1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-13 20:57:06 +01:00

Merge branch 'feature/distil' of github.com:mmphys/Grid into feature/distil

This commit is contained in:
ferben
2019-02-15 10:47:41 +00:00
6 changed files with 584 additions and 367 deletions

View File

@ -91,15 +91,131 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
R reader(filename);
O buf;
bool good;
#ifndef DEBUG
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
std::cout << std::endl;
bool good = (object == buf);
std::cout << name << " IO test: " << std::endl;
if (!good) exit(EXIT_FAILURE);
#endif
}
#ifdef DEBUG
template <typename T>
//typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
void dump_tensor(T & t)
{
using Traits = typename EigenIO::Traits<typename T::Scalar>;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::size_t * pDims ){
std::cout << " ";
for( int i = 0 ; i < t.NumDimensions + Traits::rank_non_trivial; i++ )
std::cout << "[" << pDims[i] << "]";
std::cout << " = " << c << std::endl;
} );
std::cout << "========================================" << std::endl;
}
//typedef int TestScalar;
typedef std::complex<double> TestScalar;
typedef Eigen::Tensor<iMatrix<TestScalar,1>, 6> TestTensorSingle;
typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TestTensor;
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> TestTensorFixed;
typedef std::vector<TestTensorFixed> aTestTensorFixed;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<11,3,2>> LSCTensor;
typedef Eigen::TensorFixedSize<LorentzColourMatrix, Eigen::Sizes<5,7,2>> LCMTensor;
// From Test_serialisation.cc
class ETSerClass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ETSerClass
, SpinColourVector, scv
, SpinColourMatrix, scm
, TestTensor, Critter
, TestTensorFixed, FixedCritter
, aTestTensorFixed, aFixedCritter
, LSCTensor, MyLSCTensor
, LCMTensor, MyLCMTensor
);
ETSerClass() : Critter(7,3,2), aFixedCritter(3) {}
};
bool EigenIOTest(void) {
constexpr TestScalar Inc{1,-1};
TestTensorSingle ts(1,1,1,1,1,1);
ts(0,0,0,0,0,0) = Inc * 3.1415927;
ioTest<Hdf5Writer, Hdf5Reader, TestTensorSingle>("iotest_single.h5", ts, "Singlet");
SpinColourVector scv, scv2;
scv2 = scv;
ioTest<Hdf5Writer, Hdf5Reader, SpinColourVector>("iotest_vector.h5", scv, "SpinColourVector");
SpinColourMatrix scm;
ioTest<Hdf5Writer, Hdf5Reader, SpinColourMatrix>("iotest_matrix.h5", scm, "SpinColourMatrix");
TestTensor t(6,3,2);
TestScalar Val{Inc};
for( int i = 0 ; i < t.dimension(0) ; i++)
for( int j = 0 ; j < t.dimension(1) ; j++)
for( int k = 0 ; k < t.dimension(2) ; k++) {
t(i,j,k) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, TestTensor>("iotest_tensor.h5", t, "eigen_tensor_instance_name");
std::cout << "t:";
dump_tensor(t);
// Now serialise a fixed size tensor
using FixedTensor = Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<8,4,3>>;
FixedTensor tf;
Val = Inc;
for( int i = 0 ; i < tf.dimension(0) ; i++)
for( int j = 0 ; j < tf.dimension(1) ; j++)
for( int k = 0 ; k < tf.dimension(2) ; k++) {
tf(i,j,k) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, FixedTensor>("iotest_tensor_fixed.h5", tf, "eigen_tensor_fixed_name");
std::cout << "tf:";
dump_tensor(tf);
ETSerClass o;
ioTest<Hdf5Writer, Hdf5Reader, ETSerClass>("iotest_object.h5", o, "ETSerClass_object_instance_name");
// Tensor of spin colour
LSCTensor l;
Val = 0;
for( int i = 0 ; i < l.dimension(0) ; i++)
for( int j = 0 ; j < l.dimension(1) ; j++)
for( int k = 0 ; k < l.dimension(2) ; k++)
for( int s = 0 ; s < Ns ; s++ )
for( int c = 0 ; c < Nc ; c++ )
{
l(i,j,k)()(s)(c) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, LSCTensor>("iotest_LSCTensor.h5", l, "LSCTensor_object_instance_name");
std::cout << "l:";
dump_tensor(l);
// Tensor of spin colour
LCMTensor l2;
Val = 0;
for( int i = 0 ; i < l2.dimension(0) ; i++)
for( int j = 0 ; j < l2.dimension(1) ; j++)
for( int k = 0 ; k < l2.dimension(2) ; k++)
for( int l = 0 ; l < Ns ; l++ )
for( int c = 0 ; c < Nc ; c++ )
for( int c2 = 0 ; c2 < Nc ; c2++ )
{
l2(i,j,k)(l)()(c,c2) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, LCMTensor>("iotest_LCMTensor.h5", l2, "LCMTensor_object_instance_name");
std::cout << "Wow!" << std::endl;
return true;
}
#endif
template <typename T>
void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
{
@ -121,12 +237,13 @@ void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
int main(int argc,char **argv)
{
Grid_init(&argc,&argv);
std::cout << std::boolalpha << "==== basic IO" << std::endl; // display true / false for boolean
#ifndef DEBUG
GridSerialRNG rng;
rng.SeedFixedIntegers(std::vector<int>({42,10,81,9}));
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml");
// test basic type writing
@ -160,8 +277,8 @@ int main(int argc,char **argv)
std::cout << "-- serialisable class writing to std::cout:" << std::endl;
std::cout << obj << std::endl;
std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[0] == obj: " << (vec[0] == obj) << std::endl;
std::cout << "vec[1] == obj: " << (vec[1] == obj) << std::endl;
std::cout << "-- pair writing to std::cout:" << std::endl;
std::cout << pair << std::endl;
@ -227,4 +344,8 @@ int main(int argc,char **argv)
tensorConvTest(rng, ColourVector);
tensorConvTest(rng, SpinMatrix);
tensorConvTest(rng, SpinVector);
#elif HAVE_HDF5
if(! EigenIOTest() ) exit(EXIT_FAILURE);
#endif
Grid_finalize();
}

