mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Merge branch 'feature/hadrons' into feature/hadrons-new-memory-model
This commit is contained in:
		@@ -1,6 +1,6 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/Algorithms.h
 | 
			
		||||
 | 
			
		||||
@@ -37,6 +37,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/algorithms/approx/Chebyshev.h>
 | 
			
		||||
#include <Grid/algorithms/approx/Remez.h>
 | 
			
		||||
#include <Grid/algorithms/approx/MultiShiftFunction.h>
 | 
			
		||||
#include <Grid/algorithms/approx/Forecast.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateResidual.h>
 | 
			
		||||
@@ -44,30 +45,16 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
			
		||||
 | 
			
		||||
// Lanczos support
 | 
			
		||||
//#include <Grid/algorithms/iterative/MatrixUtils.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/FFT.h>
 | 
			
		||||
 | 
			
		||||
// Eigen/lanczos
 | 
			
		||||
// EigCg
 | 
			
		||||
// MCR
 | 
			
		||||
// Pcg
 | 
			
		||||
// Multishift CG
 | 
			
		||||
// Hdcg
 | 
			
		||||
// GCR
 | 
			
		||||
// etc..
 | 
			
		||||
 | 
			
		||||
// integrator/Leapfrog
 | 
			
		||||
// integrator/Omelyan
 | 
			
		||||
// integrator/ForceGradient
 | 
			
		||||
 | 
			
		||||
// montecarlo/hmc
 | 
			
		||||
// montecarlo/rhmc
 | 
			
		||||
// montecarlo/metropolis
 | 
			
		||||
// etc...
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -230,6 +230,7 @@ namespace Grid {
 | 
			
		||||
      // Barrel shift and collect global pencil
 | 
			
		||||
      std::vector<int> lcoor(Nd), gcoor(Nd);
 | 
			
		||||
      result = source;
 | 
			
		||||
      int pc = processor_coor[dim];
 | 
			
		||||
      for(int p=0;p<processors[dim];p++) {
 | 
			
		||||
        PARALLEL_REGION
 | 
			
		||||
        {
 | 
			
		||||
@@ -240,7 +241,8 @@ namespace Grid {
 | 
			
		||||
          for(int idx=0;idx<sgrid->lSites();idx++) {
 | 
			
		||||
            sgrid->LocalIndexToLocalCoor(idx,cbuf);
 | 
			
		||||
            peekLocalSite(s,result,cbuf);
 | 
			
		||||
            cbuf[dim]+=p*L;
 | 
			
		||||
	    cbuf[dim]+=((pc+p) % processors[dim])*L;
 | 
			
		||||
	    //            cbuf[dim]+=p*L;
 | 
			
		||||
            pokeLocalSite(s,pgbuf,cbuf);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
@@ -278,7 +280,6 @@ namespace Grid {
 | 
			
		||||
      flops+= flops_call*NN;
 | 
			
		||||
      
 | 
			
		||||
      // writing out result
 | 
			
		||||
      int pc = processor_coor[dim];
 | 
			
		||||
      PARALLEL_REGION
 | 
			
		||||
      {
 | 
			
		||||
        std::vector<int> clbuf(Nd), cgbuf(Nd);
 | 
			
		||||
 
 | 
			
		||||
@@ -162,15 +162,10 @@ namespace Grid {
 | 
			
		||||
	_Mat.M(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	ComplexD dot;
 | 
			
		||||
 | 
			
		||||
	_Mat.M(in,out);
 | 
			
		||||
	
 | 
			
		||||
	dot= innerProduct(in,out);
 | 
			
		||||
	n1=real(dot);
 | 
			
		||||
 | 
			
		||||
	dot = innerProduct(out,out);
 | 
			
		||||
	n2=real(dot);
 | 
			
		||||
	ComplexD dot= innerProduct(in,out); n1=real(dot);
 | 
			
		||||
	n2=norm2(out);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOp(const Field &in, Field &out){
 | 
			
		||||
	_Mat.M(in,out);
 | 
			
		||||
@@ -192,10 +187,10 @@ namespace Grid {
 | 
			
		||||
	ni=Mpc(in,tmp);
 | 
			
		||||
	no=MpcDag(tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
      virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	MpcDagMpc(in,out,n1,n2);
 | 
			
		||||
      }
 | 
			
		||||
      void HermOp(const Field &in, Field &out){
 | 
			
		||||
      virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
	RealD n1,n2;
 | 
			
		||||
	HermOpAndNorm(in,out,n1,n2);
 | 
			
		||||
      }
 | 
			
		||||
@@ -212,7 +207,6 @@ namespace Grid {
 | 
			
		||||
      void OpDir  (const Field &in, Field &out,int dir,int disp) {
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurDiagMooeeOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
@@ -270,7 +264,6 @@ namespace Grid {
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurDiagTwoOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
@@ -299,6 +292,45 @@ namespace Grid {
 | 
			
		||||
	return axpy_norm(out,-1.0,tmp,in);
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Left  handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta  -->  ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
 | 
			
		||||
    // Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta  -->  ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
 | 
			
		||||
    template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //  Staggered use
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    template<class Matrix,class Field>
 | 
			
		||||
      class SchurStaggeredOperator :  public SchurOperatorBase<Field> {
 | 
			
		||||
    protected:
 | 
			
		||||
      Matrix &_Mat;
 | 
			
		||||
    public:
 | 
			
		||||
      SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
 | 
			
		||||
      virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
	n2 = Mpc(in,out);
 | 
			
		||||
	ComplexD dot= innerProduct(in,out);
 | 
			
		||||
	n1 = real(dot);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void HermOp(const Field &in, Field &out){
 | 
			
		||||
	Mpc(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD Mpc      (const Field &in, Field &out) {
 | 
			
		||||
	Field tmp(in._grid);
 | 
			
		||||
	_Mat.Meooe(in,tmp);
 | 
			
		||||
	_Mat.MooeeInv(tmp,out);
 | 
			
		||||
	_Mat.MeooeDag(out,tmp);
 | 
			
		||||
	_Mat.Mooee(in,out);
 | 
			
		||||
        return axpy_norm(out,-1.0,tmp,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual  RealD MpcDag   (const Field &in, Field &out){
 | 
			
		||||
	return Mpc(in,out);
 | 
			
		||||
      }
 | 
			
		||||
      virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
 | 
			
		||||
	assert(0);// Never need with staggered
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
    template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -8,6 +8,7 @@
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
@@ -193,6 +194,47 @@ namespace Grid {
 | 
			
		||||
      return sum;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    RealD approxD(RealD x)
 | 
			
		||||
    {
 | 
			
		||||
      RealD Un;
 | 
			
		||||
      RealD Unm;
 | 
			
		||||
      RealD Unp;
 | 
			
		||||
      
 | 
			
		||||
      RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
 | 
			
		||||
      
 | 
			
		||||
      RealD U0=1;
 | 
			
		||||
      RealD U1=2*y;
 | 
			
		||||
      
 | 
			
		||||
      RealD sum;
 | 
			
		||||
      sum = Coeffs[1]*U0;
 | 
			
		||||
      sum+= Coeffs[2]*U1*2.0;
 | 
			
		||||
      
 | 
			
		||||
      Un =U1;
 | 
			
		||||
      Unm=U0;
 | 
			
		||||
      for(int i=2;i<order-1;i++){
 | 
			
		||||
	Unp=2*y*Un-Unm;
 | 
			
		||||
	Unm=Un;
 | 
			
		||||
	Un =Unp;
 | 
			
		||||
	sum+= Un*Coeffs[i+1]*(i+1.0);
 | 
			
		||||
      }
 | 
			
		||||
      return sum/(0.5*(hi-lo));
 | 
			
		||||
    };
 | 
			
		||||
    
 | 
			
		||||
    RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
 | 
			
		||||
      RealD x = x0;
 | 
			
		||||
      RealD eps;
 | 
			
		||||
      
 | 
			
		||||
      int i;
 | 
			
		||||
      for (i=0;i<maxiter;i++) {
 | 
			
		||||
	eps = approx(x) - z;
 | 
			
		||||
	if (fabs(eps / z) < resid)
 | 
			
		||||
	  return x;
 | 
			
		||||
	x = x - eps / approxD(x);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      return std::numeric_limits<double>::quiet_NaN();
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // Implement the required interface
 | 
			
		||||
    void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										152
									
								
								lib/algorithms/approx/Forecast.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										152
									
								
								lib/algorithms/approx/Forecast.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,152 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/approx/Forecast.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#ifndef INCLUDED_FORECAST_H
 | 
			
		||||
#define INCLUDED_FORECAST_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  // Abstract base class.
 | 
			
		||||
  // Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
 | 
			
		||||
  // and returns a forecasted solution to the system D*psi = phi (psi).
 | 
			
		||||
  template<class Matrix, class Field>
 | 
			
		||||
  class Forecast
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
 | 
			
		||||
  // used to forecast solutions across poles of the EOFA heatbath.
 | 
			
		||||
  //
 | 
			
		||||
  // Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
 | 
			
		||||
  template<class Matrix, class Field>
 | 
			
		||||
  class ChronoForecast : public Forecast<Matrix,Field>
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
 | 
			
		||||
      {
 | 
			
		||||
        int degree = prev_solns.size();
 | 
			
		||||
        Field chi(phi); // forecasted solution
 | 
			
		||||
 | 
			
		||||
        // Trivial cases
 | 
			
		||||
        if(degree == 0){ chi = zero; return chi; }
 | 
			
		||||
        else if(degree == 1){ return prev_solns[0]; }
 | 
			
		||||
 | 
			
		||||
        RealD dot;
 | 
			
		||||
        ComplexD xp;
 | 
			
		||||
        Field r(phi); // residual
 | 
			
		||||
        Field Mv(phi);
 | 
			
		||||
        std::vector<Field> v(prev_solns); // orthonormalized previous solutions
 | 
			
		||||
        std::vector<Field> MdagMv(degree,phi);
 | 
			
		||||
 | 
			
		||||
        // Array to hold the matrix elements
 | 
			
		||||
        std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
 | 
			
		||||
 | 
			
		||||
        // Solution and source vectors
 | 
			
		||||
        std::vector<ComplexD> a(degree);
 | 
			
		||||
        std::vector<ComplexD> b(degree);
 | 
			
		||||
 | 
			
		||||
        // Orthonormalize the vector basis
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
          v[i] *= 1.0/std::sqrt(norm2(v[i]));
 | 
			
		||||
          for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Perform sparse matrix multiplication and construct rhs
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
          b[i] = innerProduct(v[i],phi);
 | 
			
		||||
          Mat.M(v[i],Mv);
 | 
			
		||||
          Mat.Mdag(Mv,MdagMv[i]);
 | 
			
		||||
          G[i][i] = innerProduct(v[i],MdagMv[i]);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Construct the matrix
 | 
			
		||||
        for(int j=0; j<degree; j++){
 | 
			
		||||
        for(int k=j+1; k<degree; k++){
 | 
			
		||||
          G[j][k] = innerProduct(v[j],MdagMv[k]);
 | 
			
		||||
          G[k][j] = std::conj(G[j][k]);
 | 
			
		||||
        }}
 | 
			
		||||
 | 
			
		||||
        // Gauss-Jordan elimination with partial pivoting
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
 | 
			
		||||
          // Perform partial pivoting
 | 
			
		||||
          int k = i;
 | 
			
		||||
          for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
 | 
			
		||||
          if(k != i){
 | 
			
		||||
            xp = b[k];
 | 
			
		||||
            b[k] = b[i];
 | 
			
		||||
            b[i] = xp;
 | 
			
		||||
            for(int j=0; j<degree; j++){
 | 
			
		||||
              xp = G[k][j];
 | 
			
		||||
              G[k][j] = G[i][j];
 | 
			
		||||
              G[i][j] = xp;
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          // Convert matrix to upper triangular form
 | 
			
		||||
          for(int j=i+1; j<degree; j++){
 | 
			
		||||
            xp = G[j][i]/G[i][i];
 | 
			
		||||
            b[j] -= xp * b[i];
 | 
			
		||||
            for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Use Gaussian elimination to solve equations and calculate initial guess
 | 
			
		||||
        chi = zero;
 | 
			
		||||
        r = phi;
 | 
			
		||||
        for(int i=degree-1; i>=0; i--){
 | 
			
		||||
          a[i] = 0.0;
 | 
			
		||||
          for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
 | 
			
		||||
          a[i] = (b[i]-a[i])/G[i][i];
 | 
			
		||||
          chi += a[i]*v[i];
 | 
			
		||||
          r -= a[i]*MdagMv[i];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        RealD true_r(0.0);
 | 
			
		||||
        ComplexD tmp;
 | 
			
		||||
        for(int i=0; i<degree; i++){
 | 
			
		||||
          tmp = -b[i];
 | 
			
		||||
          for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
 | 
			
		||||
          tmp = std::conj(tmp)*tmp;
 | 
			
		||||
          true_r += std::sqrt(tmp.real());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        RealD error = std::sqrt(norm2(r)/norm2(phi));
 | 
			
		||||
        std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
 | 
			
		||||
 | 
			
		||||
        return chi;
 | 
			
		||||
      };
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -87,15 +87,22 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Cholesky from Eigen
 | 
			
		||||
  // There exists a ldlt that is documented as more stable
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
  // Force manifest hermitian to avoid rounding related
 | 
			
		||||
  m_rr = 0.5*(m_rr+m_rr.adjoint());
 | 
			
		||||
 | 
			
		||||
#if 0
 | 
			
		||||
  std::cout << " Calling Cholesky  ldlt on m_rr "  << m_rr <<std::endl;
 | 
			
		||||
  Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL(); 
 | 
			
		||||
  std::cout << " Called Cholesky  ldlt on m_rr "  << L_ldlt <<std::endl;
 | 
			
		||||
  auto  D_ldlt = m_rr.ldlt().vectorD(); 
 | 
			
		||||
  std::cout << " Called Cholesky  ldlt on m_rr "  << D_ldlt <<std::endl;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
  //  std::cout << " Calling Cholesky  llt on m_rr "  <<std::endl;
 | 
			
		||||
  Eigen::MatrixXcd L    = m_rr.llt().matrixL(); 
 | 
			
		||||
  //  std::cout << " Called Cholesky  llt on m_rr "  << L <<std::endl;
 | 
			
		||||
  C    = L.adjoint();
 | 
			
		||||
  Cinv = C.inverse();
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Q = R C^{-1}
 | 
			
		||||
  //
 | 
			
		||||
@@ -103,7 +110,6 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
 | 
			
		||||
  //
 | 
			
		||||
  // NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // FIXME:: make a sliceMulMatrix to avoid zero vector
 | 
			
		||||
  sliceMulMatrix(Q,Cinv,R,Orthog);
 | 
			
		||||
}
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,753 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
 | 
			
		||||
Author: Christoph Lehner <clehner@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_BIRL_H
 | 
			
		||||
#define GRID_BIRL_H
 | 
			
		||||
 | 
			
		||||
#include <string.h> //memset
 | 
			
		||||
 | 
			
		||||
#include <zlib.h>
 | 
			
		||||
#include <sys/stat.h>
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
// Implicitly restarted lanczos
 | 
			
		||||
/////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
 template<class Field> 
 | 
			
		||||
 class BlockImplicitlyRestartedLanczos {
 | 
			
		||||
 | 
			
		||||
    const RealD small = 1.0e-16;
 | 
			
		||||
public:       
 | 
			
		||||
    int lock;
 | 
			
		||||
    int get;
 | 
			
		||||
    int Niter;
 | 
			
		||||
    int converged;
 | 
			
		||||
 | 
			
		||||
    int Nminres; // Minimum number of restarts; only check for convergence after
 | 
			
		||||
    int Nstop;   // Number of evecs checked for convergence
 | 
			
		||||
    int Nk;      // Number of converged sought
 | 
			
		||||
    int Np;      // Np -- Number of spare vecs in kryloc space
 | 
			
		||||
    int Nm;      // Nm -- total number of vectors
 | 
			
		||||
 | 
			
		||||
    int orth_period;
 | 
			
		||||
 | 
			
		||||
    RealD OrthoTime;
 | 
			
		||||
 | 
			
		||||
    RealD eresid, betastp;
 | 
			
		||||
    SortEigen<Field> _sort;
 | 
			
		||||
    LinearFunction<Field> &_HermOp;
 | 
			
		||||
    LinearFunction<Field> &_HermOpTest;
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
    // Constructor
 | 
			
		||||
    /////////////////////////
 | 
			
		||||
 | 
			
		||||
    BlockImplicitlyRestartedLanczos(
 | 
			
		||||
			       LinearFunction<Field> & HermOp,
 | 
			
		||||
			       LinearFunction<Field> & HermOpTest,
 | 
			
		||||
			       int _Nstop, // sought vecs
 | 
			
		||||
			       int _Nk, // sought vecs
 | 
			
		||||
			       int _Nm, // spare vecs
 | 
			
		||||
			       RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			       RealD _betastp, // if beta(k) < betastp: converged
 | 
			
		||||
			       int _Niter, // Max iterations
 | 
			
		||||
			       int _Nminres, int _orth_period = 1) :
 | 
			
		||||
      _HermOp(HermOp),
 | 
			
		||||
      _HermOpTest(HermOpTest),
 | 
			
		||||
      Nstop(_Nstop),
 | 
			
		||||
      Nk(_Nk),
 | 
			
		||||
      Nm(_Nm),
 | 
			
		||||
      eresid(_eresid),
 | 
			
		||||
      betastp(_betastp),
 | 
			
		||||
      Niter(_Niter),
 | 
			
		||||
	Nminres(_Nminres),
 | 
			
		||||
	orth_period(_orth_period)
 | 
			
		||||
    { 
 | 
			
		||||
      Np = Nm-Nk; assert(Np>0);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    BlockImplicitlyRestartedLanczos(
 | 
			
		||||
			       LinearFunction<Field> & HermOp,
 | 
			
		||||
			       LinearFunction<Field> & HermOpTest,
 | 
			
		||||
			       int _Nk, // sought vecs
 | 
			
		||||
			       int _Nm, // spare vecs
 | 
			
		||||
			       RealD _eresid, // resid in lmdue deficit 
 | 
			
		||||
			       RealD _betastp, // if beta(k) < betastp: converged
 | 
			
		||||
			       int _Niter, // Max iterations
 | 
			
		||||
			       int _Nminres,
 | 
			
		||||
			       int _orth_period = 1) : 
 | 
			
		||||
      _HermOp(HermOp),
 | 
			
		||||
      _HermOpTest(HermOpTest),
 | 
			
		||||
      Nstop(_Nk),
 | 
			
		||||
      Nk(_Nk),
 | 
			
		||||
      Nm(_Nm),
 | 
			
		||||
      eresid(_eresid),
 | 
			
		||||
      betastp(_betastp),
 | 
			
		||||
      Niter(_Niter),
 | 
			
		||||
	Nminres(_Nminres),
 | 
			
		||||
	orth_period(_orth_period)
 | 
			
		||||
    { 
 | 
			
		||||
      Np = Nm-Nk; assert(Np>0);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/* Saad PP. 195
 | 
			
		||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
 | 
			
		||||
2. For k = 1,2,...,m Do:
 | 
			
		||||
3. wk:=Avk−βkv_{k−1}      
 | 
			
		||||
4. αk:=(wk,vk)       // 
 | 
			
		||||
5. wk:=wk−αkvk       // wk orthog vk 
 | 
			
		||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
 | 
			
		||||
7. vk+1 := wk/βk+1
 | 
			
		||||
8. EndDo
 | 
			
		||||
 */
 | 
			
		||||
    void step(std::vector<RealD>& lmd,
 | 
			
		||||
	      std::vector<RealD>& lme, 
 | 
			
		||||
	      BasisFieldVector<Field>& evec,
 | 
			
		||||
	      Field& w,int Nm,int k)
 | 
			
		||||
    {
 | 
			
		||||
      assert( k< Nm );
 | 
			
		||||
 | 
			
		||||
      GridStopWatch gsw_op,gsw_o;
 | 
			
		||||
 | 
			
		||||
      Field& evec_k = evec[k];
 | 
			
		||||
 | 
			
		||||
      gsw_op.Start();
 | 
			
		||||
      _HermOp(evec_k,w);
 | 
			
		||||
      gsw_op.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k>0){
 | 
			
		||||
	w -= lme[k-1] * evec[k-1];
 | 
			
		||||
      }    
 | 
			
		||||
 | 
			
		||||
      ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
 | 
			
		||||
      RealD     alph = real(zalph);
 | 
			
		||||
 | 
			
		||||
      w = w - alph * evec_k;// 5. wk:=wk−αkvk
 | 
			
		||||
 | 
			
		||||
      RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
 | 
			
		||||
                                 // 7. vk+1 := wk/βk+1
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
 | 
			
		||||
      const RealD tiny = 1.0e-20;
 | 
			
		||||
      if ( beta < tiny ) { 
 | 
			
		||||
	std::cout<<GridLogMessage << " beta is tiny "<<beta<<std::endl;
 | 
			
		||||
     }
 | 
			
		||||
      lmd[k] = alph;
 | 
			
		||||
      lme[k]  = beta;
 | 
			
		||||
 | 
			
		||||
      gsw_o.Start();
 | 
			
		||||
      if (k>0 && k % orth_period == 0) { 
 | 
			
		||||
	orthogonalize(w,evec,k); // orthonormalise
 | 
			
		||||
      }
 | 
			
		||||
      gsw_o.Stop();
 | 
			
		||||
 | 
			
		||||
      if(k < Nm-1) { 
 | 
			
		||||
	evec[k+1] = w;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() <<
 | 
			
		||||
	" orth=" << gsw_o.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void qr_decomp(std::vector<RealD>& lmd,
 | 
			
		||||
		   std::vector<RealD>& lme,
 | 
			
		||||
		   int Nk,
 | 
			
		||||
		   int Nm,
 | 
			
		||||
		   std::vector<RealD>& Qt,
 | 
			
		||||
		   RealD Dsh, 
 | 
			
		||||
		   int kmin,
 | 
			
		||||
		   int kmax)
 | 
			
		||||
    {
 | 
			
		||||
      int k = kmin-1;
 | 
			
		||||
      RealD x;
 | 
			
		||||
 | 
			
		||||
      RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
 | 
			
		||||
      RealD c = ( lmd[k] -Dsh) *Fden;
 | 
			
		||||
      RealD s = -lme[k] *Fden;
 | 
			
		||||
      
 | 
			
		||||
      RealD tmpa1 = lmd[k];
 | 
			
		||||
      RealD tmpa2 = lmd[k+1];
 | 
			
		||||
      RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
      lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
      lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
      lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
      x        =-s*lme[k+1];
 | 
			
		||||
      lme[k+1] = c*lme[k+1];
 | 
			
		||||
      
 | 
			
		||||
      for(int i=0; i<Nk; ++i){
 | 
			
		||||
	RealD Qtmp1 = Qt[i+Nm*k  ];
 | 
			
		||||
	RealD Qtmp2 = Qt[i+Nm*(k+1)];
 | 
			
		||||
	Qt[i+Nm*k    ] = c*Qtmp1 - s*Qtmp2;
 | 
			
		||||
	Qt[i+Nm*(k+1)] = s*Qtmp1 + c*Qtmp2; 
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Givens transformations
 | 
			
		||||
      for(int k = kmin; k < kmax-1; ++k){
 | 
			
		||||
 | 
			
		||||
	RealD Fden = 1.0/hypot(x,lme[k-1]);
 | 
			
		||||
	RealD c = lme[k-1]*Fden;
 | 
			
		||||
	RealD s = - x*Fden;
 | 
			
		||||
	
 | 
			
		||||
	RealD tmpa1 = lmd[k];
 | 
			
		||||
	RealD tmpa2 = lmd[k+1];
 | 
			
		||||
	RealD tmpb  = lme[k];
 | 
			
		||||
 | 
			
		||||
	lmd[k]   = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
 | 
			
		||||
	lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
 | 
			
		||||
	lme[k]   = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
 | 
			
		||||
	lme[k-1] = c*lme[k-1] -s*x;
 | 
			
		||||
 | 
			
		||||
	if(k != kmax-2){
 | 
			
		||||
	  x = -s*lme[k+1];
 | 
			
		||||
	  lme[k+1] = c*lme[k+1];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for(int i=0; i<Nk; ++i){
 | 
			
		||||
	  RealD Qtmp1 = Qt[i+Nm*k    ];
 | 
			
		||||
	  RealD Qtmp2 = Qt[i+Nm*(k+1)];
 | 
			
		||||
	  Qt[i+Nm*k    ] = c*Qtmp1 -s*Qtmp2;
 | 
			
		||||
	  Qt[i+Nm*(k+1)] = s*Qtmp1 +c*Qtmp2;
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK_IRL
 | 
			
		||||
#define LAPACK_INT int
 | 
			
		||||
//long long
 | 
			
		||||
    void diagonalize_lapack(std::vector<RealD>& lmd,
 | 
			
		||||
			    std::vector<RealD>& lme, 
 | 
			
		||||
			    int N1,
 | 
			
		||||
			    int N2,
 | 
			
		||||
			    std::vector<RealD>& Qt,
 | 
			
		||||
			    GridBase *grid){
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "diagonalize_lapack start\n";
 | 
			
		||||
      GridStopWatch gsw;
 | 
			
		||||
 | 
			
		||||
      const int size = Nm;
 | 
			
		||||
      //  tevals.resize(size);
 | 
			
		||||
      //  tevecs.resize(size);
 | 
			
		||||
      LAPACK_INT NN = N1;
 | 
			
		||||
      std::vector<double> evals_tmp(NN);
 | 
			
		||||
      std::vector<double> evec_tmp(NN*NN);
 | 
			
		||||
      memset(&evec_tmp[0],0,sizeof(double)*NN*NN);
 | 
			
		||||
      //  double AA[NN][NN];
 | 
			
		||||
      std::vector<double> DD(NN);
 | 
			
		||||
      std::vector<double> EE(NN);
 | 
			
		||||
      for (int i = 0; i< NN; i++)
 | 
			
		||||
	for (int j = i - 1; j <= i + 1; j++)
 | 
			
		||||
	  if ( j < NN && j >= 0 ) {
 | 
			
		||||
	    if (i==j) DD[i] = lmd[i];
 | 
			
		||||
	    if (i==j) evals_tmp[i] = lmd[i];
 | 
			
		||||
	    if (j==(i-1)) EE[j] = lme[j];
 | 
			
		||||
	  }
 | 
			
		||||
      LAPACK_INT evals_found;
 | 
			
		||||
      LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
 | 
			
		||||
      LAPACK_INT liwork =  3+NN*10 ;
 | 
			
		||||
      std::vector<LAPACK_INT> iwork(liwork);
 | 
			
		||||
      std::vector<double> work(lwork);
 | 
			
		||||
      std::vector<LAPACK_INT> isuppz(2*NN);
 | 
			
		||||
      char jobz = 'V'; // calculate evals & evecs
 | 
			
		||||
      char range = 'I'; // calculate all evals
 | 
			
		||||
      //    char range = 'A'; // calculate all evals
 | 
			
		||||
      char uplo = 'U'; // refer to upper half of original matrix
 | 
			
		||||
      char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
 | 
			
		||||
      std::vector<int> ifail(NN);
 | 
			
		||||
      LAPACK_INT info;
 | 
			
		||||
      //  int total = QMP_get_number_of_nodes();
 | 
			
		||||
      //  int node = QMP_get_node_number();
 | 
			
		||||
      //  GridBase *grid = evec[0]._grid;
 | 
			
		||||
      int total = grid->_Nprocessors;
 | 
			
		||||
      int node = grid->_processor;
 | 
			
		||||
      int interval = (NN/total)+1;
 | 
			
		||||
      double vl = 0.0, vu = 0.0;
 | 
			
		||||
      LAPACK_INT il = interval*node+1 , iu = interval*(node+1);
 | 
			
		||||
      if (iu > NN)  iu=NN;
 | 
			
		||||
      double tol = 0.0;
 | 
			
		||||
      if (1) {
 | 
			
		||||
	memset(&evals_tmp[0],0,sizeof(double)*NN);
 | 
			
		||||
	if ( il <= NN){
 | 
			
		||||
	  std::cout << GridLogMessage << "dstegr started" << std::endl; 
 | 
			
		||||
	  gsw.Start();
 | 
			
		||||
	  dstegr(&jobz, &range, &NN,
 | 
			
		||||
		 (double*)&DD[0], (double*)&EE[0],
 | 
			
		||||
		 &vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
 | 
			
		||||
		 &tol, // tolerance
 | 
			
		||||
		 &evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN,
 | 
			
		||||
		 &isuppz[0],
 | 
			
		||||
		 &work[0], &lwork, &iwork[0], &liwork,
 | 
			
		||||
		 &info);
 | 
			
		||||
	  gsw.Stop();
 | 
			
		||||
	  std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl;
 | 
			
		||||
	  for (int i = iu-1; i>= il-1; i--){
 | 
			
		||||
	    evals_tmp[i] = evals_tmp[i - (il-1)];
 | 
			
		||||
	    if (il>1) evals_tmp[i-(il-1)]=0.;
 | 
			
		||||
	    for (int j = 0; j< NN; j++){
 | 
			
		||||
	      evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j];
 | 
			
		||||
	      if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.;
 | 
			
		||||
	    }
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	{
 | 
			
		||||
	  //        QMP_sum_double_array(evals_tmp,NN);
 | 
			
		||||
	  //        QMP_sum_double_array((double *)evec_tmp,NN*NN);
 | 
			
		||||
	  grid->GlobalSumVector(&evals_tmp[0],NN);
 | 
			
		||||
	  grid->GlobalSumVector(&evec_tmp[0],NN*NN);
 | 
			
		||||
	}
 | 
			
		||||
      } 
 | 
			
		||||
      // cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
 | 
			
		||||
      for(int i=0;i<NN;i++){
 | 
			
		||||
	for(int j=0;j<NN;j++)
 | 
			
		||||
	  Qt[(NN-1-i)*N2+j]=evec_tmp[i*NN + j];
 | 
			
		||||
	lmd [NN-1-i]=evals_tmp[i];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "diagonalize_lapack complete\n";
 | 
			
		||||
    }
 | 
			
		||||
#undef LAPACK_INT 
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void diagonalize(std::vector<RealD>& lmd,
 | 
			
		||||
		     std::vector<RealD>& lme, 
 | 
			
		||||
		     int N2,
 | 
			
		||||
		     int N1,
 | 
			
		||||
		     std::vector<RealD>& Qt,
 | 
			
		||||
		     GridBase *grid)
 | 
			
		||||
    {
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK_IRL
 | 
			
		||||
    const int check_lapack=0; // just use lapack if 0, check against lapack if 1
 | 
			
		||||
 | 
			
		||||
    if(!check_lapack)
 | 
			
		||||
	return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
 | 
			
		||||
 | 
			
		||||
	std::vector <RealD> lmd2(N1);
 | 
			
		||||
	std::vector <RealD> lme2(N1);
 | 
			
		||||
	std::vector<RealD> Qt2(N1*N1);
 | 
			
		||||
         for(int k=0; k<N1; ++k){
 | 
			
		||||
	    lmd2[k] = lmd[k];
 | 
			
		||||
	    lme2[k] = lme[k];
 | 
			
		||||
	  }
 | 
			
		||||
         for(int k=0; k<N1*N1; ++k)
 | 
			
		||||
	Qt2[k] = Qt[k];
 | 
			
		||||
 | 
			
		||||
//	diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
      int Niter = 10000*N1;
 | 
			
		||||
      int kmin = 1;
 | 
			
		||||
      int kmax = N2;
 | 
			
		||||
      // (this should be more sophisticated)
 | 
			
		||||
 | 
			
		||||
      for(int iter=0; ; ++iter){
 | 
			
		||||
      if ( (iter+1)%(100*N1)==0) 
 | 
			
		||||
      std::cout<<GridLogMessage << "[QL method] Not converged - iteration "<<iter+1<<"\n";
 | 
			
		||||
 | 
			
		||||
	// determination of 2x2 leading submatrix
 | 
			
		||||
	RealD dsub = lmd[kmax-1]-lmd[kmax-2];
 | 
			
		||||
	RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
 | 
			
		||||
	RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
 | 
			
		||||
	// (Dsh: shift)
 | 
			
		||||
	
 | 
			
		||||
	// transformation
 | 
			
		||||
	qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
 | 
			
		||||
	
 | 
			
		||||
	// Convergence criterion (redef of kmin and kamx)
 | 
			
		||||
	for(int j=kmax-1; j>= kmin; --j){
 | 
			
		||||
	  RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
 | 
			
		||||
	  if(fabs(lme[j-1])+dds > dds){
 | 
			
		||||
	    kmax = j+1;
 | 
			
		||||
	    goto continued;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	Niter = iter;
 | 
			
		||||
#ifdef USE_LAPACK_IRL
 | 
			
		||||
    if(check_lapack){
 | 
			
		||||
	const double SMALL=1e-8;
 | 
			
		||||
	diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
 | 
			
		||||
	std::vector <RealD> lmd3(N2);
 | 
			
		||||
         for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
 | 
			
		||||
        _sort.push(lmd3,N2);
 | 
			
		||||
        _sort.push(lmd2,N2);
 | 
			
		||||
         for(int k=0; k<N2; ++k){
 | 
			
		||||
	    if (fabs(lmd2[k] - lmd3[k]) >SMALL)  std::cout<<GridLogMessage <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
 | 
			
		||||
//	    if (fabs(lme2[k] - lme[k]) >SMALL)  std::cout<<GridLogMessage <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
         for(int k=0; k<N1*N1; ++k){
 | 
			
		||||
//	    if (fabs(Qt2[k] - Qt[k]) >SMALL)  std::cout<<GridLogMessage <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
 | 
			
		||||
	}
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
	return;
 | 
			
		||||
 | 
			
		||||
      continued:
 | 
			
		||||
	for(int j=0; j<kmax-1; ++j){
 | 
			
		||||
	  RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
 | 
			
		||||
	  if(fabs(lme[j])+dds > dds){
 | 
			
		||||
	    kmin = j+1;
 | 
			
		||||
	    break;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<GridLogMessage << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
 | 
			
		||||
      abort();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
    template<typename T>
 | 
			
		||||
    static RealD normalise(T& v) 
 | 
			
		||||
    {
 | 
			
		||||
      RealD nn = norm2(v);
 | 
			
		||||
      nn = sqrt(nn);
 | 
			
		||||
      v = v * (1.0/nn);
 | 
			
		||||
      return nn;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void orthogonalize(Field& w,
 | 
			
		||||
		       BasisFieldVector<Field>& evec,
 | 
			
		||||
		       int k)
 | 
			
		||||
    {
 | 
			
		||||
      double t0=-usecond()/1e6;
 | 
			
		||||
 | 
			
		||||
      evec.orthogonalize(w,k);
 | 
			
		||||
 | 
			
		||||
      normalise(w);
 | 
			
		||||
      t0+=usecond()/1e6;
 | 
			
		||||
      OrthoTime +=t0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void setUnit_Qt(int Nm, std::vector<RealD> &Qt) {
 | 
			
		||||
      for(int i=0; i<Qt.size(); ++i) Qt[i] = 0.0;
 | 
			
		||||
      for(int k=0; k<Nm; ++k) Qt[k + k*Nm] = 1.0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
/* Rudy Arthur's thesis pp.137
 | 
			
		||||
------------------------
 | 
			
		||||
Require: M > K P = M − K †
 | 
			
		||||
Compute the factorization AVM = VM HM + fM eM 
 | 
			
		||||
repeat
 | 
			
		||||
  Q=I
 | 
			
		||||
  for i = 1,...,P do
 | 
			
		||||
    QiRi =HM −θiI Q = QQi
 | 
			
		||||
    H M = Q †i H M Q i
 | 
			
		||||
  end for
 | 
			
		||||
  βK =HM(K+1,K) σK =Q(M,K)
 | 
			
		||||
  r=vK+1βK +rσK
 | 
			
		||||
  VK =VM(1:M)Q(1:M,1:K)
 | 
			
		||||
  HK =HM(1:K,1:K)
 | 
			
		||||
  →AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
 | 
			
		||||
until convergence
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
    void calc(std::vector<RealD>& eval,
 | 
			
