diff --git a/.gitignore b/.gitignore index 45a3ea53..5338acb9 100644 --- a/.gitignore +++ b/.gitignore @@ -114,3 +114,4 @@ gh-pages/ ##################### Grid/qcd/spin/gamma-gen/*.h Grid/qcd/spin/gamma-gen/*.cc +Grid/util/Version.h diff --git a/Grid/serialisation/BaseIO.h b/Grid/serialisation/BaseIO.h index dd15e7da..e9d5bedf 100644 --- a/Grid/serialisation/BaseIO.h +++ b/Grid/serialisation/BaseIO.h @@ -33,12 +33,76 @@ Author: Guido Cossu #include #include #include +#include namespace Grid { + namespace EigenIO { + // EigenIO works for scalars that are not just Grid supported scalars + template struct is_complex : public std::false_type {}; + // Support all complex types (not just Grid complex types) - even if the definitions overlap (!) + template struct is_complex< T , typename + std::enable_if< ::Grid::is_complex< T >::value>::type> : public std::true_type {}; + template struct is_complex, typename + std::enable_if>::value>::type> : public std::true_type {}; + + // Helpers to support I/O for Eigen tensors of arithmetic scalars, complex types, or Grid tensors + template struct is_scalar : public std::false_type {}; + template struct is_scalar::value || is_complex::value>::type> : public std::true_type {}; + + // Is this an Eigen tensor + template struct is_tensor : std::integral_constant, T>::value> {}; + + // Is this an Eigen tensor of a supported scalar + template struct is_tensor_of_scalar : public std::false_type {}; + template struct is_tensor_of_scalar::value && is_scalar::value>::type> : public std::true_type {}; + + // Is this an Eigen tensor of a supported container + template struct is_tensor_of_container : public std::false_type {}; + template struct is_tensor_of_container::value && isGridTensor::value>::type> : public std::true_type {}; + + // These traits describe the scalars inside Eigen tensors + // I wish I could define these in reference to the scalar type (so there would be fewer traits defined) + // but I'm unable to find a syntax to make this work + template struct Traits {}; + // Traits are the default for scalars, or come from GridTypeMapper for GridTensors + template struct Traits::value>::type> + : public GridTypeMapper_Base { + using scalar_type = typename T::Scalar; // ultimate base scalar + static constexpr bool is_complex = ::Grid::EigenIO::is_complex::value; + }; + // Traits are the default for scalars, or come from GridTypeMapper for GridTensors + template struct Traits::value>::type> { + using BaseTraits = GridTypeMapper; + using scalar_type = typename BaseTraits::scalar_type; // ultimate base scalar + static constexpr bool is_complex = ::Grid::EigenIO::is_complex::value; + static constexpr int TensorLevel = BaseTraits::TensorLevel; + static constexpr int Rank = BaseTraits::Rank; + static constexpr std::size_t count = BaseTraits::count; + static constexpr int Dimension(int dim) { return BaseTraits::Dimension(dim); } + }; + + // Is this a fixed-size Eigen tensor + template struct is_tensor_fixed : public std::false_type {}; + template + struct is_tensor_fixed> + : public std::true_type {}; + template class MapPointer_> + struct is_tensor_fixed, MapOptions_, MapPointer_>> + : public std::true_type {}; + + // Is this a variable-size Eigen tensor + template struct is_tensor_variable : public std::false_type {}; + template struct is_tensor_variable::value + && !is_tensor_fixed::value>::type> : public std::true_type {}; + } + // Abstract writer/reader classes //////////////////////////////////////////// // static polymorphism implemented using CRTP idiom class Serializable; - + // Static abstract writer template class Writer @@ -49,10 +113,10 @@ namespace Grid { void push(const std::string &s); void pop(void); template - typename std::enable_if::value, void>::type + typename std::enable_if::value>::type write(const std::string& s, const U &output); template - typename std::enable_if::value, void>::type + typename std::enable_if::value && !EigenIO::is_tensor::value>::type write(const std::string& s, const U &output); template void write(const std::string &s, const iScalar &output); @@ -60,6 +124,42 @@ namespace Grid { void write(const std::string &s, const iVector &output); template void write(const std::string &s, const iMatrix &output); + template + typename std::enable_if::value>::type + write(const std::string &s, const ETensor &output); + + // Helper functions for Scalar vs Container specialisations + template + inline typename std::enable_if::value, + const typename ETensor::Scalar *>::type + getFirstScalar(const ETensor &output) + { + return output.data(); + } + + template + inline typename std::enable_if::value, + const typename EigenIO::Traits::scalar_type *>::type + getFirstScalar(const ETensor &output) + { + return output.data()->begin(); + } + + template + inline typename std::enable_if::value, void>::type + copyScalars(S * &pCopy, const