mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Added an RHMC pseudofermion action, GeneralEvenOddRatioRationalPseudoFermionAction, that works for an arbitrary fractional power, not just a square root
Added a test evolution for the above, Test_rhmc_EOWilsonRatioPowQuarter, demonstrating conservation of Hamiltonian Fixed HMC ignoring the MetropolisTest parameter of HMCparameters
This commit is contained in:
parent
249b6e61ec
commit
a0ca362690
@ -36,7 +36,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// These can move into a params header and be given MacroMagic serialisation
|
||||
struct GparityWilsonImplParams {
|
||||
Coordinate twists;
|
||||
Coordinate twists; //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
GparityWilsonImplParams() : twists(Nd, 0) {};
|
||||
};
|
||||
|
||||
@ -86,6 +87,44 @@ struct StaggeredImplParams {
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
/*Action parameters for the generalized rational action
|
||||
The approximation is for (M^dag M)^{1/inv_pow}
|
||||
where inv_pow is the denominator of the fractional power.
|
||||
Default inv_pow=2 for square root, making this equivalent to
|
||||
the OneFlavourRational action
|
||||
*/
|
||||
struct RationalActionParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
|
||||
int, inv_pow,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision,
|
||||
int, BoundsCheckFreq);
|
||||
// constructor
|
||||
RationalActionParams(int _inv_pow = 2,
|
||||
RealD _lo = 0.0,
|
||||
RealD _hi = 1.0,
|
||||
int _maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int _degree = 10,
|
||||
int _precision = 64,
|
||||
int _BoundsCheckFreq=20)
|
||||
: inv_pow(_inv_pow),
|
||||
lo(_lo),
|
||||
hi(_hi),
|
||||
MaxIter(_maxit),
|
||||
tolerance(tol),
|
||||
degree(_degree),
|
||||
precision(_precision),
|
||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -48,5 +48,56 @@ NAMESPACE_BEGIN(Grid);
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||
}
|
||||
|
||||
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
|
||||
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
|
||||
for noise X (aka GaussNoise).
|
||||
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
|
||||
*/
|
||||
template<class Field> void InversePowerBoundsCheck(int inv_pow,
|
||||
int MaxIter,double tol,
|
||||
LinearOperatorBase<Field> &HermOp,
|
||||
Field &GaussNoise,
|
||||
MultiShiftFunction &ApproxNegPow)
|
||||
{
|
||||
GridBase *FermionGrid = GaussNoise.Grid();
|
||||
|
||||
Field X(FermionGrid);
|
||||
Field Y(FermionGrid);
|
||||
Field Z(FermionGrid);
|
||||
|
||||
Field tmp1(FermionGrid), tmp2(FermionGrid);
|
||||
|
||||
X=GaussNoise;
|
||||
RealD Nx = norm2(X);
|
||||
|
||||
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
|
||||
|
||||
tmp1 = X;
|
||||
|
||||
Field* in = &tmp1;
|
||||
Field* out = &tmp2;
|
||||
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
|
||||
msCG(HermOp, *in, *out); //backwards conventions!
|
||||
if(i!=inv_pow-1) std::swap(in, out);
|
||||
}
|
||||
Z = *out;
|
||||
|
||||
RealD Nz = norm2(Z);
|
||||
|
||||
HermOp.HermOp(Z,Y);
|
||||
RealD Ny = norm2(Y);
|
||||
|
||||
X=X-Y;
|
||||
RealD Nd = norm2(X);
|
||||
std::cout << "************************* "<<std::endl;
|
||||
std::cout << " noise = "<<Nx<<std::endl;
|
||||
std::cout << " (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise = "<<Nz<<std::endl;
|
||||
std::cout << " MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise = "<<Ny<<std::endl;
|
||||
std::cout << " noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise = "<<Nd<<std::endl;
|
||||
std::cout << "************************* "<<std::endl;
|
||||
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
304
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
304
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
@ -0,0 +1,304 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// Generic rational approximation for ratios of operators
|
||||
/////////////////////////////////////////////////////////
|
||||
|
||||
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
|
||||
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
|
||||
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
|
||||
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{-1/(2*inv_pow)} chi\
|
||||
|
||||
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
|
||||
BIG WARNING:
|
||||