		||||
	      BasisFieldVector<Field>& evec,
 | 
			
		||||
	      const Field& src,
 | 
			
		||||
	      int& Nconv,
 | 
			
		||||
	      bool reverse,
 | 
			
		||||
	      int SkipTest)
 | 
			
		||||
      {
 | 
			
		||||
 | 
			
		||||
	GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid;
 | 
			
		||||
	assert(grid == src._grid);
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << " -- Nm = " << Nm << std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << " -- size of eval   = " << eval.size() << std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage << " -- size of evec  = " << evec.size() << std::endl;
 | 
			
		||||
	
 | 
			
		||||
	assert(Nm <= evec.size() && Nm <= eval.size());
 | 
			
		||||
 | 
			
		||||
	// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
 | 
			
		||||
	RealD evalMaxApprox = 0.0;
 | 
			
		||||
	{
 | 
			
		||||
	  auto src_n = src;
 | 
			
		||||
	  auto tmp = src;
 | 
			
		||||
	  const int _MAX_ITER_IRL_MEVAPP_ = 50;
 | 
			
		||||
	  for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
 | 
			
		||||
	    _HermOpTest(src_n,tmp);
 | 
			
		||||
	    RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
 | 
			
		||||
	    RealD vden = norm2(src_n);
 | 
			
		||||
	    RealD na = vnum/vden;
 | 
			
		||||
	    if (fabs(evalMaxApprox/na - 1.0) < 0.05)
 | 
			
		||||
	      i=_MAX_ITER_IRL_MEVAPP_;
 | 
			
		||||
	    evalMaxApprox = na;
 | 
			
		||||
	    std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
 | 
			
		||||
	    src_n = tmp;
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	std::vector<RealD> lme(Nm);  
 | 
			
		||||
	std::vector<RealD> lme2(Nm);
 | 
			
		||||
	std::vector<RealD> eval2(Nm);
 | 
			
		||||
	std::vector<RealD> eval2_copy(Nm);
 | 
			
		||||
	std::vector<RealD> Qt(Nm*Nm);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	Field f(grid);
 | 
			
		||||
	Field v(grid);
 | 
			
		||||
  
 | 
			
		||||
	int k1 = 1;
 | 
			
		||||
	int k2 = Nk;
 | 
			
		||||
 | 
			
		||||
	Nconv = 0;
 | 
			
		||||
 | 
			
		||||
	RealD beta_k;
 | 
			
		||||
  
 | 
			
		||||
	// Set initial vector
 | 
			
		||||
	evec[0] = src;
 | 
			
		||||
	normalise(evec[0]);
 | 
			
		||||
	std:: cout<<GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0])<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	// Initial Nk steps
 | 
			
		||||
	OrthoTime=0.;
 | 
			
		||||
	double t0=usecond()/1e6;
 | 
			
		||||
	for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
	double t1=usecond()/1e6;
 | 
			
		||||
	std::cout<<GridLogMessage <<"IRL::Initial steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
	t1=usecond()/1e6;
 | 
			
		||||
 | 
			
		||||
	// Restarting loop begins
 | 
			
		||||
	for(int iter = 0; iter<Niter; ++iter){
 | 
			
		||||
	  
 | 
			
		||||
	  std::cout<<GridLogMessage<<"\n Restart iteration = "<< iter << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  // 
 | 
			
		||||
	  // Rudy does a sort first which looks very different. Getting fed up with sorting out the algo defs.
 | 
			
		||||
	  // We loop over 
 | 
			
		||||
	  //
 | 
			
		||||
	  OrthoTime=0.;
 | 
			
		||||
	  for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL:: "<<Np <<" steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
 | 
			
		||||
	  f *= lme[Nm-1];
 | 
			
		||||
	  
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
 | 
			
		||||
	  
 | 
			
		||||
	  // getting eigenvalues
 | 
			
		||||
	  for(int k=0; k<Nm; ++k){
 | 
			
		||||
	    eval2[k] = eval[k+k1-1];
 | 
			
		||||
	    lme2[k] = lme[k+k1-1];
 | 
			
		||||
	  }
 | 
			
		||||
	  setUnit_Qt(Nm,Qt);
 | 
			
		||||
	  diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL:: diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  
 | 
			
		||||
	  // sorting
 | 
			
		||||
	  eval2_copy = eval2;
 | 
			
		||||
 | 
			
		||||
	  _sort.push(eval2,Nm);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL:: eval sorting: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  
 | 
			
		||||
	  // Implicitly shifted QR transformations
 | 
			
		||||
	  setUnit_Qt(Nm,Qt);
 | 
			
		||||
	  for(int ip=0; ip<k2; ++ip){
 | 
			
		||||
	    std::cout<<GridLogMessage << "eval "<< ip << " "<< eval2[ip] << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	  for(int ip=k2; ip<Nm; ++ip){ 
 | 
			
		||||
	    std::cout<<GridLogMessage << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
 | 
			
		||||
	    qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
 | 
			
		||||
	    
 | 
			
		||||
	  }
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::qr_decomp: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  assert(k2<Nm);
 | 
			
		||||
	  
 | 
			
		||||
 | 
			
		||||
	  assert(k2<Nm);
 | 
			
		||||
	  assert(k1>0);
 | 
			
		||||
	  evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm);
 | 
			
		||||
	  
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::QR rotation: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  fflush(stdout);
 | 
			
		||||
	  
 | 
			
		||||
	  // Compressed vector f and beta(k2)
 | 
			
		||||
	  f *= Qt[Nm-1+Nm*(k2-1)];
 | 
			
		||||
	  f += lme[k2-1] * evec[k2];
 | 
			
		||||
	  beta_k = norm2(f);
 | 
			
		||||
	  beta_k = sqrt(beta_k);
 | 
			
		||||
	  std::cout<<GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  RealD betar = 1.0/beta_k;
 | 
			
		||||
	  evec[k2] = betar * f;
 | 
			
		||||
	  lme[k2-1] = beta_k;
 | 
			
		||||
	  
 | 
			
		||||
	  // Convergence test
 | 
			
		||||
	  for(int k=0; k<Nm; ++k){    
 | 
			
		||||
	    eval2[k] = eval[k];
 | 
			
		||||
	    lme2[k] = lme[k];
 | 
			
		||||
 | 
			
		||||
	    std::cout<<GridLogMessage << "eval2[" << k << "] = " << eval2[k] << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
	  setUnit_Qt(Nm,Qt);
 | 
			
		||||
	  diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
 | 
			
		||||
	  t1=usecond()/1e6;
 | 
			
		||||
	  std::cout<<GridLogMessage <<"IRL::diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	  
 | 
			
		||||
	  
 | 
			
		||||
	  Nconv = 0;
 | 
			
		||||
	  
 | 
			
		||||
	  if (iter >= Nminres) {
 | 
			
		||||
	    std::cout << GridLogMessage << "Rotation to test convergence " << std::endl;
 | 
			
		||||
	    
 | 
			
		||||
	    Field ev0_orig(grid);
 | 
			
		||||
	    ev0_orig = evec[0];
 | 
			
		||||
	    
 | 
			
		||||
	    evec.rotate(Qt,0,Nk,0,Nk,Nm);
 | 
			
		||||
	    
 | 
			
		||||
	    {
 | 
			
		||||
	      std::cout << GridLogMessage << "Test convergence" << std::endl;
 | 
			
		||||
	      Field B(grid);
 | 
			
		||||
	      
 | 
			
		||||
	      for(int j = 0; j<Nk; j+=SkipTest){
 | 
			
		||||
		B=evec[j];
 | 
			
		||||
		//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl; 
 | 
			
		||||
		B.checkerboard = evec[0].checkerboard;
 | 
			
		||||
 | 
			
		||||
		_HermOpTest(B,v);
 | 
			
		||||
		
 | 
			
		||||
		RealD vnum = real(innerProduct(B,v)); // HermOp.
 | 
			
		||||
		RealD vden = norm2(B);
 | 
			
		||||
		RealD vv0 = norm2(v);
 | 
			
		||||
		eval2[j] = vnum/vden;
 | 
			
		||||
		v -= eval2[j]*B;
 | 
			
		||||
		RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
		std::cout.precision(13);
 | 
			
		||||
		std::cout<<GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
 | 
			
		||||
			 <<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
 | 
			
		||||
			 <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
 | 
			
		||||
			 <<" "<< vnum/(sqrt(vden)*sqrt(vv0))
 | 
			
		||||
			 << " norm(B["<<j<<"])="<< vden <<std::endl;
 | 
			
		||||
		
 | 
			
		||||
		// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
 | 
			
		||||
		if((vv<eresid*eresid) && (j == Nconv) ){
 | 
			
		||||
		  Nconv+=SkipTest;
 | 
			
		||||
		}
 | 
			
		||||
	      }
 | 
			
		||||
	      
 | 
			
		||||
	      // test if we converged, if so, terminate
 | 
			
		||||
	      t1=usecond()/1e6;
 | 
			
		||||
	      std::cout<<GridLogMessage <<"IRL::convergence testing: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
 | 
			
		||||
	      
 | 
			
		||||
	      std::cout<<GridLogMessage<<" #modes converged: "<<Nconv<<std::endl;
 | 
			
		||||
	      
 | 
			
		||||
	      if( Nconv>=Nstop || beta_k < betastp){
 | 
			
		||||
		goto converged;
 | 
			
		||||
	      }
 | 
			
		||||
	      
 | 
			
		||||
	      std::cout << GridLogMessage << "Rotate back" << std::endl;
 | 
			
		||||
	      //B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
 | 
			
		||||
	      {
 | 
			
		||||
		Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk);
 | 
			
		||||
		for (int k=0;k<Nk;k++)
 | 
			
		||||
		  for (int j=0;j<Nk;j++)
 | 
			
		||||
		    qm(j,k) = Qt[k+Nm*j];
 | 
			
		||||
		GridStopWatch timeInv;
 | 
			
		||||
		timeInv.Start();
 | 
			
		||||
		Eigen::MatrixXd qmI = qm.inverse();
 | 
			
		||||
		timeInv.Stop();
 | 
			
		||||
		std::vector<RealD> QtI(Nm*Nm);
 | 
			
		||||
		for (int k=0;k<Nk;k++)
 | 
			
		||||
		  for (int j=0;j<Nk;j++)
 | 
			
		||||
		    QtI[k+Nm*j] = qmI(j,k);
 | 
			
		||||
		
 | 
			
		||||
		RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
 | 
			
		||||
		assert(res_check_rotate_inverse < 1e-7);
 | 
			
		||||
		evec.rotate(QtI,0,Nk,0,Nk,Nm);
 | 
			
		||||
		
 | 
			
		||||
		axpy(ev0_orig,-1.0,evec[0],ev0_orig);
 | 
			
		||||
		std::cout << GridLogMessage << "Rotation done (in " << timeInv.Elapsed() << " = " << timeInv.useconds() << " us" <<
 | 
			
		||||
		  ", error = " << res_check_rotate_inverse << 
 | 
			
		||||
		  "); | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
 | 
			
		||||
	      }
 | 
			
		||||
	    }
 | 
			
		||||
	  } else {
 | 
			
		||||
	    std::cout << GridLogMessage << "iter < Nminres: do not yet test for convergence\n";
 | 
			
		||||
	  } // end of iter loop
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"\n NOT converged.\n";
 | 
			
		||||
	abort();
 | 
			
		||||
	
 | 
			
		||||
      converged:
 | 
			
		||||
 | 
			
		||||
	if (SkipTest == 1) {
 | 
			
		||||
	  eval = eval2;
 | 
			
		||||
	} else {
 | 
			
		||||
 | 
			
		||||
	  // test quickly
 | 
			
		||||
	  for (int j=0;j<Nstop;j+=SkipTest) {
 | 
			
		||||
	    std::cout<<GridLogMessage << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	  eval2_copy.resize(eval2.size());
 | 
			
		||||
	  eval = eval2_copy;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	evec.sortInPlace(eval,reverse);
 | 
			
		||||
 | 
			
		||||
	{
 | 
			
		||||
	  
 | 
			
		||||
	 // test
 | 
			
		||||
	 for (int j=0;j<Nstop;j++) {
 | 
			
		||||
	   std::cout<<GridLogMessage << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
 | 
			
		||||
	 }
 | 
			
		||||
       }
 | 
			
		||||
       
 | 
			
		||||
       //_sort.push(eval,evec,Nconv);
 | 
			
		||||
       //evec.sort(eval,Nconv);
 | 
			
		||||
       
 | 
			
		||||
       std::cout<<GridLogMessage << "\n Converged\n Summary :\n";
 | 
			
		||||
       std::cout<<GridLogMessage << " -- Iterations  = "<< Nconv  << "\n";
 | 
			
		||||
       std::cout<<GridLogMessage << " -- beta(k)     = "<< beta_k << "\n";
 | 
			
		||||
       std::cout<<GridLogMessage << " -- Nconv       = "<< Nconv  << "\n";
 | 
			
		||||
      }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@@ -0,0 +1,143 @@
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  BlockProjector
 | 
			
		||||
 | 
			
		||||
  If _HP_BLOCK_PROJECTORS_ is defined, we assume that _evec is a basis that is not
 | 
			
		||||
  fully orthonormalized (to the precision of the coarse field) and we allow for higher-precision
 | 
			
		||||
  coarse field than basis field.
 | 
			
		||||
 | 
			
		||||
*/
 | 
			
		||||
//#define _HP_BLOCK_PROJECTORS_
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class BlockProjector {
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  BasisFieldVector<Field>& _evec;
 | 
			
		||||
  BlockedGrid<Field>& _bgrid;
 | 
			
		||||
 | 
			
		||||
  BlockProjector(BasisFieldVector<Field>& evec, BlockedGrid<Field>& bgrid) : _evec(evec), _bgrid(bgrid) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void createOrthonormalBasis(RealD thres = 0.0) {
 | 
			
		||||
 | 
			
		||||
    GridStopWatch sw;
 | 
			
		||||
    sw.Start();
 | 
			
		||||
 | 
			
		||||
    int cnt = 0;
 | 
			
		||||
 | 
			
		||||
#pragma omp parallel shared(cnt)
 | 
			
		||||
    {
 | 
			
		||||
      int lcnt = 0;
 | 
			
		||||
 | 
			
		||||
#pragma omp for
 | 
			
		||||
      for (int b=0;b<_bgrid._o_blocks;b++) {
 | 
			
		||||
	
 | 
			
		||||
	for (int i=0;i<_evec._Nm;i++) {
 | 
			
		||||
	  
 | 
			
		||||
	  auto nrm0 = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
 | 
			
		||||
	  
 | 
			
		||||
	  // |i> -= <j|i> |j>
 | 
			
		||||
	  for (int j=0;j<i;j++) {
 | 
			
		||||
	    _bgrid.block_caxpy(b,_evec._v[i],-_bgrid.block_sp(b,_evec._v[j],_evec._v[i]),_evec._v[j],_evec._v[i]);
 | 
			
		||||
	  }
 | 
			
		||||
	  
 | 
			
		||||
	  auto nrm = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
 | 
			
		||||
	  
 | 
			
		||||
	  auto eps = nrm/nrm0;
 | 
			
		||||
	  if (Reduce(eps).real() < thres) {
 | 
			
		||||
	    lcnt++;
 | 
			
		||||
	  }
 | 
			
		||||
	  
 | 
			
		||||
	  // TODO: if norm is too small, remove this eigenvector/mark as not needed; in practice: set it to zero norm here and return a mask
 | 
			
		||||
	  // that is then used later to decide not to write certain eigenvectors to disk (add a norm calculation before subtraction step and look at nrm/nrm0 < eps to decide)
 | 
			
		||||
	  _bgrid.block_cscale(b,1.0 / sqrt(nrm),_evec._v[i]);
 | 
			
		||||
	  
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
#pragma omp critical
 | 
			
		||||
      {
 | 
			
		||||
	cnt += lcnt;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    sw.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "Gram-Schmidt to create blocked basis took " << sw.Elapsed() << " (" << ((RealD)cnt / (RealD)_bgrid._o_blocks / (RealD)_evec._Nm) 
 | 
			
		||||
	      << " below threshold)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
  void coarseToFine(const CoarseField& in, Field& out) {
 | 
			
		||||
 | 
			
		||||
    out = zero;
 | 
			
		||||
    out.checkerboard = _evec._v[0].checkerboard;
 | 
			
		||||
 | 
			
		||||
    int Nbasis = sizeof(in._odata[0]._internal._internal) / sizeof(in._odata[0]._internal._internal[0]);
 | 
			
		||||
    assert(Nbasis == _evec._Nm);
 | 
			
		||||
    
 | 
			
		||||
#pragma omp parallel for
 | 
			
		||||
    for (int b=0;b<_bgrid._o_blocks;b++) {
 | 
			
		||||
      for (int j=0;j<_evec._Nm;j++) {
 | 
			
		||||
	_bgrid.block_caxpy(b,out,in._odata[b]._internal._internal[j],_evec._v[j],out);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
  void fineToCoarse(const Field& in, CoarseField& out) {
 | 
			
		||||
 | 
			
		||||
    out = zero;
 | 
			
		||||
 | 
			
		||||
    int Nbasis = sizeof(out._odata[0]._internal._internal) / sizeof(out._odata[0]._internal._internal[0]);
 | 
			
		||||
    assert(Nbasis == _evec._Nm);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Field tmp(_bgrid._grid);
 | 
			
		||||
    tmp = in;
 | 
			
		||||
    
 | 
			
		||||
#pragma omp parallel for
 | 
			
		||||
    for (int b=0;b<_bgrid._o_blocks;b++) {
 | 
			
		||||
      for (int j=0;j<_evec._Nm;j++) {
 | 
			
		||||
	// |rhs> -= <j|rhs> |j>
 | 
			
		||||
	auto c = _bgrid.block_sp(b,_evec._v[j],tmp);
 | 
			
		||||
	_bgrid.block_caxpy(b,tmp,-c,_evec._v[j],tmp); // may make this more numerically stable
 | 
			
		||||
	out._odata[b]._internal._internal[j] = c;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
    void deflateFine(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
 | 
			
		||||
    result = zero;
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      Field tmp(result._grid);
 | 
			
		||||
      coarseToFine(_coef._v[i],tmp);
 | 
			
		||||
      axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
    void deflateCoarse(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
 | 
			
		||||
    CoarseField src_coarse(_coef._v[0]._grid);
 | 
			
		||||
    CoarseField result_coarse = src_coarse;
 | 
			
		||||
    result_coarse = zero;
 | 
			
		||||
    fineToCoarse(src_orig,src_coarse);
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      axpy(result_coarse,TensorRemove(innerProduct(_coef._v[i],src_coarse)) / eval[i],_coef._v[i],result_coarse);
 | 
			
		||||
    }
 | 
			
		||||
    coarseToFine(result_coarse,result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<typename CoarseField>
 | 
			
		||||
    void deflate(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
 | 
			
		||||
    // Deflation on coarse Grid is much faster, so use it by default.  Deflation on fine Grid is kept for legacy reasons for now.
 | 
			
		||||
    deflateCoarse(_coef,eval,N,src_orig,result);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,401 @@
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class BlockedGrid {
 | 
			
		||||
public:
 | 
			
		||||
  GridBase* _grid;
 | 
			
		||||
  typedef typename Field::scalar_type  Coeff_t;
 | 
			
		||||
  typedef typename Field::vector_type vCoeff_t;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> _bs; // block size
 | 
			
		||||
  std::vector<int> _nb; // number of blocks
 | 
			
		||||
  std::vector<int> _l;  // local dimensions irrespective of cb
 | 
			
		||||
  std::vector<int> _l_cb;  // local dimensions of checkerboarded vector
 | 
			
		||||
  std::vector<int> _l_cb_o;  // local dimensions of inner checkerboarded vector
 | 
			
		||||
  std::vector<int> _bs_cb; // block size in checkerboarded vector
 | 
			
		||||
  std::vector<int> _nb_o; // number of blocks of simd o-sites
 | 
			
		||||
 | 
			
		||||
  int _nd, _blocks, _cf_size, _cf_block_size, _cf_o_block_size, _o_blocks, _block_sites;
 | 
			
		||||
  
 | 
			
		||||
  BlockedGrid(GridBase* grid, const std::vector<int>& block_size) :
 | 
			
		||||
    _grid(grid), _bs(block_size), _nd((int)_bs.size()), 
 | 
			
		||||
      _nb(block_size), _l(block_size), _l_cb(block_size), _nb_o(block_size),
 | 
			
		||||
      _l_cb_o(block_size), _bs_cb(block_size) {
 | 
			
		||||
 | 
			
		||||
    _blocks = 1;
 | 
			
		||||
    _o_blocks = 1;
 | 
			
		||||
    _l = grid->FullDimensions();
 | 
			
		||||
    _l_cb = grid->LocalDimensions();
 | 
			
		||||
    _l_cb_o = grid->_rdimensions;
 | 
			
		||||
 | 
			
		||||
    _cf_size = 1;
 | 
			
		||||
    _block_sites = 1;
 | 
			
		||||
    for (int i=0;i<_nd;i++) {
 | 
			
		||||
      _l[i] /= grid->_processors[i];
 | 
			
		||||
 | 
			
		||||
      assert(!(_l[i] % _bs[i])); // lattice must accommodate choice of blocksize
 | 
			
		||||
 | 
			
		||||
      int r = _l[i] / _l_cb[i];
 | 
			
		||||
      assert(!(_bs[i] % r)); // checkerboarding must accommodate choice of blocksize
 | 
			
		||||
      _bs_cb[i] = _bs[i] / r;
 | 
			
		||||
      _block_sites *= _bs_cb[i];
 | 
			
		||||
      _nb[i] = _l[i] / _bs[i];
 | 
			
		||||
      _nb_o[i] = _nb[i] / _grid->_simd_layout[i];
 | 
			
		||||
      if (_nb[i] % _grid->_simd_layout[i]) { // simd must accommodate choice of blocksize
 | 
			
		||||
	std::cout << GridLogMessage << "Problem: _nb[" << i << "] = " << _nb[i] << " _grid->_simd_layout[" << i << "] = " << _grid->_simd_layout[i] << std::endl;
 | 
			
		||||
	assert(0);
 | 
			
		||||
      }
 | 
			
		||||
      _blocks *= _nb[i];
 | 
			
		||||
      _o_blocks *= _nb_o[i];
 | 
			
		||||
      _cf_size *= _l[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    _cf_size *= 12 / 2;
 | 
			
		||||
    _cf_block_size = _cf_size / _blocks;
 | 
			
		||||
    _cf_o_block_size = _cf_size / _o_blocks;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "BlockedGrid:" << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _l     = " << _l << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _l_cb     = " << _l_cb << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _l_cb_o     = " << _l_cb_o << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _bs    = " << _bs << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _bs_cb    = " << _bs_cb << std::endl;
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << " _nb    = " << _nb << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _nb_o    = " << _nb_o << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _blocks = " << _blocks << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _o_blocks = " << _o_blocks << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " sizeof(vCoeff_t) = " << sizeof(vCoeff_t) << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _cf_size = " << _cf_size << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _cf_block_size = " << _cf_block_size << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _block_sites = " << _block_sites << std::endl;
 | 
			
		||||
    std::cout << GridLogMessage << " _grid->oSites() = " << _grid->oSites() << std::endl;
 | 
			
		||||
 | 
			
		||||
    //    _grid->Barrier();
 | 
			
		||||
    //abort();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    void block_to_coor(int b, std::vector<int>& x0) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> bcoor;
 | 
			
		||||
      bcoor.resize(_nd);
 | 
			
		||||
      x0.resize(_nd);
 | 
			
		||||
      assert(b < _o_blocks);
 | 
			
		||||
      Lexicographic::CoorFromIndex(bcoor,b,_nb_o);
 | 
			
		||||
      int i;
 | 
			
		||||
 | 
			
		||||
      for (i=0;i<_nd;i++) {
 | 
			
		||||
	x0[i] = bcoor[i]*_bs_cb[i];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //std::cout << GridLogMessage << "Map block b -> " << x0 << std::endl;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_site_to_o_coor(const std::vector<int>& x0, std::vector<int>& coor, int i) {
 | 
			
		||||
      Lexicographic::CoorFromIndex(coor,i,_bs_cb);
 | 
			
		||||
      for (int j=0;j<_nd;j++)
 | 
			
		||||
	coor[j] += x0[j];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int block_site_to_o_site(const std::vector<int>& x0, int i) {
 | 
			
		||||
      std::vector<int> coor;  coor.resize(_nd);
 | 
			
		||||
      block_site_to_o_coor(x0,coor,i);
 | 
			
		||||
      Lexicographic::IndexFromCoor(coor,i,_l_cb_o);
 | 
			
		||||
      return i;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    vCoeff_t block_sp(int b, const Field& x, const Field& y) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      vCoeff_t ret = 0.0;
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
	ret += TensorRemove(innerProduct(x._odata[ss],y._odata[ss]));
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      return ret;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    vCoeff_t block_sp(int b, const Field& x, const std::vector< ComplexD >& y) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      std::vector< ComplexD > ret(nsimd);
 | 
			
		||||
      for (int i=0;i<nsimd;i++)
 | 
			
		||||
	ret[i] = 0.0;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	int n = lsize / nsimd;
 | 
			
		||||
	for (int l=0;l<n;l++) {
 | 
			
		||||
	  for (int j=0;j<nsimd;j++) {
 | 
			
		||||
	    int t = lsize * i + l*nsimd + j;
 | 
			
		||||
 | 
			
		||||
	    ret[j] += conjugate(((Coeff_t*)&x._odata[ss]._internal)[l*nsimd + j]) * y[t];
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      vCoeff_t vret;
 | 
			
		||||
      for (int i=0;i<nsimd;i++)
 | 
			
		||||
	((Coeff_t*)&vret)[i] = (Coeff_t)ret[i];
 | 
			
		||||
 | 
			
		||||
      return vret;
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T>
 | 
			
		||||
      void vcaxpy(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x,const iScalar<T>& y) {
 | 
			
		||||
      vcaxpy(r._internal,a,x._internal,y._internal);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T,int N>
 | 
			
		||||
      void vcaxpy(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x,const iVector<T,N>& y) {
 | 
			
		||||
      for (int i=0;i<N;i++)
 | 
			
		||||
	vcaxpy(r._internal[i],a,x._internal[i],y._internal[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void vcaxpy(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x,const vCoeff_t& y) {
 | 
			
		||||
      r = a*x + y;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_caxpy(int b, Field& ret, const vCoeff_t& a, const Field& x, const Field& y) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
	vcaxpy(ret._odata[ss],a,x._odata[ss],y._odata[ss]);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_caxpy(int b, std::vector< ComplexD >& ret, const vCoeff_t& a, const Field& x, const std::vector< ComplexD >& y) {
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	int n = lsize / nsimd;
 | 
			
		||||
	for (int l=0;l<n;l++) {
 | 
			
		||||
	  vCoeff_t r = a* ((vCoeff_t*)&x._odata[ss]._internal)[l];
 | 
			
		||||
 | 
			
		||||
	  for (int j=0;j<nsimd;j++) {
 | 
			
		||||
	    int t = lsize * i + l*nsimd + j;
 | 
			
		||||
	    ret[t] = y[t] + ((Coeff_t*)&r)[j];
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_set(int b, Field& ret, const std::vector< ComplexD >& x) {
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	for (int l=0;l<lsize;l++)
 | 
			
		||||
	  ((Coeff_t*)&ret._odata[ss]._internal)[l] = (Coeff_t)x[lsize * i + l]; // convert precision
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_get(int b, const Field& ret, std::vector< ComplexD >& x) {
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
 | 
			
		||||
      int lsize = _cf_o_block_size / _block_sites;
 | 
			
		||||
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
 | 
			
		||||
	for (int l=0;l<lsize;l++)
 | 
			
		||||
	  x[lsize * i + l] = (ComplexD)((Coeff_t*)&ret._odata[ss]._internal)[l];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T>
 | 
			
		||||
    void vcscale(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x) {
 | 
			
		||||
      vcscale(r._internal,a,x._internal);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T,int N>
 | 
			
		||||
    void vcscale(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x) {
 | 
			
		||||
      for (int i=0;i<N;i++)
 | 
			
		||||
	vcscale(r._internal[i],a,x._internal[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void vcscale(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x) {
 | 
			
		||||
      r = a*x;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void block_cscale(int b, const vCoeff_t& a, Field& ret) {
 | 
			
		||||
 | 
			
		||||
      std::vector<int> x0;
 | 
			
		||||
      block_to_coor(b,x0);
 | 
			
		||||
      
 | 
			
		||||
      for (int i=0;i<_block_sites;i++) { // only odd sites
 | 
			
		||||
	int ss = block_site_to_o_site(x0,i);
 | 
			
		||||
	vcscale(ret._odata[ss],a,ret._odata[ss]);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void getCanonicalBlockOffset(int cb, std::vector<int>& x0) {
 | 
			
		||||
      const int ndim = 5;
 | 
			
		||||
      assert(_nb.size() == ndim);
 | 
			
		||||
      std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
 | 
			
		||||
      std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
 | 
			
		||||
      x0.resize(ndim);
 | 
			
		||||
 | 
			
		||||
      assert(cb >= 0);
 | 
			
		||||
      assert(cb < _nbc[0]*_nbc[1]*_nbc[2]*_nbc[3]*_nbc[4]);
 | 
			
		||||
 | 
			
		||||
      Lexicographic::CoorFromIndex(x0,cb,_nbc);
 | 
			
		||||
      int i;
 | 
			
		||||
 | 
			
		||||
      for (i=0;i<ndim;i++) {
 | 
			
		||||
	x0[i] *= _bsc[i];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //if (cb < 2)
 | 
			
		||||
      //	std::cout << GridLogMessage << "Map: " << cb << " To: " << x0 << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void pokeBlockOfVectorCanonical(int cb,Field& v,const std::vector<float>& buf) {
 | 
			
		||||
      std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
 | 
			
		||||
      std::vector<int> ldim = v._grid->LocalDimensions();
 | 
			
		||||
      std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
 | 
			
		||||
      const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
 | 
			
		||||
      // take canonical block cb of v and put it in canonical ordering in buf
 | 
			
		||||
      std::vector<int> cx0;
 | 
			
		||||
      getCanonicalBlockOffset(cb,cx0);
 | 
			
		||||
 | 
			
		||||
#pragma omp parallel
 | 
			
		||||
      {
 | 
			
		||||
	std::vector<int> co0,cl0;
 | 
			
		||||
	co0=cx0; cl0=cx0;
 | 
			
		||||
 | 
			
		||||
#pragma omp for
 | 
			
		||||
	for (int i=0;i<_nbsc;i++) {
 | 
			
		||||
	  Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
 | 
			
		||||
	  for (int j=0;j<(int)_bsc.size();j++)
 | 
			
		||||
	    cl0[j] = cx0[j] + co0[j];
 | 
			
		||||
	  
 | 
			
		||||
	  std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
 | 
			
		||||
	  int oi = v._grid->oIndex(l0);
 | 
			
		||||
	  int ii = v._grid->iIndex(l0);
 | 
			
		||||
	  int lti = i;
 | 
			
		||||
 | 
			
		||||
	  //if (cb < 2 && i<2)
 | 
			
		||||
	  //  std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  for (int s=0;s<4;s++)
 | 
			
		||||
	    for (int c=0;c<3;c++) {
 | 
			
		||||
	      Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
 | 
			
		||||
	      int ti = 12*lti + 3*s + c;
 | 
			
		||||
	      ld = Coeff_t(buf[2*ti+0], buf[2*ti+1]);
 | 
			
		||||
	    }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void peekBlockOfVectorCanonical(int cb,const Field& v,std::vector<float>& buf) {
 | 
			
		||||
      std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
 | 
			
		||||
      std::vector<int> ldim = v._grid->LocalDimensions();
 | 
			
		||||
      std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
 | 
			
		||||
      const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
 | 
			
		||||
      // take canonical block cb of v and put it in canonical ordering in buf
 | 
			
		||||
      std::vector<int> cx0;
 | 
			
		||||
      getCanonicalBlockOffset(cb,cx0);
 | 
			
		||||
 | 
			
		||||
      buf.resize(_cf_block_size * 2);
 | 
			
		||||
 | 
			
		||||
#pragma omp parallel
 | 
			
		||||
      {
 | 
			
		||||
	std::vector<int> co0,cl0;
 | 
			
		||||
	co0=cx0; cl0=cx0;
 | 
			
		||||
 | 
			
		||||
#pragma omp for
 | 
			
		||||
	for (int i=0;i<_nbsc;i++) {
 | 
			
		||||
	  Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
 | 
			
		||||
	  for (int j=0;j<(int)_bsc.size();j++)
 | 
			
		||||
	    cl0[j] = cx0[j] + co0[j];
 | 
			
		||||
	  
 | 
			
		||||
	  std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
 | 
			
		||||
	  int oi = v._grid->oIndex(l0);
 | 
			
		||||
	  int ii = v._grid->iIndex(l0);
 | 
			
		||||
	  int lti = i;
 | 
			
		||||
	  
 | 
			
		||||
	  //if (cb < 2 && i<2)
 | 
			
		||||
	  //  std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
 | 
			
		||||
 | 
			
		||||
	  for (int s=0;s<4;s++)
 | 
			
		||||
	    for (int c=0;c<3;c++) {
 | 
			
		||||
	      Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
 | 
			
		||||
	      int ti = 12*lti + 3*s + c;
 | 
			
		||||
	      buf[2*ti+0] = ld.real();
 | 
			
		||||
	      buf[2*ti+1] = ld.imag();
 | 
			
		||||
	    }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int globalToLocalCanonicalBlock(int slot,const std::vector<int>& src_nodes,int nb) {
 | 
			
		||||
      // processor coordinate
 | 
			
		||||
      int _nd = (int)src_nodes.size();
 | 
			
		||||
      std::vector<int> _src_nodes = src_nodes;
 | 
			
		||||
      std::vector<int> pco(_nd);
 | 
			
		||||
      Lexicographic::CoorFromIndex(pco,slot,_src_nodes);
 | 
			
		||||
      std::vector<int> cpco = { pco[1], pco[2], pco[3], pco[4], pco[0] };
 | 
			
		||||
 | 
			
		||||
      // get local block
 | 
			
		||||
      std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
 | 
			
		||||
      assert(_nd == 5);
 | 
			
		||||
      std::vector<int> c_src_local_blocks(_nd);
 | 
			
		||||
      for (int i=0;i<_nd;i++) {
 | 
			
		||||
	assert(_grid->_fdimensions[i] % (src_nodes[i] * _bs[i]) == 0);
 | 
			
		||||
	c_src_local_blocks[(i+4) % 5] = _grid->_fdimensions[i] / src_nodes[i] / _bs[i];
 | 
			
		||||
      }
 | 
			
		||||
      std::vector<int> cbcoor(_nd); // coordinate of block in slot in canonical form
 | 
			
		||||
      Lexicographic::CoorFromIndex(cbcoor,nb,c_src_local_blocks);
 | 
			
		||||
 | 
			
		||||
      // cpco, cbcoor
 | 
			
		||||
      std::vector<int> clbcoor(_nd);
 | 
			
		||||
      for (int i=0;i<_nd;i++) {
 | 
			
		||||
	int cgcoor = cpco[i] * c_src_local_blocks[i] + cbcoor[i]; // global block coordinate
 | 
			
		||||
	int pcoor = cgcoor / _nbc[i]; // processor coordinate in my Grid
 | 
			
		||||
	int tpcoor = _grid->_processor_coor[(i+1)%5];
 | 
			
		||||
	if (pcoor != tpcoor)
 | 
			
		||||
	  return -1;
 | 
			
		||||
	clbcoor[i] = cgcoor - tpcoor * _nbc[i]; // canonical local block coordinate for canonical dimension i
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      int lnb;
 | 
			
		||||
      Lexicographic::IndexFromCoor(clbcoor,lnb,_nbc);
 | 
			
		||||
      //std::cout << "Mapped slot = " << slot << " nb = " << nb << " to " << lnb << std::endl;
 | 
			
		||||
      return lnb;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,163 @@
 | 
			
		||||
namespace Grid { 
 | 
			
		||||
 | 
			
		||||
template<class Field>
 | 
			
		||||
class BasisFieldVector {
 | 
			
		||||
 public:
 | 
			
		||||
  int _Nm;
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type Coeff_t;
 | 
			