S &Source) + { + * pCopy ++ = Source; + } + + template + inline typename std::enable_if::value, void>::type + copyScalars(typename GridTypeMapper::scalar_type * &pCopy, const S &Source) + { + for( const typename GridTypeMapper::scalar_type &item : Source ) + * pCopy ++ = item; + } + void scientificFormat(const bool set); bool isScientific(void); void setPrecision(const unsigned int prec); @@ -83,7 +183,8 @@ namespace Grid { typename std::enable_if::value, void>::type read(const std::string& s, U &output); template - typename std::enable_if::value, void>::type + typename std::enable_if::value + && !EigenIO::is_tensor::value, void>::type read(const std::string& s, U &output); template void read(const std::string &s, iScalar &output); @@ -91,6 +192,32 @@ namespace Grid { void read(const std::string &s, iVector &output); template void read(const std::string &s, iMatrix &output); + template + typename std::enable_if::value, void>::type + read(const std::string &s, ETensor &output); + template + typename std::enable_if::value, void>::type + Reshape(ETensor &t, const std::array &dims ); + template + typename std::enable_if::value, void>::type + Reshape(ETensor &t, const std::array &dims ); + + // Helper functions for Scalar vs Container specialisations + template + inline typename std::enable_if::value, void>::type + copyScalars(S &Dest, const S * &pSource) + { + Dest = * pSource ++; + } + + template + inline typename std::enable_if::value, void>::type + copyScalars(S &Dest, const typename GridTypeMapper::scalar_type * &pSource) + { + for( typename GridTypeMapper::scalar_type &item : Dest ) + item = * pSource ++; + } + protected: template void fromString(U &output, const std::string &s); @@ -135,12 +262,14 @@ namespace Grid { template template - typename std::enable_if::value, void>::type + typename std::enable_if::value + && !EigenIO::is_tensor::value, void>::type Writer::write(const std::string &s, const U &output) { upcast->writeDefault(s, output); } + template template void Writer::write(const std::string &s, const iScalar &output) @@ -161,6 +290,57 @@ namespace Grid { { upcast->writeDefault(s, tensorToVec(output)); } + + // Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix) + template + template + typename std::enable_if::value, void>::type + Writer::write(const std::string &s, const ETensor &output) + { + using Index = typename ETensor::Index; + using Container = typename ETensor::Scalar; // NB: could be same as scalar + using Traits = EigenIO::Traits; + using Scalar = typename Traits::scalar_type; // type of the underlying scalar + constexpr unsigned int TensorRank{ETensor::NumIndices}; + constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers + constexpr unsigned int TotalRank{TensorRank + ContainerRank}; + const Index NumElements{output.size()}; + assert( NumElements > 0 ); + + // Get the dimensionality of the tensor + std::vector TotalDims(TotalRank); + for(auto i = 0; i < TensorRank; i++ ) { + auto dim = output.dimension(i); + TotalDims[i] = static_cast(dim); + assert( TotalDims[i] == dim ); // check we didn't lose anything in the conversion + } + for(auto i = 0; i < ContainerRank; i++ ) + TotalDims[TensorRank + i] = Traits::Dimension(i); + + // If the Tensor isn't in Row-Major order, then we'll need to copy it's data + const bool CopyData{NumElements > 1 && ETensor::Layout != Eigen::StorageOptions::RowMajor}; + const Scalar * pWriteBuffer; + std::vector CopyBuffer; + const Index TotalNumElements = NumElements * Traits::count; + if( !CopyData ) { + pWriteBuffer = getFirstScalar( output ); + } else { + // Regardless of the Eigen::Tensor storage order, the copy will be Row Major + CopyBuffer.resize( TotalNumElements ); + Scalar * pCopy = &CopyBuffer[0]; + pWriteBuffer = pCopy; + std::array MyIndex; + for( auto &idx : MyIndex ) idx = 0; + for( auto n = 0; n < NumElements; n++ ) { + const Container & c = output( MyIndex ); + copyScalars( pCopy, c ); + // Now increment the index + for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- ) + MyIndex[i] = 0; + } + } + upcast->template writeMultiDim(s, TotalDims, pWriteBuffer, TotalNumElements); + } template void Writer::scientificFormat(const bool set) @@ -215,7 +395,8 @@ namespace Grid { template template - typename std::enable_if::value, void>::type + typename std::enable_if::value + && !EigenIO::is_tensor::value, void>::type Reader::read(const std::string &s, U &output) { upcast->readDefault(s, output); @@ -251,6 +432,79 @@ namespace Grid { vecToTensor(output, v); } + template + template + typename std::enable_if::value, void>::type + Reader::read(const std::string &s, ETensor &output) + { + using Index = typename ETensor::Index; + using Container = typename ETensor::Scalar; // NB: could be same as scalar + using Traits = EigenIO::Traits; + using Scalar = typename Traits::scalar_type; // type of the underlying