1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 15:27:06 +01:00

Added ability to pass callback to MADWF that is called every inner iteration and allows user to, for example, adjust the inner solver tolerance depending on residual

Added a general implementation of the Remez algorithm for producing arbitrary rational polynomial approximation with optional restriction to even/odd polynomials
Added implementation of computation of ZMobius parameters
Added Test_zMADWF_prec to test ZMobius in MADWF
This commit is contained in:
Christopher Kelly
2020-01-17 12:45:30 -08:00
parent 5d834486c9
commit 96671bbb24
7 changed files with 1211 additions and 10 deletions

View File

@ -0,0 +1,183 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/algorithms/approx/ZMobius.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the tanh approximation
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
int Ls = w.size();
ComplexD fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return ((fxp - fmp)/(fxp + fmp)).real();
}
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
int Ls = w.size();
double fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the tanh approximation in a form suitable for the Remez
bigfloat epsilonMobius(bigfloat x, void* data){
const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
bigfloat fxp(1.0);
bigfloat fmp(1.0);
for(int i=0;i<omega.size();i++){
fxp = fxp * ( bigfloat(omega[i]) + x);
fmp = fmp * ( bigfloat(omega[i]) - x);
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound){
assert(omega_in.size() == Ls_in);
omega_out.resize(Ls_out);
//Use the Remez algorithm to generate the appropriate rational polynomial
//For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)
AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);
remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
remez.csv(std::cout);
//The rational approximation has the form [ f(x) - f(-x) ] / [ f(x) + f(-x) ] where f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
//cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7 pg 102
//omega_i are therefore the negative of the complex roots of f(x)
//We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
// \rho(\lambda) = det( A - \lambda I ) where I is the unit matrix
//The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n is the companion matrix
// A = | 0 1 0 0 0 .... 0 |
// | 0 0 1 0 0 .... 0 |
// | : : : : : : |
// | 0 0 0 0 0 1
// | -a0 -a1 -a2 ... ... -an|
//Note the Remez defines the largest power to have unit coefficient
std::vector<RealD> coeffs(Ls_out+1);
for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
std::vector<std::complex<RealD> > roots(Ls_out);
//Form the companion matrix
Eigen::MatrixXd compn(Ls_out,Ls_out);
for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
compn(Ls_out - 1, 0) = -coeffs[0];
for(int j=1;j<Ls_out;j++){
for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
compn(Ls_out - 1, j) = -coeffs[j];
}
//Eigensolve
Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
const auto & ev = slv.eigenvalues();
for(int i=0;i<Ls_out;i++)
omega_out[i] = -ev(i);
//Sort ascending (smallest at start of vector!)
std::sort(omega_out.begin(), omega_out.end(),
[&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
//McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
std::vector<ComplexD> omega_tmp = omega_out;
int s_low=0, s_high=Ls_out-1, ss=0;
for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
int s_to;
if(ss % 2 == 0){
s_to = s_low++;
}else{
s_to = s_high--;
}
omega_out[s_to] = omega_tmp[s_from];
++ss;
}
std::cout << "Resulting omega_i:" << std::endl;
for(int i=0;i<Ls_out;i++)
std::cout << omega_out[i] << std::endl;
std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
int npt = 60;
double dlt = lambda_bound/double(npt-1);
for (int i =0; i<npt; i++){
double x = i*dlt;
double r = remez.evaluateApprox(x);
double p = epsilonMobius(x, omega_out);
double e = epsilonMobius(x, omega_in);
std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
}
}
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
}
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound){
computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
}
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);