		||||
  typedef typename Field::vector_type vCoeff_t;
 | 
			
		||||
  typedef typename Field::vector_object vobj;
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
  std::vector<Field> _v; // _Nfull vectors
 | 
			
		||||
 | 
			
		||||
  void report(int n,GridBase* value) {
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogMessage << "BasisFieldVector allocated:\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Delta N = " << n << "\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Size of full vectors (size) = " << 
 | 
			
		||||
      ((double)n*sizeof(vobj)*value->oSites() / 1024./1024./1024.) << " GB\n";
 | 
			
		||||
    std::cout << GridLogMessage << " Size = " << _v.size() << " Capacity = " << _v.capacity() << std::endl;
 | 
			
		||||
 | 
			
		||||
    value->Barrier();
 | 
			
		||||
 | 
			
		||||
    if (value->IsBoss()) {
 | 
			
		||||
      system("cat /proc/meminfo");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    value->Barrier();
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  BasisFieldVector(int Nm,GridBase* value) : _Nm(Nm), _v(Nm,value) {
 | 
			
		||||
    report(Nm,value);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  ~BasisFieldVector() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Field& operator[](int i) {
 | 
			
		||||
    return _v[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void orthogonalize(Field& w, int k) {
 | 
			
		||||
    for(int j=0; j<k; ++j){
 | 
			
		||||
      Coeff_t ip = (Coeff_t)innerProduct(_v[j],w);
 | 
			
		||||
      w = w - ip*_v[j];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void rotate(std::vector<RealD>& Qt,int j0, int j1, int k0,int k1,int Nm) {
 | 
			
		||||
    
 | 
			
		||||
    GridBase* grid = _v[0]._grid;
 | 
			
		||||
      
 | 
			
		||||
#pragma omp parallel
 | 
			
		||||
    {
 | 
			
		||||
      std::vector < vobj > B(Nm);
 | 
			
		||||
      
 | 
			
		||||
#pragma omp for
 | 
			
		||||
      for(int ss=0;ss < grid->oSites();ss++){
 | 
			
		||||
	for(int j=j0; j<j1; ++j) B[j]=0.;
 | 
			
		||||
	
 | 
			
		||||
	for(int j=j0; j<j1; ++j){
 | 
			
		||||
	  for(int k=k0; k<k1; ++k){
 | 
			
		||||
	    B[j] +=Qt[k+Nm*j] * _v[k]._odata[ss];
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
	for(int j=j0; j<j1; ++j){
 | 
			
		||||
	  _v[j]._odata[ss] = B[j];
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  size_t size() const {
 | 
			
		||||
    return _Nm;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void resize(int n) {
 | 
			
		||||
    if (n > _Nm)
 | 
			
		||||
      _v.reserve(n);
 | 
			
		||||
    
 | 
			
		||||
    _v.resize(n,_v[0]._grid);
 | 
			
		||||
 | 
			
		||||
    if (n < _Nm)
 | 
			
		||||
      _v.shrink_to_fit();
 | 
			
		||||
 | 
			
		||||
    report(n - _Nm,_v[0]._grid);
 | 
			
		||||
 | 
			
		||||
    _Nm = n;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<int> getIndex(std::vector<RealD>& sort_vals) {
 | 
			
		||||
 | 
			
		||||
    std::vector<int> idx(sort_vals.size());
 | 
			
		||||
    iota(idx.begin(), idx.end(), 0);
 | 
			
		||||
 | 
			
		||||
    // sort indexes based on comparing values in v
 | 
			
		||||
    sort(idx.begin(), idx.end(),
 | 
			
		||||
	 [&sort_vals](int i1, int i2) {return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);});
 | 
			
		||||
 | 
			
		||||
    return idx;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void reorderInPlace(std::vector<RealD>& sort_vals, std::vector<int>& idx) {
 | 
			
		||||
    GridStopWatch gsw;
 | 
			
		||||
    gsw.Start();
 | 
			
		||||
 | 
			
		||||
    int nswaps = 0;
 | 
			
		||||
    for (size_t i=0;i<idx.size();i++) {
 | 
			
		||||
      if (idx[i] != i) {
 | 
			
		||||
 | 
			
		||||
	// find proper place (this could be done in logarithmic time, don't bother for now)
 | 
			
		||||
	size_t j;
 | 
			
		||||
	for (j=i;j<idx.size();j++)
 | 
			
		||||
	  if (idx[j]==i)
 | 
			
		||||
	    break;
 | 
			
		||||
	assert(j!=idx.size());
 | 
			
		||||
	
 | 
			
		||||
	Field _t(_v[0]._grid);
 | 
			
		||||
	_t = _v[idx[j]];
 | 
			
		||||
	_v[idx[j]] = _v[idx[i]];
 | 
			
		||||
	_v[idx[i]] = _t;
 | 
			
		||||
 | 
			
		||||
	RealD _td = sort_vals[idx[j]];
 | 
			
		||||
	sort_vals[idx[j]] = sort_vals[idx[i]];
 | 
			
		||||
	sort_vals[idx[i]] = _td;
 | 
			
		||||
 | 
			
		||||
	int _tt = idx[i];
 | 
			
		||||
	idx[i] = idx[j];
 | 
			
		||||
	idx[j] = _tt;
 | 
			
		||||
	
 | 
			
		||||
	nswaps++;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // sort values
 | 
			
		||||
    gsw.Stop();
 | 
			
		||||
    std::cout << GridLogMessage << "Sorted eigenspace in place in " << gsw.Elapsed() << " using " << nswaps << " swaps" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void sortInPlace(std::vector<RealD>& sort_vals, bool reverse) {
 | 
			
		||||
 | 
			
		||||
    std::vector<int> idx = getIndex(sort_vals);
 | 
			
		||||
    if (reverse)
 | 
			
		||||
      std::reverse(idx.begin(), idx.end());
 | 
			
		||||
 | 
			
		||||
    reorderInPlace(sort_vals,idx);
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void deflate(const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
 | 
			
		||||
    result = zero;
 | 
			
		||||
    int N = (int)_v.size();
 | 
			
		||||
    for (int i=0;i<N;i++) {
 | 
			
		||||
      Field& tmp = _v[i];
 | 
			
		||||
      axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 }; 
 | 
			
		||||
}
 | 
			
		||||
@@ -52,8 +52,8 @@ class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
        MaxIterations(maxit),
 | 
			
		||||
        ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
 | 
			
		||||
                  Field &psi) {
 | 
			
		||||
  void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
 | 
			
		||||
 | 
			
		||||
    psi.checkerboard = src.checkerboard;
 | 
			
		||||
    conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										256
									
								
								lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										256
									
								
								lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,256 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
  class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
 | 
			
		||||
  public:
 | 
			
		||||
    bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
    // Defaults true.
 | 
			
		||||
    RealD Tolerance;
 | 
			
		||||
    Integer MaxIterations;
 | 
			
		||||
    Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
    Integer ReliableUpdatesPerformed;
 | 
			
		||||
 | 
			
		||||
    bool DoFinalCleanup; //Final DP cleanup, defaults to true
 | 
			
		||||
    Integer IterationsToCleanup; //Final DP cleanup step iterations
 | 
			
		||||
    
 | 
			
		||||
    LinearOperatorBase<FieldF> &Linop_f;
 | 
			
		||||
    LinearOperatorBase<FieldD> &Linop_d;
 | 
			
		||||
    GridBase* SinglePrecGrid;
 | 
			
		||||
    RealD Delta; //reliable update parameter
 | 
			
		||||
 | 
			
		||||
    //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
 | 
			
		||||
    LinearOperatorBase<FieldF> *Linop_fallback;
 | 
			
		||||
    RealD fallback_transition_tol;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
 | 
			
		||||
      : Tolerance(tol),
 | 
			
		||||
        MaxIterations(maxit),
 | 
			
		||||
	Delta(_delta),
 | 
			
		||||
	Linop_f(_Linop_f),
 | 
			
		||||
	Linop_d(_Linop_d),
 | 
			
		||||
	SinglePrecGrid(_sp_grid),
 | 
			
		||||
        ErrorOnNoConverge(err_on_no_conv),
 | 
			
		||||
	DoFinalCleanup(true),
 | 
			
		||||
	Linop_fallback(NULL)
 | 
			
		||||
    {};
 | 
			
		||||
 | 
			
		||||
    void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
 | 
			
		||||
      Linop_fallback = &_Linop_fallback;
 | 
			
		||||
      fallback_transition_tol = _fallback_transition_tol;      
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    void operator()(const FieldD &src, FieldD &psi) {
 | 
			
		||||
      LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
 | 
			
		||||
      bool using_fallback = false;
 | 
			
		||||
      
 | 
			
		||||
      psi.checkerboard = src.checkerboard;
 | 
			
		||||
      conformable(psi, src);
 | 
			
		||||
 | 
			
		||||
      RealD cp, c, a, d, b, ssq, qq, b_pred;
 | 
			
		||||
 | 
			
		||||
      FieldD p(src);
 | 
			
		||||
      FieldD mmp(src);
 | 
			
		||||
      FieldD r(src);
 | 
			
		||||
 | 
			
		||||
      // Initial residual computation & set up
 | 
			
		||||
      RealD guess = norm2(psi);
 | 
			
		||||
      assert(std::isnan(guess) == 0);
 | 
			
		||||
    
 | 
			
		||||
      Linop_d.HermOpAndNorm(psi, mmp, d, b);
 | 
			
		||||
    
 | 
			
		||||
      r = src - mmp;
 | 
			
		||||
      p = r;
 | 
			
		||||
 | 
			
		||||
      a = norm2(p);
 | 
			
		||||
      cp = a;
 | 
			
		||||
      ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   src " << ssq << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:    mp " << d << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:   mmp " << b << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:  cp,r " << cp << std::endl;
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate:     p " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
      RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
      // Check if guess is really REALLY good :)
 | 
			
		||||
      if (cp <= rsq) {
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
 | 
			
		||||
	std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Single prec initialization
 | 
			
		||||
      FieldF r_f(SinglePrecGrid);
 | 
			
		||||
      r_f.checkerboard = r.checkerboard;
 | 
			
		||||
      precisionChange(r_f, r);
 | 
			
		||||
 | 
			
		||||
      FieldF psi_f(r_f);
 | 
			
		||||
      psi_f = zero;
 | 
			
		||||
 | 
			
		||||
      FieldF p_f(r_f);
 | 
			
		||||
      FieldF mmp_f(r_f);
 | 
			
		||||
 | 
			
		||||
      RealD MaxResidSinceLastRelUp = cp; //initial residual    
 | 
			
		||||
    
 | 
			
		||||
      std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
		<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
      GridStopWatch LinalgTimer;
 | 
			
		||||
      GridStopWatch MatrixTimer;
 | 
			
		||||
      GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Start();
 | 
			
		||||
      int k = 0;
 | 
			
		||||
      int l = 0;
 | 
			
		||||
    
 | 
			
		||||
      for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
	c = cp;
 | 
			
		||||
 | 
			
		||||
	MatrixTimer.Start();
 | 
			
		||||
	Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
 | 
			
		||||
	MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	LinalgTimer.Start();
 | 
			
		||||
 | 
			
		||||
	a = c / d;
 | 
			
		||||
	b_pred = a * (a * qq - d) / c;
 | 
			
		||||
 | 
			
		||||
	cp = axpy_norm(r_f, -a, mmp_f, r_f);
 | 
			
		||||
	b = cp / c;
 | 
			
		||||
 | 
			
		||||
	// Fuse these loops ; should be really easy
 | 
			
		||||
	psi_f = a * p_f + psi_f;
 | 
			
		||||
	//p_f = p_f * b + r_f;
 | 
			
		||||
 | 
			
		||||
	LinalgTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
 | 
			
		||||
		  << " residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
	std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << "  b = "<< b << std::endl;
 | 
			
		||||
	std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << "  c = "<< c << std::endl;
 | 
			
		||||
 | 
			
		||||
	if(cp > MaxResidSinceLastRelUp){
 | 
			
		||||
	  std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
 | 
			
		||||
	  MaxResidSinceLastRelUp = cp;
 | 
			
		||||
	}
 | 
			
		||||
	  
 | 
			
		||||
	// Stopping condition
 | 
			
		||||
	if (cp <= rsq) {
 | 
			
		||||
	  //Although not written in the paper, I assume that I have to add on the final solution
 | 
			
		||||
	  precisionChange(mmp, psi_f);
 | 
			
		||||
	  psi = psi + mmp;
 | 
			
		||||
	
 | 
			
		||||
	
 | 
			
		||||
	  SolverTimer.Stop();
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	  p = mmp - src;
 | 
			
		||||
 | 
			
		||||
	  RealD srcnorm = sqrt(norm2(src));
 | 
			
		||||
	  RealD resnorm = sqrt(norm2(p));
 | 
			
		||||
	  RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
	  std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	  std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
	  IterationsToComplete = k;	
 | 
			
		||||
	  ReliableUpdatesPerformed = l;
 | 
			
		||||
	  
 | 
			
		||||
	  if(DoFinalCleanup){
 | 
			
		||||
	    //Do a final CG to cleanup
 | 
			
		||||
	    std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
 | 
			
		||||
	    ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
 | 
			
		||||
	    CG.ErrorOnNoConverge = ErrorOnNoConverge;
 | 
			
		||||
	    CG(Linop_d,src,psi);
 | 
			
		||||
	    IterationsToCleanup = CG.IterationsToComplete;
 | 
			
		||||
	  }
 | 
			
		||||
	  else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
 | 
			
		||||
	  return;
 | 
			
		||||
	}
 | 
			
		||||
	else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
 | 
			
		||||
		    << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
 | 
			
		||||
	  precisionChange(mmp, psi_f);
 | 
			
		||||
	  psi = psi + mmp;
 | 
			
		||||
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi, mmp, d, qq);
 | 
			
		||||
	  r = src - mmp;
 | 
			
		||||
 | 
			
		||||
	  psi_f = zero;
 | 
			
		||||
	  precisionChange(r_f, r);
 | 
			
		||||
	  cp = norm2(r);
 | 
			
		||||
	  MaxResidSinceLastRelUp = cp;
 | 
			
		||||
 | 
			
		||||
	  b = cp/c;
 | 
			
		||||
	  
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
 | 
			
		||||
	  
 | 
			
		||||
	  l = l+1;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
 | 
			
		||||
 | 
			
		||||
	if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
 | 
			
		||||
	  std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
 | 
			
		||||
	  Linop_f_use = Linop_fallback;
 | 
			
		||||
	  using_fallback = true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
 | 
			
		||||
		<< std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      ReliableUpdatesPerformed = l;      
 | 
			
		||||
    }    
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -53,16 +53,110 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
   *     M psi = eta
 | 
			
		||||
   ***********************
 | 
			
		||||
   *Odd
 | 
			
		||||
   * i)   (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   * i)                 D_oo psi_o =  L^{-1}  eta_o
 | 
			
		||||
   *                        eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *      (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   *Even
 | 
			
		||||
   * ii)  Mee psi_e + Meo psi_o = src_e
 | 
			
		||||
   *
 | 
			
		||||
   *   => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
   *
 | 
			
		||||
   * 
 | 
			
		||||
   * TODO: Other options:
 | 
			
		||||
   * 
 | 
			
		||||
   * a) change checkerboards for Schur e<->o
 | 
			
		||||
   *
 | 
			
		||||
   * Left precon by Moo^-1
 | 
			
		||||
   * b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 =  (D_oo)^dag M_oo^-dag Moo^-1 L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = (D_oo)^dag  M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *
 | 
			
		||||
   * Right precon by Moo^-1
 | 
			
		||||
   * c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1}  eta_o
 | 
			
		||||
   *                              eta_o'     = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
 | 
			
		||||
   *                              psi_o = M_oo^-1 phi_o
 | 
			
		||||
   * TODO: Deflation 
 | 
			
		||||
   */
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  template<class Field> class SchurRedBlackStaggeredSolve {
 | 
			
		||||
  private:
 | 
			
		||||
    OperatorFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
 
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field sol_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,in);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,in);
 | 
			
		||||
      pickCheckerboard(Even,sol_e,out);
 | 
			
		||||
      pickCheckerboard(Odd ,sol_o,out);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);     
 | 
			
		||||
 | 
			
		||||
      _Matrix.Mooee(tmp,src_o);     assert(src_o.checkerboard ==Odd);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
 | 
			
		||||
      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
      setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd );
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      _Matrix.M(out,resid); 
 | 
			
		||||
      resid = resid-in;
 | 
			
		||||
      RealD ns = norm2(in);
 | 
			
		||||
      RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
  template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
@@ -76,12 +170,10 @@ namespace Grid {
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
  SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0)  :  _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
  { 
 | 
			
		||||
    CBfactorise=cb;
 | 
			
		||||
  };
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
@@ -141,5 +233,166 @@ namespace Grid {
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagTwoSolve {
 | 
			
		||||
  private:
 | 
			
		||||
    OperatorFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
 
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field sol_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,in);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,in);
 | 
			
		||||
      pickCheckerboard(Even,sol_e,out);
 | 
			
		||||
      pickCheckerboard(Odd ,sol_o,out);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);       
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
 | 
			
		||||
//      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd);
 | 
			
		||||
      _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_o);        assert(  sol_o.checkerboard   ==Odd);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
      setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd );
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      _Matrix.M(out,resid); 
 | 
			
		||||
      resid = resid-in;
 | 
			
		||||
      RealD ns = norm2(in);
 | 
			
		||||
      RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Take a matrix and form a Red Black solver calling a Herm solver
 | 
			
		||||
  // Use of RB info prevents making SchurRedBlackSolve conform to standard interface
 | 
			
		||||
  ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class Field> class SchurRedBlackDiagTwoMixed {
 | 
			
		||||
  private:
 | 
			
		||||
    LinearFunction<Field> & _HermitianRBSolver;
 | 
			
		||||
    int CBfactorise;
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
    // Wrap the usual normal equations Schur trick
 | 
			
		||||
    /////////////////////////////////////////////////////
 | 
			
		||||
  SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver)  :
 | 
			
		||||
     _HermitianRBSolver(HermitianRBSolver) 
 | 
			
		||||
    { 
 | 
			
		||||
      CBfactorise=0;
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Matrix>
 | 
			
		||||
      void operator() (Matrix & _Matrix,const Field &in, Field &out){
 | 
			
		||||
 | 
			
		||||
      // FIXME CGdiagonalMee not implemented virtual function
 | 
			
		||||
      // FIXME use CBfactorise to control schur decomp
 | 
			
		||||
      GridBase *grid = _Matrix.RedBlackGrid();
 | 
			
		||||
      GridBase *fgrid= _Matrix.Grid();
 | 
			
		||||
 | 
			
		||||
      SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
 | 
			
		||||
 
 | 
			
		||||
      Field src_e(grid);
 | 
			
		||||
      Field src_o(grid);
 | 
			
		||||
      Field sol_e(grid);
 | 
			
		||||
      Field sol_o(grid);
 | 
			
		||||
      Field   tmp(grid);
 | 
			
		||||
      Field  Mtmp(grid);
 | 
			
		||||
      Field resid(fgrid);
 | 
			
		||||
 | 
			
		||||
      pickCheckerboard(Even,src_e,in);
 | 
			
		||||
      pickCheckerboard(Odd ,src_o,in);
 | 
			
		||||
      pickCheckerboard(Even,sol_e,out);
 | 
			
		||||
      pickCheckerboard(Odd ,sol_o,out);
 | 
			
		||||
    
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // src_o = Mdag * (source_o - Moe MeeInv source_e)
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.MooeeInv(src_e,tmp);     assert(  tmp.checkerboard ==Even);
 | 
			
		||||
      _Matrix.Meooe   (tmp,Mtmp);      assert( Mtmp.checkerboard ==Odd);     
 | 
			
		||||
      tmp=src_o-Mtmp;                  assert(  tmp.checkerboard ==Odd);     
 | 
			
		||||
 | 
			
		||||
      // get the right MpcDag
 | 
			
		||||
      _HermOpEO.MpcDag(tmp,src_o);     assert(src_o.checkerboard ==Odd);       
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      // Call the red-black solver
 | 
			
		||||
      //////////////////////////////////////////////////////////////
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
 | 
			
		||||
//      _HermitianRBSolver(_HermOpEO,src_o,sol_o);  assert(sol_o.checkerboard==Odd);
 | 
			
		||||
//      _HermitianRBSolver(_HermOpEO,src_o,tmp);  assert(tmp.checkerboard==Odd);
 | 
			
		||||
      _HermitianRBSolver(src_o,tmp);  assert(tmp.checkerboard==Odd);
 | 
			
		||||
      _Matrix.MooeeInv(tmp,sol_o);        assert(  sol_o.checkerboard   ==Odd);
 | 
			
		||||
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      // sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
 | 
			
		||||
      ///////////////////////////////////////////////////
 | 
			
		||||
      _Matrix.Meooe(sol_o,tmp);        assert(  tmp.checkerboard   ==Even);
 | 
			
		||||
      src_e = src_e-tmp;               assert(  src_e.checkerboard ==Even);
 | 
			
		||||
      _Matrix.MooeeInv(src_e,sol_e);   assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
     
 | 
			
		||||
      setCheckerboard(out,sol_e); assert(  sol_e.checkerboard ==Even);
 | 
			
		||||
      setCheckerboard(out,sol_o); assert(  sol_o.checkerboard ==Odd );
 | 
			
		||||
 | 
			
		||||
      // Verify the unprec residual
 | 
			
		||||
      _Matrix.M(out,resid); 
 | 
			
		||||
      resid = resid-in;
 | 
			
		||||
      RealD ns = norm2(in);
 | 
			
		||||
      RealD nr = norm2(resid);
 | 
			
		||||
 | 
			
		||||
      std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
 | 
			
		||||
    }     
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -253,10 +253,12 @@ public:
 | 
			
		||||
    _Tp * ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN, bytes);
 | 
			
		||||
#endif
 | 
			
		||||
    uint8_t *cp = (uint8_t *)ptr;
 | 
			
		||||
    if ( ptr ) { 
 | 
			
		||||
    // One touch per 4k page, static OMP loop to catch same loop order
 | 
			
		||||
#pragma omp parallel for schedule(static)
 | 
			
		||||
    for(size_type n=0;n<bytes;n+=4096){
 | 
			
		||||
      cp[n]=0;
 | 
			
		||||
      for(size_type n=0;n<bytes;n+=4096){
 | 
			
		||||
	cp[n]=0;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return ptr;
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -49,6 +49,8 @@ public:
 | 
			
		||||
    template<class object> friend class Lattice;
 | 
			
		||||
 | 
			
		||||
    GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
 | 
			
		||||
    GridBase(const std::vector<int> & processor_grid,
 | 
			
		||||
	     const CartesianCommunicator &parent) : CartesianCommunicator(processor_grid,parent) {};
 | 
			
		||||
 | 
			
		||||
    // Physics Grid information.
 | 
			
		||||
    std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
 | 
			
		||||
@@ -210,9 +212,6 @@ public:
 | 
			
		||||
      assert(lidx<lSites());
 | 
			
		||||
      Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    void GlobalCoorToGlobalIndex(const std::vector<int> & gcoor,int & gidx){
 | 
			
		||||
      gidx=0;
 | 
			
		||||
      int mult=1;
 | 
			
		||||
 
 | 
			
		||||
@@ -61,9 +61,29 @@ public:
 | 
			
		||||
    virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
 | 
			
		||||
      return shift;
 | 
			
		||||
    }
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Constructor takes a parent grid and possibly subdivides communicator.
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    GridCartesian(const std::vector<int> &dimensions,
 | 
			
		||||
                  const std::vector<int> &simd_layout,
 | 
			
		||||
                  const std::vector<int> &processor_grid) : GridBase(processor_grid)
 | 
			
		||||
		  const std::vector<int> &simd_layout,
 | 
			
		||||
		  const std::vector<int> &processor_grid,
 | 
			
		||||
		  const GridCartesian &parent) : GridBase(processor_grid,parent)
 | 
			
		||||
    {
 | 
			
		||||
      Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
    }
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Construct from comm world
 | 
			
		||||
    /////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    GridCartesian(const std::vector<int> &dimensions,
 | 
			
		||||
		  const std::vector<int> &simd_layout,
 | 
			
		||||
		  const std::vector<int> &processor_grid) : GridBase(processor_grid)
 | 
			
		||||
    {
 | 
			
		||||
      Init(dimensions,simd_layout,processor_grid);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void Init(const std::vector<int> &dimensions,
 | 
			
		||||
	      const std::vector<int> &simd_layout,
 | 
			
		||||
	      const std::vector<int> &processor_grid)
 | 
			
		||||
    {
 | 
			
		||||
      ///////////////////////
 | 
			
		||||
      // Grid information
 | 
			
		||||
 
 | 
			
		||||
@@ -112,24 +112,57 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    GridRedBlackCartesian(const GridBase *base) : GridRedBlackCartesian(base->_fdimensions,base->_simd_layout,base->_processors)  {};
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    // Create Redblack from original grid; require full grid pointer ?
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    GridRedBlackCartesian(const GridBase *base) : GridBase(base->_processors,*base)
 | 
			
		||||
    {
 | 
			
		||||
      int dims = base->_ndimension;
 | 
			
		||||
      std::vector<int> checker_dim_mask(dims,1);
 | 
			
		||||
      int checker_dim = 0;
 | 
			
		||||
      Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    GridRedBlackCartesian(const std::vector<int> &dimensions,
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    // Create redblack from original grid, with non-trivial checker dim mask
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    GridRedBlackCartesian(const GridBase *base,
 | 
			
		||||
			  const std::vector<int> &checker_dim_mask,
 | 
			
		||||
			  int checker_dim
 | 
			
		||||
			  ) :  GridBase(base->_processors,*base) 
 | 
			
		||||
    {
 | 
			
		||||
      Init(base->_fdimensions,base->_simd_layout,base->_processors,checker_dim_mask,checker_dim)  ;
 | 
			
		||||
    }
 | 
			
		||||
#if 0
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    // Create redblack grid ;; deprecate these. Should not
 | 
			
		||||
    // need direct creation of redblack without a full grid to base on
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    GridRedBlackCartesian(const GridBase *base,
 | 
			
		||||
			  const std::vector<int> &dimensions,
 | 
			
		||||
			  const std::vector<int> &simd_layout,
 | 
			
		||||
			  const std::vector<int> &processor_grid,
 | 
			
		||||
			  const std::vector<int> &checker_dim_mask,
 | 
			
		||||
			  int checker_dim
 | 
			
		||||
			  ) :  GridBase(processor_grid) 
 | 
			
		||||
			  ) :  GridBase(processor_grid,*base) 
 | 
			
		||||
    {
 | 
			
		||||
      Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
 | 
			
		||||
    }
 | 
			
		||||
    GridRedBlackCartesian(const std::vector<int> &dimensions,
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    // Create redblack grid
 | 
			
		||||
    ////////////////////////////////////////////////////////////
 | 
			
		||||
    GridRedBlackCartesian(const GridBase *base,
 | 
			
		||||
			  const std::vector<int> &dimensions,
 | 
			
		||||
			  const std::vector<int> &simd_layout,
 | 
			
		||||
			  const std::vector<int> &processor_grid) : GridBase(processor_grid) 
 | 
			
		||||
			  const std::vector<int> &processor_grid) : GridBase(processor_grid,*base) 
 | 
			
		||||
    {
 | 
			
		||||
      std::vector<int> checker_dim_mask(dimensions.size(),1);
 | 
			
		||||
      Init(dimensions,simd_layout,processor_grid,checker_dim_mask,0);
 | 
			
		||||
      int checker_dim = 0;
 | 
			
		||||
      Init(dimensions,simd_layout,processor_grid,checker_dim_mask,checker_dim);
 | 
			
		||||
    }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
    void Init(const std::vector<int> &dimensions,
 | 
			
		||||
              const std::vector<int> &simd_layout,
 | 
			
		||||
              const std::vector<int> &processor_grid,
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,7 @@ namespace Grid {
 | 
			
		||||
// Info that is setup once and indept of cartesian layout
 | 
			
		||||
///////////////////////////////////////////////////////////////
 | 
			
		||||
void *              CartesianCommunicator::ShmCommBuf;
 | 
			
		||||
uint64_t            CartesianCommunicator::MAX_MPI_SHM_BYTES   = 128*1024*1024; 
 | 
			
		||||
uint64_t            CartesianCommunicator::MAX_MPI_SHM_BYTES   = 1024LL*1024LL*1024LL; 
 | 
			
		||||
CartesianCommunicator::CommunicatorPolicy_t  
 | 
			
		||||
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
 | 
			
		||||
int CartesianCommunicator::nCommThreads = -1;
 | 
			
		||||
@@ -67,7 +67,7 @@ void CartesianCommunicator::ShmBufferFreeAll(void) {
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
// Grid information queries
 | 
			
		||||
/////////////////////////////////
 | 
			
		||||
int                      CartesianCommunicator::Dimensions(void)         { return _ndimension; };
 | 
			
		||||
int                      CartesianCommunicator::Dimensions(void)        { return _ndimension; };
 | 
			
		||||
int                      CartesianCommunicator::IsBoss(void)            { return _processor==0; };
 | 
			
		||||
int                      CartesianCommunicator::BossRank(void)          { return 0; };
 | 
			
		||||
int                      CartesianCommunicator::ThisRank(void)          { return _processor; };
 | 
			
		||||
@@ -96,6 +96,113 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
 | 
			
		||||
  GlobalSumVector((double *)c,2*N);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#if defined( GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT)
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent) 
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
  assert(_ndimension = parent._ndimension);
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // split the communicator
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  int Nparent;
 | 
			
		||||
  MPI_Comm_size(parent.communicator,&Nparent);
 | 
			
		||||
 | 
			
		||||
  int childsize=1;
 | 
			
		||||
  for(int d=0;d<processors.size();d++) {
 | 
			
		||||
    childsize *= processors[d];
 | 
			
		||||
  }
 | 
			
		||||
  int Nchild = Nparent/childsize;
 | 
			
		||||
  assert (childsize * Nchild == Nparent);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ccoor(_ndimension); // coor within subcommunicator
 | 
			
		||||
  std::vector<int> scoor(_ndimension); // coor of split within parent
 | 
			
		||||
  std::vector<int> ssize(_ndimension); // coor of split within parent
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<_ndimension;d++){
 | 
			
		||||
    ccoor[d] = parent._processor_coor[d] % processors[d];
 | 
			
		||||
    scoor[d] = parent._processor_coor[d] / processors[d];
 | 
			
		||||
    ssize[d] = parent._processors[d]/ processors[d];
 | 
			
		||||
  }
 | 
			
		||||
  int crank,srank;  // rank within subcomm ; rank of subcomm within blocks of subcomms
 | 
			
		||||
  Lexicographic::IndexFromCoor(ccoor,crank,processors);
 | 
			
		||||
  Lexicographic::IndexFromCoor(scoor,srank,ssize);
 | 
			
		||||
 | 
			
		||||
  MPI_Comm comm_split;
 | 
			
		||||
  if ( Nchild > 1 ) { 
 | 
			
		||||
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
 | 
			
		||||
    //    std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"]    ";
 | 
			
		||||
    //    for(int d=0;d<parent._processors.size();d++)  std::cout << parent._processors[d] << " ";
 | 
			
		||||
    //    std::cout<<std::endl;
 | 
			
		||||
 | 
			
		||||
    //    std::cout << GridLogMessage<<" child grid["<< _ndimension <<"]    ";
 | 
			
		||||
    //    for(int d=0;d<processors.size();d++)  std::cout << processors[d] << " ";
 | 
			
		||||
    //    std::cout<<std::endl;
 | 
			
		||||
 | 
			
		||||
    int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
 | 
			
		||||
    assert(ierr==0);
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Declare victory
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    //    std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
 | 
			
		||||
    // 	      << Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
 | 
			
		||||
  } else {
 | 
			
		||||
    comm_split=parent.communicator;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Set up from the new split communicator
 | 
			
		||||
  //////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  InitFromMPICommunicator(processors,comm_split);
 | 
			
		||||
}
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Take an MPI_Comm and self assemble
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
void CartesianCommunicator::InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base)
 | 
			
		||||
{
 | 
			
		||||
  //  if ( communicator_base != communicator_world ) {
 | 
			
		||||
  //    std::cout << "Cartesian communicator created with a non-world communicator"<<std::endl;
 | 
			
		||||
  //  }
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  // Count the requested nodes
 | 
			
		||||
  /////////////////////////////////
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  for(int i=0;i<_ndimension;i++){
 | 
			
		||||
    _Nprocessors*=_processors[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::vector<int> periodic(_ndimension,1);
 | 
			
		||||
  MPI_Cart_create(communicator_base, _ndimension,&_processors[0],&periodic[0],1,&communicator);
 | 
			
		||||
  MPI_Comm_rank(communicator,&_processor);
 | 
			
		||||
  MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
 | 
			
		||||
 | 
			
		||||
  int Size;
 | 
			
		||||
  MPI_Comm_size(communicator,&Size);
 | 
			
		||||
 | 
			
		||||
#ifdef GRID_COMMS_MPIT
 | 
			
		||||
  communicator_halo.resize (2*_ndimension);
 | 
			
		||||
  for(int i=0;i<_ndimension*2;i++){
 | 
			
		||||
    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  
 | 
			
		||||
  assert(Size==_Nprocessors);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors) 
 | 
			
		||||
{
 | 
			
		||||
  InitFromMPICommunicator(processors,communicator_world);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if !defined( GRID_COMMS_MPI3) 
 | 
			
		||||
 | 
			
		||||
int                      CartesianCommunicator::NodeCount(void)    { return ProcessorCount();};
 | 
			
		||||
@@ -147,8 +254,13 @@ void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::ShmInitGeneric(void){
 | 
			
		||||
#if 1
 | 
			
		||||
 | 
			
		||||
  int mmap_flag = MAP_SHARED | MAP_ANONYMOUS;
 | 
			
		||||
  int mmap_flag =0;
 | 
			
		||||
#ifdef MAP_ANONYMOUS
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANONYMOUS;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_ANON
 | 
			
		||||
  mmap_flag = mmap_flag| MAP_SHARED | MAP_ANON;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
  if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
@@ -157,6 +269,9 @@ void CartesianCommunicator::ShmInitGeneric(void){
 | 
			
		||||
    perror("mmap failed ");
 | 
			
		||||
    exit(EXIT_FAILURE);  
 | 
			
		||||
  }
 | 
			
		||||
#ifdef MADV_HUGEPAGE
 | 
			
		||||
  if (!Hugepages ) madvise(ShmCommBuf,MAX_MPI_SHM_BYTES,MADV_HUGEPAGE);
 | 
			
		||||
#endif
 | 
			
		||||
#else 
 | 
			
		||||
  ShmBufStorageVector.resize(MAX_MPI_SHM_BYTES);
 | 
			
		||||
  ShmCommBuf=(void *)&ShmBufStorageVector[0];
 | 
			
		||||
 
 | 
			
		||||
@@ -83,6 +83,7 @@ class CartesianCommunicator {
 | 
			
		||||
  std::vector<MPI_Comm> communicator_halo;
 | 
			
		||||
 | 
			
		||||
  typedef MPI_Request CommsRequest_t;
 | 
			
		||||
 | 
			
		||||
#else 
 | 
			
		||||
  typedef int CommsRequest_t;
 | 
			
		||||
#endif
 | 
			
		||||
@@ -147,11 +148,23 @@ class CartesianCommunicator {
 | 
			
		||||
  // Must call in Grid startup
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  static void Init(int *argc, char ***argv);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Constructor of any given grid
 | 
			
		||||
  // Constructors to sub-divide a parent communicator
 | 
			
		||||
  // and default to comm world
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent);
 | 
			
		||||
  CartesianCommunicator(const std::vector<int> &pdimensions_in);
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPIT) 
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Private initialise from an MPI communicator
 | 
			
		||||
  // Can use after an MPI_Comm_split, but hidden from user so private
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  void InitFromMPICommunicator(const std::vector<int> &processors, MPI_Comm communicator_base);
 | 
			
		||||
#endif
 | 
			
		||||
 public:
 | 
			
		||||
  
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Wraps MPI_Cart routines, or implements equivalent on other impls
 | 
			
