~ X - A and using B in place of A in step E
|
||||
will generate a second independent a 0 value.
|
||||
*/
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// count the number of sites by picking "1"'s out of hat
|
||||
/////////////////////////////////////////////////////////
|
||||
Integer hit = 0;
|
||||
LatticeReal rtmp(grid);
|
||||
rtmp = where(wheremask, rones, rzeros);
|
||||
RealD numSites = sum(rtmp);
|
||||
RealD numAccepted;
|
||||
LatticeInteger Accepted(grid);
|
||||
Accepted = Zero();
|
||||
LatticeInteger newlyAccepted(grid);
|
||||
|
||||
std::vector<LatticeReal> xr(4, grid);
|
||||
std::vector<LatticeReal> a(4, grid);
|
||||
LatticeReal d(grid);
|
||||
d = Zero();
|
||||
LatticeReal alpha(grid);
|
||||
|
||||
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
||||
xi = 2.0 * xi;
|
||||
alpha = toReal(xi);
|
||||
|
||||
do {
|
||||
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
||||
// R'', R''' in the unit interval;
|
||||
random(pRNG, xr[0]);
|
||||
random(pRNG, xr[1]);
|
||||
random(pRNG, xr[2]);
|
||||
random(pRNG, xr[3]);
|
||||
|
||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||
xr[1] = -log(xr[1]) / alpha;
|
||||
xr[2] = -log(xr[2]) / alpha;
|
||||
|
||||
// C. Set C = cos^2(2piR'')
|
||||
xr[3] = cos(xr[3] * twopi);
|
||||
xr[3] = xr[3] * xr[3];
|
||||
|
||||
LatticeReal xrsq(grid);
|
||||
|
||||
// D. Set A = XC;
|
||||
// E. Let d = X'+A;
|
||||
xrsq = xr[2] + xr[1] * xr[3];
|
||||
|
||||
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
||||
|
||||
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
LatticeReal thresh(grid);
|
||||
thresh = 1.0 - d * 0.5;
|
||||
xrsq = xr[0] * xr[0];
|
||||
LatticeInteger ione(grid);
|
||||
ione = 1;
|
||||
LatticeInteger izero(grid);
|
||||
izero = Zero();
|
||||
|
||||
newlyAccepted = where(xrsq < thresh, ione, izero);
|
||||
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
||||
Accepted = where(wheremask, Accepted, izero);
|
||||
|
||||
// FIXME need an iSum for integer to avoid overload on return type??
|
||||
rtmp = where(Accepted, rones, rzeros);
|
||||
numAccepted = sum(rtmp);
|
||||
|
||||
hit++;
|
||||
|
||||
} while ((numAccepted < numSites) && (hit < nheatbath));
|
||||
|
||||
// G. Set a0 = 1 - d;
|
||||
a[0] = Zero();
|
||||
a[0] = where(wheremask, 1.0 - d, a[0]);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||
//////////////////////////////////////////
|
||||
|
||||
LatticeReal a123mag(grid);
|
||||
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
||||
|
||||
LatticeReal cos_theta(grid);
|
||||
LatticeReal sin_theta(grid);
|
||||
LatticeReal phi(grid);
|
||||
|
||||
random(pRNG, phi);
|
||||
phi = phi * twopi; // uniform in [0,2pi]
|
||||
random(pRNG, cos_theta);
|
||||
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
||||
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
||||
|
||||
a[1] = a123mag * sin_theta * cos(phi);
|
||||
a[2] = a123mag * sin_theta * sin(phi);
|
||||
a[3] = a123mag * cos_theta;
|
||||
|
||||
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
||||
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
||||
|
||||
b = 1.0;
|
||||
b = where(wheremask, uinv * ua, b);
|
||||
su2Insert(b, V, su2_subgroup);
|
||||
|
||||
// mask the assignment back based on Accptance
|
||||
link = where(Accepted, V * link, link);
|
||||
|
||||
//////////////////////////////
|
||||
// Debug Checks
|
||||
// SU2 check
|
||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||
u = Zero();
|
||||
check = ua * adj(ua) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
check = b * adj(b) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
LatticeMatrix Vcheck(grid);
|
||||
Vcheck = Zero();
|
||||
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
||||
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
|
||||
// Verify the link stays in SU(3)
|
||||
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
||||
Vcheck = link * adj(link) - 1.0;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
/////////////////////////////////
|
||||
}
|
||||
#include "Grid/qcd/utils/SUn_impl.h"
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < AdjointDimension; gen++) {
|
||||
@ -568,44 +126,6 @@ class GaugeGroup {
|
||||
}
|
||||
}
|
||||
|
||||
static void testGenerators(void) {
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout << GridLogMessage
|
||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
for (int b = 0; b < AdjointDimension; b++) {
|
||||
generator(a, ta);
|
||||
generator(b, tb);
|
||||
Complex tr = TensorRemove(trace(ta * tb));
|
||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||
<< std::endl;
|
||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
Complex tr = TensorRemove(trace(ta));
|
||||
std::cout << GridLogMessage << a << " " << std::endl;
|
||||
assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
// reunitarise??