View File

@ -466,153 +466,62 @@ bool DebugEigenTest()
return true;
}
template <typename W, typename R, typename O>
bool ioTest(const std::string &filename, const O &object, const std::string &name)
{
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
write(writer, "testobject", object);
}
/*R reader(filename);
O buf;
bool good;
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
std::cout << std::endl;
return good;*/
return true;
}
//typedef int TestScalar;
typedef std::complex<double> TestScalar;
typedef Eigen::Tensor<TestScalar, 3> TestTensor;
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>> TestTensorFixed;
typedef std::vector<TestTensorFixed> aTestTensorFixed;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<11,3,2>> LSCTensor;
typedef Eigen::TensorFixedSize<LorentzColourMatrix, Eigen::Sizes<5,7,2>> LCMTensor;
// From Test_serialisation.cc
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass
, SpinColourVector, scv
, SpinColourMatrix, scm
, TestTensor, Critter
, TestTensorFixed, FixedCritter
, aTestTensorFixed, aFixedCritter
, LSCTensor, MyLSCTensor
, LCMTensor, MyLCMTensor
);
myclass() : Critter(7,3,2), aFixedCritter(3) {}
};
bool DebugIOTest(void) {
SpinColourVector scv, scv2;
scv2 = scv;
ioTest<Hdf5Writer, Hdf5Reader, SpinColourVector>("iotest_vector.h5", scv, "SpinColourVector");
SpinColourMatrix scm;
ioTest<Hdf5Writer, Hdf5Reader, SpinColourMatrix>("iotest_matrix.h5", scm, "SpinColourMatrix");
constexpr TestScalar Inc{1,-1};
TestTensor t(3,6,2);
TestScalar Val{Inc};
for( int i = 0 ; i < t.dimension(0) ; i++)
for( int j = 0 ; j < t.dimension(1) ; j++)
for( int k = 0 ; k < t.dimension(2) ; k++) {
t(i,j,k) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, TestTensor>("iotest_tensor.h5", t, "eigen_tensor_instance_name");
// Now serialise a fixed size tensor
using FixedTensor = Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<8,4,3>>;
FixedTensor tf;
Val = Inc;
for( int i = 0 ; i < tf.dimension(0) ; i++)
for( int j = 0 ; j < tf.dimension(1) ; j++)
for( int k = 0 ; k < tf.dimension(2) ; k++) {
tf(i,j,k) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, FixedTensor>("iotest_tensor_fixed.h5", tf, "eigen_tensor_fixed_name");
myclass o;
ioTest<Hdf5Writer, Hdf5Reader, myclass>("iotest_object.h5", o, "myclass_object_instance_name");
// Tensor of spin colour
LSCTensor l;
Val = 0;
for( int i = 0 ; i < l.dimension(0) ; i++)
for( int j = 0 ; j < l.dimension(1) ; j++)
for( int k = 0 ; k < l.dimension(2) ; k++)
for( int s = 0 ; s < Ns ; s++ )
for( int c = 0 ; c < Nc ; c++ )
{
l(i,j,k)()(s)(c) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, LSCTensor>("iotest_LSCTensor.h5", l, "LSCTensor_object_instance_name");
// Tensor of spin colour
LCMTensor l2;
Val = 0;
for( int i = 0 ; i < l2.dimension(0) ; i++)
for( int j = 0 ; j < l2.dimension(1) ; j++)
for( int k = 0 ; k < l2.dimension(2) ; k++)
for( int l = 0 ; l < Ns ; l++ )
for( int c = 0 ; c < Nc ; c++ )
for( int c2 = 0 ; c2 < Nc ; c2++ )
{
l2(i,j,k)(l)()(c,c2) = Val;
Val += Inc;
}
ioTest<Hdf5Writer, Hdf5Reader, LCMTensor>("iotest_LCMTensor.h5", l2, "LCMTensor_object_instance_name");
std::cout << "Wow!" << std::endl;
return true;
}
//template <typename T> ReallyIsGridTensor struct {
//false_type;
//}
/*template<typename T>
struct GridSize : public std::integral_constant<std::size_t, 0> {};
template<typename T>
struct GridRank<iScalar<T>> : public std::integral_constant<std::size_t, rank<T>::value + 1> {};
template<class T, std::size_t N>
struct rank<T[N]> : public std::integral_constant<std::size_t, rank<T>::value + 1> {};