		||||
@@ -249,6 +262,23 @@ class CartesianCommunicator {
 | 
			
		||||
  // Broadcast a buffer and composite larger
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  void Broadcast(int root,void* data, int bytes);
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  // All2All down one dimension
 | 
			
		||||
  ////////////////////////////////////////////////////////////
 | 
			
		||||
  template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
 | 
			
		||||
    assert(dim>=0);
 | 
			
		||||
    assert(dim<_ndimension);
 | 
			
		||||
    int numnode = _processors[dim];
 | 
			
		||||
    //    std::cerr << " AllToAll in.size()  "<<in.size()<<std::endl;
 | 
			
		||||
    //    std::cerr << " AllToAll out.size() "<<out.size()<<std::endl;
 | 
			
		||||
    assert(in.size()==out.size());
 | 
			
		||||
    size_t bytes=(in.size()*sizeof(T))/numnode;
 | 
			
		||||
    assert((bytes*numnode) == in.size()*sizeof(T));
 | 
			
		||||
    AllToAll(dim,(void *)&in[0],(void *)&out[0],bytes);
 | 
			
		||||
  }
 | 
			
		||||
  void AllToAll(int dim  ,void *in,void *out,int bytes);
 | 
			
		||||
  void AllToAll(void  *in,void *out,int bytes);
 | 
			
		||||
  
 | 
			
		||||
  template<class obj> void Broadcast(int root,obj &data)
 | 
			
		||||
    {
 | 
			
		||||
 
 | 
			
		||||
@@ -52,29 +52,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
  MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
 | 
			
		||||
  ShmInitGeneric();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
  std::vector<int> periodic(_ndimension,1);
 | 
			
		||||
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
  
 | 
			
		||||
  MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
 | 
			
		||||
  MPI_Comm_rank(communicator,&_processor);
 | 
			
		||||
  MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<_ndimension;i++){
 | 
			
		||||
    _Nprocessors*=_processors[i];
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  int Size; 
 | 
			
		||||
  MPI_Comm_size(communicator,&Size);
 | 
			
		||||
  
 | 
			
		||||
  assert(Size==_Nprocessors);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
@@ -210,6 +187,21 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
 | 
			
		||||
		     root,
 | 
			
		||||
		     communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,int bytes)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<int> row(_ndimension,1);
 | 
			
		||||
  assert(dim>=0 && dim<_ndimension);
 | 
			
		||||
 | 
			
		||||
  //  Split the communicator
 | 
			
		||||
  row[dim] = _processors[dim];
 | 
			
		||||
 | 
			
		||||
  CartesianCommunicator Comm(row,*this);
 | 
			
		||||
  Comm.AllToAll(in,out,bytes);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(void  *in,void *out,int bytes)
 | 
			
		||||
{
 | 
			
		||||
  MPI_Alltoall(in ,bytes,MPI_BYTE,out,bytes,MPI_BYTE,communicator);
 | 
			
		||||
}
 | 
			
		||||
  ///////////////////////////////////////////////////////
 | 
			
		||||
  // Should only be used prior to Grid Init finished.
 | 
			
		||||
@@ -230,5 +222,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -198,7 +198,46 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
  ShmCommBuf = 0;
 | 
			
		||||
  ShmCommBufs.resize(ShmSize);
 | 
			
		||||
 | 
			
		||||
#if 1
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Hugetlbf and others map filesystems as mappable huge pages
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef GRID_MPI3_SHMMMAP
 | 
			
		||||
  char shm_name [NAME_MAX];
 | 
			
		||||
  for(int r=0;r<ShmSize;r++){
 | 
			
		||||
    
 | 
			
		||||
    size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
 | 
			
		||||
    sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",GroupRank,r);
 | 
			
		||||
    //sprintf(shm_name,"/var/lib/hugetlbfs/group/wheel/pagesize-2MB/" "Grid_mpi3_shm_%d_%d",GroupRank,r);
 | 
			
		||||
    //    printf("Opening file %s \n",shm_name);
 | 
			
		||||
    int fd=open(shm_name,O_RDWR|O_CREAT,0666);
 | 
			
		||||
    if ( fd == -1) { 
 | 
			
		||||
      printf("open %s failed\n",shm_name);
 | 
			
		||||
      perror("open hugetlbfs");
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    int mmap_flag = MAP_SHARED ;
 | 
			
		||||
#ifdef MAP_POPULATE    
 | 
			
		||||
    mmap_flag|=MAP_POPULATE;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
    if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
    void *ptr = (void *) mmap(NULL, MAX_MPI_SHM_BYTES, PROT_READ | PROT_WRITE, mmap_flag,fd, 0); 
 | 
			
		||||
    if ( ptr == (void *)MAP_FAILED ) {    
 | 
			
		||||
      printf("mmap %s failed\n",shm_name);
 | 
			
		||||
      perror("failed mmap");      assert(0);    
 | 
			
		||||
    }
 | 
			
		||||
    assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
    ShmCommBufs[r] =ptr;
 | 
			
		||||
    
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
 | 
			
		||||
  // tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for 
 | 
			
		||||
  // the posix shm virtual file system
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef GRID_MPI3_SHMOPEN
 | 
			
		||||
  char shm_name [NAME_MAX];
 | 
			
		||||
  if ( ShmRank == 0 ) {
 | 
			
		||||
    for(int r=0;r<ShmSize;r++){
 | 
			
		||||
@@ -213,12 +252,15 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
      ftruncate(fd, size);
 | 
			
		||||
      
 | 
			
		||||
      int mmap_flag = MAP_SHARED;
 | 
			
		||||
#ifdef MAP_POPULATE 
 | 
			
		||||
      mmap_flag |= MAP_POPULATE;
 | 
			
		||||
#endif
 | 
			
		||||
#ifdef MAP_HUGETLB
 | 
			
		||||
      if (Hugepages) mmap_flag |= MAP_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
      void * ptr =  mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
 | 
			
		||||
 | 
			
		||||
      if ( ptr == MAP_FAILED ) {       perror("failed mmap");      assert(0);    }
 | 
			
		||||
      if ( ptr == (void * )MAP_FAILED ) {       perror("failed mmap");      assert(0);    }
 | 
			
		||||
      assert(((uint64_t)ptr&0x3F)==0);
 | 
			
		||||
 | 
			
		||||
// Experiments; Experiments; Try to force numa domain on the shm segment if we have numaif.h
 | 
			
		||||
@@ -240,7 +282,7 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
	  if (ierr && (page==0)) perror("numa relocate command failed");
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
      ShmCommBufs[r] =ptr;
 | 
			
		||||
	ShmCommBufs[r] =ptr;
 | 
			
		||||
      
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -262,25 +304,32 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
      ShmCommBufs[r] =ptr;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
#endif
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // SHMGET SHMAT and SHM_HUGETLB flag
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
#ifdef GRID_MPI3_SHMGET
 | 
			
		||||
  std::vector<int> shmids(ShmSize);
 | 
			
		||||
 | 
			
		||||
  if ( ShmRank == 0 ) {
 | 
			
		||||
    for(int r=0;r<ShmSize;r++){
 | 
			
		||||
      size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
 | 
			
		||||
      key_t key   = 0x4545 + r;
 | 
			
		||||
      key_t key   = IPC_PRIVATE;
 | 
			
		||||
      int flags = IPC_CREAT | SHM_R | SHM_W;
 | 
			
		||||
#ifdef SHM_HUGETLB
 | 
			
		||||
      flags|=SHM_HUGETLB;
 | 
			
		||||
      if (Hugepages) flags|=SHM_HUGETLB;
 | 
			
		||||
#endif
 | 
			
		||||
      if ((shmids[r]= shmget(key,size, flags)) < 0) {
 | 
			
		||||
      if ((shmids[r]= shmget(key,size, flags)) ==-1) {
 | 
			
		||||
	int errsv = errno;
 | 
			
		||||
	printf("Errno %d\n",errsv);
 | 
			
		||||
	printf("key   %d\n",key);
 | 
			
		||||
	printf("size  %lld\n",size);
 | 
			
		||||
	printf("flags %d\n",flags);
 | 
			
		||||
	perror("shmget");
 | 
			
		||||
	exit(1);
 | 
			
		||||
      } else { 
 | 
			
		||||
	printf("shmid: 0x%x\n", shmids[r]);
 | 
			
		||||
      }
 | 
			
		||||
      printf("shmid: 0x%x\n", shmids[r]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  MPI_Barrier(ShmComm);
 | 
			
		||||
@@ -401,6 +450,15 @@ void  CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &c
 | 
			
		||||
  assert(lr!=-1);
 | 
			
		||||
  Lexicographic::CoorFromIndex(coor,lr,_processors);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
// Try to subdivide communicator
 | 
			
		||||
//////////////////////////////////
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent) 
 | 
			
		||||
  : CartesianCommunicator(processors) 
 | 
			
		||||
{
 | 
			
		||||
  std::cout << "Attempts to split MPI3 communicators will fail until implemented" <<std::endl;
 | 
			
		||||
}
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
 | 
			
		||||
{ 
 | 
			
		||||
  int ierr;
 | 
			
		||||
 
 | 
			
		||||
@@ -53,33 +53,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
  ShmInitGeneric();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
  std::vector<int> periodic(_ndimension,1);
 | 
			
		||||
 | 
			
		||||
  _Nprocessors=1;
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
  _processor_coor.resize(_ndimension);
 | 
			
		||||
  
 | 
			
		||||
  MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
 | 
			
		||||
  MPI_Comm_rank(communicator,&_processor);
 | 
			
		||||
  MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<_ndimension;i++){
 | 
			
		||||
    _Nprocessors*=_processors[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  communicator_halo.resize (2*_ndimension);
 | 
			
		||||
  for(int i=0;i<_ndimension*2;i++){
 | 
			
		||||
    MPI_Comm_dup(communicator,&communicator_halo[i]);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  int Size; 
 | 
			
		||||
  MPI_Comm_size(communicator,&Size);
 | 
			
		||||
  
 | 
			
		||||
  assert(Size==_Nprocessors);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
 | 
			
		||||
  int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
 | 
			
		||||
  assert(ierr==0);
 | 
			
		||||
 
 | 
			
		||||
@@ -38,6 +38,9 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
 | 
			
		||||
  ShmInitGeneric();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent) 
 | 
			
		||||
  : CartesianCommunicator(processors) {}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
 | 
			
		||||
{
 | 
			
		||||
  _processors = processors;
 | 
			
		||||
@@ -95,6 +98,10 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
 | 
			
		||||
{
 | 
			
		||||
  assert(0);
 | 
			
		||||
}
 | 
			
		||||
void CartesianCommunicator::AllToAll(int dim,void  *in,void *out,int bytes)
 | 
			
		||||
{
 | 
			
		||||
  bcopy(in,out,bytes);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int  CartesianCommunicator::RankWorld(void){return 0;}
 | 
			
		||||
void CartesianCommunicator::Barrier(void){}
 | 
			
		||||
 
 | 
			
		||||
@@ -75,6 +75,11 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
 | 
			
		||||
  ShmInitGeneric();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,const CartesianCommunicator &parent) 
 | 
			
		||||
  : CartesianCommunicator(processors) 
 | 
			
		||||
{
 | 
			
		||||
  std::cout << "Attempts to split SHMEM communicators will fail " <<std::endl;
 | 
			
		||||
}
 | 
			
		||||
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
 | 
			
		||||
{
 | 
			
		||||
  _ndimension = processors.size();
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										16252
									
								
								lib/json/json.hpp
									
									
									
									
									
								
							
							
						
						
									
										16252
									
								
								lib/json/json.hpp
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -544,7 +544,6 @@ static void sliceInnerProductMatrix(  Eigen::MatrixXcd &mat, const Lattice<vobj>
 | 
			
		||||
      for(int i=0;i<Nblock;i++){
 | 
			
		||||
      for(int j=0;j<Nblock;j++){
 | 
			
		||||
	auto tmp = innerProduct(Left[i],Right[j]);
 | 
			
		||||
	//	vector_typeD rtmp = TensorRemove(tmp);
 | 
			
		||||
	auto rtmp = TensorRemove(tmp);
 | 
			
		||||
	mat_thread(i,j) += Reduce(rtmp);
 | 
			
		||||
      }}
 | 
			
		||||
 
 | 
			
		||||
@@ -684,6 +684,307 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
 | 
			
		||||
    merge(out._odata[out_oidx], ptrs, 0);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Communicate between grids
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// All to all plan
 | 
			
		||||
//
 | 
			
		||||
// Subvolume on fine grid is v.    Vectors a,b,c,d 
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SIMPLEST CASE:
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Mesh of nodes (2) ; subdivide to  1 subdivisions
 | 
			
		||||
//
 | 
			
		||||
// Lex ord:   
 | 
			
		||||
//          N0 va0 vb0  N1 va1 vb1 
 | 
			
		||||
//
 | 
			
		||||
// For each dimension do an all to all
 | 
			
		||||
//
 | 
			
		||||
// full AllToAll(0)
 | 
			
		||||
//          N0 va0 va1    N1 vb0 vb1
 | 
			
		||||
//
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va01       N1 vb01
 | 
			
		||||
//
 | 
			
		||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
 | 
			
		||||
// NB: Easiest to programme if keep in lex order.
 | 
			
		||||
//
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// SIMPLE CASE:
 | 
			
		||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
// Mesh of nodes (2x2) ; subdivide to  1x1 subdivisions
 | 
			
		||||
//
 | 
			
		||||
// Lex ord:   
 | 
			
		||||
//          N0 va0 vb0 vc0 vd0       N1 va1 vb1 vc1 vd1  
 | 
			
		||||
//          N2 va2 vb2 vc2 vd2       N3 va3 vb3 vc3 vd3 
 | 
			
		||||
//
 | 
			
		||||
// Ratio = full[dim] / split[dim]
 | 
			
		||||
//
 | 
			
		||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
 | 
			
		||||
//                                          Ldim -> Ldim * ratio
 | 
			
		||||
//                                          LocalVol -> LocalVol * ratio
 | 
			
		||||
// full AllToAll(0)
 | 
			
		||||
//          N0 va0 vb0 va1 vb1       N1 vc0 vd0 vc1 vd1   
 | 
			
		||||
//          N2 va2 vb2 va3 vb3       N3 vc2 vd2 vc3 vd3 
 | 
			
		||||
//
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va01 vb01      N1 vc01 vd01
 | 
			
		||||
//          N2 va23 vb23      N3 vc23 vd23
 | 
			
		||||
//
 | 
			
		||||
// full AllToAll(1)           // Not what is wanted. FIXME
 | 
			
		||||
//          N0 va01 va23      N1 vc01 vc23 
 | 
			
		||||
//          N2 vb01 vb23      N3 vd01 vd23
 | 
			
		||||
// 
 | 
			
		||||
// REARRANGE
 | 
			
		||||
//          N0 va0123      N1 vc0123
 | 
			
		||||
//          N2 vb0123      N3 vd0123
 | 
			
		||||
//
 | 
			
		||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
 | 
			
		||||
// NB: Easiest to programme if keep in lex order.
 | 
			
		||||
//
 | 
			
		||||
/////////////////////////////////////////////////////////
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Vobj::scalar_object Sobj;
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0]._grid;
 | 
			
		||||
  GridBase *split_grid = split._grid;
 | 
			
		||||
 | 
			
		||||
  int       ndim  = full_grid->_ndimension;
 | 
			
		||||
  int  full_nproc = full_grid->_Nprocessors;
 | 
			
		||||
  int split_nproc =split_grid->_Nprocessors;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Checkerboard management
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  int cb = full[0].checkerboard;
 | 
			
		||||
  split.checkerboard = cb;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].checkerboard == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
 | 
			
		||||
      assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
    ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int lsites = full_grid->lSites();
 | 
			
		||||
  Integer sz = lsites * nvector;
 | 
			
		||||
  std::vector<Sobj> tmpdata(sz);
 | 
			
		||||
  std::vector<Sobj> alldata(sz);
 | 
			
		||||
  std::vector<Sobj> scalardata(lsites); 
 | 
			
		||||
  for(int v=0;v<nvector;v++){
 | 
			
		||||
    unvectorizeToLexOrdArray(scalardata,full[v]);    
 | 
			
		||||
    parallel_for(int site=0;site<lsites;site++){
 | 
			
		||||
      alldata[v*lsites+site] = scalardata[site];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int nvec = nvector; // Counts down to 1 as we collapse dims
 | 
			
		||||
  std::vector<int> ldims = full_grid->_ldimensions;
 | 
			
		||||
  std::vector<int> lcoor(ndim);
 | 
			
		||||
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
 | 
			
		||||
    if ( ratio[d] != 1 ) {
 | 
			
		||||
 | 
			
		||||
      full_grid ->AllToAll(d,alldata,tmpdata);
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      //Local volume for this dimension is expanded by ratio of processor extents
 | 
			
		||||
      // Number of vectors is decreased by same factor
 | 
			
		||||
      // Rearrange to lexico for bigger volume
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      nvec    /= ratio[d];
 | 
			
		||||
      auto rdims = ldims; rdims[d]  *=   ratio[d];
 | 
			
		||||
      auto rsites= lsites*ratio[d];
 | 
			
		||||
      for(int v=0;v<nvec;v++){
 | 
			
		||||
 | 
			
		||||
	// For loop over each site within old subvol
 | 
			
		||||
	for(int lsite=0;lsite<lsites;lsite++){
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(lcoor, lsite, ldims);	  
 | 
			
		||||
 | 
			
		||||
	  for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
 | 
			
		||||
 | 
			
		||||
	    auto rcoor = lcoor;	    rcoor[d]  += r*ldims[d];
 | 
			
		||||
 | 
			
		||||
	    int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);	  
 | 
			
		||||
	    rsite += v * rsites;
 | 
			
		||||
 | 
			
		||||
	    int rmul=nvec*lsites;
 | 
			
		||||
	    int vmul=     lsites;
 | 
			
		||||
	    alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ldims[d]*= ratio[d];
 | 
			
		||||
      lsites  *= ratio[d];
 | 
			
		||||
 | 
			
		||||
      if ( split_grid->_processors[d] > 1 ) {
 | 
			
		||||
	tmpdata = alldata;
 | 
			
		||||
	split_grid->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  vectorizeFromLexOrdArray(alldata,split);    
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
 | 
			
		||||
  std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
 | 
			
		||||
  for(int n=0;n<nvector;n++){
 | 
			
		||||
    full_v[n] = full;
 | 
			
		||||
  }
 | 
			
		||||
  Grid_split(full_v,split);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Vobj>
 | 
			
		||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj>   & split)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename Vobj::scalar_object Sobj;
 | 
			
		||||
 | 
			
		||||
  int full_vecs   = full.size();
 | 
			
		||||
 | 
			
		||||
  assert(full_vecs>=1);
 | 
			
		||||
 | 
			
		||||
  GridBase * full_grid = full[0]._grid;
 | 
			
		||||
  GridBase *split_grid = split._grid;
 | 
			
		||||
 | 
			
		||||
  int       ndim  = full_grid->_ndimension;
 | 
			
		||||
  int  full_nproc = full_grid->_Nprocessors;
 | 
			
		||||
  int split_nproc =split_grid->_Nprocessors;
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  // Checkerboard management
 | 
			
		||||
  ////////////////////////////////
 | 
			
		||||
  int cb = full[0].checkerboard;
 | 
			
		||||
  split.checkerboard = cb;
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  // Checks
 | 
			
		||||
  //////////////////////////////
 | 
			
		||||
  assert(full_grid->_ndimension==split_grid->_ndimension);
 | 
			
		||||
  for(int n=0;n<full_vecs;n++){
 | 
			
		||||
    assert(full[n].checkerboard == cb);
 | 
			
		||||
    for(int d=0;d<ndim;d++){
 | 
			
		||||
      assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
 | 
			
		||||
      assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int   nvector   =full_nproc/split_nproc; 
 | 
			
		||||
  assert(nvector*split_nproc==full_nproc);
 | 
			
		||||
  assert(nvector == full_vecs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int> ratio(ndim);
 | 
			
		||||
  for(int d=0;d<ndim;d++){
 | 
			
		||||
    ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int lsites = full_grid->lSites();
 | 
			
		||||
  Integer sz = lsites * nvector;
 | 
			
		||||
  std::vector<Sobj> tmpdata(sz);
 | 
			
		||||
  std::vector<Sobj> alldata(sz);
 | 
			
		||||
  std::vector<Sobj> scalardata(lsites); 
 | 
			
		||||
 | 
			
		||||
  unvectorizeToLexOrdArray(alldata,split);    
 | 
			
		||||
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  // Start from split grid and work towards full grid
 | 
			
		||||
  /////////////////////////////////////////////////////////////////
 | 
			
		||||
  std::vector<int> lcoor(ndim);
 | 
			
		||||
  std::vector<int> rcoor(ndim);
 | 
			
		||||
 | 
			
		||||
  int nvec = 1;
 | 
			
		||||
  lsites = split_grid->lSites();
 | 
			
		||||
  std::vector<int> ldims = split_grid->_ldimensions;
 | 
			
		||||
 | 
			
		||||
  for(int d=ndim-1;d>=0;d--){
 | 
			
		||||
 | 
			
		||||
    if ( ratio[d] != 1 ) {
 | 
			
		||||
 | 
			
		||||
      if ( split_grid->_processors[d] > 1 ) {
 | 
			
		||||
	tmpdata = alldata;
 | 
			
		||||
	split_grid->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      //Local volume for this dimension is expanded by ratio of processor extents
 | 
			
		||||
      // Number of vectors is decreased by same factor
 | 
			
		||||
      // Rearrange to lexico for bigger volume
 | 
			
		||||
      //////////////////////////////////////////
 | 
			
		||||
      auto rsites= lsites/ratio[d];
 | 
			
		||||
      auto rdims = ldims; rdims[d]/=ratio[d];
 | 
			
		||||
 | 
			
		||||
      for(int v=0;v<nvec;v++){
 | 
			
		||||
 | 
			
		||||
	// rsite, rcoor --> smaller local volume
 | 
			
		||||
	// lsite, lcoor --> bigger original (single node?) volume
 | 
			
		||||
	// For loop over each site within smaller subvol
 | 
			
		||||
	for(int rsite=0;rsite<rsites;rsite++){
 | 
			
		||||
 | 
			
		||||
	  Lexicographic::CoorFromIndex(rcoor, rsite, rdims);	  
 | 
			
		||||
	  int lsite;
 | 
			
		||||
 | 
			
		||||
	  for(int r=0;r<ratio[d];r++){ 
 | 
			
		||||
 | 
			
		||||
	    lcoor = rcoor; lcoor[d] += r*rdims[d];
 | 
			
		||||
	    Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
 | 
			
		||||
 | 
			
		||||
	    int rmul=nvec*rsites;
 | 
			
		||||
	    int vmul=     rsites;
 | 
			
		||||
	    tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
 | 
			
		||||
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      nvec   *= ratio[d];
 | 
			
		||||
      ldims[d]=rdims[d];
 | 
			
		||||
      lsites  =rsites;
 | 
			
		||||
 | 
			
		||||
      full_grid ->AllToAll(d,tmpdata,alldata);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  lsites = full_grid->lSites();
 | 
			
		||||
  for(int v=0;v<nvector;v++){
 | 
			
		||||
    parallel_for(int site=0;site<lsites;site++){
 | 
			
		||||
      scalardata[site] = alldata[v*lsites+site];
 | 
			
		||||
    }
 | 
			
		||||
    assert(v<full.size());
 | 
			
		||||
 | 
			
		||||
    vectorizeFromLexOrdArray(scalardata,full[v]);    
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -84,10 +84,6 @@ namespace QCD {
 | 
			
		||||
   stream << "GRID_";
 | 
			
		||||
   stream << ScidacWordMnemonic<stype>();
 | 
			
		||||
 | 
			
		||||
   //   std::cout << " Lorentz N/S/V/M : " << _LorentzN<<" "<<_LorentzScalar<<"/"<<_LorentzVector<<"/"<<_LorentzMatrix<<std::endl;
 | 
			
		||||
   //   std::cout << " Spin    N/S/V/M : " << _SpinN   <<" "<<_SpinScalar   <<"/"<<_SpinVector   <<"/"<<_SpinMatrix<<std::endl;
 | 
			
		||||
   //   std::cout << " Colour  N/S/V/M : " << _ColourN <<" "<<_ColourScalar <<"/"<<_ColourVector <<"/"<<_ColourMatrix<<std::endl;
 | 
			
		||||
 | 
			
		||||
   if ( _LorentzVector )   stream << "_LorentzVector"<<_LorentzN;
 | 
			
		||||
   if ( _LorentzMatrix )   stream << "_LorentzMatrix"<<_LorentzN;
 | 
			
		||||
 | 
			
		||||
@@ -182,7 +178,7 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   // Open the file
 | 
			
		||||
   /////////////////////////////////////////////
 | 
			
		||||
   void open(std::string &_filename) 
 | 
			
		||||
   void open(const std::string &_filename) 
 | 
			
		||||
   {
 | 
			
		||||
     filename= _filename;
 | 
			
		||||
     File = fopen(filename.c_str(), "r");
 | 
			
		||||
@@ -210,19 +206,33 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << limeReaderType(LimeR) <<std::endl;
 | 
			
		||||
	
 | 
			
		||||
      if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) )  ) {
 | 
			
		||||
      uint64_t file_bytes =limeReaderBytes(LimeR);
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage << limeReaderType(LimeR) << " "<< file_bytes <<" bytes "<<std::endl;
 | 
			
		||||
      //      std::cout << GridLogMessage<< " readLimeObject seeking "<<  record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) )  ) {
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<< " readLimeLatticeBinaryObject matches ! " <<std::endl;
 | 
			
		||||
 | 
			
		||||
	uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
 | 
			
		||||
 | 
			
		||||
	//	std::cout << "R sizeof(sobj)= " <<sizeof(sobj)<<std::endl;
 | 
			
		||||
	//	std::cout << "R Gsites " <<field._grid->_gsites<<std::endl;
 | 
			
		||||
	//	std::cout << "R Payload expected " <<PayloadSize<<std::endl;
 | 
			
		||||
	//	std::cout << "R file size " <<file_bytes <<std::endl;
 | 
			
		||||
 | 
			
		||||
	assert(PayloadSize == file_bytes);// Must match or user error
 | 
			
		||||
 | 
			
		||||
	off_t offset= ftell(File);
 | 
			
		||||
	//	std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
 | 
			
		||||
	BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
	BinaryIO::readLatticeObject< sobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
	BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	// Insist checksum is next record
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	readLimeObject(scidacChecksum_,std::string("scidacChecksum"),record_name);
 | 
			
		||||
	readLimeObject(scidacChecksum_,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
 | 
			
		||||
 | 
			
		||||
	/////////////////////////////////////////////
 | 
			
		||||
	// Verify checksums
 | 
			
		||||
@@ -242,11 +252,19 @@ class GridLimeReader : public BinaryIO {
 | 
			
		||||
    // should this be a do while; can we miss a first record??
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
 | 
			
		||||
      //      std::cout << GridLogMessage<< " readLimeObject seeking "<< record_name <<" found record :" <<limeReaderType(LimeR) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
 | 
			
		||||
 | 
			
		||||
      if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) )  ) {
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) )  ) {
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<< " readLimeObject matches ! " << record_name <<std::endl;
 | 
			
		||||
 | 
			
		||||
	std::vector<char> xmlc(nbytes+1,'\0');
 | 
			
		||||
	limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);    
 | 
			
		||||
 | 
			
		||||
	//	std::cout << GridLogMessage<< " readLimeObject matches XML " << &xmlc[0] <<std::endl;
 | 
			
		||||
 | 
			
		||||
	XmlReader RD(&xmlc[0],"");
 | 
			
		||||
	read(RD,object_name,object);
 | 
			
		||||
	return;
 | 
			
		||||
@@ -261,13 +279,14 @@ class GridLimeWriter : public BinaryIO {
 | 
			
		||||
 public:
 | 
			
		||||
   ///////////////////////////////////////////////////
 | 
			
		||||
   // FIXME: format for RNG? Now just binary out instead
 | 
			
		||||
   // FIXME: collective calls or not ?
 | 
			
		||||
   //      : must know if I am the I/O boss
 | 
			
		||||
   ///////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
   FILE       *File;
 | 
			
		||||
   LimeWriter *LimeW;
 | 
			
		||||
   std::string filename;
 | 
			
		||||
 | 
			
		||||
   void open(std::string &_filename) { 
 | 
			
		||||
   void open(const std::string &_filename) { 
 | 
			
		||||
     filename= _filename;
 | 
			
		||||
     File = fopen(filename.c_str(), "w");
 | 
			
		||||
     LimeW = limeCreateWriter(File); assert(LimeW != NULL );
 | 
			
		||||
@@ -302,14 +321,18 @@ class GridLimeWriter : public BinaryIO {
 | 
			
		||||
      write(WR,object_name,object);
 | 
			
		||||
      xmlstring = WR.XmlString();
 | 
			
		||||
    }
 | 
			
		||||
    //    std::cout << "WriteLimeObject" << record_name <<std::endl;
 | 
			
		||||
    uint64_t nbytes = xmlstring.size();
 | 
			
		||||
    //    std::cout << " xmlstring "<< nbytes<< " " << xmlstring <<std::endl;
 | 
			
		||||
    int err;
 | 
			
		||||
    LimeRecordHeader *h = limeCreateHeader(MB, ME,(char *)record_name.c_str(), nbytes); assert(h!= NULL);
 | 
			
		||||
    LimeRecordHeader *h = limeCreateHeader(MB, ME,const_cast<char *>(record_name.c_str()), nbytes); 
 | 
			
		||||
    assert(h!= NULL);
 | 
			
		||||
 | 
			
		||||
    err=limeWriteRecordHeader(h, LimeW);                    assert(err>=0);
 | 
			
		||||
    err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
 | 
			
		||||
    err=limeWriterCloseRecord(LimeW);                       assert(err>=0);
 | 
			
		||||
    limeDestroyHeader(h);
 | 
			
		||||
    //    std::cout << " File offset is now"<<ftell(File) << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////
 | 
			
		||||
  // Write a generic lattice field and csum
 | 
			
		||||
@@ -326,6 +349,11 @@ class GridLimeWriter : public BinaryIO {
 | 
			
		||||
    uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
 | 
			
		||||
    createLimeRecordHeader(record_name, 0, 0, PayloadSize);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    //    std::cout << "W sizeof(sobj)"      <<sizeof(sobj)<<std::endl;
 | 
			
		||||
    //    std::cout << "W Gsites "           <<field._grid->_gsites<<std::endl;
 | 
			
		||||
    //    std::cout << "W Payload expected " <<PayloadSize<<std::endl;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // NB: FILE and iostream are jointly writing disjoint sequences in the
 | 
			
		||||
    // the same file through different file handles (integer units).
 | 
			
		||||
@@ -340,6 +368,7 @@ class GridLimeWriter : public BinaryIO {
 | 
			
		||||
    //  v) Continue writing scidac record.
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////
 | 
			
		||||
    off_t offset = ftell(File);
 | 
			
		||||
    //    std::cout << " Writing to offset "<<offset << std::endl;
 | 
			
		||||
    std::string format = getFormatString<vobj>();
 | 
			
		||||
    BinarySimpleMunger<sobj,sobj> munge;
 | 
			
		||||
    BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
 | 
			
		||||
@@ -354,7 +383,7 @@ class GridLimeWriter : public BinaryIO {
 | 
			
		||||
    checksum.suma= streama.str();
 | 
			
		||||
    checksum.sumb= streamb.str();
 | 
			
		||||
    std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
 | 
			
		||||
    writeLimeObject(0,1,checksum,std::string("scidacChecksum"    ),std::string(SCIDAC_CHECKSUM));
 | 
			
		||||
    writeLimeObject(0,1,checksum,std::string("scidacChecksum"),std::string(SCIDAC_CHECKSUM));
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -371,11 +400,9 @@ class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Write generic lattice field in scidac format
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
   template <class vobj, class userRecord>
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord) 
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    uint64_t nbytes;
 | 
			
		||||
    GridBase * grid = field._grid;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
@@ -397,6 +424,66 @@ class ScidacWriter : public GridLimeWriter {
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ScidacReader : public GridLimeReader {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
   template<class SerialisableUserFile>
 | 
			
		||||
   void readScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
 | 
			
		||||
   {
 | 
			
		||||
     scidacFile    _scidacFile(grid);
 | 
			
		||||
     readLimeObject(_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
 | 
			
		||||
     readLimeObject(_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
 | 
			
		||||
   }
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  // Write generic lattice field in scidac format
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
  template <class vobj, class userRecord>
 | 
			
		||||
  void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord) 
 | 
			
		||||
  {
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
    GridBase * grid = field._grid;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // fill the Grid header
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    FieldMetaData header;
 | 
			
		||||
    scidacRecord  _scidacRecord;
 | 
			
		||||
    scidacFile    _scidacFile;
 | 
			
		||||
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    // Fill the Lime file record by record
 | 
			
		||||
    //////////////////////////////////////////////
 | 
			
		||||
    readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message 
 | 
			
		||||
    readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
 | 
			
		||||
  }
 | 
			
		||||
  void skipPastBinaryRecord(void) {
 | 
			
		||||
    std::string rec_name(ILDG_BINARY_DATA);
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) {
 | 
			
		||||
	skipPastObjectRecord(std::string(SCIDAC_CHECKSUM));
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
    }    
 | 
			
		||||
  }
 | 
			
		||||
  void skipPastObjectRecord(std::string rec_name) {
 | 
			
		||||
    while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) { 
 | 
			
		||||
      if ( !strncmp(limeReaderType(LimeR), rec_name.c_str(),strlen(rec_name.c_str()) )  ) {
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  void skipScidacFieldRecord() {
 | 
			
		||||
    skipPastObjectRecord(std::string(GRID_FORMAT));
 | 
			
		||||
    skipPastObjectRecord(std::string(SCIDAC_RECORD_XML));
 | 
			
		||||
    skipPastObjectRecord(std::string(SCIDAC_PRIVATE_RECORD_XML));
 | 
			
		||||
    skipPastBinaryRecord();
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class IldgWriter : public ScidacWriter {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
@@ -425,8 +512,6 @@ class IldgWriter : public ScidacWriter {
 | 
			
		||||
    typedef iLorentzColourMatrix<vsimd> vobj;
 | 
			
		||||
    typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
    uint64_t nbytes;
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
    // fill the Grid header
 | 
			
		||||
    ////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -64,6 +64,11 @@ namespace Grid {
 | 
			
		||||
// file compatability, so should be correct to assume the undocumented but defacto file structure.
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
struct emptyUserRecord : Serializable { 
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(emptyUserRecord,int,dummy);
 | 
			
		||||
  emptyUserRecord() { dummy=0; };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////
 | 
			
		||||
// Scidac private file xml
 | 
			
		||||
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile>
 | 
			
		||||
 
 | 
			
		||||
@@ -85,6 +85,9 @@ namespace Grid {
 | 
			
		||||
	nd=4;
 | 
			
		||||
	dimension.resize(4);
 | 
			
		||||
	boundary.resize(4);
 | 
			
		||||
	scidac_checksuma=0;
 | 
			
		||||
	scidac_checksumb=0;
 | 
			
		||||
	checksum=0;
 | 
			
		||||
      }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
@@ -104,6 +107,7 @@ namespace Grid {
 | 
			
		||||
      header.nd = nd;
 | 
			
		||||
      header.dimension.resize(nd);
 | 
			
		||||
      header.boundary.resize(nd);
 | 
			
		||||
      header.data_start = 0;
 | 
			
		||||
      for(int d=0;d<nd;d++) {
 | 
			
		||||
	header.dimension[d] = grid->_fdimensions[d];
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										100
									
								
								lib/qcd/action/fermion/AbstractEOFAFermion.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								lib/qcd/action/fermion/AbstractEOFAFermion.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,100 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_ABSTRACT_EOFA_FERMION_H
 | 
			
		||||
#define  GRID_QCD_ABSTRACT_EOFA_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  // DJM: Abstract base class for EOFA fermion types.
 | 
			
		||||
  // Defines layout of additional EOFA-specific parameters and operators.
 | 
			