|
||||
template <typename LatticeMatrixType>
|
||||
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
|
||||
@ -679,49 +199,6 @@ class GaugeGroup {
|
||||
out += la;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Fundamental rep gauge xform
|
||||
*/
|
||||
template <typename Fundamental, typename GaugeMat>
|
||||
static void GaugeTransformFundamental(Fundamental &ferm, GaugeMat &g) {
|
||||
GridBase *grid = ferm._grid;
|
||||
conformable(grid, g._grid);
|
||||
ferm = g * ferm;
|
||||
}
|
||||
/*
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template <typename GaugeField, typename GaugeMat>
|
||||
static void GaugeTransform(GaugeField &Umu, GaugeMat &g) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid, g.Grid());
|
||||
|
||||
GaugeMat U(grid);
|
||||
GaugeMat ag(grid);
|
||||
ag = adj(g);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
U = g * U * Cshift(ag, mu, 1);
|
||||
PokeIndex<LorentzIndex>(Umu, U, mu);
|
||||
}
|
||||
}
|
||||
template <typename GaugeMat>
|
||||
static void GaugeTransform(std::vector<GaugeMat> &U, GaugeMat &g) {
|
||||
GridBase *grid = g.Grid();
|
||||
GaugeMat ag(grid);
|
||||
ag = adj(g);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = g * U[mu] * Cshift(ag, mu, 1);
|
||||
}
|
||||
}
|
||||
template <typename GaugeField, typename GaugeMat>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu,
|
||||
GaugeMat &g) {
|
||||
LieRandomize(pRNG, g, 1.0);
|
||||
GaugeTransform(Umu, g);
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1
|
||||
// ) inverse operation: FundamentalLieAlgebraMatrix
|
||||
@ -740,7 +217,7 @@ class GaugeGroup {
|
||||
template <typename GaugeField>
|
||||
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
@ -752,7 +229,7 @@ class GaugeGroup {
|
||||
template <typename GaugeField>
|
||||
static void TepidConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
@ -764,7 +241,7 @@ class GaugeGroup {
|
||||
template <typename GaugeField>
|
||||
static void ColdConfiguration(GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef iGroupMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
@ -778,7 +255,7 @@ class GaugeGroup {
|
||||
ColdConfiguration(out);
|
||||
}
|
||||
|
||||
template <typename LatticeMatrixType>
|
||||
template <typename LatticeMatrixType, ONLY_IF_SU>
|
||||
static void taProj(const LatticeMatrixType &in, LatticeMatrixType &out) {
|
||||
out = Ta(in);
|
||||
}
|
||||
|
552
Grid/qcd/utils/SUn_impl.h
Normal file
552
Grid/qcd/utils/SUn_impl.h
Normal file
@ -0,0 +1,552 @@
|
||||
// This file is #included into the body of the class template definition of
|
||||
// GaugeGroup. So, image there to be
|
||||
//
|
||||
// template <int ncolour, class group_name>
|
||||
// class GaugeGroup {
|
||||
//
|
||||
// around it.