scalar + constexpr unsigned int TensorRank{ETensor::NumIndices}; + constexpr unsigned int ContainerRank{Traits::Rank}; // Only non-zero for containers + constexpr unsigned int TotalRank{TensorRank + ContainerRank}; + using ETDims = std::array; // Dimensions of the tensor + + // read the (flat) data and dimensionality + std::vector dimData; + std::vector buf; + upcast->readMultiDim( s, buf, dimData ); + assert(dimData.size() == TotalRank && "EigenIO: Tensor rank mismatch" ); + // Make sure that the number of elements read matches dimensions read + std::size_t NumContainers = 1; + for( auto i = 0 ; i < TensorRank ; i++ ) + NumContainers *= dimData[i]; + // If our scalar object is a Container, make sure it's dimensions match what we read back + std::size_t ElementsPerContainer = 1; + for( auto i = 0 ; i < ContainerRank ; i++ ) { + assert( dimData[TensorRank+i] == Traits::Dimension(i) && "Tensor Container dimensions don't match data" ); + ElementsPerContainer *= dimData[TensorRank+i]; + } + assert( NumContainers * ElementsPerContainer == buf.size() && "EigenIO: Number of elements != product of dimensions" ); + // Now see whether the tensor is the right shape, or can be made to be + const auto & dims = output.dimensions(); + bool bShapeOK = (output.data() != nullptr); + for( auto i = 0; bShapeOK && i < TensorRank ; i++ ) + if( dims[i] != dimData[i] ) + bShapeOK = false; + // Make the tensor the same size as the data read + ETDims MyIndex; + if( !bShapeOK ) { + for( auto i = 0 ; i < TensorRank ; i++ ) + MyIndex[i] = dimData[i]; + Reshape(output, MyIndex); + } + // Copy the data into the tensor + for( auto &d : MyIndex ) d = 0; + const Scalar * pSource = &buf[0]; + for( std::size_t n = 0 ; n < NumContainers ; n++ ) { + Container & c = output( MyIndex ); + copyScalars( c, pSource ); + // Now increment the index + for( int i = TensorRank - 1; i != -1 && ++MyIndex[i] == dims[i]; i-- ) + MyIndex[i] = 0; + } + assert( pSource == &buf[NumContainers * ElementsPerContainer] ); + } + + template + template + typename std::enable_if::value, void>::type + Reader::Reshape(ETensor &t, const std::array &dims ) + { + assert( 0 && "EigenIO: Fixed tensor dimensions can't be changed" ); + } + + template + template + typename std::enable_if::value, void>::type + Reader::Reshape(ETensor &t, const std::array &dims ) + { + //t.reshape( dims ); + t.resize( dims ); + } + template template void Reader::fromString(U &output, const std::string &s) @@ -289,8 +543,70 @@ namespace Grid { { return os; } + + template + static inline typename std::enable_if::value || !EigenIO::is_tensor::value, bool>::type + CompareMember(const T1 &lhs, const T2 &rhs) { + return lhs == rhs; + } + + template + static inline typename std::enable_if::value && EigenIO::is_tensor::value, bool>::type + CompareMember(const T1 &lhs, const T2 &rhs) { + // First check whether dimensions match (Eigen tensor library will assert if they don't match) + bool bReturnValue = (T1::NumIndices == T2::NumIndices); + for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ ) + bReturnValue = ( lhs.dimension(i) == rhs.dimension(i) ); + if( bReturnValue ) { + Eigen::Tensor bResult = (lhs == rhs).all(); + bReturnValue = bResult(0); + } + return bReturnValue; + } + + template + static inline typename std::enable_if::value, bool>::type + CompareMember(const std::vector &lhs, const std::vector &rhs) { + const auto NumElements = lhs.size(); + bool bResult = ( NumElements == rhs.size() ); + for( auto i = 0 ; i < NumElements && bResult ; i++ ) + bResult = CompareMember(lhs[i], rhs[i]); + return bResult; + } + + template + static inline typename std::enable_if::value, void>::type + WriteMember(std::ostream &os, const T &object) { + os << object; + } + + template + static inline typename std::enable_if::value, void>::type + WriteMember(std::ostream &os, const T &object) { + using Index = typename T::Index; + const Index NumElements{object.size()}; + assert( NumElements > 0 ); + Index count = 1; + os << "T<"; + for( int i = 0; i < T::NumIndices; i++ ) { + Index dim = object.dimension(i); + count *= dim; + if( i ) + os << ","; + os << dim; + } + assert( count == NumElements && "Number of elements doesn't match tensor dimensions" ); + os << ">{"; + const typename T::Scalar * p = object.data(); + for( Index i = 0; i < count; i++ ) { + if( i ) + os << ","; + os << *p++; + } + os << "}"; + } }; - + // Generic writer interface ////////////////////////////////////////////////// template inline void push(Writer &w, const std::string &s) { diff --git a/Grid/serialisation/BinaryIO.h b/Grid/serialisation/BinaryIO.h index 757753c7..bf011454 100644 --- a/Grid/serialisation/BinaryIO.h +++ b/Grid/serialisation/BinaryIO.h @@ -51,6 +51,8 @@ namespace Grid { template void writeDefault(const std::string &s, const std::vector &x); void writeDefault(const std::string &s, const char *x); + template + void writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements); private: std::ofstream file_; }; @@ -66,6 +68,8 @@ namespace Grid { void readDefault(const std::string &s, U &output); template void readDefault(const std::string &s, std::vector &output); + template + void readMultiDim(const std::string &s, std::vector &buf, std::vector &dim); private: std::ifstream file_; }; @@ -92,6 +96,27 @@ namespace Grid { } } + template + void BinaryWriter::writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements) + { + uint64_t rank = static_cast( Dimensions.size() ); + uint64_t tmp = 1; + for( auto i = 0 ; i < rank ; i++ ) + tmp *= Dimensions[i]; + assert( tmp == NumElements && "Dimensions don't match size of data being written" ); + // Total number of elements + write("", tmp); + // Number of dimensions + write("", rank); + // Followed by each dimension + for( auto i = 0 ; i < rank ; i++ ) { + tmp = Dimensions[i]; + write("", tmp); + } + for( auto i = 0; i < NumElements; ++i) + write("", pDataRowMajor[i]); + } + // Reader template implementation //////////////////////////////////////////// template void BinaryReader::readDefault(const std::string &s, U &output) @@ -114,6 +139,30 @@ namespace Grid { read("", output[i]); } } + + template + void BinaryReader::readMultiDim(const std::string &s, std::vector &buf, std::vector &dim) + { + // Number of elements + uint64_t NumElements; + read("", NumElements); + // Number of dimensions + uint64_t rank; + read("", rank); + // Followed by each dimension + uint64_t count = 1; + dim.resize(rank); + uint64_t tmp; + for( auto i = 0 ; i < rank ; i++ ) { + read("", tmp); + dim[i] = tmp; + count *= tmp; + } + assert( count == NumElements && "Dimensions don't match size of data being read" ); + buf.resize(count); + for( auto i = 0; i < count; ++i) + read("", buf[i]); + } } #endif diff --git a/Grid/serialisation/Hdf5IO.h b/Grid/serialisation/Hdf5IO.h index 59804240..19537599 100644 --- a/Grid/serialisation/Hdf5IO.h +++ b/Grid/serialisation/Hdf5IO.h @@ -3,6 +3,7 @@ #include #include +#include #include #include #include @@ -38,6 +39,8 @@ namespace Grid template typename std::enable_if>::is_number, void>::type writeDefault(const std::string &s, const std::vector &x); + template + void writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements); H5NS::Group & getGroup(void); private: template @@ -48,7 +51,7 @@ namespace Grid std::vector path_; H5NS::H5File file_; H5NS::Group group_; - unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES}; + const unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES}; }; class Hdf5Reader: public Reader @@ -66,6 +69,8 @@ namespace Grid template typename std::enable_if>::is_number, void>::type readDefault(const std::string &s, std::vector &x); + template + void readMultiDim(const std::string &s, std::vector &buf, std::vector &dim); H5NS::Group & getGroup(void); private: template @@ -101,6 +106,75 @@ namespace Grid template <> void Hdf5Writer::writeDefault(const std::string &s, const std::string &x); + template + void Hdf5Writer::writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements) + { + // Hdf5 needs the dimensions as hsize_t + const int rank = static_cast(Dimensions.size()); + std::vector dim(rank); + for(int i = 0; i < rank; i++) + dim[i] = Dimensions[i]; + // write the entire dataset to file + H5NS::DataSpace dataSpace(rank, dim.data()); + + if (NumElements > dataSetThres_) + { + // Make sure 1) each dimension; and 2) chunk size is < 4GB + const hsize_t MaxElements = ( sizeof( U ) == 1 ) ? 0xffffffff : 0x100000000 / sizeof( U ); + hsize_t ElementsPerChunk = 1; + bool bTooBig = false; + for( int i = rank - 1 ; i != -1 ; i-- ) { + auto &d = dim[i]; + if( bTooBig ) + d = 1; // Chunk size is already as big as can be - remaining dimensions = 1 + else { + // If individual dimension too big, reduce by prime factors if possible + while( d > MaxElements && ( d & 1 ) == 0 ) + d >>= 1; + const char ErrorMsg[] = " dimension > 4GB and not divisible by 2^n. " + "Hdf5IO chunk size will be inefficient. NB Serialisation is not intended for large datasets - please consider alternatives."; + if( d > MaxElements ) { + std::cout << GridLogWarning << "Individual" << ErrorMsg << std::endl; + hsize_t quotient = d / MaxElements; + if( d % MaxElements ) + quotient++; + d /= quotient; + } + // Now make sure overall size is not too big + hsize_t OverflowCheck = ElementsPerChunk; + ElementsPerChunk *= d; + assert( OverflowCheck == ElementsPerChunk / d && "Product of dimensions overflowed hsize_t" ); + // If product of dimensions too big, reduce by prime factors + while( ElementsPerChunk > MaxElements && ( ElementsPerChunk & 1 ) == 0 ) { + bTooBig = true; + d >>= 1; + ElementsPerChunk >>= 1; + } + if( ElementsPerChunk > MaxElements ) { + std::cout << GridLogWarning << "Product of" << ErrorMsg << std::endl; + hsize_t quotient = ElementsPerChunk / MaxElements; + if( ElementsPerChunk % MaxElements ) + quotient++; + d /= quotient; + ElementsPerChunk /= quotient; + } + } + } + H5NS::DataSet dataSet; + H5NS::DSetCreatPropList plist; + plist.setChunk(rank, dim.data()); + plist.setFletcher32(); + dataSet = group_.createDataSet(s, Hdf5Type::type(), dataSpace, plist); + dataSet.write(pDataRowMajor, Hdf5Type::type()); + } + else + { + H5NS::Attribute attribute; + attribute = group_.createAttribute(s, Hdf5Type::type(), dataSpace); + attribute.write(Hdf5Type::type(), pDataRowMajor); + } + } + template typename std::enable_if>::is_number, void>::type Hdf5Writer::writeDefault(const std::string &s, const std::vector &x) @@ -110,34 +184,11 @@ namespace Grid // flatten the vector and getting dimensions Flatten> flat(x); - std::vector dim; + std::vector dim; const auto &flatx = flat.getFlatVector(); - for (auto &d: flat.getDim()) - { dim.push_back(d); - } - - // write to file - H5NS::DataSpace dataSpace(dim.size(), dim.data()); - - if (flatx.size() > dataSetThres_) - { - H5NS::DataSet dataSet; - H5NS::DSetCreatPropList plist; - - plist.setChunk(dim.size(), dim.data()); - plist.setFletcher32(); - dataSet = group_.createDataSet(s, Hdf5Type::type(), dataSpace, plist); - dataSet.write(flatx.data(), Hdf5Type::type()); - } - else - { - H5NS::Attribute attribute; - - attribute = group_.createAttribute(s, Hdf5Type::type(), dataSpace); - attribute.write(Hdf5Type::type(), flatx.data()); - } + writeMultiDim(s, dim, &flatx[0], flatx.size()); } template @@ -173,10 +224,9 @@ namespace Grid template <> void Hdf5Reader::readDefault(const std::string &s, std::string &x); - + template - typename std::enable_if>::is_number, void>::type - Hdf5Reader::readDefault(const std::string &s, std::vector &x) + void Hdf5Reader::readMultiDim(const std::string &s, std::vector &buf, std::vector &dim) { // alias to element type typedef typename element>::type Element; @@ -184,7 +234,6 @@ namespace Grid // read the dimensions H5NS::DataSpace dataSpace; std::vector hdim; - std::vector dim; hsize_t size = 1; if (group_.attrExists(s)) @@ -204,8 +253,8 @@ namespace Grid } // read the flat vector - std::vector buf(size); - + buf.resize(size); + if (size > dataSetThres_) { H5NS::DataSet dataSet; @@ -220,7 +269,19 @@ namespace Grid attribute = group_.openAttribute(s); attribute.read(Hdf5Type::type(), buf.data()); } - + } + + template + typename std::enable_if>::is_number, void>::type + Hdf5Reader::readDefault(const std::string &s, std::vector &x) + { + // alias to element type + typedef typename element>::type Element; + + std::vector dim; + std::vector buf; + readMultiDim( s, buf, dim ); + // reconstruct the multidimensional vector Reconstruct> r(buf, dim); diff --git a/Grid/serialisation/MacroMagic.h b/Grid/serialisation/MacroMagic.h index 95cd1c3c..ce305673 100644 --- a/Grid/serialisation/MacroMagic.h +++ b/Grid/serialisation/MacroMagic.h @@ -109,8 +109,8 @@ THE SOFTWARE. ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #define GRID_MACRO_MEMBER(A,B) A B; -#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and (lhs. B == rhs. B)); -#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = " << obj. B << " ; " < void writeDefault(const std::string &s, const std::vector &x); + template + void writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements); private: void indent(void); private: @@ -69,6 +71,8 @@ namespace Grid void readDefault(const std::string &s, U &output); template void readDefault(const std::string &s, std::vector &output); + template + void readMultiDim(const std::string &s, std::vector &buf, std::vector &dim); private: void checkIndent(void); private: @@ -95,7 +99,18 @@ namespace Grid write(s, x[i]); } } - + + template + void TextWriter::writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements) + { + uint64_t Rank = Dimensions.size(); + write(s, Rank); + for( uint64_t d : Dimensions ) + write(s, d); + while( NumElements-- ) + write(s, *pDataRowMajor++); + } + // Reader template implementation //////////////////////////////////////////// template void TextReader::readDefault(const std::string &s, U &output) @@ -121,6 +136,23 @@ namespace Grid read("", output[i]); } } + + template + void TextReader::readMultiDim(const std::string &s, std::vector &buf, std::vector &dim) + { + const char sz[] = ""; + uint64_t Rank; + read(sz, Rank); + dim.resize( Rank ); + size_t NumElements = 1; + for( auto &d : dim ) { + read(sz, d); + NumElements *= d; + } + buf.resize( NumElements ); + for( auto &x : buf ) + read(s, x); + } } #endif diff --git a/Grid/serialisation/VectorUtils.h b/Grid/serialisation/VectorUtils.h index b6b95c10..a5a73992 100644 --- a/Grid/serialisation/VectorUtils.h +++ b/Grid/serialisation/VectorUtils.h @@ -1,3 +1,32 @@ +/************************************************************************************* + + Grid