*/
template <typename T>
void DebugGridTensorTest_print( int i )
{
std::cout << i << " : " << is_grid_tensor<T>::value
<< ", depth " << grid_tensor_att<T>::depth
<< ", rank " << grid_tensor_att<T>::rank
<< ", rank_non_trivial " << grid_tensor_att<T>::rank_non_trivial
<< ", count " << grid_tensor_att<T>::count
<< ", scalar_size " << grid_tensor_att<T>::scalar_size
<< ", size " << grid_tensor_att<T>::size
std::cout << i << " : " << EigenIO::is_tensor<T>::value
<< ", depth " << EigenIO::Traits<T>::depth
<< ", rank " << EigenIO::Traits<T>::rank
<< ", rank_non_trivial " << EigenIO::Traits<T>::rank_non_trivial
<< ", count " << EigenIO::Traits<T>::count
<< ", scalar_size " << EigenIO::Traits<T>::scalar_size
<< ", size " << EigenIO::Traits<T>::size
<< std::endl;
}
// begin() and end() are the minimum necessary to support range-for loops
// should really turn this into an iterator ...
template<typename T, int N>
class TestObject {
public:
using value_type = T;
private:
value_type * m_p;
public:
TestObject() {
m_p = reinterpret_cast<value_type *>(std::malloc(N * sizeof(value_type)));
}
~TestObject() { std::free(m_p); }
inline value_type * begin(void) { return m_p; }
inline value_type * end(void) { return m_p + N; }
};
bool DebugFelixTensorTest( void )
{
unsigned int Nmom = 2;
unsigned int Nt = 2;
unsigned int N_1 = 2;
unsigned int N_2 = 2;
unsigned int N_3 = 2;
using BaryonTensorSet = Eigen::Tensor<Complex, 6, Eigen::RowMajor>;
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
std::vector<Complex> Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2);
using BaryonTensorMap = Eigen::TensorMap<BaryonTensorSet>;
BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3);
return true;
}
bool DebugGridTensorTest( void )
{
DebugFelixTensorTest();
typedef Complex t1;
typedef iScalar<t1> t2;
typedef iVector<t1, Ns> t3;
typedef iMatrix<t1, Nc> t4;
typedef iVector<iMatrix<t1,1>,4> t5;
typedef iScalar<t5> t6;
typedef iMatrix<iVector<iScalar<iMatrix<t6, 1>>,2>,7> t7;
typedef iMatrix<t6, 3> t7;
typedef iMatrix<iVector<iScalar<t7>,4>,2> t8;
int i = 1;
DebugGridTensorTest_print<t1>( i++ );
DebugGridTensorTest_print<t2>( i++ );
@ -621,6 +530,27 @@ bool DebugGridTensorTest( void )
DebugGridTensorTest_print<t5>( i++ );
DebugGridTensorTest_print<t6>( i++ );
DebugGridTensorTest_print<t7>( i++ );
DebugGridTensorTest_print<t8>( i++ );
//using TOC7 = TestObject<std::complex<double>, 7>;
using TOC7 = t7;
TOC7 toc7;
constexpr std::complex<double> Inc{1,-1};
std::complex<double> Start{Inc};
for( auto &x : toc7 ) {
x = Start;
Start += Inc;
}
i = 0;
for( auto x : toc7 ) std::cout << "toc7[" << i++ << "] = " << x << std::endl;
t2 o2;
auto a2 = TensorRemove(o2);
//t3 o3;
//t4 o4;
//auto a3 = TensorRemove(o3);
//auto a4 = TensorRemove(o4);
return true;
}
#endif
@ -629,11 +559,14 @@ int main(int argc, char *argv[])
{
#ifdef DEBUG
// Debug only - test of Eigen::Tensor
std::cout << "sizeof(std::streamsize) = " << sizeof(std::streamsize) << std::endl;
std::cout << "sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl;
std::cout << "sizeof(int) = " << sizeof(int)
<< ", sizeof(long) = " << sizeof(long)
<< ", sizeof(size_t) = " << sizeof(size_t)
<< ", sizeof(std::size_t) = " << sizeof(std::size_t)
<< ", sizeof(std::streamsize) = " << sizeof(std::streamsize)
<< ", sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl;
//if( DebugEigenTest() ) return 0;
if(DebugGridTensorTest()) return 0;
//if(DebugIOTest()) return 0;
#endif
// Decode command-line parameters. 1st one is which test to run