		||||
  // Use to construct EOFA pseudofermion actions that are agnostic to
 | 
			
		||||
  // Shamir / Mobius / etc., and ensure that no one can construct EOFA
 | 
			
		||||
  // pseudofermion action with non-EOFA fermion type.
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
      // Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
 | 
			
		||||
      RealD mq1;
 | 
			
		||||
      RealD mq2;
 | 
			
		||||
      RealD mq3;
 | 
			
		||||
      RealD shift;
 | 
			
		||||
      int pm;
 | 
			
		||||
 | 
			
		||||
      RealD alpha; // Mobius scale
 | 
			
		||||
      RealD k;     // EOFA normalization constant
 | 
			
		||||
 | 
			
		||||
      virtual void Instantiatable(void) = 0;
 | 
			
		||||
 | 
			
		||||
      // EOFA-specific operations
 | 
			
		||||
      // Force user to implement in derived classes
 | 
			
		||||
      virtual void  Omega    (const FermionField& in, FermionField& out, int sign, int dag) = 0;
 | 
			
		||||
      virtual void  Dtilde   (const FermionField& in, FermionField& out) = 0;
 | 
			
		||||
      virtual void  DtildeInv(const FermionField& in, FermionField& out) = 0;
 | 
			
		||||
 | 
			
		||||
      // Implement derivatives in base class:
 | 
			
		||||
      // for EOFA both DWF and Mobius just need d(Dw)/dU
 | 
			
		||||
      virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
 | 
			
		||||
        this->DhopDeriv(mat, U, V, dag);
 | 
			
		||||
      };
 | 
			
		||||
      virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
 | 
			
		||||
        this->DhopDerivOE(mat, U, V, dag);
 | 
			
		||||
      };
 | 
			
		||||
      virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
 | 
			
		||||
        this->DhopDerivEO(mat, U, V, dag);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // Recompute 5D coefficients for different value of shift constant
 | 
			
		||||
      // (needed for heatbath loop over poles)
 | 
			
		||||
      virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
 | 
			
		||||
 | 
			
		||||
      // Constructors
 | 
			
		||||
      AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
 | 
			
		||||
        GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
 | 
			
		||||
        RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
 | 
			
		||||
        RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
 | 
			
		||||
        : CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
 | 
			
		||||
          _mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
 | 
			
		||||
      {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        this->alpha = _b + _c;
 | 
			
		||||
        this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
 | 
			
		||||
                    ( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
 | 
			
		||||
                    ( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
 | 
			
		||||
      };
 | 
			
		||||
  };
 | 
			
		||||
}}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -77,7 +77,6 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
 | 
			
		||||
{
 | 
			
		||||
  this->Report();
 | 
			
		||||
@@ -119,7 +118,6 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
 | 
			
		||||
  MooeeInvTime=0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class Impl>  
 | 
			
		||||
void CayleyFermion5D<Impl>::M5D   (const FermionField &psi, FermionField &chi)
 | 
			
		||||
{
 | 
			
		||||
 
 | 
			
		||||
@@ -1,6 +1,6 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
 | 
			
		||||
 | 
			
		||||
@@ -35,24 +35,24 @@ namespace Grid {
 | 
			
		||||
 | 
			
		||||
  namespace QCD {
 | 
			
		||||
 | 
			
		||||
     template<typename T> struct switcheroo   {  
 | 
			
		||||
       static inline int iscomplex()  { return 0; } 
 | 
			
		||||
     template<typename T> struct switcheroo   {
 | 
			
		||||
       static inline int iscomplex()  { return 0; }
 | 
			
		||||
 | 
			
		||||
       template<class vec>
 | 
			
		||||
       static inline vec mult(vec a, vec b) {
 | 
			
		||||
	 return real_mult(a,b);
 | 
			
		||||
       }
 | 
			
		||||
     };
 | 
			
		||||
     template<> struct switcheroo<ComplexD> {  
 | 
			
		||||
       static inline int iscomplex()  { return 1; } 
 | 
			
		||||
     template<> struct switcheroo<ComplexD> {
 | 
			
		||||
       static inline int iscomplex()  { return 1; }
 | 
			
		||||
 | 
			
		||||
       template<class vec>
 | 
			
		||||
       static inline vec mult(vec a, vec b) {
 | 
			
		||||
	 return a*b;
 | 
			
		||||
       }
 | 
			
		||||
     };
 | 
			
		||||
     template<> struct switcheroo<ComplexF> {  
 | 
			
		||||
       static inline int iscomplex()  { return 1; } 
 | 
			
		||||
     template<> struct switcheroo<ComplexF> {
 | 
			
		||||
       static inline int iscomplex()  { return 1; }
 | 
			
		||||
       template<class vec>
 | 
			
		||||
       static inline vec mult(vec a, vec b) {
 | 
			
		||||
	 return a*b;
 | 
			
		||||
@@ -90,14 +90,14 @@ namespace Grid {
 | 
			
		||||
      // Instantiate different versions depending on Impl
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      void M5D(const FermionField &psi,
 | 
			
		||||
	       const FermionField &phi, 
 | 
			
		||||
	       const FermionField &phi,
 | 
			
		||||
	       FermionField &chi,
 | 
			
		||||
	       std::vector<Coeff_t> &lower,
 | 
			
		||||
	       std::vector<Coeff_t> &diag,
 | 
			
		||||
	       std::vector<Coeff_t> &upper);
 | 
			
		||||
 | 
			
		||||
      void M5Ddag(const FermionField &psi,
 | 
			
		||||
		  const FermionField &phi, 
 | 
			
		||||
		  const FermionField &phi,
 | 
			
		||||
		  FermionField &chi,
 | 
			
		||||
		  std::vector<Coeff_t> &lower,
 | 
			
		||||
		  std::vector<Coeff_t> &diag,
 | 
			
		||||
@@ -125,7 +125,7 @@ namespace Grid {
 | 
			
		||||
 | 
			
		||||
      // Efficient support for multigrid coarsening
 | 
			
		||||
      virtual void  Mdir (const FermionField &in, FermionField &out,int dir,int disp);
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
      void   Meooe5D       (const FermionField &in, FermionField &out);
 | 
			
		||||
      void   MeooeDag5D    (const FermionField &in, FermionField &out);
 | 
			
		||||
 | 
			
		||||
@@ -133,23 +133,23 @@ namespace Grid {
 | 
			
		||||
      RealD mass;
 | 
			
		||||
 | 
			
		||||
      // Cayley form Moebius (tanh and zolotarev)
 | 
			
		||||
      std::vector<Coeff_t> omega; 
 | 
			
		||||
      std::vector<Coeff_t> omega;
 | 
			
		||||
      std::vector<Coeff_t> bs;    // S dependent coeffs
 | 
			
		||||
      std::vector<Coeff_t> cs;    
 | 
			
		||||
      std::vector<Coeff_t> as;    
 | 
			
		||||
      std::vector<Coeff_t> cs;
 | 
			
		||||
      std::vector<Coeff_t> as;
 | 
			
		||||
      // For preconditioning Cayley form
 | 
			
		||||
      std::vector<Coeff_t> bee;    
 | 
			
		||||
      std::vector<Coeff_t> cee;    
 | 
			
		||||
      std::vector<Coeff_t> aee;    
 | 
			
		||||
      std::vector<Coeff_t> beo;    
 | 
			
		||||
      std::vector<Coeff_t> ceo;    
 | 
			
		||||
      std::vector<Coeff_t> aeo;    
 | 
			
		||||
      std::vector<Coeff_t> bee;
 | 
			
		||||
      std::vector<Coeff_t> cee;
 | 
			
		||||
      std::vector<Coeff_t> aee;
 | 
			
		||||
      std::vector<Coeff_t> beo;
 | 
			
		||||
      std::vector<Coeff_t> ceo;
 | 
			
		||||
      std::vector<Coeff_t> aeo;
 | 
			
		||||
      // LDU factorisation of the eeoo matrix
 | 
			
		||||
      std::vector<Coeff_t> lee;    
 | 
			
		||||
      std::vector<Coeff_t> leem;    
 | 
			
		||||
      std::vector<Coeff_t> uee;    
 | 
			
		||||
      std::vector<Coeff_t> ueem;    
 | 
			
		||||
      std::vector<Coeff_t> dee;    
 | 
			
		||||
      std::vector<Coeff_t> lee;
 | 
			
		||||
      std::vector<Coeff_t> leem;
 | 
			
		||||
      std::vector<Coeff_t> uee;
 | 
			
		||||
      std::vector<Coeff_t> ueem;
 | 
			
		||||
      std::vector<Coeff_t> dee;
 | 
			
		||||
 | 
			
		||||
      // Matrices of 5d ee inverse params
 | 
			
		||||
      Vector<iSinglet<Simd> >  MatpInv;
 | 
			
		||||
@@ -165,7 +165,7 @@ namespace Grid {
 | 
			
		||||
		      GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
		      RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
 | 
			
		||||
 | 
			
		||||
      
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
     void CayleyReport(void);
 | 
			
		||||
     void CayleyZeroCounters(void);
 | 
			
		||||
@@ -179,9 +179,9 @@ namespace Grid {
 | 
			
		||||
     double MooeeInvTime;
 | 
			
		||||
 | 
			
		||||
    protected:
 | 
			
		||||
      void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
      void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
      void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
      virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
      virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
 | 
			
		||||
      virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										438
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermion.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										438
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermion.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,438 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    DomainWallEOFAFermion<Impl>::DomainWallEOFAFermion(
 | 
			
		||||
      GaugeField            &_Umu,
 | 
			
		||||
      GridCartesian         &FiveDimGrid,
 | 
			
		||||
      GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
      GridCartesian         &FourDimGrid,
 | 
			
		||||
      GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
      RealD _mq1, RealD _mq2, RealD _mq3,
 | 
			
		||||
      RealD _shift, int _pm, RealD _M5, const ImplParams &p) :
 | 
			
		||||
    AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
 | 
			
		||||
        FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
 | 
			
		||||
        _shift, _pm, _M5, 1.0, 0.0, p)
 | 
			
		||||
    {
 | 
			
		||||
        RealD eps = 1.0;
 | 
			
		||||
        Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);
 | 
			
		||||
        assert(zdata->n == this->Ls);
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "DomainWallEOFAFermion with Ls=" << this->Ls << std::endl;
 | 
			
		||||
        this->SetCoefficientsTanh(zdata, 1.0, 0.0);
 | 
			
		||||
 | 
			
		||||
        Approx::zolotarev_free(zdata);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /***************************************************************
 | 
			
		||||
     * Additional EOFA operators only called outside the inverter.
 | 
			
		||||
     * Since speed is not essential, simple axpby-style
 | 
			
		||||
     * implementations should be fine.
 | 
			
		||||
     ***************************************************************/
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        Din = zero;
 | 
			
		||||
        if((sign == 1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, Ls-1, 0); }
 | 
			
		||||
        else if((sign == -1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
 | 
			
		||||
        else if((sign == 1 ) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, Ls-1); }
 | 
			
		||||
        else if((sign == -1) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // This is just the identity for DWF
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi){ chi = psi; }
 | 
			
		||||
 | 
			
		||||
    // This is just the identity for DWF
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi){ chi = psi; }
 | 
			
		||||
 | 
			
		||||
    /*****************************************************************************************************/
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    RealD DomainWallEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        FermionField Din(psi._grid);
 | 
			
		||||
 | 
			
		||||
        this->Meooe5D(psi, Din);
 | 
			
		||||
        this->DW(Din, chi, DaggerNo);
 | 
			
		||||
        axpby(chi, 1.0, 1.0, chi, psi);
 | 
			
		||||
        this->M5D(psi, chi);
 | 
			
		||||
        return(norm2(chi));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    RealD DomainWallEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        FermionField Din(psi._grid);
 | 
			
		||||
 | 
			
		||||
        this->DW(psi, Din, DaggerYes);
 | 
			
		||||
        this->MeooeDag5D(Din, chi);
 | 
			
		||||
        this->M5Ddag(psi, chi);
 | 
			
		||||
        axpby(chi, 1.0, 1.0, chi, psi);
 | 
			
		||||
        return(norm2(chi));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /********************************************************************
 | 
			
		||||
     * Performance critical fermion operators called inside the inverter
 | 
			
		||||
     ********************************************************************/
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        int   Ls    = this->Ls;
 | 
			
		||||
        int   pm    = this->pm;
 | 
			
		||||
        RealD shift = this->shift;
 | 
			
		||||
        RealD mq1   = this->mq1;
 | 
			
		||||
        RealD mq2   = this->mq2;
 | 
			
		||||
        RealD mq3   = this->mq3;
 | 
			
		||||
 | 
			
		||||
        // coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
 | 
			
		||||
        Coeff_t shiftp(0.0), shiftm(0.0);
 | 
			
		||||
        if(shift != 0.0){
 | 
			
		||||
          if(pm == 1){ shiftp = shift*(mq3-mq2); }
 | 
			
		||||
          else{ shiftm = -shift*(mq3-mq2); }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        std::vector<Coeff_t> diag(Ls,1.0);
 | 
			
		||||
        std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
 | 
			
		||||
        std::vector<Coeff_t> lower(Ls,-1.0); lower[0]    = mq1 + shiftp;
 | 
			
		||||
 | 
			
		||||
        #if(0)
 | 
			
		||||
            std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
 | 
			
		||||
            for(int i=0; i<diag.size(); ++i){
 | 
			
		||||
                std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
            for(int i=0; i<upper.size(); ++i){
 | 
			
		||||
                std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
            for(int i=0; i<lower.size(); ++i){
 | 
			
		||||
                std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
        #endif
 | 
			
		||||
 | 
			
		||||
        this->M5D(psi, chi, chi, lower, diag, upper);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        int   Ls    = this->Ls;
 | 
			
		||||
        int   pm    = this->pm;
 | 
			
		||||
        RealD shift = this->shift;
 | 
			
		||||
        RealD mq1   = this->mq1;
 | 
			
		||||
        RealD mq2   = this->mq2;
 | 
			
		||||
        RealD mq3   = this->mq3;
 | 
			
		||||
 | 
			
		||||
        // coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
 | 
			
		||||
        Coeff_t shiftp(0.0), shiftm(0.0);
 | 
			
		||||
        if(shift != 0.0){
 | 
			
		||||
          if(pm == 1){ shiftp = shift*(mq3-mq2); }
 | 
			
		||||
          else{ shiftm = -shift*(mq3-mq2); }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        std::vector<Coeff_t> diag(Ls,1.0);
 | 
			
		||||
        std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
 | 
			
		||||
        std::vector<Coeff_t> lower(Ls,-1.0); lower[0]    = mq1 + shiftm;
 | 
			
		||||
 | 
			
		||||
        #if(0)
 | 
			
		||||
            std::cout << GridLogMessage << "DomainWallEOFAFermion::M5Ddag(FF&,FF&):" << std::endl;
 | 
			
		||||
            for(int i=0; i<diag.size(); ++i){
 | 
			
		||||
                std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
            for(int i=0; i<upper.size(); ++i){
 | 
			
		||||
                std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
            for(int i=0; i<lower.size(); ++i){
 | 
			
		||||
                std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
        #endif
 | 
			
		||||
 | 
			
		||||
        this->M5Ddag(psi, chi, chi, lower, diag, upper);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // half checkerboard operations
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        std::vector<Coeff_t> diag = this->bee;
 | 
			
		||||
        std::vector<Coeff_t> upper(Ls);
 | 
			
		||||
        std::vector<Coeff_t> lower(Ls);
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls; s++){
 | 
			
		||||
          upper[s] = -this->cee[s];
 | 
			
		||||
          lower[s] = -this->cee[s];
 | 
			
		||||
        }
 | 
			
		||||
        upper[Ls-1] = this->dm;
 | 
			
		||||
        lower[0]    = this->dp;
 | 
			
		||||
 | 
			
		||||
        this->M5D(psi, psi, chi, lower, diag, upper);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        std::vector<Coeff_t> diag = this->bee;
 | 
			
		||||
        std::vector<Coeff_t> upper(Ls);
 | 
			
		||||
        std::vector<Coeff_t> lower(Ls);
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls; s++){
 | 
			
		||||
          upper[s] = -this->cee[s];
 | 
			
		||||
          lower[s] = -this->cee[s];
 | 
			
		||||
        }
 | 
			
		||||
        upper[Ls-1] = this->dp;
 | 
			
		||||
        lower[0]    = this->dm;
 | 
			
		||||
 | 
			
		||||
        this->M5Ddag(psi, psi, chi, lower, diag, upper);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /****************************************************************************************/
 | 
			
		||||
 | 
			
		||||
    //Zolo
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c)
 | 
			
		||||
    {
 | 
			
		||||
        int   Ls    = this->Ls;
 | 
			
		||||
        int   pm    = this->pm;
 | 
			
		||||
        RealD mq1   = this->mq1;
 | 
			
		||||
        RealD mq2   = this->mq2;
 | 
			
		||||
        RealD mq3   = this->mq3;
 | 
			
		||||
        RealD shift = this->shift;
 | 
			
		||||
 | 
			
		||||
        ////////////////////////////////////////////////////////
 | 
			
		||||
        // Constants for the preconditioned matrix Cayley form
 | 
			
		||||
        ////////////////////////////////////////////////////////
 | 
			
		||||
        this->bs.resize(Ls);
 | 
			
		||||
        this->cs.resize(Ls);
 | 
			
		||||
        this->aee.resize(Ls);
 | 
			
		||||
        this->aeo.resize(Ls);
 | 
			
		||||
        this->bee.resize(Ls);
 | 
			
		||||
        this->beo.resize(Ls);
 | 
			
		||||
        this->cee.resize(Ls);
 | 
			
		||||
        this->ceo.resize(Ls);
 | 
			
		||||
 | 
			
		||||
        for(int i=0; i<Ls; ++i){
 | 
			
		||||
          this->bee[i] = 4.0 - this->M5 + 1.0;
 | 
			
		||||
          this->cee[i] = 1.0;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int i=0; i<Ls; ++i){
 | 
			
		||||
          this->aee[i] = this->cee[i];
 | 
			
		||||
          this->bs[i] = this->beo[i] = 1.0;
 | 
			
		||||
          this->cs[i] = this->ceo[i] = 0.0;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        //////////////////////////////////////////
 | 
			
		||||
        // EOFA shift terms
 | 
			
		||||
        //////////////////////////////////////////
 | 
			
		||||
        if(pm == 1){
 | 
			
		||||
          this->dp = mq1*this->cee[0] + shift*(mq3-mq2);
 | 
			
		||||
          this->dm = mq1*this->cee[Ls-1];
 | 
			
		||||
        } else if(this->pm == -1) {
 | 
			
		||||
          this->dp = mq1*this->cee[0];
 | 
			
		||||
          this->dm = mq1*this->cee[Ls-1] - shift*(mq3-mq2);
 | 
			
		||||
        } else {
 | 
			
		||||
          this->dp = mq1*this->cee[0];
 | 
			
		||||
          this->dm = mq1*this->cee[Ls-1];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        //////////////////////////////////////////
 | 
			
		||||
        // LDU decomposition of eeoo
 | 
			
		||||
        //////////////////////////////////////////
 | 
			
		||||
        this->dee.resize(Ls+1);
 | 
			
		||||
        this->lee.resize(Ls);
 | 
			
		||||
        this->leem.resize(Ls);
 | 
			
		||||
        this->uee.resize(Ls);
 | 
			
		||||
        this->ueem.resize(Ls);
 | 
			
		||||
 | 
			
		||||
        for(int i=0; i<Ls; ++i){
 | 
			
		||||
 | 
			
		||||
          if(i < Ls-1){
 | 
			
		||||
 | 
			
		||||
            this->lee[i] = -this->cee[i+1]/this->bee[i]; // sub-diag entry on the ith column
 | 
			
		||||
 | 
			
		||||
            this->leem[i] = this->dm/this->bee[i];
 | 
			
		||||
            for(int j=0; j<i; j++){ this->leem[i] *= this->aee[j]/this->bee[j]; }
 | 
			
		||||
 | 
			
		||||
            this->dee[i] = this->bee[i];
 | 
			
		||||
 | 
			
		||||
            this->uee[i] = -this->aee[i]/this->bee[i];   // up-diag entry on the ith row
 | 
			
		||||
 | 
			
		||||
            this->ueem[i] = this->dp / this->bee[0];
 | 
			
		||||
            for(int j=1; j<=i; j++){ this->ueem[i] *= this->cee[j]/this->bee[j]; }
 | 
			
		||||
 | 
			
		||||
          } else {
 | 
			
		||||
 | 
			
		||||
            this->lee[i]  = 0.0;
 | 
			
		||||
            this->leem[i] = 0.0;
 | 
			
		||||
            this->uee[i]  = 0.0;
 | 
			
		||||
            this->ueem[i] = 0.0;
 | 
			
		||||
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        {
 | 
			
		||||
          Coeff_t delta_d = 1.0 / this->bee[0];
 | 
			
		||||
          for(int j=1; j<Ls-1; j++){ delta_d *= this->cee[j] / this->bee[j]; }
 | 
			
		||||
          this->dee[Ls-1] = this->bee[Ls-1] + this->cee[0] * this->dm * delta_d;
 | 
			
		||||
          this->dee[Ls] = this->bee[Ls-1] + this->cee[Ls-1] * this->dp * delta_d;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        int inv = 1;
 | 
			
		||||
        this->MooeeInternalCompute(0, inv, this->MatpInv, this->MatmInv);
 | 
			
		||||
        this->MooeeInternalCompute(1, inv, this->MatpInvDag, this->MatmInvDag);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Recompute Cayley-form coefficients for different shift
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
 | 
			
		||||
    {
 | 
			
		||||
        this->shift = new_shift;
 | 
			
		||||
        Approx::zolotarev_data *zdata = Approx::higham(1.0, this->Ls);
 | 
			
		||||
        this->SetCoefficientsTanh(zdata, 1.0, 0.0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
 | 
			
		||||
        Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        GridBase* grid = this->FermionRedBlackGrid();
 | 
			
		||||
        int LLs = grid->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
        if(LLs == Ls){ return; } // Not vectorised in 5th direction
 | 
			
		||||
 | 
			
		||||
        Eigen::MatrixXcd Pplus  = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
        Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls; s++){
 | 
			
		||||
            Pplus(s,s)  = this->bee[s];
 | 
			
		||||
            Pminus(s,s) = this->bee[s];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            Pminus(s,s+1) = -this->cee[s];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            Pplus(s+1,s) = -this->cee[s+1];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        Pplus (0,Ls-1) = this->dp;
 | 
			
		||||
        Pminus(Ls-1,0) = this->dm;
 | 
			
		||||
 | 
			
		||||
        Eigen::MatrixXcd PplusMat ;
 | 
			
		||||
        Eigen::MatrixXcd PminusMat;
 | 
			
		||||
 | 
			
		||||
        #if(0)
 | 
			
		||||
            std::cout << GridLogMessage << "Pplus:" << std::endl;
 | 
			
		||||
            for(int s=0; s<Ls; ++s){
 | 
			
		||||
                for(int ss=0; ss<Ls; ++ss){
 | 
			
		||||
                    std::cout << Pplus(s,ss) << "\t";
 | 
			
		||||
                }
 | 
			
		||||
                std::cout << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
            std::cout << GridLogMessage << "Pminus:" << std::endl;
 | 
			
		||||
            for(int s=0; s<Ls; ++s){
 | 
			
		||||
                for(int ss=0; ss<Ls; ++ss){
 | 
			
		||||
                    std::cout << Pminus(s,ss) << "\t";
 | 
			
		||||
                }
 | 
			
		||||
                std::cout << std::endl;
 | 
			
		||||
            }
 | 
			
		||||
        #endif
 | 
			
		||||
 | 
			
		||||
        if(inv) {
 | 
			
		||||
            PplusMat  = Pplus.inverse();
 | 
			
		||||
            PminusMat = Pminus.inverse();
 | 
			
		||||
        } else {
 | 
			
		||||
            PplusMat  = Pplus;
 | 
			
		||||
            PminusMat = Pminus;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if(dag){
 | 
			
		||||
            PplusMat.adjointInPlace();
 | 
			
		||||
            PminusMat.adjointInPlace();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        typedef typename SiteHalfSpinor::scalar_type scalar_type;
 | 
			
		||||
        const int Nsimd = Simd::Nsimd();
 | 
			
		||||
        Matp.resize(Ls*LLs);
 | 
			
		||||
        Matm.resize(Ls*LLs);
 | 
			
		||||
 | 
			
		||||
        for(int s2=0; s2<Ls; s2++){
 | 
			
		||||
        for(int s1=0; s1<LLs; s1++){
 | 
			
		||||
            int istride = LLs;
 | 
			
		||||
            int ostride = 1;
 | 
			
		||||
            Simd Vp;
 | 
			
		||||
            Simd Vm;
 | 
			
		||||
            scalar_type *sp = (scalar_type*) &Vp;
 | 
			
		||||
            scalar_type *sm = (scalar_type*) &Vm;
 | 
			
		||||
            for(int l=0; l<Nsimd; l++){
 | 
			
		||||
                if(switcheroo<Coeff_t>::iscomplex()) {
 | 
			
		||||
                    sp[l] = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
                    sm[l] = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
                } else {
 | 
			
		||||
                    // if real
 | 
			
		||||
                    scalar_type tmp;
 | 
			
		||||
                    tmp = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
                    sp[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
                    tmp = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
                    sm[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            Matp[LLs*s2+s1] = Vp;
 | 
			
		||||
            Matm[LLs*s2+s1] = Vm;
 | 
			
		||||
        }}
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    FermOpTemplateInstantiate(DomainWallEOFAFermion);
 | 
			
		||||
    GparityFermOpTemplateInstantiate(DomainWallEOFAFermion);
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										115
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermion.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermion.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,115 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
 | 
			
		||||
#define  GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
      // Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
 | 
			
		||||
      // for red-black preconditioned Shamir EOFA
 | 
			
		||||
      Coeff_t dm;
 | 
			
		||||
      Coeff_t dp;
 | 
			
		||||
 | 
			
		||||
      virtual void Instantiatable(void) {};
 | 
			
		||||
 | 
			
		||||
      // EOFA-specific operations
 | 
			
		||||
      virtual void  Omega      (const FermionField& in, FermionField& out, int sign, int dag);
 | 
			
		||||
      virtual void  Dtilde     (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  DtildeInv  (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
      // override multiply
 | 
			
		||||
      virtual RealD M          (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual RealD Mdag       (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
      // half checkerboard operations
 | 
			
		||||
      virtual void  Mooee      (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeDag   (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeInv   (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeInvDag(const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
      virtual void   M5D       (const FermionField& psi, FermionField& chi);
 | 
			
		||||
      virtual void   M5Ddag    (const FermionField& psi, FermionField& chi);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Instantiate different versions depending on Impl
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
        std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
      void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
        std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
 | 
			
		||||
        Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
 | 
			
		||||
        Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
 | 
			
		||||
 | 
			
		||||
      virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
      // Constructors
 | 
			
		||||
      DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
 | 
			
		||||
        GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
 | 
			
		||||
        RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
 | 
			
		||||
        RealD _M5, const ImplParams& p=ImplParams());
 | 
			
		||||
 | 
			
		||||
    protected:
 | 
			
		||||
      void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
 | 
			
		||||
  };
 | 
			
		||||
}}
 | 
			
		||||
 | 
			
		||||
#define INSTANTIATE_DPERP_DWF_EOFA(A)\
 | 
			
		||||
template void DomainWallEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
 | 
			
		||||
  std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
 | 
			
		||||
template void DomainWallEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
 | 
			
		||||
  std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
 | 
			
		||||
template void DomainWallEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
 | 
			
		||||
template void DomainWallEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi);
 | 
			
		||||
 | 
			
		||||
#undef  DOMAIN_WALL_EOFA_DPERP_DENSE
 | 
			
		||||
#define DOMAIN_WALL_EOFA_DPERP_CACHE
 | 
			
		||||
#undef  DOMAIN_WALL_EOFA_DPERP_LINALG
 | 
			
		||||
#define DOMAIN_WALL_EOFA_DPERP_VEC
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										248
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										248
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,248 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
    // FIXME -- make a version of these routines with site loop outermost for cache reuse.
 | 
			
		||||
 | 
			
		||||
    // Pminus fowards
 | 
			
		||||
    // Pplus  backwards..
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
        FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        GridBase* grid = psi._grid;
 | 
			
		||||
 | 
			
		||||
        assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
        // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
        this->M5Dcalls++;
 | 
			
		||||
        this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
        parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
 | 
			
		||||
            for(int s=0; s<Ls; s++){
 | 
			
		||||
                auto tmp = psi._odata[0];
 | 
			
		||||
                if(s==0) {
 | 
			
		||||
                    spProj5m(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
                    chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
                    spProj5p(tmp, psi._odata[ss+Ls-1]);
 | 
			
		||||
                    chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
                } else if(s==(Ls-1)) {
 | 
			
		||||
                    spProj5m(tmp, psi._odata[ss+0]);
 | 
			
		||||
                    chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
                    spProj5p(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
                    chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
                } else {
 | 
			
		||||
                    spProj5m(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
                    chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
                    spProj5p(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
                    chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->M5Dtime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
        FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        GridBase* grid = psi._grid;
 | 
			
		||||
        assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
        chi.checkerboard=psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
        this->M5Dcalls++;
 | 
			
		||||
        this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
        parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
 | 
			
		||||
            auto tmp = psi._odata[0];
 | 
			
		||||
            for(int s=0; s<Ls; s++){
 | 
			
		||||
                if(s==0) {
 | 
			
		||||
                    spProj5p(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
                    chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
                    spProj5m(tmp, psi._odata[ss+Ls-1]);
 | 
			
		||||
                    chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
                } else if(s==(Ls-1)) {
 | 
			
		||||
                    spProj5p(tmp, psi._odata[ss+0]);
 | 
			
		||||
                    chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
                    spProj5m(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
                    chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
                } else {
 | 
			
		||||
                    spProj5p(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
                    chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
                    spProj5m(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
                    chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->M5Dtime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        GridBase* grid = psi._grid;
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        this->MooeeInvCalls++;
 | 
			
		||||
        this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
        parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
 | 
			
		||||
 | 
			
		||||
            auto tmp1 = psi._odata[0];
 | 
			
		||||
            auto tmp2 = psi._odata[0];
 | 
			
		||||
 | 
			
		||||
            // flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls  = 12*Ls * (9) = 108*Ls flops
 | 
			
		||||
            // Apply (L^{\prime})^{-1}
 | 
			
		||||
            chi[ss] = psi[ss]; // chi[0]=psi[0]
 | 
			
		||||
            for(int s=1; s<Ls; s++){
 | 
			
		||||
                spProj5p(tmp1, chi[ss+s-1]);
 | 
			
		||||
                chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // L_m^{-1}
 | 
			
		||||
            for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
 | 
			
		||||
                spProj5m(tmp1, chi[ss+s]);
 | 
			
		||||
                chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // U_m^{-1} D^{-1}
 | 
			
		||||
            for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
 | 
			
		||||
                spProj5p(tmp1, chi[ss+Ls-1]);
 | 
			
		||||
                chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls])*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
            spProj5m(tmp2, chi[ss+Ls-1]);
 | 
			
		||||
            chi[ss+Ls-1] = (1.0/this->dee[Ls])*tmp1 + (1.0/this->dee[Ls-1])*tmp2;
 | 
			
		||||
 | 
			
		||||
            // Apply U^{-1}
 | 
			
		||||
            for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
                spProj5m(tmp1, chi[ss+s+1]);
 | 
			
		||||
                chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->MooeeInvTime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        GridBase* grid = psi._grid;
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        assert(psi.checkerboard == psi.checkerboard);
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        std::vector<Coeff_t> ueec(Ls);
 | 
			
		||||
        std::vector<Coeff_t> deec(Ls+1);
 | 
			
		||||
        std::vector<Coeff_t> leec(Ls);
 | 
			
		||||
        std::vector<Coeff_t> ueemc(Ls);
 | 
			
		||||
        std::vector<Coeff_t> leemc(Ls);
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<ueec.size(); s++){
 | 
			
		||||
            ueec[s]  = conjugate(this->uee[s]);
 | 
			
		||||
            deec[s]  = conjugate(this->dee[s]);
 | 
			
		||||
            leec[s]  = conjugate(this->lee[s]);
 | 
			
		||||
            ueemc[s] = conjugate(this->ueem[s]);
 | 
			
		||||
            leemc[s] = conjugate(this->leem[s]);
 | 
			
		||||
        }
 | 
			
		||||
        deec[Ls] = conjugate(this->dee[Ls]);
 | 
			
		||||
 | 
			
		||||
        this->MooeeInvCalls++;
 | 
			
		||||
        this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
        parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
 | 
			
		||||
 | 
			
		||||
            auto tmp1 = psi._odata[0];
 | 
			
		||||
            auto tmp2 = psi._odata[0];
 | 
			
		||||
 | 
			
		||||
            // Apply (U^{\prime})^{-dagger}
 | 
			
		||||
            chi[ss] = psi[ss];
 | 
			
		||||
            for(int s=1; s<Ls; s++){
 | 
			
		||||
                spProj5m(tmp1, chi[ss+s-1]);
 | 
			
		||||
                chi[ss+s] = psi[ss+s] - ueec[s-1]*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // U_m^{-\dagger}
 | 
			
		||||
            for(int s=0; s<Ls-1; s++){
 | 
			
		||||
                spProj5p(tmp1, chi[ss+s]);
 | 
			
		||||
                chi[ss+Ls-1] = chi[ss+Ls-1] - ueemc[s]*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // L_m^{-\dagger} D^{-dagger}
 | 
			
		||||
            for(int s=0; s<Ls-1; s++){
 | 
			
		||||
                spProj5m(tmp1, chi[ss+Ls-1]);
 | 
			
		||||
                chi[ss+s] = (1.0/deec[s])*chi[ss+s] - (leemc[s]/deec[Ls-1])*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
            spProj5p(tmp2, chi[ss+Ls-1]);
 | 
			
		||||
            chi[ss+Ls-1] = (1.0/deec[Ls-1])*tmp1 + (1.0/deec[Ls])*tmp2;
 | 
			
		||||
 | 
			
		||||
            // Apply L^{-dagger}
 | 
			
		||||
            for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
                spProj5p(tmp1, chi[ss+s+1]);
 | 
			
		||||
                chi[ss+s] = chi[ss+s] - leec[s]*tmp1;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->MooeeInvTime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #ifdef DOMAIN_WALL_EOFA_DPERP_CACHE
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										159
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										159
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,159 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    * Dense matrix versions of routines
 | 
			
		||||
    */
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        int LLs = psi._grid->_rdimensions[0];
 | 
			
		||||
        int vol = psi._grid->oSites()/LLs;
 | 
			
		||||
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        assert(Ls==LLs);
 | 
			
		||||
 | 
			
		||||
        Eigen::MatrixXd Pplus  = Eigen::MatrixXd::Zero(Ls,Ls);
 | 
			
		||||
        Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
 | 
			
		||||
 | 
			
		||||
        for(int s=0;s<Ls;s++){
 | 
			
		||||
            Pplus(s,s)  = this->bee[s];
 | 
			
		||||
            Pminus(s,s) = this->bee[s];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            Pminus(s,s+1) = -this->cee[s];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            Pplus(s+1,s) = -this->cee[s+1];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        Pplus (0,Ls-1) = this->dp;
 | 
			
		||||
        Pminus(Ls-1,0) = this->dm;
 | 
			
		||||
 | 
			
		||||
        Eigen::MatrixXd PplusMat ;
 | 
			
		||||
        Eigen::MatrixXd PminusMat;
 | 
			
		||||
 | 
			
		||||
        if(inv) {
 | 
			
		||||
            PplusMat  = Pplus.inverse();
 | 
			
		||||
            PminusMat = Pminus.inverse();
 | 
			
		||||
        } else {
 | 
			
		||||
            PplusMat  = Pplus;
 | 
			
		||||
            PminusMat = Pminus;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if(dag){
 | 
			
		||||
            PplusMat.adjointInPlace();
 | 
			
		||||
            PminusMat.adjointInPlace();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // For the non-vectorised s-direction this is simple
 | 
			