|
||||
|
||||
template <typename vtype, ONLY_IF_SU>
|
||||
using iSUnMatrix = iGroupMatrix<vtype>;
|
||||
template <typename vtype, ONLY_IF_SU>
|
||||
using iSUnAlgebraVector = iAlgebraVector<vtype>;
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
||||
// generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
||||
// delta_{i,i1} delta_{j,i2})
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
||||
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = ncolour * (ncolour - 1);
|
||||
if (lieIndex >= NNm1) {
|
||||
diagIndex = lieIndex - NNm1;
|
||||
generatorDiagonal(diagIndex, ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex & 0x1; // even or odd
|
||||
su2Index = lieIndex >> 1;
|
||||
if (sigxy)
|
||||
generatorSigmaY(su2Index, ta);
|
||||
else
|
||||
generatorSigmaX(su2Index, ta);
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = 1.0;
|
||||
ta()()(i2, i1) = 1.0;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = i;
|
||||
ta()()(i2, i1) = -i;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx, ONLY_IF_SU>
|
||||
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
|
||||
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
||||
ta = Zero();
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
||||
ta()()(i, i) = 1.0;
|
||||
}
|
||||
ta()()(k, k) = -k; // indexing starts from 0
|
||||
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <ONLY_IF_SU>
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
||||
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2 = i1 + 1 + spare;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx, ONLY_IF_SU>
|
||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index) {
|
||||
GridBase *grid(source.Grid());
|
||||
conformable(subgroup, source);
|
||||
conformable(subgroup, Determinant);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
autoView(subgroup_v, subgroup, AcceleratorWrite);
|
||||
autoView(source_v, source, AcceleratorRead);
|
||||
autoView(Determinant_v, Determinant, AcceleratorWrite);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
||||
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
||||
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
||||
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
||||
|
||||
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
||||
|
||||
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
||||
|
||||
subgroup_v[ss] = Sigma;
|
||||
|
||||
// this should be purely real
|
||||
Determinant_v[ss] =
|
||||
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set matrix to one and insert a pauli subgroup
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx, ONLY_IF_SU>
|
||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
|
||||
GridBase *grid(dest.Grid());
|
||||
conformable(subgroup, dest);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
dest = 1.0; // start out with identity
|
||||
autoView(dest_v, dest, AcceleratorWrite);
|
||||
autoView(subgroup_v, subgroup, AcceleratorRead);
|
||||
accelerator_for(ss, grid->oSites(), 1, {
|
||||
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
||||
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
||||
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
||||
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
||||
});
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Generate e^{ Re Tr Staple Link} dlink
|
||||
//
|
||||
// *** Note Staple should be appropriate linear compbination between all
|
||||
// staples.
|
||||
// *** If already by beta pass coefficient 1.0.
|
||||
// *** This routine applies the additional 1/Nc factor that comes after trace
|
||||
// in action.
|
||||
//
|
||||
///////////////////////////////////////////////
|
||||
template <ONLY_IF_SU>
|
||||
static void SubGroupHeatBath(
|
||||
GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
||||
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||
int su2_subgroup, int nheatbath, LatticeInteger &wheremask) {
|
||||
GridBase *grid = link.Grid();
|
||||
|
||||
const RealD twopi = 2.0 * M_PI;
|
||||
|
||||
LatticeMatrix staple(grid);
|
||||
|
||||
staple = barestaple * (beta / ncolour);
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link * staple;
|
||||
|
||||
// Subgroup manipulation in the lie algebra space
|
||||
LatticeSU2Matrix u(
|
||||
grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||
LatticeSU2Matrix uinv(grid);
|
||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||
|
||||
// Some handy constant fields
|
||||
LatticeComplex ones(grid);
|
||||
ones = 1.0;
|
||||
LatticeComplex zeros(grid);
|
||||
zeros = Zero();
|
||||
LatticeReal rones(grid);
|
||||
rones = 1.0;
|
||||
LatticeReal rzeros(grid);
|
||||
rzeros = Zero();
|
||||
LatticeComplex udet(grid); // determinant of real(staple)
|
||||
LatticeInteger mask_true(grid);
|
||||
mask_true = 1;
|
||||
LatticeInteger mask_false(grid);
|
||||
mask_false = 0;
|
||||
|
||||
/*
|
||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||
|
||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||
passed to this routine has "beta" already multiplied in
|
||||
|
||||
Action linear in links h and of form:
|
||||
|
||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||
|
||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||
|
||||
beta S = const - beta/Nc Re Tr h Sigma'
|
||||
= const - Re Tr h Sigma
|
||||
|
||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
||||
arbitrary.
