1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-10 19:36:56 +01:00

Covariant laplacian and implicit integration

This commit is contained in:
Guido Cossu
2017-02-20 11:17:27 +00:00
parent bafb101e4f
commit 97a6b61551
9 changed files with 366 additions and 95 deletions

View File

@ -33,13 +33,27 @@ directory
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
template <class Impl>
class LaplacianAdjointField {
public:
INHERIT_GIMPL_TYPES(Impl);
typedef SU<Nc>::LatticeAlgebraVector AVector;
LaplacianAdjointField(GridBase* grid) : U(Nd, grid){};
LaplacianAdjointField(GridBase* grid, const RealD k = 1.0) :
U(Nd, grid), kappa(k){};
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
@ -49,61 +63,48 @@ class LaplacianAdjointField {
void Mdiag(const GaugeLinkField& in, GaugeLinkField& out) { assert(0); }
void Mdir(const GaugeLinkField& in, GaugeLinkField& out, int dir, int disp) { assert(0); }
/*
// Operator with algebra vector inputs and outputs
void M2(const AVector& in, AVector& out) {
double kappa = 0.9;
//Reconstruct matrix
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
GaugeLinkField out_mat(in._grid);
GaugeLinkField in_mat(in._grid);
SU<Nc>::FundamentalLieAlgebraMatrix(in, in_mat);
sum = zero;
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_mat, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_mat * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_mat;
}
out_mat = (1.0 - kappa) * in_mat - kappa/(double(4*Nd)) * sum;
// Project
SU<Nc>::projectOnAlgebra(out, out_mat);
void Mdir(const GaugeLinkField& in, GaugeLinkField& out, int dir, int disp) {
assert(0);
}
*/
void M(const GaugeLinkField& in, GaugeLinkField& out) {
double kappa = 0.999;
//Reconstruct matrix
void M(const GaugeLinkField& in, GaugeLinkField& out) {
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
sum = zero;
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in, mu, +1) * adj(U[mu]);
tmp = U[mu] * Cshift(in, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in;
}
out = (1.0 - kappa) * in - kappa/(double(4*Nd)) * sum;
out = (1.0 - kappa) * in - kappa / (double(4 * Nd)) * sum;
}
void MDeriv(const GaugeLinkField& in, GaugeLinkField& out, bool dag){
RealD factor = - kappa / (double(4 * Nd))
if (!dag)
out = factor * Cshift(in, mu, +1) * adj(U[mu]) + adj(U[mu]) * in;
else
out = factor * U[mu] * Cshift(in, mu, +1) + in * U[mu];
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};
// This is just a debug tests
// not meant to be used
template <class Impl>
class LaplacianAlgebraField {
public:
INHERIT_GIMPL_TYPES(Impl);
typedef SU<Nc>::LatticeAlgebraVector AVector;
LaplacianAlgebraField(GridBase* grid) : U(Nd, grid){};
LaplacianAlgebraField(GridBase* grid, const RealD k) :
U(Nd, grid), kappa(k){};
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
@ -117,28 +118,28 @@ class LaplacianAlgebraField {
// Operator with algebra vector inputs and outputs
void M(const AVector& in, AVector& out) {
double kappa = 0.999;
//Reconstruct matrix
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
GaugeLinkField out_mat(in._grid);
GaugeLinkField in_mat(in._grid);
// Reconstruct matrix
SU<Nc>::FundamentalLieAlgebraMatrix(in, in_mat);
sum = zero;
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_mat, mu, +1) * adj(U[mu]);
tmp = U[mu] * Cshift(in_mat, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_mat * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_mat;
}
out_mat = (1.0 - kappa) * in_mat - kappa/(double(4*Nd)) * sum;
out_mat = (1.0 - kappa) * in_mat - kappa / (double(4 * Nd)) * sum;
// Project
SU<Nc>::projectOnAlgebra(out, out_mat);
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};