		||||
 | 
			
		||||
        for(auto site=0; site<vol; site++){
 | 
			
		||||
 | 
			
		||||
            SiteSpinor     SiteChi;
 | 
			
		||||
            SiteHalfSpinor SitePplus;
 | 
			
		||||
            SiteHalfSpinor SitePminus;
 | 
			
		||||
 | 
			
		||||
            for(int s1=0; s1<Ls; s1++){
 | 
			
		||||
                SiteChi = zero;
 | 
			
		||||
                for(int s2=0; s2<Ls; s2++){
 | 
			
		||||
                    int lex2 = s2 + Ls*site;
 | 
			
		||||
                    if(PplusMat(s1,s2) != 0.0){
 | 
			
		||||
                        spProj5p(SitePplus,psi[lex2]);
 | 
			
		||||
                        accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
 | 
			
		||||
                    }
 | 
			
		||||
                    if(PminusMat(s1,s2) != 0.0){
 | 
			
		||||
                        spProj5m(SitePminus, psi[lex2]);
 | 
			
		||||
                        accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
                chi[s1+Ls*site] = SiteChi*0.5;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #ifdef DOMAIN_WALL_EOFA_DPERP_DENSE
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
 | 
			
		||||
 | 
			
		||||
        template void DomainWallEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
        template void DomainWallEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										168
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										168
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,168 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
    // FIXME -- make a version of these routines with site loop outermost for cache reuse.
 | 
			
		||||
    // Pminus fowards
 | 
			
		||||
    // Pplus  backwards
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
        FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
    {
 | 
			
		||||
        Coeff_t one(1.0);
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        for(int s=0; s<Ls; s++){
 | 
			
		||||
            if(s==0) {
 | 
			
		||||
              axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
              axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
 | 
			
		||||
            } else if (s==(Ls-1)) {
 | 
			
		||||
              axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
 | 
			
		||||
              axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
            } else {
 | 
			
		||||
              axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
              axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
        FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
    {
 | 
			
		||||
        Coeff_t one(1.0);
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        for(int s=0; s<Ls; s++){
 | 
			
		||||
            if(s==0) {
 | 
			
		||||
              axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
              axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
 | 
			
		||||
            } else if (s==(Ls-1)) {
 | 
			
		||||
              axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
 | 
			
		||||
              axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
            } else {
 | 
			
		||||
              axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
              axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        Coeff_t one(1.0);
 | 
			
		||||
        Coeff_t czero(0.0);
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        FermionField tmp(psi._grid);
 | 
			
		||||
 | 
			
		||||
        // Apply (L^{\prime})^{-1}
 | 
			
		||||
        axpby_ssp(chi, one, psi, czero, psi, 0, 0);      // chi[0]=psi[0]
 | 
			
		||||
        for(int s=1; s<Ls; s++){
 | 
			
		||||
            axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // L_m^{-1}
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
 | 
			
		||||
            axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // U_m^{-1} D^{-1}
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls], chi, s, Ls-1);
 | 
			
		||||
        }
 | 
			
		||||
        axpby_ssp_pminus(tmp, czero, chi, one/this->dee[Ls-1], chi, Ls-1, Ls-1);
 | 
			
		||||
        axpby_ssp_pplus(chi, one, tmp, one/this->dee[Ls], chi, Ls-1, Ls-1);
 | 
			
		||||
 | 
			
		||||
        // Apply U^{-1}
 | 
			
		||||
        for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
            axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1);  // chi[Ls]
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        Coeff_t one(1.0);
 | 
			
		||||
        Coeff_t czero(0.0);
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
        FermionField tmp(psi._grid);
 | 
			
		||||
 | 
			
		||||
        // Apply (U^{\prime})^{-dagger}
 | 
			
		||||
        axpby_ssp(chi, one, psi, czero, psi, 0, 0);      // chi[0]=psi[0]
 | 
			
		||||
        for(int s=1; s<Ls; s++){
 | 
			
		||||
            axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // U_m^{-\dagger}
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // L_m^{-\dagger} D^{-dagger}
 | 
			
		||||
        for(int s=0; s<Ls-1; s++){
 | 
			
		||||
            axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
 | 
			
		||||
        }
 | 
			
		||||
        axpby_ssp_pminus(tmp, czero, chi, one/conjugate(this->dee[Ls-1]), chi, Ls-1, Ls-1);
 | 
			
		||||
        axpby_ssp_pplus(chi, one, tmp, one/conjugate(this->dee[Ls]), chi, Ls-1, Ls-1);
 | 
			
		||||
 | 
			
		||||
        // Apply L^{-dagger}
 | 
			
		||||
        for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
            axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1);  // chi[Ls]
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #ifdef DOMAIN_WALL_EOFA_DPERP_LINALG
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										605
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										605
									
								
								lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,605 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    * Dense matrix versions of routines
 | 
			
		||||
    */
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
        this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
        FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
    {
 | 
			
		||||
        GridBase* grid = psi._grid;
 | 
			
		||||
        int Ls  = this->Ls;
 | 
			
		||||
        int LLs = grid->_rdimensions[0];
 | 
			
		||||
        const int nsimd = Simd::Nsimd();
 | 
			
		||||
 | 
			
		||||
        Vector<iSinglet<Simd> > u(LLs);
 | 
			
		||||
        Vector<iSinglet<Simd> > l(LLs);
 | 
			
		||||
        Vector<iSinglet<Simd> > d(LLs);
 | 
			
		||||
 | 
			
		||||
        assert(Ls/LLs == nsimd);
 | 
			
		||||
        assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        // just directly address via type pun
 | 
			
		||||
        typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
        scalar_type* u_p = (scalar_type*) &u[0];
 | 
			
		||||
        scalar_type* l_p = (scalar_type*) &l[0];
 | 
			
		||||
        scalar_type* d_p = (scalar_type*) &d[0];
 | 
			
		||||
 | 
			
		||||
        for(int o=0;o<LLs;o++){ // outer
 | 
			
		||||
        for(int i=0;i<nsimd;i++){ //inner
 | 
			
		||||
            int s  = o + i*LLs;
 | 
			
		||||
            int ss = o*nsimd + i;
 | 
			
		||||
            u_p[ss] = upper[s];
 | 
			
		||||
            l_p[ss] = lower[s];
 | 
			
		||||
            d_p[ss] = diag[s];
 | 
			
		||||
        }}
 | 
			
		||||
 | 
			
		||||
        this->M5Dcalls++;
 | 
			
		||||
        this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
        assert(Nc == 3);
 | 
			
		||||
 | 
			
		||||
        parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
 | 
			
		||||
 | 
			
		||||
            #if 0
 | 
			
		||||
 | 
			
		||||
                alignas(64) SiteHalfSpinor hp;
 | 
			
		||||
                alignas(64) SiteHalfSpinor hm;
 | 
			
		||||
                alignas(64) SiteSpinor fp;
 | 
			
		||||
                alignas(64) SiteSpinor fm;
 | 
			
		||||
 | 
			
		||||
                for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
                    int vp = (v+1)%LLs;
 | 
			
		||||
                    int vm = (v+LLs-1)%LLs;
 | 
			
		||||
 | 
			
		||||
                    spProj5m(hp, psi[ss+vp]);
 | 
			
		||||
                    spProj5p(hm, psi[ss+vm]);
 | 
			
		||||
 | 
			
		||||
                    if (vp <= v){ rotate(hp, hp, 1); }
 | 
			
		||||
                    if (vm >= v){ rotate(hm, hm, nsimd-1); }
 | 
			
		||||
 | 
			
		||||
                    hp = 0.5*hp;
 | 
			
		||||
                    hm = 0.5*hm;
 | 
			
		||||
 | 
			
		||||
                    spRecon5m(fp, hp);
 | 
			
		||||
                    spRecon5p(fm, hm);
 | 
			
		||||
 | 
			
		||||
                    chi[ss+v] = d[v]*phi[ss+v];
 | 
			
		||||
                    chi[ss+v] = chi[ss+v] + u[v]*fp;
 | 
			
		||||
                    chi[ss+v] = chi[ss+v] + l[v]*fm;
 | 
			
		||||
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            #else
 | 
			
		||||
 | 
			
		||||
                for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
                    vprefetch(psi[ss+v+LLs]);
 | 
			
		||||
 | 
			
		||||
                    int vp = (v==LLs-1) ? 0     : v+1;
 | 
			
		||||
                    int vm = (v==0)     ? LLs-1 : v-1;
 | 
			
		||||
 | 
			
		||||
                    Simd hp_00 = psi[ss+vp]()(2)(0);
 | 
			
		||||
                    Simd hp_01 = psi[ss+vp]()(2)(1);
 | 
			
		||||
                    Simd hp_02 = psi[ss+vp]()(2)(2);
 | 
			
		||||
                    Simd hp_10 = psi[ss+vp]()(3)(0);
 | 
			
		||||
                    Simd hp_11 = psi[ss+vp]()(3)(1);
 | 
			
		||||
                    Simd hp_12 = psi[ss+vp]()(3)(2);
 | 
			
		||||
 | 
			
		||||
                    Simd hm_00 = psi[ss+vm]()(0)(0);
 | 
			
		||||
                    Simd hm_01 = psi[ss+vm]()(0)(1);
 | 
			
		||||
                    Simd hm_02 = psi[ss+vm]()(0)(2);
 | 
			
		||||
                    Simd hm_10 = psi[ss+vm]()(1)(0);
 | 
			
		||||
                    Simd hm_11 = psi[ss+vm]()(1)(1);
 | 
			
		||||
                    Simd hm_12 = psi[ss+vm]()(1)(2);
 | 
			
		||||
 | 
			
		||||
                    if(vp <= v){
 | 
			
		||||
                        hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
 | 
			
		||||
                        hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
 | 
			
		||||
                        hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
 | 
			
		||||
                        hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
 | 
			
		||||
                        hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
 | 
			
		||||
                        hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    if(vm >= v){
 | 
			
		||||
                        hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
 | 
			
		||||
                        hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
 | 
			
		||||
                        hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
 | 
			
		||||
                        hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
 | 
			
		||||
                        hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
 | 
			
		||||
                        hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    // Can force these to real arithmetic and save 2x.
 | 
			
		||||
                    Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
 | 
			
		||||
                    Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
 | 
			
		||||
                    Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
 | 
			
		||||
                    Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
 | 
			
		||||
                    Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
 | 
			
		||||
                    Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
 | 
			
		||||
                    Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
 | 
			
		||||
                    Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
 | 
			
		||||
                    Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
 | 
			
		||||
                    Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
 | 
			
		||||
                    Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
 | 
			
		||||
                    Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
 | 
			
		||||
 | 
			
		||||
                    vstream(chi[ss+v]()(0)(0), p_00);
 | 
			
		||||
                    vstream(chi[ss+v]()(0)(1), p_01);
 | 
			
		||||
                    vstream(chi[ss+v]()(0)(2), p_02);
 | 
			
		||||
                    vstream(chi[ss+v]()(1)(0), p_10);
 | 
			
		||||
                    vstream(chi[ss+v]()(1)(1), p_11);
 | 
			
		||||
                    vstream(chi[ss+v]()(1)(2), p_12);
 | 
			
		||||
                    vstream(chi[ss+v]()(2)(0), p_20);
 | 
			
		||||
                    vstream(chi[ss+v]()(2)(1), p_21);
 | 
			
		||||
                    vstream(chi[ss+v]()(2)(2), p_22);
 | 
			
		||||
                    vstream(chi[ss+v]()(3)(0), p_30);
 | 
			
		||||
                    vstream(chi[ss+v]()(3)(1), p_31);
 | 
			
		||||
                    vstream(chi[ss+v]()(3)(2), p_32);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            #endif
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->M5Dtime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
        FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
    {
 | 
			
		||||
        GridBase* grid = psi._grid;
 | 
			
		||||
        int Ls  = this->Ls;
 | 
			
		||||
        int LLs = grid->_rdimensions[0];
 | 
			
		||||
        int nsimd = Simd::Nsimd();
 | 
			
		||||
 | 
			
		||||
        Vector<iSinglet<Simd> > u(LLs);
 | 
			
		||||
        Vector<iSinglet<Simd> > l(LLs);
 | 
			
		||||
        Vector<iSinglet<Simd> > d(LLs);
 | 
			
		||||
 | 
			
		||||
        assert(Ls/LLs == nsimd);
 | 
			
		||||
        assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        // just directly address via type pun
 | 
			
		||||
        typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
        scalar_type* u_p = (scalar_type*) &u[0];
 | 
			
		||||
        scalar_type* l_p = (scalar_type*) &l[0];
 | 
			
		||||
        scalar_type* d_p = (scalar_type*) &d[0];
 | 
			
		||||
 | 
			
		||||
        for(int o=0; o<LLs; o++){ // outer
 | 
			
		||||
        for(int i=0; i<nsimd; i++){ //inner
 | 
			
		||||
            int s  = o + i*LLs;
 | 
			
		||||
            int ss = o*nsimd + i;
 | 
			
		||||
            u_p[ss] = upper[s];
 | 
			
		||||
            l_p[ss] = lower[s];
 | 
			
		||||
            d_p[ss] = diag[s];
 | 
			
		||||
        }}
 | 
			
		||||
 | 
			
		||||
        this->M5Dcalls++;
 | 
			
		||||
        this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
        parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
 | 
			
		||||
 | 
			
		||||
        #if 0
 | 
			
		||||
 | 
			
		||||
            alignas(64) SiteHalfSpinor hp;
 | 
			
		||||
            alignas(64) SiteHalfSpinor hm;
 | 
			
		||||
            alignas(64) SiteSpinor fp;
 | 
			
		||||
            alignas(64) SiteSpinor fm;
 | 
			
		||||
 | 
			
		||||
            for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
                int vp = (v+1)%LLs;
 | 
			
		||||
                int vm = (v+LLs-1)%LLs;
 | 
			
		||||
 | 
			
		||||
                spProj5p(hp, psi[ss+vp]);
 | 
			
		||||
                spProj5m(hm, psi[ss+vm]);
 | 
			
		||||
 | 
			
		||||
                if(vp <= v){ rotate(hp, hp, 1); }
 | 
			
		||||
                if(vm >= v){ rotate(hm, hm, nsimd-1); }
 | 
			
		||||
 | 
			
		||||
                hp = hp*0.5;
 | 
			
		||||
                hm = hm*0.5;
 | 
			
		||||
                spRecon5p(fp, hp);
 | 
			
		||||
                spRecon5m(fm, hm);
 | 
			
		||||
 | 
			
		||||
                chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
 | 
			
		||||
                chi[ss+v] = chi[ss+v]     +l[v]*fm;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        #else
 | 
			
		||||
 | 
			
		||||
            for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
                vprefetch(psi[ss+v+LLs]);
 | 
			
		||||
 | 
			
		||||
                int vp = (v == LLs-1) ? 0     : v+1;
 | 
			
		||||
                int vm = (v == 0    ) ? LLs-1 : v-1;
 | 
			
		||||
 | 
			
		||||
                Simd hp_00 = psi[ss+vp]()(0)(0);
 | 
			
		||||
                Simd hp_01 = psi[ss+vp]()(0)(1);
 | 
			
		||||
                Simd hp_02 = psi[ss+vp]()(0)(2);
 | 
			
		||||
                Simd hp_10 = psi[ss+vp]()(1)(0);
 | 
			
		||||
                Simd hp_11 = psi[ss+vp]()(1)(1);
 | 
			
		||||
                Simd hp_12 = psi[ss+vp]()(1)(2);
 | 
			
		||||
 | 
			
		||||
                Simd hm_00 = psi[ss+vm]()(2)(0);
 | 
			
		||||
                Simd hm_01 = psi[ss+vm]()(2)(1);
 | 
			
		||||
                Simd hm_02 = psi[ss+vm]()(2)(2);
 | 
			
		||||
                Simd hm_10 = psi[ss+vm]()(3)(0);
 | 
			
		||||
                Simd hm_11 = psi[ss+vm]()(3)(1);
 | 
			
		||||
                Simd hm_12 = psi[ss+vm]()(3)(2);
 | 
			
		||||
 | 
			
		||||
                if (vp <= v){
 | 
			
		||||
                    hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
 | 
			
		||||
                    hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
 | 
			
		||||
                    hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
 | 
			
		||||
                    hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
 | 
			
		||||
                    hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
 | 
			
		||||
                    hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                if(vm >= v){
 | 
			
		||||
                    hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
 | 
			
		||||
                    hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
 | 
			
		||||
                    hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
 | 
			
		||||
                    hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
 | 
			
		||||
                    hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
 | 
			
		||||
                    hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
 | 
			
		||||
                Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
 | 
			
		||||
                Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
 | 
			
		||||
                Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
 | 
			
		||||
                Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
 | 
			
		||||
                Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
 | 
			
		||||
                Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
 | 
			
		||||
                Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
 | 
			
		||||
                Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
 | 
			
		||||
                Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
 | 
			
		||||
                Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
 | 
			
		||||
                Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
 | 
			
		||||
 | 
			
		||||
                vstream(chi[ss+v]()(0)(0), p_00);
 | 
			
		||||
                vstream(chi[ss+v]()(0)(1), p_01);
 | 
			
		||||
                vstream(chi[ss+v]()(0)(2), p_02);
 | 
			
		||||
                vstream(chi[ss+v]()(1)(0), p_10);
 | 
			
		||||
                vstream(chi[ss+v]()(1)(1), p_11);
 | 
			
		||||
                vstream(chi[ss+v]()(1)(2), p_12);
 | 
			
		||||
                vstream(chi[ss+v]()(2)(0), p_20);
 | 
			
		||||
                vstream(chi[ss+v]()(2)(1), p_21);
 | 
			
		||||
                vstream(chi[ss+v]()(2)(2), p_22);
 | 
			
		||||
                vstream(chi[ss+v]()(3)(0), p_30);
 | 
			
		||||
                vstream(chi[ss+v]()(3)(1), p_31);
 | 
			
		||||
                vstream(chi[ss+v]()(3)(2), p_32);
 | 
			
		||||
            }
 | 
			
		||||
        #endif
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->M5Dtime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #ifdef AVX512
 | 
			
		||||
        #include<simd/Intel512common.h>
 | 
			
		||||
        #include<simd/Intel512avx.h>
 | 
			
		||||
        #include<simd/Intel512single.h>
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
 | 
			
		||||
        int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
 | 
			
		||||
    {
 | 
			
		||||
        #ifndef AVX512
 | 
			
		||||
        {
 | 
			
		||||
            SiteHalfSpinor BcastP;
 | 
			
		||||
            SiteHalfSpinor BcastM;
 | 
			
		||||
            SiteHalfSpinor SiteChiP;
 | 
			
		||||
            SiteHalfSpinor SiteChiM;
 | 
			
		||||
 | 
			
		||||
            // Ls*Ls * 2 * 12 * vol flops
 | 
			
		||||
            for(int s1=0; s1<LLs; s1++){
 | 
			
		||||
 | 
			
		||||
                for(int s2=0; s2<LLs; s2++){
 | 
			
		||||
                for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
 | 
			
		||||
 | 
			
		||||
                    int s = s2 + l*LLs;
 | 
			
		||||
                    int lex = s2 + LLs*site;
 | 
			
		||||
 | 
			
		||||
                    if( s2==0 && l==0 ){
 | 
			
		||||
                        SiteChiP=zero;
 | 
			
		||||
                        SiteChiM=zero;
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    for(int sp=0; sp<2;  sp++){
 | 
			
		||||
                    for(int co=0; co<Nc; co++){
 | 
			
		||||
                        vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
 | 
			
		||||
                    }}
 | 
			
		||||
 | 
			
		||||
                    for(int sp=0; sp<2;  sp++){
 | 
			
		||||
                    for(int co=0; co<Nc; co++){
 | 
			
		||||
                        vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
 | 
			
		||||
                    }}
 | 
			
		||||
 | 
			
		||||
                    for(int sp=0; sp<2;  sp++){
 | 
			
		||||
                    for(int co=0; co<Nc; co++){
 | 
			
		||||
                        SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
 | 
			
		||||
                        SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
 | 
			
		||||
                    }}
 | 
			
		||||
                }}
 | 
			
		||||
 | 
			
		||||
                {
 | 
			
		||||
                    int lex = s1 + LLs*site;
 | 
			
		||||
                    for(int sp=0; sp<2;  sp++){
 | 
			
		||||
                    for(int co=0; co<Nc; co++){
 | 
			
		||||
                        vstream(chi[lex]()(sp)(co),   SiteChiP()(sp)(co));
 | 
			
		||||
                        vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
 | 
			
		||||
                    }}
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
        #else
 | 
			
		||||
        {
 | 
			
		||||
            // pointers
 | 
			
		||||
            //  MASK_REGS;
 | 
			
		||||
            #define Chi_00 %%zmm1
 | 
			
		||||
            #define Chi_01 %%zmm2
 | 
			
		||||
            #define Chi_02 %%zmm3
 | 
			
		||||
            #define Chi_10 %%zmm4
 | 
			
		||||
            #define Chi_11 %%zmm5
 | 
			
		||||
            #define Chi_12 %%zmm6
 | 
			
		||||
            #define Chi_20 %%zmm7
 | 
			
		||||
            #define Chi_21 %%zmm8
 | 
			
		||||
            #define Chi_22 %%zmm9
 | 
			
		||||
            #define Chi_30 %%zmm10
 | 
			
		||||
            #define Chi_31 %%zmm11
 | 
			
		||||
            #define Chi_32 %%zmm12
 | 
			
		||||
 | 
			
		||||
            #define BCAST0  %%zmm13
 | 
			
		||||
            #define BCAST1  %%zmm14
 | 
			
		||||
            #define BCAST2  %%zmm15
 | 
			
		||||
            #define BCAST3  %%zmm16
 | 
			
		||||
            #define BCAST4  %%zmm17
 | 
			
		||||
            #define BCAST5  %%zmm18
 | 
			
		||||
            #define BCAST6  %%zmm19
 | 
			
		||||
            #define BCAST7  %%zmm20
 | 
			
		||||
            #define BCAST8  %%zmm21
 | 
			
		||||
            #define BCAST9  %%zmm22
 | 
			
		||||
            #define BCAST10 %%zmm23
 | 
			
		||||
            #define BCAST11 %%zmm24
 | 
			
		||||
 | 
			
		||||
            int incr = LLs*LLs*sizeof(iSinglet<Simd>);
 | 
			
		||||
            for(int s1=0; s1<LLs; s1++){
 | 
			
		||||
 | 
			
		||||
                for(int s2=0; s2<LLs; s2++){
 | 
			
		||||
 | 
			
		||||
                    int lex = s2 + LLs*site;
 | 
			
		||||
                    uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
 | 
			
		||||
                    uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
 | 
			
		||||
                    uint64_t a2 = (uint64_t) &psi[lex];
 | 
			
		||||
 | 
			
		||||
                    for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
 | 
			
		||||
                        if((s2+l)==0) {
 | 
			
		||||
                            asm(
 | 
			
		||||
                                    VPREFETCH1(0,%2)              VPREFETCH1(0,%1)
 | 
			
		||||
                                    VPREFETCH1(12,%2)  	          VPREFETCH1(13,%2)
 | 
			
		||||
                                    VPREFETCH1(14,%2)  	          VPREFETCH1(15,%2)
 | 
			
		||||
                                    VBCASTCDUP(0,%2,BCAST0)
 | 
			
		||||
                                    VBCASTCDUP(1,%2,BCAST1)
 | 
			
		||||
                                    VBCASTCDUP(2,%2,BCAST2)
 | 
			
		||||
                                    VBCASTCDUP(3,%2,BCAST3)
 | 
			
		||||
                                    VBCASTCDUP(4,%2,BCAST4)       VMULMEM(0,%0,BCAST0,Chi_00)
 | 
			
		||||
                                    VBCASTCDUP(5,%2,BCAST5)       VMULMEM(0,%0,BCAST1,Chi_01)
 | 
			
		||||
                                    VBCASTCDUP(6,%2,BCAST6)       VMULMEM(0,%0,BCAST2,Chi_02)
 | 
			
		||||
                                    VBCASTCDUP(7,%2,BCAST7)       VMULMEM(0,%0,BCAST3,Chi_10)
 | 
			
		||||
                                    VBCASTCDUP(8,%2,BCAST8)       VMULMEM(0,%0,BCAST4,Chi_11)
 | 
			
		||||
                                    VBCASTCDUP(9,%2,BCAST9)       VMULMEM(0,%0,BCAST5,Chi_12)
 | 
			
		||||
                                    VBCASTCDUP(10,%2,BCAST10)     VMULMEM(0,%1,BCAST6,Chi_20)
 | 
			
		||||
                                    VBCASTCDUP(11,%2,BCAST11)     VMULMEM(0,%1,BCAST7,Chi_21)
 | 
			
		||||
                                    VMULMEM(0,%1,BCAST8,Chi_22)
 | 
			
		||||
                                    VMULMEM(0,%1,BCAST9,Chi_30)
 | 
			
		||||
                                    VMULMEM(0,%1,BCAST10,Chi_31)
 | 
			
		||||
                                    VMULMEM(0,%1,BCAST11,Chi_32)
 | 
			
		||||
                                    : : "r" (a0), "r" (a1), "r" (a2)                            );
 | 
			
		||||
                        } else {
 | 
			
		||||
                            asm(
 | 
			
		||||
                                    VBCASTCDUP(0,%2,BCAST0)   VMADDMEM(0,%0,BCAST0,Chi_00)
 | 
			
		||||
                                    VBCASTCDUP(1,%2,BCAST1)   VMADDMEM(0,%0,BCAST1,Chi_01)
 | 
			
		||||
                                    VBCASTCDUP(2,%2,BCAST2)   VMADDMEM(0,%0,BCAST2,Chi_02)
 | 
			
		||||
                                    VBCASTCDUP(3,%2,BCAST3)   VMADDMEM(0,%0,BCAST3,Chi_10)
 | 
			
		||||
                                    VBCASTCDUP(4,%2,BCAST4)   VMADDMEM(0,%0,BCAST4,Chi_11)
 | 
			
		||||
                                    VBCASTCDUP(5,%2,BCAST5)   VMADDMEM(0,%0,BCAST5,Chi_12)
 | 
			
		||||
                                    VBCASTCDUP(6,%2,BCAST6)   VMADDMEM(0,%1,BCAST6,Chi_20)
 | 
			
		||||
                                    VBCASTCDUP(7,%2,BCAST7)   VMADDMEM(0,%1,BCAST7,Chi_21)
 | 
			
		||||
                                    VBCASTCDUP(8,%2,BCAST8)   VMADDMEM(0,%1,BCAST8,Chi_22)
 | 
			
		||||
                                    VBCASTCDUP(9,%2,BCAST9)   VMADDMEM(0,%1,BCAST9,Chi_30)
 | 
			
		||||
                                    VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
 | 
			
		||||
                                    VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
 | 
			
		||||
                                    : : "r" (a0), "r" (a1), "r" (a2)                            );
 | 
			
		||||
                        }
 | 
			
		||||
                        a0 = a0 + incr;
 | 
			
		||||
                        a1 = a1 + incr;
 | 
			
		||||
                        a2 = a2 + sizeof(Simd::scalar_type);
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                {
 | 
			
		||||
                  int lexa = s1+LLs*site;
 | 
			
		||||
                  asm (
 | 
			
		||||
                     VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01)  VSTORE(2 ,%0,Chi_02)
 | 
			
		||||
                     VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11)  VSTORE(5 ,%0,Chi_12)
 | 
			
		||||
                     VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21)  VSTORE(8 ,%0,Chi_22)
 | 
			
		||||
                     VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31)  VSTORE(11,%0,Chi_32)
 | 
			
		||||
                     : : "r" ((uint64_t)&chi[lexa]) : "memory" );
 | 
			
		||||
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        #undef Chi_00
 | 
			
		||||
        #undef Chi_01
 | 
			
		||||
        #undef Chi_02
 | 
			
		||||
        #undef Chi_10
 | 
			
		||||
        #undef Chi_11
 | 
			
		||||
        #undef Chi_12
 | 
			
		||||
        #undef Chi_20
 | 
			
		||||
        #undef Chi_21
 | 
			
		||||
        #undef Chi_22
 | 
			
		||||
        #undef Chi_30
 | 
			
		||||
        #undef Chi_31
 | 
			
		||||
        #undef Chi_32
 | 
			
		||||
 | 
			
		||||
        #undef BCAST0
 | 
			
		||||
        #undef BCAST1
 | 
			
		||||
        #undef BCAST2
 | 
			
		||||
        #undef BCAST3
 | 
			
		||||
        #undef BCAST4
 | 
			
		||||
        #undef BCAST5
 | 
			
		||||
        #undef BCAST6
 | 
			
		||||
        #undef BCAST7
 | 
			
		||||
        #undef BCAST8
 | 
			
		||||
        #undef BCAST9
 | 
			
		||||
        #undef BCAST10
 | 
			
		||||
        #undef BCAST11
 | 
			
		||||
        #endif
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // Z-mobius version
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
 | 
			
		||||
        int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
 | 
			
		||||
    {
 | 
			
		||||
        std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
 | 
			
		||||
        exit(-1);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
 | 
			
		||||
    {
 | 
			
		||||
        int Ls  = this->Ls;
 | 
			
		||||
        int LLs = psi._grid->_rdimensions[0];
 | 
			
		||||
        int vol = psi._grid->oSites()/LLs;
 | 
			
		||||
 | 
			
		||||
        chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
        Vector<iSinglet<Simd> > Matp;
 | 
			
		||||
        Vector<iSinglet<Simd> > Matm;
 | 
			
		||||
        Vector<iSinglet<Simd> > *_Matp;
 | 
			
		||||
        Vector<iSinglet<Simd> > *_Matm;
 | 
			
		||||
 | 
			
		||||
        //  MooeeInternalCompute(dag,inv,Matp,Matm);
 | 
			
		||||
        if(inv && dag){
 | 
			
		||||
            _Matp = &this->MatpInvDag;
 | 
			
		||||
            _Matm = &this->MatmInvDag;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if(inv && (!dag)){
 | 
			
		||||
            _Matp = &this->MatpInv;
 | 
			
		||||
            _Matm = &this->MatmInv;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if(!inv){
 | 
			
		||||
            MooeeInternalCompute(dag, inv, Matp, Matm);
 | 
			
		||||
            _Matp = &Matp;
 | 
			
		||||
            _Matm = &Matm;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        assert(_Matp->size() == Ls*LLs);
 | 
			
		||||
 | 
			
		||||
        this->MooeeInvCalls++;
 | 
			
		||||
        this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
        if(switcheroo<Coeff_t>::iscomplex()){
 | 
			
		||||
            parallel_for(auto site=0; site<vol; site++){
 | 
			
		||||
                MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
 | 
			
		||||
            }
 | 
			
		||||
        } else {
 | 
			
		||||
            parallel_for(auto site=0; site<vol; site++){
 | 
			
		||||
                MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        this->MooeeInvTime += usecond();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #ifdef DOMAIN_WALL_EOFA_DPERP_VEC
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplD);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplF);
 | 
			
		||||
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplFH);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplDF);
 | 
			
		||||
        INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplFH);
 | 
			
		||||
 | 
			
		||||
        template void DomainWallEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
        template void DomainWallEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
        template void DomainWallEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
@@ -1,6 +1,6 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/qcd/action/fermion/Fermion_base_aggregate.h
 | 
			
		||||
 | 
			
		||||
@@ -38,6 +38,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
// - ContinuedFractionFermion5D.cc
 | 
			
		||||
// - WilsonFermion.cc
 | 
			
		||||
// - WilsonKernels.cc
 | 
			
		||||
// - DomainWallEOFAFermion.cc
 | 
			
		||||
// - MobiusEOFAFermion.cc
 | 
			
		||||
//
 | 
			
		||||
// The explicit instantiation is only avoidable if we move this source to headers and end up with include/parse/recompile
 | 
			
		||||
// for EVERY .cc file. This define centralises the list and restores global push of impl cases
 | 
			
		||||
@@ -55,8 +57,9 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>     // Cayley types
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
 | 
			
		||||
@@ -113,6 +116,14 @@ typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
 | 
			
		||||
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
 | 
			
		||||
typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
 | 
			
		||||
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
 | 
			
		||||
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
 | 
			
		||||
@@ -121,6 +132,14 @@ typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
 | 
			
		||||
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
 | 
			
		||||
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
 | 
			
		||||
typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
 | 
			
		||||
@@ -129,7 +148,7 @@ typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
 | 
			
		||||
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
// Ls vectorised 
 | 
			
		||||
// Ls vectorised
 | 
			
		||||
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
 | 
			
		||||
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
 | 
			
		||||
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
 | 
			
		||||
@@ -138,6 +157,14 @@ typedef DomainWallFermion<DomainWallVec5dImplRL> DomainWallFermionVec5dRL;
 | 
			
		||||
typedef DomainWallFermion<DomainWallVec5dImplFH> DomainWallFermionVec5dFH;
 | 
			
		||||
typedef DomainWallFermion<DomainWallVec5dImplDF> DomainWallFermionVec5dDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplR> DomainWallEOFAFermionVec5dR;
 | 
			
		||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplF> DomainWallEOFAFermionVec5dF;
 | 
			
		||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplD> DomainWallEOFAFermionVec5dD;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplRL> DomainWallEOFAFermionVec5dRL;
 | 
			
		||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplFH> DomainWallEOFAFermionVec5dFH;
 | 
			
		||||
typedef DomainWallEOFAFermion<DomainWallVec5dImplDF> DomainWallEOFAFermionVec5dDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
 | 
			
		||||
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
 | 
			
		||||
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
 | 
			
		||||
@@ -146,6 +173,14 @@ typedef MobiusFermion<DomainWallVec5dImplRL> MobiusFermionVec5dRL;
 | 
			
		||||
typedef MobiusFermion<DomainWallVec5dImplFH> MobiusFermionVec5dFH;
 | 
			
		||||
typedef MobiusFermion<DomainWallVec5dImplDF> MobiusFermionVec5dDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<DomainWallVec5dImplR> MobiusEOFAFermionVec5dR;
 | 
			
		||||
typedef MobiusEOFAFermion<DomainWallVec5dImplF> MobiusEOFAFermionVec5dF;
 | 
			
		||||
typedef MobiusEOFAFermion<DomainWallVec5dImplD> MobiusEOFAFermionVec5dD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<DomainWallVec5dImplRL> MobiusEOFAFermionVec5dRL;
 | 
			
		||||
typedef MobiusEOFAFermion<DomainWallVec5dImplFH> MobiusEOFAFermionVec5dFH;
 | 
			
		||||
typedef MobiusEOFAFermion<DomainWallVec5dImplDF> MobiusEOFAFermionVec5dDF;
 | 
			
		||||
 | 
			
		||||
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
 | 
			
		||||
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
 | 
			
		||||
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
 | 
			
		||||
@@ -206,6 +241,14 @@ typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
 | 
			
		||||
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
 | 
			
		||||
typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
 | 
			
		||||
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
 | 
			
		||||
@@ -222,6 +265,14 @@ typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
 | 
			
		||||
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
 | 
			
		||||
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
 | 
			
		||||
typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
 | 
			
		||||
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
 | 
			
		||||
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
 | 
			
		||||
 
 | 
			
		||||
@@ -557,12 +557,16 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
 | 
			
		||||
   }
 | 
			
		||||
   
 | 
			
		||||
 }
 | 
			
		||||
    // Fixme: Gparity prop * link
 | 
			
		||||
    inline void multLinkProp(SitePropagator &phi, const SiteDoubledGaugeField &U,
 | 
			
		||||
                             const SitePropagator &chi, int mu)
 | 
			
		||||
    {
 | 
			
		||||
        assert(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 // Fixme: Gparity prop * link
 | 
			
		||||
 inline void multLinkProp(SitePropagator &phi, const SiteDoubledGaugeField &U,
 | 
			
		||||
                          const SitePropagator &chi, int mu)
 | 
			
		||||
 {
 | 
			
		||||
   assert(0);
 | 
			
		||||
 template <class ref>
 | 
			
		||||
 inline void loadLinkElement(Simd ®, ref &memory) {
 | 
			
		||||
   reg = memory;
 | 
			
		||||
 }
 | 
			
		||||
 | 
			
		||||
 inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										502
									
								
								lib/qcd/action/fermion/MobiusEOFAFermion.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										502
									