|
||||
|
||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||
|
||||
Normalised re Sigma_j = xi u_j
|
||||
|
||||
With u_j a unit vector and U can be in SU(2);
|
||||
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||
|
||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
xi = sqrt(Det)/2;
|
||||
|
||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||
|
||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Real part of Pauli decomposition
|
||||
// Note a subgroup can project to zero in cold start
|
||||
////////////////////////////////////////////////////////
|
||||
su2Extract(udet, u, V, su2_subgroup);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Normalising this vector if possible; else identity
|
||||
//////////////////////////////////////////////////////
|
||||
LatticeComplex xi(grid);
|
||||
|
||||
LatticeSU2Matrix lident(grid);
|
||||
|
||||
SU2Matrix ident = Complex(1.0);
|
||||
SU2Matrix pauli1;
|
||||
SU<2>::generator(0, pauli1);
|
||||
SU2Matrix pauli2;
|
||||
SU<2>::generator(1, pauli2);
|
||||
SU2Matrix pauli3;
|
||||
SU<2>::generator(2, pauli3);
|
||||
pauli1 = timesI(pauli1) * 2.0;
|
||||
pauli2 = timesI(pauli2) * 2.0;
|
||||
pauli3 = timesI(pauli3) * 2.0;
|
||||
|
||||
LatticeComplex cone(grid);
|
||||
LatticeReal adet(grid);
|
||||
adet = abs(toReal(udet));
|
||||
lident = Complex(1.0);
|
||||
cone = Complex(1.0);
|
||||
Real machine_epsilon = 1.0e-7;
|
||||
u = where(adet > machine_epsilon, u, lident);
|
||||
udet = where(adet > machine_epsilon, udet, cone);
|
||||
|
||||
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 0.5 * u * pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
// Debug test for sanity
|
||||
uinv = adj(u);
|
||||
b = u * uinv - 1.0;
|
||||
assert(norm2(b) < 1.0e-4);
|
||||
|
||||
/*
|
||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||
In polars:
|
||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
||||
r) )
|
||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||
|
||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta
|
||||
enters through xi = e^{2 xi (h.u)} dh = e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2
|
||||
xi h2u2}.e^{2 xi h3u3} dh
|
||||
|
||||
Therefore for each site, take xi for that site
|
||||
i) generate |a0|<1 with dist
|
||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||
|
||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm];
|
||||
hence 2.0/Nc factor in Chroma ] A. Generate two uniformly distributed
|
||||
pseudo-random numbers R and R', R'', R''' in the unit interval; B. Set X =
|
||||
-(ln R)/alpha, X' =-(ln R')/alpha; C. Set C = cos^2(2pi R"), with R"
|
||||
another uniform random number in [0,1] ; D. Set A = XC; E. Let d = X'+A;
|
||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
G. Set a0 = 1 - d;
|
||||
|
||||
Note that in step D setting B ~ X - A and using B in place of A in step E
|
||||
will generate a second independent a 0 value.
|
||||
*/
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// count the number of sites by picking "1"'s out of hat
|
||||
/////////////////////////////////////////////////////////
|
||||
Integer hit = 0;
|
||||
LatticeReal rtmp(grid);
|
||||
rtmp = where(wheremask, rones, rzeros);
|
||||
RealD numSites = sum(rtmp);
|
||||
RealD numAccepted;
|
||||
LatticeInteger Accepted(grid);
|
||||
Accepted = Zero();
|
||||
LatticeInteger newlyAccepted(grid);
|
||||
|
||||
std::vector<LatticeReal> xr(4, grid);
|
||||
std::vector<LatticeReal> a(4, grid);
|
||||
LatticeReal d(grid);
|
||||
d = Zero();
|
||||
LatticeReal alpha(grid);
|
||||
|
||||
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
||||
xi = 2.0 * xi;
|
||||
alpha = toReal(xi);
|
||||
|
||||
do {
|
||||
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
||||
// R'', R''' in the unit interval;
|
||||
random(pRNG, xr[0]);
|
||||
random(pRNG, xr[1]);
|
||||
random(pRNG, xr[2]);
|
||||
random(pRNG, xr[3]);
|
||||
|
||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||
xr[1] = -log(xr[1]) / alpha;
|
||||
xr[2] = -log(xr[2]) / alpha;
|
||||
|
||||
// C. Set C = cos^2(2piR'')
|
||||
xr[3] = cos(xr[3] * twopi);
|
||||
xr[3] = xr[3] * xr[3];
|
||||
|
||||
LatticeReal xrsq(grid);
|
||||
|
||||
// D. Set A = XC;
|
||||
// E. Let d = X'+A;
|
||||
xrsq = xr[2] + xr[1] * xr[3];
|
||||
|
||||
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
||||
|
||||
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
LatticeReal thresh(grid);
|
||||
thresh = 1.0 - d * 0.5;
|
||||
xrsq = xr[0] * xr[0];
|
||||
LatticeInteger ione(grid);
|
||||
ione = 1;
|
||||
LatticeInteger izero(grid);
|
||||
izero = Zero();
|
||||
|
||||
newlyAccepted = where(xrsq < thresh, ione, izero);
|
||||
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
||||
Accepted = where(wheremask, Accepted, izero);
|
||||
|
||||
// FIXME need an iSum for integer to avoid overload on return type??