physics library, www.github.com/paboyle/Grid + + Source file: ./Grid/serialisation/VectorUtils.h + + Copyright (C) 2015 + + Author: Antonin Portelli + Author: Peter Boyle + Author: paboyle + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory + *************************************************************************************/ +/* END LEGAL */ #ifndef GRID_SERIALISATION_VECTORUTILS_H #define GRID_SERIALISATION_VECTORUTILS_H @@ -53,6 +82,17 @@ namespace Grid { return os; } + // std::vector> nested to specified Rank ////////////////////////////////// + template + struct NestedStdVector { + typedef typename std::vector::type> type; + }; + + template + struct NestedStdVector { + typedef T type; + }; + // Grid scalar tensors to nested std::vectors ////////////////////////////////// template struct TensorToVec @@ -436,4 +476,4 @@ std::string vecToStr(const std::vector &v) return sstr.str(); } -#endif \ No newline at end of file +#endif diff --git a/Grid/serialisation/XmlIO.h b/Grid/serialisation/XmlIO.h index a26a33c5..40d5f2bb 100644 --- a/Grid/serialisation/XmlIO.h +++ b/Grid/serialisation/XmlIO.h @@ -57,6 +57,8 @@ namespace Grid void writeDefault(const std::string &s, const U &x); template void writeDefault(const std::string &s, const std::vector &x); + template + void writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements); std::string docString(void); std::string string(void); private: @@ -79,6 +81,8 @@ namespace Grid void readDefault(const std::string &s, U &output); template void readDefault(const std::string &s, std::vector &output); + template + void readMultiDim(const std::string &s, std::vector &buf, std::vector &dim); void readCurrentSubtree(std::string &s); private: void checkParse(const pugi::xml_parse_result &result, const std::string name); @@ -122,13 +126,45 @@ namespace Grid void XmlWriter::writeDefault(const std::string &s, const std::vector &x) { push(s); - for (auto &x_i: x) + for( auto &u : x ) { - write("elem", x_i); + write("elem", u); } pop(); } - + + template + void XmlWriter::writeMultiDim(const std::string &s, const std::vector & Dimensions, const U * pDataRowMajor, size_t NumElements) + { + push(s); + size_t count = 1; + const int Rank = static_cast( Dimensions.size() ); + write("rank", Rank ); + std::vector MyIndex( Rank ); + for( auto d : Dimensions ) { + write("dim", d); + count *= d; + } + assert( count == NumElements && "XmlIO : element count doesn't match dimensions" ); + static const char sName[] = "tensor"; + for( int i = 0 ; i < Rank ; i++ ) { + MyIndex[i] = 0; + push(sName); + } + while (NumElements--) { + write("elem", *pDataRowMajor++); + int i; + for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == Dimensions[i] ; i-- ) + MyIndex[i] = 0; + int Rollover = Rank - 1 - i; + for( i = 0 ; i < Rollover ; i++ ) + pop(); + for( i = 0 ; NumElements && i < Rollover ; i++ ) + push(sName); + } + pop(); + } + // Reader template implementation //////////////////////////////////////////// template void XmlReader::readDefault(const std::string &s, U &output) @@ -145,25 +181,66 @@ namespace Grid template void XmlReader::readDefault(const std::string &s, std::vector &output) { - std::string buf; - unsigned int i = 0; - if (!push(s)) { std::cout << GridLogWarning << "XML: cannot open node '" << s << "'"; std::cout << std::endl; - - return; + } else { + for(unsigned int i = 0; node_.child("elem"); ) + { + output.resize(i + 1); + read("elem", output[i++]); + node_.child("elem").set_name("elem-done"); + } + pop(); + } + } + + template + void XmlReader::readMultiDim(const std::string &s, std::vector &buf, std::vector &dim) + { + if (!push(s)) + { + std::cout << GridLogWarning << "XML: cannot open node '" << s << "'"; + std::cout << std::endl; + } else { + static const char sName[] = "tensor"; + static const char sNameDone[] = "tensor-done"; + int Rank; + read("rank", Rank); + dim.resize( Rank ); + size_t NumElements = 1; + for( auto &d : dim ) + { + read("dim", d); + node_.child("dim").set_name("dim-done"); + NumElements *= d; + } + buf.resize( NumElements ); + std::vector MyIndex( Rank ); + for( int i = 0 ; i < Rank ; i++ ) { + MyIndex[i] = 0; + push(sName); + } + + for( auto &x : buf ) + { + NumElements--; + read("elem", x); + node_.child("elem").set_name("elem-done"); + int i; + for( i = Rank - 1 ; i != -1 && ++MyIndex[i] == dim[i] ; i-- ) + MyIndex[i] = 0; + int Rollover = Rank - 1 - i; + for( i = 0 ; i < Rollover ; i++ ) { + node_.set_name(sNameDone); + pop(); + } + for( i = 0 ; NumElements && i < Rollover ; i++ ) + push(sName); + } + pop(); } - while (node_.child("elem")) - { - output.resize(i + 1); - read("elem", output[i]); - node_.child("elem").set_name("elem-done"); - i++; - } - pop(); } - } #endif diff --git a/Grid/tensors/Tensor_traits.h b/Grid/tensors/Tensor_traits.h index 9cb93e17..45a1d807 100644 --- a/Grid/tensors/Tensor_traits.h +++ b/Grid/tensors/Tensor_traits.h @@ -143,6 +143,7 @@ namespace Grid { typedef vRealD DoublePrecision; }; template<> struct GridTypeMapper : public GridTypeMapper_Base { + // Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types typedef RealF scalar_type; typedef vRealH vector_type; typedef vRealD vector_typeD; @@ -153,6 +154,7 @@ namespace Grid { typedef vRealD DoublePrecision; }; template<> struct GridTypeMapper : public GridTypeMapper_Base { + // Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types typedef ComplexF scalar_type; typedef vComplexH vector_type; typedef vComplexD vector_typeD; diff --git a/tests/IO/Test_serialisation.cc b/tests/IO/Test_serialisation.cc index 15602e93..d1ec1309 100644 --- a/tests/IO/Test_serialisation.cc +++ b/tests/IO/Test_serialisation.cc @@ -4,11 +4,12 @@ Source file: ./tests/Test_serialisation.cc - Copyright (C) 2015-2016 + Copyright (C) 2015-2019 Author: Guido Cossu Author: Antonin Portelli Author: Peter Boyle +Author: Michael Marshall This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -28,6 +29,7 @@ Author: Peter Boyle *************************************************************************************/ /* END LEGAL */ #include +#include using namespace Grid; using namespace Grid::QCD; @@ -80,26 +82,159 @@ double d = 2*M_PI; bool b = false; template -void ioTest(const std::string &filename, const O &object, const std::string &name) +void ioTest(const std::string &filename, const O &object, const std::string &name, + const char * tag = "testobject", unsigned short Precision = 0 ) { + std::cout << "IO test: " << name << " -> " << filename << " ..."; // writer needs to be destroyed so that writing physically happens { W writer(filename); - - write(writer, "testobject", object); + if( Precision ) + writer.setPrecision(Precision); + write(writer, tag , object); } + std::cout << " done. reading ..."; R reader(filename); - O buf; - bool good; + std::unique_ptr buf( new O ); // In case object too big for stack - read(reader, "testobject", buf); - good = (object == buf); - std::cout << name << " IO test: " << (good ? "success" : "failure"); - std::cout << std::endl; - if (!good) exit(EXIT_FAILURE); + read(reader, tag, *buf); + bool good = Serializable::CompareMember(object, *buf); + if (!good) { + std::cout << " failure!" << std::endl; + exit(EXIT_FAILURE); + } + std::cout << " done." << std::endl; } +// The only way I could get these iterators to work is to put the begin() and end() functions in the Eigen namespace +// So if Eigen ever defines these, we'll have a conflict and have to change this +namespace Eigen { + template + inline typename std::enable_if::value, typename EigenIO::Traits::scalar_type *>::type + begin( ET & et ) { return reinterpret_cast::scalar_type *>(et.data()); } + template + inline typename std::enable_if::value, typename EigenIO::Traits::scalar_type *>::type + end( ET & et ) { return begin(et) + et.size() * EigenIO::Traits::count; } +} + +// Perform I/O tests on a range of tensor types +// Test coverage: scalars, complex and GridVectors in single, double and default precision +class TensorIO : public Serializable { + using TestScalar = ComplexD; + using SR3 = Eigen::Sizes<9,4,2>; + using SR5 = Eigen::Sizes<5,4,3,2,1>; + using ESO = Eigen::StorageOptions; + using TensorRank3 = Eigen::Tensor; + using TensorR5 = Eigen::TensorFixedSize; + using TensorR5Alt = Eigen::TensorFixedSize; + using Tensor942 = Eigen::TensorFixedSize; + using aTensor942 = std::vector; + using Perambulator = Eigen::Tensor; + using LSCTensor = Eigen::TensorFixedSize>; + + static const Real FlagR; + static const Complex Flag; + static const ComplexF FlagF; + static const TestScalar FlagTS; + static const char * const pszFilePrefix; + + void Init(unsigned short Precision) + { + for( auto &s : Perambulator1 ) s = Flag; + for( auto &s : Perambulator2 ) s = Flag; + for( auto &s : tensorR5 ) s = FlagR; + for( auto &s : tensorRank3 ) s = FlagF; + for( auto &s : tensor_9_4_2 ) s = FlagTS; + for( auto &t : atensor_9_4_2 ) + for( auto &s : t ) s = FlagTS; + for( auto &s : MyLSCTensor ) s = Flag; + } + + // Perform an I/O test for a single Eigen tensor (of any type) + template + static void TestOne(const char * MyTypeName, unsigned short Precision, std::string &filename, + const char * pszExtension, unsigned int &TestNum, + typename EigenIO::Traits::scalar_type Flag, IndexTypes... otherDims) + { + using Traits = EigenIO::Traits; + using scalar_type = typename Traits::scalar_type; + std::unique_ptr pTensor{new T(otherDims...)