								
								lib/qcd/action/fermion/MobiusEOFAFermion.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,502 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
    MobiusEOFAFermion<Impl>::MobiusEOFAFermion(
 | 
			
		||||
      GaugeField            &_Umu,
 | 
			
		||||
      GridCartesian         &FiveDimGrid,
 | 
			
		||||
      GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
      GridCartesian         &FourDimGrid,
 | 
			
		||||
      GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
      RealD _mq1, RealD _mq2, RealD _mq3,
 | 
			
		||||
      RealD _shift, int _pm, RealD _M5,
 | 
			
		||||
      RealD _b, RealD _c, const ImplParams &p) :
 | 
			
		||||
    AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
 | 
			
		||||
        FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
 | 
			
		||||
        _shift, _pm, _M5, _b, _c, p)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      RealD eps = 1.0;
 | 
			
		||||
      Approx::zolotarev_data *zdata = Approx::higham(eps, this->Ls);
 | 
			
		||||
      assert(zdata->n == this->Ls);
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "MobiusEOFAFermion (b=" << _b <<
 | 
			
		||||
        ",c=" << _c << ") with Ls=" << Ls << std::endl;
 | 
			
		||||
      this->SetCoefficientsTanh(zdata, _b, _c);
 | 
			
		||||
      std::cout << GridLogMessage << "EOFA parameters: (mq1=" << _mq1 <<
 | 
			
		||||
        ",mq2=" << _mq2 << ",mq3=" << _mq3 << ",shift=" << _shift <<
 | 
			
		||||
        ",pm=" << _pm << ")" << std::endl;
 | 
			
		||||
 | 
			
		||||
      Approx::zolotarev_free(zdata);
 | 
			
		||||
 | 
			
		||||
      if(_shift != 0.0){
 | 
			
		||||
        SetCoefficientsPrecondShiftOps();
 | 
			
		||||
      } else {
 | 
			
		||||
        Mooee_shift.resize(Ls, 0.0);
 | 
			
		||||
        MooeeInv_shift_lc.resize(Ls, 0.0);
 | 
			
		||||
        MooeeInv_shift_norm.resize(Ls, 0.0);
 | 
			
		||||
        MooeeInvDag_shift_lc.resize(Ls, 0.0);
 | 
			
		||||
        MooeeInvDag_shift_norm.resize(Ls, 0.0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /****************************************************************
 | 
			
		||||
     * Additional EOFA operators only called outside the inverter.  
 | 
			
		||||
     * Since speed is not essential, simple axpby-style
 | 
			
		||||
     * implementations should be fine.
 | 
			
		||||
     ***************************************************************/
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
      RealD alpha = this->alpha;
 | 
			
		||||
 | 
			
		||||
      Din = zero;
 | 
			
		||||
      if((sign == 1) && (dag == 0)) { // \Omega_{+}
 | 
			
		||||
        for(int s=0; s<Ls; ++s){
 | 
			
		||||
          axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,Ls-s-1)/std::pow(1.0+alpha,Ls-s), psi, s, 0);
 | 
			
		||||
        }
 | 
			
		||||
      } else if((sign == -1) && (dag == 0)) { // \Omega_{-}
 | 
			
		||||
        for(int s=0; s<Ls; ++s){
 | 
			
		||||
          axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,s)/std::pow(1.0+alpha,s+1), psi, s, 0);
 | 
			
		||||
        }
 | 
			
		||||
      } else if((sign == 1 ) && (dag == 1)) { // \Omega_{+}^{\dagger}
 | 
			
		||||
        for(int sp=0; sp<Ls; ++sp){
 | 
			
		||||
          axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,Ls-sp-1)/std::pow(1.0+alpha,Ls-sp), psi, 0, sp);
 | 
			
		||||
        }
 | 
			
		||||
      } else if((sign == -1) && (dag == 1)) { // \Omega_{-}^{\dagger}
 | 
			
		||||
        for(int sp=0; sp<Ls; ++sp){
 | 
			
		||||
          axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,sp)/std::pow(1.0+alpha,sp+1), psi, 0, sp);
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // This is the operator relating the usual Ddwf to TWQCD's EOFA Dirac operator (arXiv:1706.05843, Eqn. 6).
 | 
			
		||||
    // It also relates the preconditioned and unpreconditioned systems described in Appendix B.2.
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls    = this->Ls;
 | 
			
		||||
      RealD b   = 0.5 * ( 1.0 + this->alpha );
 | 
			
		||||
      RealD c   = 0.5 * ( 1.0 - this->alpha );
 | 
			
		||||
      RealD mq1 = this->mq1;
 | 
			
		||||
 | 
			
		||||
      for(int s=0; s<Ls; ++s){
 | 
			
		||||
        if(s == 0) {
 | 
			
		||||
          axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
 | 
			
		||||
          axpby_ssp_pplus (chi, 1.0, chi, mq1*c, psi, s, Ls-1);
 | 
			
		||||
        } else if(s == (Ls-1)) {
 | 
			
		||||
          axpby_ssp_pminus(chi, b, psi, mq1*c, psi, s, 0);
 | 
			
		||||
          axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
 | 
			
		||||
        } else {
 | 
			
		||||
          axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
 | 
			
		||||
          axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
      RealD m = this->mq1;
 | 
			
		||||
      RealD c = 0.5 * this->alpha;
 | 
			
		||||
      RealD d = 0.5;
 | 
			
		||||
 | 
			
		||||
      RealD DtInv_p(0.0), DtInv_m(0.0);
 | 
			
		||||
      RealD N = std::pow(c+d,Ls) + m*std::pow(c-d,Ls);
 | 
			
		||||
      FermionField tmp(this->FermionGrid());
 | 
			
		||||
 | 
			
		||||
      for(int s=0; s<Ls; ++s){
 | 
			
		||||
      for(int sp=0; sp<Ls; ++sp){
 | 
			
		||||
 | 
			
		||||
        DtInv_p = m * std::pow(-1.0,s-sp+1) * std::pow(c-d,Ls+s-sp) / std::pow(c+d,s-sp+1) / N;
 | 
			
		||||
        DtInv_p += (s < sp) ? 0.0 : std::pow(-1.0,s-sp) * std::pow(c-d,s-sp) / std::pow(c+d,s-sp+1);
 | 
			
		||||
        DtInv_m = m * std::pow(-1.0,sp-s+1) * std::pow(c-d,Ls+sp-s) / std::pow(c+d,sp-s+1) / N;
 | 
			
		||||
        DtInv_m += (s > sp) ? 0.0 : std::pow(-1.0,sp-s) * std::pow(c-d,sp-s) / std::pow(c+d,sp-s+1);
 | 
			
		||||
 | 
			
		||||
        if(sp == 0){
 | 
			
		||||
          axpby_ssp_pplus (tmp, 0.0, tmp, DtInv_p, psi, s, sp);
 | 
			
		||||
          axpby_ssp_pminus(tmp, 0.0, tmp, DtInv_m, psi, s, sp);
 | 
			
		||||
        } else {
 | 
			
		||||
          axpby_ssp_pplus (tmp, 1.0, tmp, DtInv_p, psi, s, sp);
 | 
			
		||||
          axpby_ssp_pminus(tmp, 1.0, tmp, DtInv_m, psi, s, sp);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      }}
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /*****************************************************************************************************/
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    RealD MobiusEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      FermionField Din(psi._grid);
 | 
			
		||||
 | 
			
		||||
      this->Meooe5D(psi, Din);
 | 
			
		||||
      this->DW(Din, chi, DaggerNo);
 | 
			
		||||
      axpby(chi, 1.0, 1.0, chi, psi);
 | 
			
		||||
      this->M5D(psi, chi);
 | 
			
		||||
      return(norm2(chi));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    RealD MobiusEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      FermionField Din(psi._grid);
 | 
			
		||||
 | 
			
		||||
      this->DW(psi, Din, DaggerYes);
 | 
			
		||||
      this->MeooeDag5D(Din, chi);
 | 
			
		||||
      this->M5Ddag(psi, chi);
 | 
			
		||||
      axpby(chi, 1.0, 1.0, chi, psi);
 | 
			
		||||
      return(norm2(chi));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /********************************************************************
 | 
			
		||||
     * Performance critical fermion operators called inside the inverter
 | 
			
		||||
     ********************************************************************/
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      std::vector<Coeff_t> diag(Ls,1.0);
 | 
			
		||||
      std::vector<Coeff_t> upper(Ls,-1.0);  upper[Ls-1] = this->mq1;
 | 
			
		||||
      std::vector<Coeff_t> lower(Ls,-1.0);  lower[0]    = this->mq1;
 | 
			
		||||
 | 
			
		||||
      // no shift term
 | 
			
		||||
      if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
 | 
			
		||||
 | 
			
		||||
      // fused M + shift operation
 | 
			
		||||
      else{ this->M5D_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      std::vector<Coeff_t> diag(Ls,1.0);
 | 
			
		||||
      std::vector<Coeff_t> upper(Ls,-1.0);  upper[Ls-1] = this->mq1;
 | 
			
		||||
      std::vector<Coeff_t> lower(Ls,-1.0);  lower[0]    = this->mq1;
 | 
			
		||||
 | 
			
		||||
      // no shift term
 | 
			
		||||
      if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
 | 
			
		||||
 | 
			
		||||
      // fused M + shift operation
 | 
			
		||||
      else{ this->M5Ddag_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // half checkerboard operations
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      // coefficients of Mooee
 | 
			
		||||
      std::vector<Coeff_t> diag = this->bee;
 | 
			
		||||
      std::vector<Coeff_t> upper(Ls);
 | 
			
		||||
      std::vector<Coeff_t> lower(Ls);
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        upper[s] = -this->cee[s];
 | 
			
		||||
        lower[s] = -this->cee[s];
 | 
			
		||||
      }
 | 
			
		||||
      upper[Ls-1] *= -this->mq1;
 | 
			
		||||
      lower[0]    *= -this->mq1;
 | 
			
		||||
 | 
			
		||||
      // no shift term
 | 
			
		||||
      if(this->shift == 0.0){ this->M5D(psi, psi, chi, lower, diag, upper); }
 | 
			
		||||
 | 
			
		||||
      // fused M + shift operation
 | 
			
		||||
      else { this->M5D_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      // coefficients of MooeeDag
 | 
			
		||||
      std::vector<Coeff_t> diag = this->bee;
 | 
			
		||||
      std::vector<Coeff_t> upper(Ls);
 | 
			
		||||
      std::vector<Coeff_t> lower(Ls);
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        if(s==0) {
 | 
			
		||||
          upper[s] = -this->cee[s+1];
 | 
			
		||||
          lower[s] = this->mq1*this->cee[Ls-1];
 | 
			
		||||
        } else if(s==(Ls-1)) {
 | 
			
		||||
          upper[s] = this->mq1*this->cee[0];
 | 
			
		||||
          lower[s] = -this->cee[s-1];
 | 
			
		||||
        } else {
 | 
			
		||||
          upper[s] = -this->cee[s+1];
 | 
			
		||||
          lower[s] = -this->cee[s-1];
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // no shift term
 | 
			
		||||
      if(this->shift == 0.0){ this->M5Ddag(psi, psi, chi, lower, diag, upper); }
 | 
			
		||||
 | 
			
		||||
      // fused M + shift operation
 | 
			
		||||
      else{ this->M5Ddag_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /****************************************************************************************/
 | 
			
		||||
 | 
			
		||||
    // Computes coefficients for applying Cayley preconditioned shift operators
 | 
			
		||||
    //  (Mooee + \Delta) --> Mooee_shift
 | 
			
		||||
    //  (Mooee + \Delta)^{-1} --> MooeeInv_shift_lc, MooeeInv_shift_norm
 | 
			
		||||
    //  (Mooee + \Delta)^{-dag} --> MooeeInvDag_shift_lc, MooeeInvDag_shift_norm
 | 
			
		||||
    // For the latter two cases, the operation takes the form
 | 
			
		||||
    //  [ (Mooee + \Delta)^{-1} \psi ]_{i} = Mooee_{ij} \psi_{j} +
 | 
			
		||||
    //      ( MooeeInv_shift_norm )_{i} ( \sum_{j} [ MooeeInv_shift_lc ]_{j} P_{pm} \psi_{j} )
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
 | 
			
		||||
    {
 | 
			
		||||
      int   Ls    = this->Ls;
 | 
			
		||||
      int   pm    = this->pm;
 | 
			
		||||
      RealD alpha = this->alpha;
 | 
			
		||||
      RealD k     = this->k;
 | 
			
		||||
      RealD mq1   = this->mq1;
 | 
			
		||||
      RealD shift = this->shift;
 | 
			
		||||
 | 
			
		||||
      // Initialize
 | 
			
		||||
      Mooee_shift.resize(Ls);
 | 
			
		||||
      MooeeInv_shift_lc.resize(Ls);
 | 
			
		||||
      MooeeInv_shift_norm.resize(Ls);
 | 
			
		||||
      MooeeInvDag_shift_lc.resize(Ls);
 | 
			
		||||
      MooeeInvDag_shift_norm.resize(Ls);
 | 
			
		||||
 | 
			
		||||
      // Construct Mooee_shift
 | 
			
		||||
      int idx(0);
 | 
			
		||||
      Coeff_t N = ( (pm == 1) ? 1.0 : -1.0 ) * (2.0*shift*k) *
 | 
			
		||||
                  ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
 | 
			
		||||
      for(int s=0; s<Ls; ++s){
 | 
			
		||||
        idx = (pm == 1) ? (s) : (Ls-1-s);
 | 
			
		||||
        Mooee_shift[idx] = N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Tridiagonal solve for MooeeInvDag_shift_lc
 | 
			
		||||
      {
 | 
			
		||||
        Coeff_t m(0.0);
 | 
			
		||||
        std::vector<Coeff_t> d = Mooee_shift;
 | 
			
		||||
        std::vector<Coeff_t> u(Ls,0.0);
 | 
			
		||||
        std::vector<Coeff_t> y(Ls,0.0);
 | 
			
		||||
        std::vector<Coeff_t> q(Ls,0.0);
 | 
			
		||||
        if(pm == 1){ u[0] = 1.0; }
 | 
			
		||||
        else{ u[Ls-1] = 1.0; }
 | 
			
		||||
 | 
			
		||||
        // Tridiagonal matrix algorithm + Sherman-Morrison formula
 | 
			
		||||
        //
 | 
			
		||||
        // We solve
 | 
			
		||||
        //  ( Mooee' + u \otimes v ) MooeeInvDag_shift_lc = Mooee_shift
 | 
			
		||||
        // where Mooee' is the tridiagonal part of Mooee_{+}, and
 | 
			
		||||
        // u = (1,0,...,0) and v = (0,...,0,mq1*cee[0]) are chosen
 | 
			
		||||
        // so that the outer-product u \otimes v gives the (0,Ls-1)
 | 
			
		||||
        // entry of Mooee_{+}.
 | 
			
		||||
        //
 | 
			
		||||
        // We do this as two solves: Mooee'*y = d and Mooee'*q = u,
 | 
			
		||||
        // and then construct the solution to the original system
 | 
			
		||||
        //  MooeeInvDag_shift_lc = y - <v,y> / ( 1 + <v,q> ) q
 | 
			
		||||
        if(pm == 1){
 | 
			
		||||
          for(int s=1; s<Ls; ++s){
 | 
			
		||||
            m = -this->cee[s] / this->bee[s-1];
 | 
			
		||||
            d[s] -= m*d[s-1];
 | 
			
		||||
            u[s] -= m*u[s-1];
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        y[Ls-1] = d[Ls-1] / this->bee[Ls-1];
 | 
			
		||||
        q[Ls-1] = u[Ls-1] / this->bee[Ls-1];
 | 
			
		||||
        for(int s=Ls-2; s>=0; --s){
 | 
			
		||||
          if(pm == 1){
 | 
			
		||||
            y[s] = d[s] / this->bee[s];
 | 
			
		||||
            q[s] = u[s] / this->bee[s];
 | 
			
		||||
          } else {
 | 
			
		||||
            y[s] = ( d[s] + this->cee[s]*y[s+1] ) / this->bee[s];
 | 
			
		||||
            q[s] = ( u[s] + this->cee[s]*q[s+1] ) / this->bee[s];
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Construct MooeeInvDag_shift_lc
 | 
			
		||||
        for(int s=0; s<Ls; ++s){
 | 
			
		||||
          if(pm == 1){
 | 
			
		||||
            MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[0]*y[Ls-1] /
 | 
			
		||||
              (1.0+mq1*this->cee[0]*q[Ls-1]) * q[s];
 | 
			
		||||
          } else {
 | 
			
		||||
            MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[Ls-1]*y[0] /
 | 
			
		||||
              (1.0+mq1*this->cee[Ls-1]*q[0]) * q[s];
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Compute remaining coefficients
 | 
			
		||||
        N = (pm == 1) ? (1.0 + MooeeInvDag_shift_lc[Ls-1]) : (1.0 + MooeeInvDag_shift_lc[0]);
 | 
			
		||||
        for(int s=0; s<Ls; ++s){
 | 
			
		||||
 | 
			
		||||
          // MooeeInv_shift_lc
 | 
			
		||||
          if(pm == 1){ MooeeInv_shift_lc[s] = std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s); }
 | 
			
		||||
          else{ MooeeInv_shift_lc[s] = std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s); }
 | 
			
		||||
 | 
			
		||||
          // MooeeInv_shift_norm
 | 
			
		||||
          MooeeInv_shift_norm[s] = -MooeeInvDag_shift_lc[s] /
 | 
			
		||||
            ( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N;
 | 
			
		||||
 | 
			
		||||
          // MooeeInvDag_shift_norm
 | 
			
		||||
          if(pm == 1){ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s) /
 | 
			
		||||
            ( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
 | 
			
		||||
          else{ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s) /
 | 
			
		||||
            ( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Recompute coefficients for a different value of shift constant
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
 | 
			
		||||
    {
 | 
			
		||||
      this->shift = new_shift;
 | 
			
		||||
      if(new_shift != 0.0){
 | 
			
		||||
        SetCoefficientsPrecondShiftOps();
 | 
			
		||||
      } else {
 | 
			
		||||
        int Ls = this->Ls;
 | 
			
		||||
        Mooee_shift.resize(Ls,0.0);
 | 
			
		||||
        MooeeInv_shift_lc.resize(Ls,0.0);
 | 
			
		||||
        MooeeInv_shift_norm.resize(Ls,0.0);
 | 
			
		||||
        MooeeInvDag_shift_lc.resize(Ls,0.0);
 | 
			
		||||
        MooeeInvDag_shift_norm.resize(Ls,0.0);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class Impl>
 | 
			
		||||
    void MobiusEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
 | 
			
		||||
      Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
 | 
			
		||||
    {
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
      GridBase* grid = this->FermionRedBlackGrid();
 | 
			
		||||
      int LLs = grid->_rdimensions[0];
 | 
			
		||||
 | 
			
		||||
      if(LLs == Ls){ return; } // Not vectorised in 5th direction
 | 
			
		||||
 | 
			
		||||
      Eigen::MatrixXcd Pplus  = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
      Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
 | 
			
		||||
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        Pplus(s,s)  = this->bee[s];
 | 
			
		||||
        Pminus(s,s) = this->bee[s];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        Pminus(s,s+1) = -this->cee[s];
 | 
			
		||||
        Pplus(s+1,s) = -this->cee[s+1];
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Pplus (0,Ls-1) = this->mq1*this->cee[0];
 | 
			
		||||
      Pminus(Ls-1,0) = this->mq1*this->cee[Ls-1];
 | 
			
		||||
 | 
			
		||||
      if(this->shift != 0.0){
 | 
			
		||||
        RealD c = 0.5 * this->alpha;
 | 
			
		||||
        RealD d = 0.5;
 | 
			
		||||
        RealD N = this->shift * this->k * ( std::pow(c+d,Ls) + this->mq1*std::pow(c-d,Ls) );
 | 
			
		||||
        if(this->pm == 1) {
 | 
			
		||||
          for(int s=0; s<Ls; ++s){
 | 
			
		||||
            Pplus(s,Ls-1) += N * std::pow(-1.0,s) * std::pow(c-d,s) / std::pow(c+d,Ls+s+1);
 | 
			
		||||
          }
 | 
			
		||||
        } else {
 | 
			
		||||
          for(int s=0; s<Ls; ++s){
 | 
			
		||||
            Pminus(s,0) += N * std::pow(-1.0,s+1) * std::pow(c-d,Ls-1-s) / std::pow(c+d,2*Ls-s);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      Eigen::MatrixXcd PplusMat ;
 | 
			
		||||
      Eigen::MatrixXcd PminusMat;
 | 
			
		||||
 | 
			
		||||
      if(inv) {
 | 
			
		||||
        PplusMat  = Pplus.inverse();
 | 
			
		||||
        PminusMat = Pminus.inverse();
 | 
			
		||||
      } else {
 | 
			
		||||
        PplusMat  = Pplus;
 | 
			
		||||
        PminusMat = Pminus;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if(dag){
 | 
			
		||||
        PplusMat.adjointInPlace();
 | 
			
		||||
        PminusMat.adjointInPlace();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      typedef typename SiteHalfSpinor::scalar_type scalar_type;
 | 
			
		||||
      const int Nsimd = Simd::Nsimd();
 | 
			
		||||
      Matp.resize(Ls*LLs);
 | 
			
		||||
      Matm.resize(Ls*LLs);
 | 
			
		||||
 | 
			
		||||
      for(int s2=0; s2<Ls; s2++){
 | 
			
		||||
      for(int s1=0; s1<LLs; s1++){
 | 
			
		||||
        int istride = LLs;
 | 
			
		||||
        int ostride = 1;
 | 
			
		||||
        Simd Vp;
 | 
			
		||||
        Simd Vm;
 | 
			
		||||
        scalar_type *sp = (scalar_type*) &Vp;
 | 
			
		||||
        scalar_type *sm = (scalar_type*) &Vm;
 | 
			
		||||
        for(int l=0; l<Nsimd; l++){
 | 
			
		||||
          if(switcheroo<Coeff_t>::iscomplex()) {
 | 
			
		||||
            sp[l] = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
            sm[l] = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
          } else {
 | 
			
		||||
            // if real
 | 
			
		||||
            scalar_type tmp;
 | 
			
		||||
            tmp = PplusMat (l*istride+s1*ostride,s2);
 | 
			
		||||
            sp[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
            tmp = PminusMat(l*istride+s1*ostride,s2);
 | 
			
		||||
            sm[l] = scalar_type(tmp.real(),tmp.real());
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
        Matp[LLs*s2+s1] = Vp;
 | 
			
		||||
        Matm[LLs*s2+s1] = Vm;
 | 
			
		||||
      }}
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  FermOpTemplateInstantiate(MobiusEOFAFermion);
 | 
			
		||||
  GparityFermOpTemplateInstantiate(MobiusEOFAFermion);
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										133
									
								
								lib/qcd/action/fermion/MobiusEOFAFermion.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								lib/qcd/action/fermion/MobiusEOFAFermion.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,133 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef  GRID_QCD_MOBIUS_EOFA_FERMION_H
 | 
			
		||||
#define  GRID_QCD_MOBIUS_EOFA_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
      // Shift operator coefficients for red-black preconditioned Mobius EOFA
 | 
			
		||||
      std::vector<Coeff_t> Mooee_shift;
 | 
			
		||||
      std::vector<Coeff_t> MooeeInv_shift_lc;
 | 
			
		||||
      std::vector<Coeff_t> MooeeInv_shift_norm;
 | 
			
		||||
      std::vector<Coeff_t> MooeeInvDag_shift_lc;
 | 
			
		||||
      std::vector<Coeff_t> MooeeInvDag_shift_norm;
 | 
			
		||||
 | 
			
		||||
      virtual void Instantiatable(void) {};
 | 
			
		||||
 | 
			
		||||
      // EOFA-specific operations
 | 
			
		||||
      virtual void  Omega            (const FermionField& in, FermionField& out, int sign, int dag);
 | 
			
		||||
      virtual void  Dtilde           (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  DtildeInv        (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
      // override multiply
 | 
			
		||||
      virtual RealD M                (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual RealD Mdag             (const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
      // half checkerboard operations
 | 
			
		||||
      virtual void  Mooee            (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeDag         (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeInv         (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeInv_shift   (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeInvDag      (const FermionField& in, FermionField& out);
 | 
			
		||||
      virtual void  MooeeInvDag_shift(const FermionField& in, FermionField& out);
 | 
			
		||||
 | 
			
		||||
      virtual void   M5D             (const FermionField& psi, FermionField& chi);
 | 
			
		||||
      virtual void   M5Ddag          (const FermionField& psi, FermionField& chi);
 | 
			
		||||
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      // Instantiate different versions depending on Impl
 | 
			
		||||
      /////////////////////////////////////////////////////
 | 
			
		||||
      void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
        std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
      void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
        std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
        std::vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
      void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
        std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
 | 
			
		||||
 | 
			
		||||
      void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
 | 
			
		||||
        std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
        std::vector<Coeff_t>& shift_coeffs);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
 | 
			
		||||
        Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
 | 
			
		||||
 | 
			
		||||
      void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
 | 
			
		||||
        Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
 | 
			
		||||
 | 
			
		||||
      virtual void RefreshShiftCoefficients(RealD new_shift);
 | 
			
		||||
 | 
			
		||||
      // Constructors
 | 
			
		||||
      MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
 | 
			
		||||
        GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
 | 
			
		||||
        RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
 | 
			
		||||
        RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
 | 
			
		||||
 | 
			
		||||
    protected:
 | 
			
		||||
      void SetCoefficientsPrecondShiftOps(void);
 | 
			
		||||
  };
 | 
			
		||||
}}
 | 
			
		||||
 | 
			
		||||
#define INSTANTIATE_DPERP_MOBIUS_EOFA(A)\
 | 
			
		||||
template void MobiusEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
 | 
			
		||||
  std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
 | 
			
		||||
  std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
 | 
			
		||||
  std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
 | 
			
		||||
  std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::MooeeInv_shift(const FermionField& psi, FermionField& chi); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi); \
 | 
			
		||||
template void MobiusEOFAFermion<A>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi);
 | 
			
		||||
 | 
			
		||||
#undef  MOBIUS_EOFA_DPERP_DENSE
 | 
			
		||||
#define MOBIUS_EOFA_DPERP_CACHE
 | 
			
		||||
#undef  MOBIUS_EOFA_DPERP_LINALG
 | 
			
		||||
#define MOBIUS_EOFA_DPERP_VEC
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										429
									
								
								lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										429
									
								
								lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,429 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  // FIXME -- make a version of these routines with site loop outermost for cache reuse.
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi, const FermionField &phi, FermionField &chi,
 | 
			
		||||
    std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
 | 
			
		||||
    assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
    this->M5Dcalls++;
 | 
			
		||||
    this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        auto tmp = psi._odata[0];
 | 
			
		||||
        if(s==0){
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+Ls-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else if(s==(Ls-1)) {
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+0]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else {
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->M5Dtime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
 | 
			
		||||
    std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
 | 
			
		||||
    std::vector<Coeff_t> &shift_coeffs)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
 | 
			
		||||
    assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
    this->M5Dcalls++;
 | 
			
		||||
    this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        auto tmp = psi._odata[0];
 | 
			
		||||
        if(s==0){
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+Ls-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else if(s==(Ls-1)) {
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+0]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else {
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        }
 | 
			
		||||
        if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+shift_s]); }
 | 
			
		||||
        else{ spProj5m(tmp, psi._odata[ss+shift_s]); }
 | 
			
		||||
        chi[ss+s] = chi[ss+s] + shift_coeffs[s]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->M5Dtime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi, const FermionField &phi, FermionField &chi,
 | 
			
		||||
    std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
 | 
			
		||||
    assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
    this->M5Dcalls++;
 | 
			
		||||
    this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
      auto tmp = psi._odata[0];
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        if(s==0) {
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+Ls-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else if(s==(Ls-1)) {
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+0]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else {
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->M5Dtime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
 | 
			
		||||
    std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
 | 
			
		||||
    std::vector<Coeff_t> &shift_coeffs)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
 | 
			
		||||
    assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    // Flops = 6.0*(Nc*Ns) *Ls*vol
 | 
			
		||||
    this->M5Dcalls++;
 | 
			
		||||
    this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
      chi[ss+Ls-1] = zero;
 | 
			
		||||
      auto tmp = psi._odata[0];
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        if(s==0) {
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+Ls-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else if(s==(Ls-1)) {
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+0]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        } else {
 | 
			
		||||
          spProj5p(tmp, psi._odata[ss+s+1]);
 | 
			
		||||
          chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
 | 
			
		||||
          spProj5m(tmp, psi._odata[ss+s-1]);
 | 
			
		||||
          chi[ss+s] = chi[ss+s] + lower[s]*tmp;
 | 
			
		||||
        }
 | 
			
		||||
        if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+s]); }
 | 
			
		||||
        else{ spProj5m(tmp, psi._odata[ss+s]); }
 | 
			
		||||
        chi[ss+shift_s] = chi[ss+shift_s] + shift_coeffs[s]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->M5Dtime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
 | 
			
		||||
  {
 | 
			
		||||
    if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvCalls++;
 | 
			
		||||
    this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
 | 
			
		||||
      auto tmp = psi._odata[0];
 | 
			
		||||
 | 
			
		||||
      // Apply (L^{\prime})^{-1}
 | 
			
		||||
      chi[ss] = psi[ss]; // chi[0]=psi[0]
 | 
			
		||||
      for(int s=1; s<Ls; s++){
 | 
			
		||||
        spProj5p(tmp, chi[ss+s-1]);
 | 
			
		||||
        chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // L_m^{-1}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
 | 
			
		||||
        spProj5m(tmp, chi[ss+s]);
 | 
			
		||||
        chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // U_m^{-1} D^{-1}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
 | 
			
		||||
        spProj5p(tmp, chi[ss+Ls-1]);
 | 
			
		||||
        chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp;
 | 
			
		||||
      }
 | 
			
		||||
      chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
 | 
			
		||||
 | 
			
		||||
      // Apply U^{-1}
 | 
			
		||||
      for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
        spProj5m(tmp, chi[ss+s+1]);
 | 
			
		||||
        chi[ss+s] = chi[ss+s] - this->uee[s]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi, FermionField &chi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvCalls++;
 | 
			
		||||
    this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
 | 
			
		||||
      auto tmp1        = psi._odata[0];
 | 
			
		||||
      auto tmp2        = psi._odata[0];
 | 
			
		||||
      auto tmp2_spProj = psi._odata[0];
 | 
			
		||||
 | 
			
		||||
      // Apply (L^{\prime})^{-1} and accumulate MooeeInv_shift_lc[j]*psi[j] in tmp2
 | 
			
		||||
      chi[ss] = psi[ss]; // chi[0]=psi[0]
 | 
			
		||||
      tmp2 = MooeeInv_shift_lc[0]*psi[ss];
 | 
			
		||||
      for(int s=1; s<Ls; s++){
 | 
			
		||||
        spProj5p(tmp1, chi[ss+s-1]);
 | 
			
		||||
        chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
 | 
			
		||||
        tmp2 = tmp2 + MooeeInv_shift_lc[s]*psi[ss+s];
 | 
			
		||||
      }
 | 
			
		||||
      if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
 | 
			
		||||
      else{ spProj5m(tmp2_spProj, tmp2); }
 | 
			
		||||
 | 
			
		||||
      // L_m^{-1}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
 | 
			
		||||
        spProj5m(tmp1, chi[ss+s]);
 | 
			
		||||
        chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // U_m^{-1} D^{-1}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
 | 
			
		||||
        spProj5p(tmp1, chi[ss+Ls-1]);
 | 
			
		||||
        chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp1;
 | 
			
		||||
      }
 | 
			
		||||
      // chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
 | 
			
		||||
      chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
 | 
			
		||||
      spProj5m(tmp1, chi[ss+Ls-1]);
 | 
			
		||||
      chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
 | 
			
		||||
 | 
			
		||||
      // Apply U^{-1} and add shift term
 | 
			
		||||
      for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
        chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
 | 
			
		||||
        spProj5m(tmp1, chi[ss+s]);
 | 
			
		||||
        chi[ss+s] = chi[ss+s] + MooeeInv_shift_norm[s]*tmp2_spProj;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi, FermionField &chi)
 | 
			
		||||
  {
 | 
			
		||||
    if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvCalls++;
 | 
			
		||||
    this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
 | 
			
		||||
      auto tmp = psi._odata[0];
 | 
			
		||||
 | 
			
		||||
      // Apply (U^{\prime})^{-dag}
 | 
			
		||||
      chi[ss] = psi[ss];
 | 
			
		||||
      for(int s=1; s<Ls; s++){
 | 
			
		||||
        spProj5m(tmp, chi[ss+s-1]);
 | 
			
		||||
        chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // U_m^{-\dag}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        spProj5p(tmp, chi[ss+s]);
 | 
			
		||||
        chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // L_m^{-\dag} D^{-dag}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        spProj5m(tmp, chi[ss+Ls-1]);
 | 
			
		||||
        chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp;
 | 
			
		||||
      }
 | 
			
		||||
      chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
 | 
			
		||||
 | 
			
		||||
      // Apply L^{-dag}
 | 
			
		||||
      for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
        spProj5p(tmp, chi[ss+s+1]);
 | 
			
		||||
        chi[ss+s] = chi[ss+s] - this->lee[s]*tmp;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi, FermionField &chi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = psi._grid;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvCalls++;
 | 
			
		||||
    this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
 | 
			
		||||
 | 
			
		||||
      auto tmp1        = psi._odata[0];
 | 
			
		||||
      auto tmp2        = psi._odata[0];
 | 
			
		||||
      auto tmp2_spProj = psi._odata[0];
 | 
			
		||||
 | 
			
		||||
      // Apply (U^{\prime})^{-dag} and accumulate MooeeInvDag_shift_lc[j]*psi[j] in tmp2
 | 
			
		||||
      chi[ss] = psi[ss];
 | 
			
		||||
      tmp2 = MooeeInvDag_shift_lc[0]*psi[ss];
 | 
			
		||||
      for(int s=1; s<Ls; s++){
 | 
			
		||||
        spProj5m(tmp1, chi[ss+s-1]);
 | 
			
		||||
        chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp1;
 | 
			
		||||
        tmp2 = tmp2 + MooeeInvDag_shift_lc[s]*psi[ss+s];
 | 
			
		||||
      }
 | 
			
		||||
      if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
 | 
			
		||||
      else{ spProj5m(tmp2_spProj, tmp2); }
 | 
			
		||||
 | 
			
		||||
      // U_m^{-\dag}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        spProj5p(tmp1, chi[ss+s]);
 | 
			
		||||
        chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp1;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // L_m^{-\dag} D^{-dag}
 | 
			
		||||
      for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        spProj5m(tmp1, chi[ss+Ls-1]);
 | 
			
		||||
        chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp1;
 | 
			
		||||
      }
 | 
			
		||||
      chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
 | 
			
		||||
      spProj5p(tmp1, chi[ss+Ls-1]);
 | 
			
		||||
      chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInvDag_shift_norm[Ls-1]*tmp2_spProj;
 | 
			
		||||
 | 
			
		||||
      // Apply L^{-dag}
 | 
			
		||||
      for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
        chi[ss+s] = chi[ss+s] - this->lee[s]*tmp1;
 | 
			
		||||
        spProj5p(tmp1, chi[ss+s]);
 | 
			
		||||
        chi[ss+s] = chi[ss+s] + MooeeInvDag_shift_norm[s]*tmp2_spProj;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #ifdef MOBIUS_EOFA_DPERP_CACHE
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										184
									
								
								lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										184
									
								
								lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,184 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/Grid_Eigen_Dense.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  * Dense matrix versions of routines
 | 
			
		||||
  */
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    int LLs = psi._grid->_rdimensions[0];
 | 
			
		||||
    int vol = psi._grid->oSites()/LLs;
 | 
			
		||||
 | 
			
		||||
    int pm      = this->pm;
 | 
			
		||||
    RealD shift = this->shift;
 | 
			
		||||
    RealD alpha = this->alpha;
 | 
			
		||||
    RealD k     = this->k;
 | 
			
		||||
    RealD mq1   = this->mq1;
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    assert(Ls==LLs);
 | 
			