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
|
||||
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
|
||||
Thus for DWF the numerator operator is the Pauli-Villars operator
|
||||
|
||||
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
|
||||
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
|
||||
*/
|
||||
|
||||
template<class Impl>
|
||||
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef RationalActionParams Params;
|
||||
Params param;
|
||||
|
||||
MultiShiftFunction ApproxPower ; //rational approx for X^{1/inv_pow}
|
||||
MultiShiftFunction ApproxNegPower; //rational approx for X^{-1/inv_pow}
|
||||
MultiShiftFunction ApproxHalfPower; //rational approx for X^{1/(2*inv_pow)}
|
||||
MultiShiftFunction ApproxNegHalfPower; //rational approx for X^{-1/(2*inv_pow)}
|
||||
|
||||
private:
|
||||
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
Params & p
|
||||
) :
|
||||
NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||
param(p)
|
||||
{
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
|
||||
int inv_pow = param.inv_pow;
|
||||
int _2_inv_pow = 2*inv_pow;
|
||||
|
||||
// MdagM^(+- 1/inv_pow)
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/" << inv_pow << ")"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,inv_pow);
|
||||
ApproxPower.Init(remez,param.tolerance,false);
|
||||
ApproxNegPower.Init(remez,param.tolerance,true);
|
||||
|
||||
// VdagV^(+- 1/(2*inv_pow))
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/" << _2_inv_pow << ")"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,_2_inv_pow);
|
||||
ApproxHalfPower.Init(remez,param.tolerance,false);
|
||||
ApproxNegHalfPower.Init(remez,param.tolerance,true);
|
||||
};
|
||||
|
||||
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG) {
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
|
||||
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
|
||||
//
|
||||
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// General gaussian random draws from e^{x^2/(2 sig^2)} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2).
|
||||
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||
|
||||
gaussian(pRNG,eta); eta=eta*scale;
|
||||
|
||||
pickCheckerboard(Even,etaEven,eta);
|
||||
pickCheckerboard(Odd,etaOdd,eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
|
||||
// MdagM^1/(2*inv_pow) eta
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,ApproxHalfPower);
|
||||
msCG_M(MdagM,etaOdd,tmp);
|
||||
|
||||
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,ApproxNegHalfPower);
|
||||
msCG_V(VdagV,tmp,PhiOdd);
|
||||
|
||||
assert(NumOp.ConstEE() == 1);
|
||||
assert(DenOp.ConstEE() == 1);
|
||||
PhiEven = Zero();
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
// VdagV^1/(2*inv_pow) Phi
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,ApproxHalfPower);
|
||||
msCG_V(VdagV,PhiOdd,X);
|
||||
|
||||
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,ApproxNegHalfPower);
|
||||
msCG_M(MdagM,X,Y);
|
||||
|
||||
// Randomly apply rational bounds checks.
|
||||
if ( (rand()%param.BoundsCheckFreq)==0 ) {
|
||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||
gauss = PhiOdd;
|
||||
HighBoundCheck(MdagM,gauss,param.hi);
|
||||
|
||||
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.tolerance*100,MdagM,gauss,ApproxNegPower);
|
||||
}
|
||||
|
||||
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
const int n_f = ApproxNegPower.poles.size();
|
||||
const int n_pv = ApproxHalfPower.poles.size();
|
||||
|
||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||
|
||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||
|
||||
GaugeField tmp(NumOp.GaugeGrid());
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||
|
||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,ApproxHalfPower);
|
||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,ApproxNegPower);
|
||||
|
||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||
|
||||
RealD ak;
|
||||
|
||||
dSdU = Zero();
|
||||
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||
|
||||
//(1)
|
||||
for(int k=0;k<n_f;k++){
|
||||
ak = ApproxNegPower.residues[k];
|
||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||
}
|
||||
|
||||
//(2)
|
||||
//(3)
|
||||
for(int k=0;k<n_pv;k++){
|
||||
|
||||
ak = ApproxHalfPower.residues[k];
|
||||
|
||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
|
||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||
