1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-19 00:07:05 +01:00

Reproducible reduction and axpy_norm offload from Gianluca.

Hopefully get CG running entirely on GPU
This commit is contained in:
Peter Boyle
2019-07-30 00:14:12 +01:00
parent 1282e1067f
commit 9dad7a0094
4 changed files with 355 additions and 151 deletions

View File

@ -0,0 +1,221 @@
NAMESPACE_BEGIN(Grid);
#define WARP_SIZE 32
extern cudaDeviceProp *gpu_props;
__device__ unsigned int retirementCount = 0;
template <class Iterator>
unsigned int nextPow2(Iterator x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
template <class Iterator>
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
int device;
cudaGetDevice(&device);
Iterator warpSize = gpu_props[device].warpSize;
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
std::cout << GridLogDebug << "GPU has:" << std::endl;
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
if (warpSize != WARP_SIZE) {
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
exit(EXIT_FAILURE);
}
// let the number of threads in a block be a multiple of 2, starting from warpSize
threads = warpSize;
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
// keep all the streaming multiprocessors busy
blocks = nextPow2(multiProcessorCount);
}
template <class sobj, class Iterator>
__device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid) {
Iterator blockSize = blockDim.x;
// cannot use overloaded operators for sobj as they are not volatile-qualified
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
__syncwarp();
const Iterator VEC = WARP_SIZE;
const Iterator vid = tid & (VEC-1);
sobj beta, temp;
memcpy((void *)&beta, (void *)&mySum, sizeof(sobj));
for (int i = VEC/2; i > 0; i>>=1) {
if (vid < i) {
memcpy((void *)&temp, (void *)&sdata[tid+i], sizeof(sobj));
beta += temp;
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
}
__syncwarp();
}
__syncthreads();
if (threadIdx.x == 0) {
beta = Zero();
for (Iterator i = 0; i < blockSize; i += VEC) {
memcpy((void *)&temp, (void *)&sdata[i], sizeof(sobj));
beta += temp;
}
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
}
__syncthreads();
}
template <class vobj, class Iterator>
__device__ void reduceBlocks(const LatticeView<vobj> g_idata, typename vobj::scalar_object *g_odata, Iterator n) {
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object sobj;
constexpr Iterator nsimd = sizeof(vector_type)/sizeof(scalar_type);
Iterator blockSize = blockDim.x;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *sdata = (sobj *)shmem_pointer;
// first level of reduction,
// each thread writes result in mySum
Iterator tid = threadIdx.x;
Iterator i = blockIdx.x*(blockSize*2) + threadIdx.x;
Iterator gridSize = blockSize*2*gridDim.x;
sobj mySum = Zero();
while (i < n) {
Iterator lane = i % nsimd;
Iterator ss = i / nsimd;
auto tmp = extractLane(lane,g_idata[ss]);
mySum += tmp;
if (i + blockSize < n) {
lane = (i+blockSize) % nsimd;
ss = (i+blockSize) / nsimd;
tmp = extractLane(lane,g_idata[ss]);
mySum += tmp;
}
i += gridSize;
}
// copy mySum to shared memory and perform
// reduction for all threads in this block
reduceBlock(sdata, mySum, tid);
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
template <class vobj, class Iterator>
__global__ void reduceKernel(const LatticeView<vobj> lat, typename vobj::scalar_object *buffer, Iterator n) {
typedef typename vobj::scalar_object sobj;
Iterator blockSize = blockDim.x;
// perform reduction for this block and
// write result to global memory buffer
reduceBlocks(lat, buffer, n);
if (gridDim.x > 1) {
const Iterator tid = threadIdx.x;
__shared__ bool amLast;
// force shared memory alignment
extern __shared__ __align__(COALESCE_GRANULARITY) unsigned char shmem_pointer[];
// it's not possible to have two extern __shared__ arrays with same name
// but different types in different scopes -- need to cast each time
sobj *smem = (sobj *)shmem_pointer;
// wait until all outstanding memory instructions in this thread are finished
__threadfence();
if (tid==0) {
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
// true if this block is the last block to be done
amLast = (ticket == gridDim.x-1);
}
// each thread must read the correct value of amLast
__syncthreads();
if (amLast) {
// reduce buffer[0], ..., buffer[gridDim.x-1]
Iterator i = tid;
sobj mySum = Zero();
while (i < gridDim.x) {
mySum += buffer[i];
i += blockSize;
}
reduceBlock(smem, mySum, tid);
if (tid==0) {
buffer[0] = smem[0];
// reset count variable
retirementCount = 0;
}
}
}
}
template <class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &lat)
{
LatticeView<vobj> lat_v = lat.View();
typedef typename vobj::scalar_object sobj;
typedef decltype(lat_v.begin()) Iterator;
Iterator size = lat.Grid()->lSites();
Iterator numThreads, numBlocks;
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
Iterator smemSize = numThreads * sizeof(sobj);
/*
std::cout << GridLogDebug << "Starting reduction with:" << std::endl;
std::cout << GridLogDebug << "\tsize = " << size << std::endl;
std::cout << GridLogDebug << "\tnumThreads = " << numThreads << std::endl;
std::cout << GridLogDebug << "\tnumBlocks = " << numBlocks << std::endl;
std::cout << GridLogDebug << "\tsmemSize = " << smemSize << std::endl;
*/
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat_v, buffer_v, size);
cudaDeviceSynchronize();
cudaError err = cudaGetLastError();
if ( cudaSuccess != err ) {
printf("Cuda error %s\n",cudaGetErrorString( err ));
exit(0);
}
auto result = buffer_v[0];
lat.Grid()->GlobalSum(result);
return result;
}
NAMESPACE_END(Grid);