}; + for( auto &s : * pTensor ) s = Flag; + filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension; + ioTest(filename, * pTensor, MyTypeName, MyTypeName); + } + +public: + GRID_SERIALIZABLE_CLASS_MEMBERS(TensorIO + , SpinColourVector, spinColourVector + , SpinColourMatrix, spinColourMatrix + , std::vector, DistilParameterNames + , std::vector, DistilParameterValues + , Perambulator, Perambulator1 + , Perambulator, Perambulator2 + , TensorR5, tensorR5 + , TensorRank3, tensorRank3 + , Tensor942, tensor_9_4_2 + , aTensor942, atensor_9_4_2 + , LSCTensor, MyLSCTensor + ); + TensorIO() + : DistilParameterNames {"do", "androids", "dream", "of", "electric", "sheep?"} + , DistilParameterValues{2,3,1,4,5,1} + , Perambulator1(2,3,1,4,5,1) + , Perambulator2(7,1,6,1,5,1) + , tensorRank3(7,3,2) + , atensor_9_4_2(3) {} + +#define TEST_PARAMS( T ) #T, Precision, filename, pszExtension, TestNum + + // Perform a series of I/O tests for Eigen tensors, including a serialisable object + template + static void Test(const char * pszExtension, unsigned short Precision = 0) + { + // Perform a series of tests on progressively more complex tensors + unsigned int TestNum = 0; + std::string filename; + // Rank 1 tensor containing a single integer + using TensorSingle = Eigen::TensorFixedSize>; + TestOne( TEST_PARAMS( TensorSingle ), 7 ); // lucky! + // Rather convoluted way of defining four complex numbers + using TensorSimple = Eigen::Tensor, 6>; + using I = typename TensorSimple::Index; // NB: Never specified, so same for all my test tensors + // Try progressively more complicated tensors + TestOne( TEST_PARAMS( TensorSimple ), FlagTS, 1,1,1,1,1,1 ); + TestOne( TEST_PARAMS( TensorRank3 ), FlagF, 6, 3, 2 ); + TestOne(TEST_PARAMS( Tensor942 ), FlagTS); + TestOne(TEST_PARAMS( LSCTensor ), Flag ); + TestOne(TEST_PARAMS( TensorR5 ), FlagR); + // Now test a serialisable object containing a number of tensors + { + static const char MyTypeName[] = "TensorIO"; + filename = pszFilePrefix + std::to_string(++TestNum) + "_" + MyTypeName + pszExtension; + std::unique_ptr pObj{new TensorIO()}; + pObj->Init(Precision); + ioTest(filename, * pObj, MyTypeName, MyTypeName, Precision); + } + // Stress test. Too large for the XML or text readers and writers! +#ifdef STRESS_TEST + const std::type_info &tw = typeid( WTR_ ); + if( tw == typeid( Hdf5Writer ) || tw == typeid( BinaryWriter ) ) { + using LCMTensor=Eigen::TensorFixedSize,2>,7>,3>, + Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor>; + std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl; + TestOne(TEST_PARAMS( LCMTensor ), Flag); + } +#endif + } +}; + +const Real TensorIO::FlagR {1}; +const Complex TensorIO::Flag {1,-1}; +const ComplexF TensorIO::FlagF {1,-1}; +const TensorIO::TestScalar TensorIO::FlagTS{1,-1}; +const char * const TensorIO::pszFilePrefix = "tensor_"; + template void tensorConvTestFn(GridSerialRNG &rng, const std::string label) { @@ -121,12 +256,12 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label) int main(int argc,char **argv) { Grid_init(&argc,&argv); - + std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean + GridSerialRNG rng; rng.SeedFixedIntegers(std::vector({42,10,81,9})); - - std::cout << "==== basic IO" << std::endl; + XmlWriter WR("bother.xml"); // test basic type writing @@ -146,7 +281,6 @@ int main(int argc,char **argv) // test serializable class writing myclass obj(1234); // non-trivial constructor std::vector vec; - std::pair pair; std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl; write(WR,"obj",obj); @@ -154,15 +288,15 @@ int main(int argc,char **argv) vec.push_back(obj); vec.push_back(myclass(5678)); vec.push_back(myclass(3838)); - pair = std::make_pair(myenum::red, myenum::blue); write(WR, "objvec", vec); std::cout << "-- serialisable class writing to std::cout:" << std::endl; std::cout << obj << std::endl; std::cout << "-- serialisable class comparison:" << std::endl; - std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl; - std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl; + std::cout << "vec[0] == obj: " << (vec[0] == obj) << std::endl; + std::cout << "vec[1] == obj: " << (vec[1] == obj) << std::endl; std::cout << "-- pair writing to std::cout:" << std::endl; + std::pair pair = std::make_pair(myenum::red, myenum::blue); std::cout << pair << std::endl; // read tests @@ -184,7 +318,15 @@ int main(int argc,char **argv) #ifdef HAVE_HDF5 ioTest("iotest.h5", obj, "HDF5 (object) "); ioTest("iotest.h5", vec, "HDF5 (vector of objects)"); + std::cout << "\n==== detailed Hdf5 tensor tests (Grid::EigenIO)" << std::endl; + TensorIO::Test(".h5"); #endif + std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl; + TensorIO::Test(".bin"); + std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl; + TensorIO::Test(".xml", 6); + std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl; + TensorIO::Test(".dat", 5); std::cout << "\n==== vector flattening/reconstruction" << std::endl; typedef std::vector>> vec3d; @@ -227,4 +369,6 @@ int main(int argc,char **argv) tensorConvTest(rng, ColourVector); tensorConvTest(rng, SpinMatrix); tensorConvTest(rng, SpinVector); + + Grid_finalize(); }