mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Two flavour pseudofermion action
This commit is contained in:
parent
d9d4c5916a
commit
97b41c41b0
178
lib/qcd/action/pseudofermion/TwoFlavour.h
Normal file
178
lib/qcd/action/pseudofermion/TwoFlavour.h
Normal file
@ -0,0 +1,178 @@
|
||||
#ifndef QCD_PSEUDOFERMION_TWO_FLAVOUR_H
|
||||
#define QCD_PSEUDOFERMION_TWO_FLAVOUR_H
|
||||
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
// Placeholder comments:
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
// S = phi^dag V (Mdag M)^-1 V^dag phi
|
||||
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
|
||||
// + phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag P/Q d[N/D] P/Q chi
|
||||
//
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
//
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational ratio
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
//
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
//
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k <- deriv on P left
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k
|
||||
// + \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Two flavour pseudofermion action for any dop
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template<class GaugeField,class MatrixField,class FermionField,class FermionOperator>
|
||||
class TwoFlavourPseudoFermionAction : public Action<GaugeField> {
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<FermionField,GaugeField> & FermOp;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
|
||||
GridBase *Grid;
|
||||
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
/////////////////////////////////////////////////
|
||||
// Pass in required objects.
|
||||
/////////////////////////////////////////////////
|
||||
TwoFlavourPseudoFermionAction(FermionOperator &Op,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS
|
||||
) : FermOp(Op), DerivativeSolver(DS), ActionSolver(AS) {
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Push the gauge field in to the dops. Assume any BC's and smearing already applied
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void init(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
// width? Must check
|
||||
gaussian(Phi,pRNG);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (Mdag M)^-1 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
FermionField X(Grid);
|
||||
FermionField Y(Grid);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<FermionField,GaugeField>,FermionField> MdagMOp(FermOp);
|
||||
|
||||
ActionSolver(MdagMop,Phi,X);
|
||||
MdagMOp.Op(X,Y);
|
||||
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = - phi^dag (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
FermionField X(Grid);
|
||||
FermionField Y(Grid);
|
||||
GaugeField tmp(Grid);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<FermionField,GaugeField>,FermionField> MdagMOp(FermOp);
|
||||
|
||||
DerivativeSolver(MdagMop,Phi,X);
|
||||
MdagMOp.Op(X,Y);
|
||||
|
||||
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
|
||||
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
|
||||
|
||||
FermOp.MDeriv(tmp , Y, X,DaggerNo ); dSdU=tmp;
|
||||
FermOp.MDeriv(tmp , X, Y,DaggerYes); dSdU=-UdSdU-tmp;
|
||||
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user