|
||||
}
|
||||
|
||||
//dSdU = Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -41,6 +41,7 @@ directory
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
|
||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||
|
||||
#endif
|
||||
|
@ -207,7 +207,7 @@ public:
|
||||
DeltaH = evolve_hmc_step(Ucopy);
|
||||
// Metropolis-Hastings test
|
||||
bool accept = true;
|
||||
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
accept = metropolis_test(DeltaH);
|
||||
} else {
|
||||
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
|
||||
|
139
tests/hmc/Test_rhmc_EOWilsonRatioPowQuarter.cc
Normal file
139
tests/hmc/Test_rhmc_EOWilsonRatioPowQuarter.cc
Normal file
@ -0,0 +1,139 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/Test_rhmc_EOWilsonRatio.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
//This test is for the Wilson action with the determinant det( M^dag M)^1/4
|
||||
//testing the generic RHMC
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
using namespace Grid;
|
||||
;
|
||||
|
||||
Grid_init(&argc, &argv);
|
||||
int threads = GridThread::GetThreads();
|
||||
// here make a routine to print all the relevant information on the run
|
||||
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
|
||||
|
||||
// Typedefs to simplify notation
|
||||
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // Uses the default minimum norm
|
||||
typedef WilsonImplR FermionImplPolicy;
|
||||
typedef WilsonFermionR FermionAction;
|
||||
typedef typename FermionAction::FermionField FermionField;
|
||||
|
||||
|
||||
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
||||
HMCWrapper TheHMC;
|
||||
|
||||
// Grid from the command line
|
||||
TheHMC.Resources.AddFourDimGrid("gauge");
|
||||
|
||||
// Checkpointer definition
|
||||
CheckpointerParameters CPparams;
|
||||
CPparams.config_prefix = "ckpoint_lat";
|
||||
CPparams.rng_prefix = "ckpoint_rng";
|
||||
CPparams.saveInterval = 5;
|
||||
CPparams.format = "IEEE64BIG";
|
||||
|
||||
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
|
||||
|
||||
RNGModuleParameters RNGpar;
|
||||
RNGpar.serial_seeds = "1 2 3 4 5";
|
||||
RNGpar.parallel_seeds = "6 7 8 9 10";
|
||||
TheHMC.Resources.SetRNGSeeds(RNGpar);
|
||||
|
||||
// Construct observables
|
||||
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
|
||||
TheHMC.Resources.AddObservable<PlaqObs>();
|
||||
//////////////////////////////////////////////
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Collect actions, here use more encapsulation
|
||||
// need wrappers of the fermionic classes
|
||||
// that have a complex construction
|
||||
// standard
|
||||
RealD beta = 5.6 ;
|
||||
WilsonGaugeActionR Waction(beta);
|
||||
|
||||
auto GridPtr = TheHMC.Resources.GetCartesian();
|
||||
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
|
||||
|
||||
// temporarily need a gauge field
|
||||
LatticeGaugeField U(GridPtr);
|
||||
|
||||
Real mass = -0.77;
|
||||
Real pv = 0.0;
|
||||
|
||||
// Can we define an overloaded operator that does not need U and initialises
|
||||
// it with zeroes?
|
||||
FermionAction DenOp(U, *GridPtr, *GridRBPtr, mass);
|
||||
FermionAction NumOp(U, *GridPtr, *GridRBPtr, pv);
|
||||
|
||||
|
||||
// 1/2+1/2 flavour
|
||||
// RationalActionParams(int _inv_pow = 2,
|
||||
// RealD _lo = 0.0,
|
||||
// RealD _hi = 1.0,
|
||||
// int _maxit = 1000,
|
||||
// RealD tol = 1.0e-8,
|
||||
// int _degree = 10,
|
||||
// int _precision = 64,
|
||||
// int _BoundsCheckFreq=20)
|
||||
|
||||
|
||||
int inv_pow = 4;
|
||||
RationalActionParams Params(inv_pow,1.0e-2,64.0,1000,1.0e-6,14,64,1);
|
||||
|
||||
GeneralEvenOddRatioRationalPseudoFermionAction<FermionImplPolicy> RHMC(NumOp,DenOp,Params);
|
||||
|
||||
// Collect actions
|
||||
ActionLevel<HMCWrapper::Field> Level1(1);
|
||||
Level1.push_back(&RHMC);
|
||||
|
||||
ActionLevel<HMCWrapper::Field> Level2(4);
|
||||
Level2.push_back(&Waction);
|
||||
|
||||
TheHMC.TheAction.push_back(Level1);
|
||||
TheHMC.TheAction.push_back(Level2);
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
// HMC parameters are serialisable
|
||||
TheHMC.Parameters.MD.MDsteps = 20;
|
||||
TheHMC.Parameters.MD.trajL = 1.0;
|
||||
|
||||
TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file
|
||||
TheHMC.Run();
|
||||
|
||||
Grid_finalize();
|
||||
|
||||
} // main
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user