|
||||
rtmp = where(Accepted, rones, rzeros);
|
||||
numAccepted = sum(rtmp);
|
||||
|
||||
hit++;
|
||||
|
||||
} while ((numAccepted < numSites) && (hit < nheatbath));
|
||||
|
||||
// G. Set a0 = 1 - d;
|
||||
a[0] = Zero();
|
||||
a[0] = where(wheremask, 1.0 - d, a[0]);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||
//////////////////////////////////////////
|
||||
|
||||
LatticeReal a123mag(grid);
|
||||
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
||||
|
||||
LatticeReal cos_theta(grid);
|
||||
LatticeReal sin_theta(grid);
|
||||
LatticeReal phi(grid);
|
||||
|
||||
random(pRNG, phi);
|
||||
phi = phi * twopi; // uniform in [0,2pi]
|
||||
random(pRNG, cos_theta);
|
||||
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
||||
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
||||
|
||||
a[1] = a123mag * sin_theta * cos(phi);
|
||||
a[2] = a123mag * sin_theta * sin(phi);
|
||||
a[3] = a123mag * cos_theta;
|
||||
|
||||
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
||||
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
||||
|
||||
b = 1.0;
|
||||
b = where(wheremask, uinv * ua, b);
|
||||
su2Insert(b, V, su2_subgroup);
|
||||
|
||||
// mask the assignment back based on Accptance
|
||||
link = where(Accepted, V * link, link);
|
||||
|
||||
//////////////////////////////
|
||||
// Debug Checks
|
||||
// SU2 check
|
||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||
u = Zero();
|
||||
check = ua * adj(ua) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
check = b * adj(b) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
LatticeMatrix Vcheck(grid);
|
||||
Vcheck = Zero();
|
||||
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
||||
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
|
||||
// Verify the link stays in SU(3)
|
||||
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
||||
Vcheck = link * adj(link) - 1.0;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
/////////////////////////////////
|
||||
}
|
||||
|
||||
template <ONLY_IF_SU>
|
||||
static void testGenerators(void) {
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout << GridLogMessage
|
||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
for (int b = 0; b < AdjointDimension; b++) {
|
||||
generator(a, ta);
|
||||
generator(b, tb);
|
||||
Complex tr = TensorRemove(trace(ta * tb));
|
||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||
<< std::endl;
|
||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
Complex tr = TensorRemove(trace(ta));
|
||||
std::cout << GridLogMessage << a << " " << std::endl;
|
||||
assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
* Fundamental rep gauge xform
|
||||
*/
|
||||
template <typename Fundamental, typename GaugeMat, ONLY_IF_SU>
|
||||
static void GaugeTransformFundamental(Fundamental &ferm, GaugeMat &g) {
|
||||
GridBase *grid = ferm._grid;
|
||||
conformable(grid, g._grid);
|
||||
ferm = g * ferm;
|
||||
}
|
||||
/*
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template <typename GaugeField, typename GaugeMat, ONLY_IF_SU>
|
||||
static void GaugeTransform(GaugeField &Umu, GaugeMat &g) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid, g.Grid());
|
||||
|
||||
GaugeMat U(grid);
|
||||
GaugeMat ag(grid);
|
||||
ag = adj(g);
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
U = g * U * Cshift(ag, mu, 1);
|
||||
PokeIndex<LorentzIndex>(Umu, U, mu);
|
||||
}
|
||||
}
|
||||
template <typename GaugeMat, ONLY_IF_SU>
|
||||
static void GaugeTransform(std::vector<GaugeMat> &U, GaugeMat &g) {
|
||||
GridBase *grid = g.Grid();
|
||||
GaugeMat ag(grid);
|
||||
ag = adj(g);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = g * U[mu] * Cshift(ag, mu, 1);
|
||||
}
|
||||
}
|
||||
template <typename GaugeField, typename GaugeMat, ONLY_IF_SU>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu,
|
||||
GaugeMat &g) {
|
||||
LieRandomize(pRNG, g, 1.0);
|
||||
GaugeTransform(Umu, g);
|
||||
}
|
Loading…
Reference in New Issue
Block a user