		||||
 | 
			
		||||
    Eigen::MatrixXd Pplus  = Eigen::MatrixXd::Zero(Ls,Ls);
 | 
			
		||||
    Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<Ls;s++){
 | 
			
		||||
        Pplus(s,s)  = this->bee[s];
 | 
			
		||||
        Pminus(s,s) = this->bee[s];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        Pminus(s,s+1) = -this->cee[s];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
        Pplus(s+1,s) = -this->cee[s+1];
 | 
			
		||||
    }
 | 
			
		||||
    Pplus (0,Ls-1) = mq1*this->cee[0];
 | 
			
		||||
    Pminus(Ls-1,0) = mq1*this->cee[Ls-1];
 | 
			
		||||
 | 
			
		||||
    if(shift != 0.0){
 | 
			
		||||
      Coeff_t N = 2.0 * ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
 | 
			
		||||
      for(int s=0; s<Ls; ++s){
 | 
			
		||||
        if(pm == 1){ Pplus(s,Ls-1) += shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
 | 
			
		||||
        else{ Pminus(Ls-1-s,Ls-1) -= shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    Eigen::MatrixXd PplusMat ;
 | 
			
		||||
    Eigen::MatrixXd PminusMat;
 | 
			
		||||
 | 
			
		||||
    if(inv){
 | 
			
		||||
      PplusMat  = Pplus.inverse();
 | 
			
		||||
      PminusMat = Pminus.inverse();
 | 
			
		||||
    } else {
 | 
			
		||||
      PplusMat  = Pplus;
 | 
			
		||||
      PminusMat = Pminus;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(dag){
 | 
			
		||||
      PplusMat.adjointInPlace();
 | 
			
		||||
      PminusMat.adjointInPlace();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // For the non-vectorised s-direction this is simple
 | 
			
		||||
 | 
			
		||||
    for(auto site=0; site<vol; site++){
 | 
			
		||||
 | 
			
		||||
        SiteSpinor     SiteChi;
 | 
			
		||||
        SiteHalfSpinor SitePplus;
 | 
			
		||||
        SiteHalfSpinor SitePminus;
 | 
			
		||||
 | 
			
		||||
        for(int s1=0; s1<Ls; s1++){
 | 
			
		||||
            SiteChi = zero;
 | 
			
		||||
            for(int s2=0; s2<Ls; s2++){
 | 
			
		||||
                int lex2 = s2 + Ls*site;
 | 
			
		||||
                if(PplusMat(s1,s2) != 0.0){
 | 
			
		||||
                    spProj5p(SitePplus,psi[lex2]);
 | 
			
		||||
                    accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
 | 
			
		||||
                }
 | 
			
		||||
                if(PminusMat(s1,s2) != 0.0){
 | 
			
		||||
                    spProj5m(SitePminus, psi[lex2]);
 | 
			
		||||
                    accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            chi[s1+Ls*site] = SiteChi*0.5;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #ifdef MOBIUS_EOFA_DPERP_DENSE
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
 | 
			
		||||
 | 
			
		||||
    template void MobiusEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
    template void MobiusEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										290
									
								
								lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										290
									
								
								lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,290 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  // FIXME -- make a version of these routines with site loop outermost for cache reuse.
 | 
			
		||||
  // Pminus fowards
 | 
			
		||||
  // Pplus  backwards
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
  {
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    for(int s=0; s<Ls; s++){
 | 
			
		||||
      if(s==0) {
 | 
			
		||||
        axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
 | 
			
		||||
      } else if (s==(Ls-1)) {
 | 
			
		||||
        axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
 | 
			
		||||
        axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      } else {
 | 
			
		||||
        axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
    std::vector<Coeff_t>& shift_coeffs)
 | 
			
		||||
  {
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    for(int s=0; s<Ls; s++){
 | 
			
		||||
      if(s==0) {
 | 
			
		||||
        axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
 | 
			
		||||
      } else if (s==(Ls-1)) {
 | 
			
		||||
        axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
 | 
			
		||||
        axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      } else {
 | 
			
		||||
        axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      }
 | 
			
		||||
      if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
 | 
			
		||||
      else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
  {
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    for(int s=0; s<Ls; s++){
 | 
			
		||||
      if(s==0) {
 | 
			
		||||
        axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
 | 
			
		||||
      } else if (s==(Ls-1)) {
 | 
			
		||||
        axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
 | 
			
		||||
        axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      } else {
 | 
			
		||||
        axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
    std::vector<Coeff_t>& shift_coeffs)
 | 
			
		||||
  {
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
    for(int s=0; s<Ls; s++){
 | 
			
		||||
      if(s==0) {
 | 
			
		||||
        axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
 | 
			
		||||
      } else if (s==(Ls-1)) {
 | 
			
		||||
        axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
 | 
			
		||||
        axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      } else {
 | 
			
		||||
        axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
 | 
			
		||||
        axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
 | 
			
		||||
      }
 | 
			
		||||
      if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
 | 
			
		||||
      else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
 | 
			
		||||
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    Coeff_t czero(0.0);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    // Apply (L^{\prime})^{-1}
 | 
			
		||||
    axpby_ssp(chi, one, psi, czero, psi, 0, 0);      // chi[0]=psi[0]
 | 
			
		||||
    for(int s=1; s<Ls; s++){
 | 
			
		||||
      axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // L_m^{-1}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
 | 
			
		||||
      axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // U_m^{-1} D^{-1}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
      axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
 | 
			
		||||
    }
 | 
			
		||||
    axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
 | 
			
		||||
 | 
			
		||||
    // Apply U^{-1}
 | 
			
		||||
    for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
      axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1);  // chi[Ls]
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    Coeff_t czero(0.0);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    FermionField tmp(psi._grid);
 | 
			
		||||
 | 
			
		||||
    // Apply (L^{\prime})^{-1}
 | 
			
		||||
    axpby_ssp(chi, one, psi, czero, psi, 0, 0);      // chi[0]=psi[0]
 | 
			
		||||
    axpby_ssp(tmp, czero, tmp, this->MooeeInv_shift_lc[0], psi, 0, 0);
 | 
			
		||||
    for(int s=1; s<Ls; s++){
 | 
			
		||||
      axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
 | 
			
		||||
      axpby_ssp(tmp, one, tmp, this->MooeeInv_shift_lc[s], psi, 0, s);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // L_m^{-1}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
 | 
			
		||||
      axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // U_m^{-1} D^{-1}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
      axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
 | 
			
		||||
    }
 | 
			
		||||
    axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
 | 
			
		||||
 | 
			
		||||
    // Apply U^{-1} and add shift term
 | 
			
		||||
    if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
 | 
			
		||||
    else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
 | 
			
		||||
    for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
      axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1);  // chi[Ls]
 | 
			
		||||
      if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
 | 
			
		||||
      else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
 | 
			
		||||
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    Coeff_t czero(0.0);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    // Apply (U^{\prime})^{-dagger}
 | 
			
		||||
    axpby_ssp(chi, one, psi, czero, psi, 0, 0);      // chi[0]=psi[0]
 | 
			
		||||
    for(int s=1; s<Ls; s++){
 | 
			
		||||
      axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // U_m^{-\dagger}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
      axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // L_m^{-\dagger} D^{-dagger}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
      axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
 | 
			
		||||
    }
 | 
			
		||||
    axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
 | 
			
		||||
 | 
			
		||||
    // Apply L^{-dagger}
 | 
			
		||||
    for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
      axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1);  // chi[Ls]
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    Coeff_t one(1.0);
 | 
			
		||||
    Coeff_t czero(0.0);
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
    int Ls = this->Ls;
 | 
			
		||||
 | 
			
		||||
    FermionField tmp(psi._grid);
 | 
			
		||||
 | 
			
		||||
    // Apply (U^{\prime})^{-dagger} and accumulate (MooeeInvDag_shift_lc)_{j} \psi_{j} in tmp[0]
 | 
			
		||||
    axpby_ssp(chi, one, psi, czero, psi, 0, 0);      // chi[0]=psi[0]
 | 
			
		||||
    axpby_ssp(tmp, czero, tmp, this->MooeeInvDag_shift_lc[0], psi, 0, 0);
 | 
			
		||||
    for(int s=1; s<Ls; s++){
 | 
			
		||||
      axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
 | 
			
		||||
      axpby_ssp(tmp, one, tmp, this->MooeeInvDag_shift_lc[s], psi, 0, s);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // U_m^{-\dagger}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
      axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // L_m^{-\dagger} D^{-dagger}
 | 
			
		||||
    for(int s=0; s<Ls-1; s++){
 | 
			
		||||
      axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
 | 
			
		||||
    }
 | 
			
		||||
    axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
 | 
			
		||||
 | 
			
		||||
    // Apply L^{-dagger} and add shift
 | 
			
		||||
    if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
 | 
			
		||||
    else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
 | 
			
		||||
    for(int s=Ls-2; s>=0; s--){
 | 
			
		||||
      axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1);  // chi[Ls]
 | 
			
		||||
      if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
 | 
			
		||||
      else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #ifdef MOBIUS_EOFA_DPERP_LINALG
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
							
								
								
									
										983
									
								
								lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										983
									
								
								lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,983 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
 | 
			
		||||
Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
#include <Grid/qcd/action/fermion/FermionCore.h>
 | 
			
		||||
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
namespace QCD {
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  * Dense matrix versions of routines
 | 
			
		||||
  */
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
 | 
			
		||||
  {
 | 
			
		||||
    this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase* grid  = psi._grid;
 | 
			
		||||
    int Ls          = this->Ls;
 | 
			
		||||
    int LLs         = grid->_rdimensions[0];
 | 
			
		||||
    const int nsimd = Simd::Nsimd();
 | 
			
		||||
 | 
			
		||||
    Vector<iSinglet<Simd>> u(LLs);
 | 
			
		||||
    Vector<iSinglet<Simd>> l(LLs);
 | 
			
		||||
    Vector<iSinglet<Simd>> d(LLs);
 | 
			
		||||
 | 
			
		||||
    assert(Ls/LLs == nsimd);
 | 
			
		||||
    assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    // just directly address via type pun
 | 
			
		||||
    typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
    scalar_type* u_p = (scalar_type*) &u[0];
 | 
			
		||||
    scalar_type* l_p = (scalar_type*) &l[0];
 | 
			
		||||
    scalar_type* d_p = (scalar_type*) &d[0];
 | 
			
		||||
 | 
			
		||||
    for(int o=0; o<LLs; o++){ // outer
 | 
			
		||||
    for(int i=0; i<nsimd; i++){ //inner
 | 
			
		||||
      int s   = o + i*LLs;
 | 
			
		||||
      int ss  = o*nsimd + i;
 | 
			
		||||
      u_p[ss] = upper[s];
 | 
			
		||||
      l_p[ss] = lower[s];
 | 
			
		||||
      d_p[ss] = diag[s];
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
    this->M5Dcalls++;
 | 
			
		||||
    this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
    assert(Nc == 3);
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
 | 
			
		||||
 | 
			
		||||
      #if 0
 | 
			
		||||
 | 
			
		||||
        alignas(64) SiteHalfSpinor hp;
 | 
			
		||||
        alignas(64) SiteHalfSpinor hm;
 | 
			
		||||
        alignas(64) SiteSpinor fp;
 | 
			
		||||
        alignas(64) SiteSpinor fm;
 | 
			
		||||
 | 
			
		||||
        for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
          int vp = (v+1)%LLs;
 | 
			
		||||
          int vm = (v+LLs-1)%LLs;
 | 
			
		||||
 | 
			
		||||
          spProj5m(hp, psi[ss+vp]);
 | 
			
		||||
          spProj5p(hm, psi[ss+vm]);
 | 
			
		||||
 | 
			
		||||
          if (vp <= v){ rotate(hp, hp, 1); }
 | 
			
		||||
          if (vm >= v){ rotate(hm, hm, nsimd-1); }
 | 
			
		||||
 | 
			
		||||
          hp = 0.5*hp;
 | 
			
		||||
          hm = 0.5*hm;
 | 
			
		||||
 | 
			
		||||
          spRecon5m(fp, hp);
 | 
			
		||||
          spRecon5p(fm, hm);
 | 
			
		||||
 | 
			
		||||
          chi[ss+v] = d[v]*phi[ss+v];
 | 
			
		||||
          chi[ss+v] = chi[ss+v] + u[v]*fp;
 | 
			
		||||
          chi[ss+v] = chi[ss+v] + l[v]*fm;
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      #else
 | 
			
		||||
 | 
			
		||||
        for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
          vprefetch(psi[ss+v+LLs]);
 | 
			
		||||
 | 
			
		||||
          int vp = (v == LLs-1) ? 0     : v+1;
 | 
			
		||||
          int vm = (v == 0)     ? LLs-1 : v-1;
 | 
			
		||||
 | 
			
		||||
          Simd hp_00 = psi[ss+vp]()(2)(0);
 | 
			
		||||
          Simd hp_01 = psi[ss+vp]()(2)(1);
 | 
			
		||||
          Simd hp_02 = psi[ss+vp]()(2)(2);
 | 
			
		||||
          Simd hp_10 = psi[ss+vp]()(3)(0);
 | 
			
		||||
          Simd hp_11 = psi[ss+vp]()(3)(1);
 | 
			
		||||
          Simd hp_12 = psi[ss+vp]()(3)(2);
 | 
			
		||||
 | 
			
		||||
          Simd hm_00 = psi[ss+vm]()(0)(0);
 | 
			
		||||
          Simd hm_01 = psi[ss+vm]()(0)(1);
 | 
			
		||||
          Simd hm_02 = psi[ss+vm]()(0)(2);
 | 
			
		||||
          Simd hm_10 = psi[ss+vm]()(1)(0);
 | 
			
		||||
          Simd hm_11 = psi[ss+vm]()(1)(1);
 | 
			
		||||
          Simd hm_12 = psi[ss+vm]()(1)(2);
 | 
			
		||||
 | 
			
		||||
          if(vp <= v){
 | 
			
		||||
            hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
 | 
			
		||||
            hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
 | 
			
		||||
            hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
 | 
			
		||||
            hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
 | 
			
		||||
            hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
 | 
			
		||||
            hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(vm >= v){
 | 
			
		||||
            hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
 | 
			
		||||
            hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
 | 
			
		||||
            hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
 | 
			
		||||
            hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
 | 
			
		||||
            hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
 | 
			
		||||
            hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          // Can force these to real arithmetic and save 2x.
 | 
			
		||||
          Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
 | 
			
		||||
          Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
 | 
			
		||||
          Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
 | 
			
		||||
          Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
 | 
			
		||||
          Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
 | 
			
		||||
          Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
 | 
			
		||||
          Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
 | 
			
		||||
          Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
 | 
			
		||||
          Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
 | 
			
		||||
          Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
 | 
			
		||||
          Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
 | 
			
		||||
          Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
 | 
			
		||||
 | 
			
		||||
          vstream(chi[ss+v]()(0)(0), p_00);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(1), p_01);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(2), p_02);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(0), p_10);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(1), p_11);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(2), p_12);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(0), p_20);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(1), p_21);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(2), p_22);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(0), p_30);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(1), p_31);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(2), p_32);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      #endif
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->M5Dtime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
    std::vector<Coeff_t>& shift_coeffs)
 | 
			
		||||
  {
 | 
			
		||||
    #if 0
 | 
			
		||||
 | 
			
		||||
      this->M5D(psi, phi, chi, lower, diag, upper);
 | 
			
		||||
 | 
			
		||||
      // FIXME: possible gain from vectorizing shift operation as well?
 | 
			
		||||
      Coeff_t one(1.0);
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
 | 
			
		||||
        else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    #else
 | 
			
		||||
 | 
			
		||||
      GridBase* grid  = psi._grid;
 | 
			
		||||
      int Ls          = this->Ls;
 | 
			
		||||
      int LLs         = grid->_rdimensions[0];
 | 
			
		||||
      const int nsimd = Simd::Nsimd();
 | 
			
		||||
 | 
			
		||||
      Vector<iSinglet<Simd>> u(LLs);
 | 
			
		||||
      Vector<iSinglet<Simd>> l(LLs);
 | 
			
		||||
      Vector<iSinglet<Simd>> d(LLs);
 | 
			
		||||
      Vector<iSinglet<Simd>> s(LLs);
 | 
			
		||||
 | 
			
		||||
      assert(Ls/LLs == nsimd);
 | 
			
		||||
      assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
 | 
			
		||||
      chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
      // just directly address via type pun
 | 
			
		||||
      typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
      scalar_type* u_p = (scalar_type*) &u[0];
 | 
			
		||||
      scalar_type* l_p = (scalar_type*) &l[0];
 | 
			
		||||
      scalar_type* d_p = (scalar_type*) &d[0];
 | 
			
		||||
      scalar_type* s_p = (scalar_type*) &s[0];
 | 
			
		||||
 | 
			
		||||
      for(int o=0; o<LLs; o++){ // outer
 | 
			
		||||
      for(int i=0; i<nsimd; i++){ //inner
 | 
			
		||||
        int s   = o + i*LLs;
 | 
			
		||||
        int ss  = o*nsimd + i;
 | 
			
		||||
        u_p[ss] = upper[s];
 | 
			
		||||
        l_p[ss] = lower[s];
 | 
			
		||||
        d_p[ss] = diag[s];
 | 
			
		||||
        s_p[ss] = shift_coeffs[s];
 | 
			
		||||
      }}
 | 
			
		||||
 | 
			
		||||
      this->M5Dcalls++;
 | 
			
		||||
      this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
      assert(Nc == 3);
 | 
			
		||||
 | 
			
		||||
      parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
 | 
			
		||||
 | 
			
		||||
        int vs     = (this->pm == 1) ? LLs-1 : 0;
 | 
			
		||||
        Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(2)(0) : psi[ss+vs]()(0)(0);
 | 
			
		||||
        Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(2)(1) : psi[ss+vs]()(0)(1);
 | 
			
		||||
        Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(2)(2) : psi[ss+vs]()(0)(2);
 | 
			
		||||
        Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(3)(0) : psi[ss+vs]()(1)(0);
 | 
			
		||||
        Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(3)(1) : psi[ss+vs]()(1)(1);
 | 
			
		||||
        Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(3)(2) : psi[ss+vs]()(1)(2);
 | 
			
		||||
 | 
			
		||||
        for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
          vprefetch(psi[ss+v+LLs]);
 | 
			
		||||
 | 
			
		||||
          int vp = (v == LLs-1) ? 0     : v+1;
 | 
			
		||||
          int vm = (v == 0)     ? LLs-1 : v-1;
 | 
			
		||||
 | 
			
		||||
          Simd hp_00 = psi[ss+vp]()(2)(0);
 | 
			
		||||
          Simd hp_01 = psi[ss+vp]()(2)(1);
 | 
			
		||||
          Simd hp_02 = psi[ss+vp]()(2)(2);
 | 
			
		||||
          Simd hp_10 = psi[ss+vp]()(3)(0);
 | 
			
		||||
          Simd hp_11 = psi[ss+vp]()(3)(1);
 | 
			
		||||
          Simd hp_12 = psi[ss+vp]()(3)(2);
 | 
			
		||||
 | 
			
		||||
          Simd hm_00 = psi[ss+vm]()(0)(0);
 | 
			
		||||
          Simd hm_01 = psi[ss+vm]()(0)(1);
 | 
			
		||||
          Simd hm_02 = psi[ss+vm]()(0)(2);
 | 
			
		||||
          Simd hm_10 = psi[ss+vm]()(1)(0);
 | 
			
		||||
          Simd hm_11 = psi[ss+vm]()(1)(1);
 | 
			
		||||
          Simd hm_12 = psi[ss+vm]()(1)(2);
 | 
			
		||||
 | 
			
		||||
          if(vp <= v){
 | 
			
		||||
            hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
 | 
			
		||||
            hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
 | 
			
		||||
            hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
 | 
			
		||||
            hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
 | 
			
		||||
            hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
 | 
			
		||||
            hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(this->pm == 1 && vs <= v){
 | 
			
		||||
            hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
 | 
			
		||||
            hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
 | 
			
		||||
            hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
 | 
			
		||||
            hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
 | 
			
		||||
            hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
 | 
			
		||||
            hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(vm >= v){
 | 
			
		||||
            hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
 | 
			
		||||
            hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
 | 
			
		||||
            hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
 | 
			
		||||
            hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
 | 
			
		||||
            hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
 | 
			
		||||
            hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(this->pm == -1 && vs >= v){
 | 
			
		||||
            hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
 | 
			
		||||
            hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
 | 
			
		||||
            hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
 | 
			
		||||
            hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
 | 
			
		||||
            hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
 | 
			
		||||
            hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          // Can force these to real arithmetic and save 2x.
 | 
			
		||||
          Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
 | 
			
		||||
          Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
 | 
			
		||||
          Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
 | 
			
		||||
          Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
 | 
			
		||||
          Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
 | 
			
		||||
          Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
 | 
			
		||||
          Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
 | 
			
		||||
          Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
 | 
			
		||||
          Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
 | 
			
		||||
          Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
 | 
			
		||||
          Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
 | 
			
		||||
          Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
 | 
			
		||||
 | 
			
		||||
          vstream(chi[ss+v]()(0)(0), p_00);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(1), p_01);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(2), p_02);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(0), p_10);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(1), p_11);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(2), p_12);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(0), p_20);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(1), p_21);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(2), p_22);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(0), p_30);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(1), p_31);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(2), p_32);
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      this->M5Dtime += usecond();
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase* grid = psi._grid;
 | 
			
		||||
    int Ls  = this->Ls;
 | 
			
		||||
    int LLs = grid->_rdimensions[0];
 | 
			
		||||
    int nsimd = Simd::Nsimd();
 | 
			
		||||
 | 
			
		||||
    Vector<iSinglet<Simd>> u(LLs);
 | 
			
		||||
    Vector<iSinglet<Simd>> l(LLs);
 | 
			
		||||
    Vector<iSinglet<Simd>> d(LLs);
 | 
			
		||||
 | 
			
		||||
    assert(Ls/LLs == nsimd);
 | 
			
		||||
    assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    // just directly address via type pun
 | 
			
		||||
    typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
    scalar_type* u_p = (scalar_type*) &u[0];
 | 
			
		||||
    scalar_type* l_p = (scalar_type*) &l[0];
 | 
			
		||||
    scalar_type* d_p = (scalar_type*) &d[0];
 | 
			
		||||
 | 
			
		||||
    for(int o=0; o<LLs; o++){ // outer
 | 
			
		||||
    for(int i=0; i<nsimd; i++){ //inner
 | 
			
		||||
      int s  = o + i*LLs;
 | 
			
		||||
      int ss = o*nsimd + i;
 | 
			
		||||
      u_p[ss] = upper[s];
 | 
			
		||||
      l_p[ss] = lower[s];
 | 
			
		||||
      d_p[ss] = diag[s];
 | 
			
		||||
    }}
 | 
			
		||||
 | 
			
		||||
    this->M5Dcalls++;
 | 
			
		||||
    this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
    parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
 | 
			
		||||
 | 
			
		||||
      #if 0
 | 
			
		||||
 | 
			
		||||
        alignas(64) SiteHalfSpinor hp;
 | 
			
		||||
        alignas(64) SiteHalfSpinor hm;
 | 
			
		||||
        alignas(64) SiteSpinor fp;
 | 
			
		||||
        alignas(64) SiteSpinor fm;
 | 
			
		||||
 | 
			
		||||
        for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
          int vp = (v+1)%LLs;
 | 
			
		||||
          int vm = (v+LLs-1)%LLs;
 | 
			
		||||
 | 
			
		||||
          spProj5p(hp, psi[ss+vp]);
 | 
			
		||||
          spProj5m(hm, psi[ss+vm]);
 | 
			
		||||
 | 
			
		||||
          if(vp <= v){ rotate(hp, hp, 1); }
 | 
			
		||||
          if(vm >= v){ rotate(hm, hm, nsimd-1); }
 | 
			
		||||
 | 
			
		||||
          hp = hp*0.5;
 | 
			
		||||
          hm = hm*0.5;
 | 
			
		||||
          spRecon5p(fp, hp);
 | 
			
		||||
          spRecon5m(fm, hm);
 | 
			
		||||
 | 
			
		||||
          chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
 | 
			
		||||
          chi[ss+v] = chi[ss+v]     +l[v]*fm;
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      #else
 | 
			
		||||
 | 
			
		||||
        for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
          vprefetch(psi[ss+v+LLs]);
 | 
			
		||||
 | 
			
		||||
          int vp = (v == LLs-1) ? 0     : v+1;
 | 
			
		||||
          int vm = (v == 0    ) ? LLs-1 : v-1;
 | 
			
		||||
 | 
			
		||||
          Simd hp_00 = psi[ss+vp]()(0)(0);
 | 
			
		||||
          Simd hp_01 = psi[ss+vp]()(0)(1);
 | 
			
		||||
          Simd hp_02 = psi[ss+vp]()(0)(2);
 | 
			
		||||
          Simd hp_10 = psi[ss+vp]()(1)(0);
 | 
			
		||||
          Simd hp_11 = psi[ss+vp]()(1)(1);
 | 
			
		||||
          Simd hp_12 = psi[ss+vp]()(1)(2);
 | 
			
		||||
 | 
			
		||||
          Simd hm_00 = psi[ss+vm]()(2)(0);
 | 
			
		||||
          Simd hm_01 = psi[ss+vm]()(2)(1);
 | 
			
		||||
          Simd hm_02 = psi[ss+vm]()(2)(2);
 | 
			
		||||
          Simd hm_10 = psi[ss+vm]()(3)(0);
 | 
			
		||||
          Simd hm_11 = psi[ss+vm]()(3)(1);
 | 
			
		||||
          Simd hm_12 = psi[ss+vm]()(3)(2);
 | 
			
		||||
 | 
			
		||||
          if (vp <= v){
 | 
			
		||||
            hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
 | 
			
		||||
            hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
 | 
			
		||||
            hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
 | 
			
		||||
            hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
 | 
			
		||||
            hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
 | 
			
		||||
            hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(vm >= v){
 | 
			
		||||
            hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
 | 
			
		||||
            hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
 | 
			
		||||
            hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
 | 
			
		||||
            hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
 | 
			
		||||
            hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
 | 
			
		||||
            hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
 | 
			
		||||
          Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
 | 
			
		||||
          Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
 | 
			
		||||
          Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
 | 
			
		||||
          Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
 | 
			
		||||
          Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
 | 
			
		||||
          Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
 | 
			
		||||
          Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
 | 
			
		||||
          Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
 | 
			
		||||
          Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
 | 
			
		||||
          Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
 | 
			
		||||
          Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
 | 
			
		||||
 | 
			
		||||
          vstream(chi[ss+v]()(0)(0), p_00);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(1), p_01);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(2), p_02);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(0), p_10);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(1), p_11);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(2), p_12);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(0), p_20);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(1), p_21);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(2), p_22);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(0), p_30);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(1), p_31);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(2), p_32);
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->M5Dtime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
 | 
			
		||||
    FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
 | 
			
		||||
    std::vector<Coeff_t>& shift_coeffs)
 | 
			
		||||
  {
 | 
			
		||||
    #if 0
 | 
			
		||||
 | 
			
		||||
      this->M5Ddag(psi, phi, chi, lower, diag, upper);
 | 
			
		||||
 | 
			
		||||
      // FIXME: possible gain from vectorizing shift operation as well?
 | 
			
		||||
      Coeff_t one(1.0);
 | 
			
		||||
      int Ls = this->Ls;
 | 
			
		||||
      for(int s=0; s<Ls; s++){
 | 
			
		||||
        if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
 | 
			
		||||
        else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    #else
 | 
			
		||||
 | 
			
		||||
      GridBase* grid = psi._grid;
 | 
			
		||||
      int Ls  = this->Ls;
 | 
			
		||||
      int LLs = grid->_rdimensions[0];
 | 
			
		||||
      int nsimd = Simd::Nsimd();
 | 
			
		||||
 | 
			
		||||
      Vector<iSinglet<Simd>> u(LLs);
 | 
			
		||||
      Vector<iSinglet<Simd>> l(LLs);
 | 
			
		||||
      Vector<iSinglet<Simd>> d(LLs);
 | 
			
		||||
      Vector<iSinglet<Simd>> s(LLs);
 | 
			
		||||
 | 
			
		||||
      assert(Ls/LLs == nsimd);
 | 
			
		||||
      assert(phi.checkerboard == psi.checkerboard);
 | 
			
		||||
 | 
			
		||||
      chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
      // just directly address via type pun
 | 
			
		||||
      typedef typename Simd::scalar_type scalar_type;
 | 
			
		||||
      scalar_type* u_p = (scalar_type*) &u[0];
 | 
			
		||||
      scalar_type* l_p = (scalar_type*) &l[0];
 | 
			
		||||
      scalar_type* d_p = (scalar_type*) &d[0];
 | 
			
		||||
      scalar_type* s_p = (scalar_type*) &s[0];
 | 
			
		||||
 | 
			
		||||
      for(int o=0; o<LLs; o++){ // outer
 | 
			
		||||
      for(int i=0; i<nsimd; i++){ //inner
 | 
			
		||||
        int s  = o + i*LLs;
 | 
			
		||||
        int ss = o*nsimd + i;
 | 
			
		||||
        u_p[ss] = upper[s];
 | 
			
		||||
        l_p[ss] = lower[s];
 | 
			
		||||
        d_p[ss] = diag[s];
 | 
			
		||||
        s_p[ss] = shift_coeffs[s];
 | 
			
		||||
      }}
 | 
			
		||||
 | 
			
		||||
      this->M5Dcalls++;
 | 
			
		||||
      this->M5Dtime -= usecond();
 | 
			
		||||
 | 
			
		||||
      parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
 | 
			
		||||
 | 
			
		||||
        int vs     = (this->pm == 1) ? LLs-1 : 0;
 | 
			
		||||
        Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(0)(0) : psi[ss+vs]()(2)(0);
 | 
			
		||||
        Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(0)(1) : psi[ss+vs]()(2)(1);
 | 
			
		||||
        Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(0)(2) : psi[ss+vs]()(2)(2);
 | 
			
		||||
        Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(1)(0) : psi[ss+vs]()(3)(0);
 | 
			
		||||
        Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(1)(1) : psi[ss+vs]()(3)(1);
 | 
			
		||||
        Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(1)(2) : psi[ss+vs]()(3)(2);
 | 
			
		||||
 | 
			
		||||
        for(int v=0; v<LLs; v++){
 | 
			
		||||
 | 
			
		||||
          vprefetch(psi[ss+v+LLs]);
 | 
			
		||||
 | 
			
		||||
          int vp = (v == LLs-1) ? 0     : v+1;
 | 
			
		||||
          int vm = (v == 0    ) ? LLs-1 : v-1;
 | 
			
		||||
 | 
			
		||||
          Simd hp_00 = psi[ss+vp]()(0)(0);
 | 
			
		||||
          Simd hp_01 = psi[ss+vp]()(0)(1);
 | 
			
		||||
          Simd hp_02 = psi[ss+vp]()(0)(2);
 | 
			
		||||
          Simd hp_10 = psi[ss+vp]()(1)(0);
 | 
			
		||||
          Simd hp_11 = psi[ss+vp]()(1)(1);
 | 
			
		||||
          Simd hp_12 = psi[ss+vp]()(1)(2);
 | 
			
		||||
 | 
			
		||||
          Simd hm_00 = psi[ss+vm]()(2)(0);
 | 
			
		||||
          Simd hm_01 = psi[ss+vm]()(2)(1);
 | 
			
		||||
          Simd hm_02 = psi[ss+vm]()(2)(2);
 | 
			
		||||
          Simd hm_10 = psi[ss+vm]()(3)(0);
 | 
			
		||||
          Simd hm_11 = psi[ss+vm]()(3)(1);
 | 
			
		||||
          Simd hm_12 = psi[ss+vm]()(3)(2);
 | 
			
		||||
 | 
			
		||||
          if (vp <= v){
 | 
			
		||||
            hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
 | 
			
		||||
            hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
 | 
			
		||||
            hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
 | 
			
		||||
            hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
 | 
			
		||||
            hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
 | 
			
		||||
            hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(this->pm == 1 && vs <= v){
 | 
			
		||||
            hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
 | 
			
		||||
            hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
 | 
			
		||||
            hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
 | 
			
		||||
            hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
 | 
			
		||||
            hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
 | 
			
		||||
            hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(vm >= v){
 | 
			
		||||
            hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
 | 
			
		||||
            hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
 | 
			
		||||
            hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
 | 
			
		||||
            hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
 | 
			
		||||
            hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
 | 
			
		||||
            hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          if(this->pm == -1 && vs >= v){
 | 
			
		||||
            hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
 | 
			
		||||
            hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
 | 
			
		||||
            hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
 | 
			
		||||
            hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
 | 
			
		||||
            hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
 | 
			
		||||
            hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
 | 
			
		||||
          Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
 | 
			
		||||
          Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
 | 
			
		||||
          Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
 | 
			
		||||
          Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
 | 
			
		||||
          Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
 | 
			
		||||
          Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
 | 
			
		||||
          Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
 | 
			
		||||
          Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
 | 
			
		||||
          Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
 | 
			
		||||
          Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
 | 
			
		||||
          Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
 | 
			
		||||
                                      : switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
 | 
			
		||||
                                                                                                 + switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
 | 
			
		||||
 | 
			
		||||
          vstream(chi[ss+v]()(0)(0), p_00);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(1), p_01);
 | 
			
		||||
          vstream(chi[ss+v]()(0)(2), p_02);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(0), p_10);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(1), p_11);
 | 
			
		||||
          vstream(chi[ss+v]()(1)(2), p_12);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(0), p_20);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(1), p_21);
 | 
			
		||||
          vstream(chi[ss+v]()(2)(2), p_22);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(0), p_30);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(1), p_31);
 | 
			
		||||
          vstream(chi[ss+v]()(3)(2), p_32);
 | 
			
		||||
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      this->M5Dtime += usecond();
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #ifdef AVX512
 | 
			
		||||
    #include<simd/Intel512common.h>
 | 
			
		||||
    #include<simd/Intel512avx.h>
 | 
			
		||||
    #include<simd/Intel512single.h>
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
 | 
			
		||||
    int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
 | 
			
		||||
  {
 | 
			
		||||
    #ifndef AVX512
 | 
			
		||||
      {
 | 
			
		||||
        SiteHalfSpinor BcastP;
 | 
			
		||||
        SiteHalfSpinor BcastM;
 | 
			
		||||
        SiteHalfSpinor SiteChiP;
 | 
			
		||||
        SiteHalfSpinor SiteChiM;
 | 
			
		||||
 | 
			
		||||
        // Ls*Ls * 2 * 12 * vol flops
 | 
			
		||||
        for(int s1=0; s1<LLs; s1++){
 | 
			
		||||
 | 
			
		||||
          for(int s2=0; s2<LLs; s2++){
 | 
			
		||||
          for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
 | 
			
		||||
 | 
			
		||||
            int s = s2 + l*LLs;
 | 
			
		||||
            int lex = s2 + LLs*site;
 | 
			
		||||
 | 
			
		||||
            if( s2==0 && l==0 ){
 | 
			
		||||
              SiteChiP=zero;
 | 
			
		||||
              SiteChiM=zero;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            for(int sp=0; sp<2;  sp++){
 | 
			
		||||
            for(int co=0; co<Nc; co++){
 | 
			
		||||
              vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
 | 
			
		||||
            }}
 | 
			
		||||
 | 
			
		||||
            for(int sp=0; sp<2;  sp++){
 | 
			
		||||
            for(int co=0; co<Nc; co++){
 | 
			
		||||
              vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
 | 
			
		||||
            }}
 | 
			
		||||
 | 
			
		||||
            for(int sp=0; sp<2;  sp++){
 | 
			
		||||
            for(int co=0; co<Nc; co++){
 | 
			
		||||
              SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
 | 
			
		||||
              SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
 | 
			
		||||
            }}
 | 
			
		||||
          }}
 | 
			
		||||
 | 
			
		||||
          {
 | 
			
		||||
            int lex = s1 + LLs*site;
 | 
			
		||||
            for(int sp=0; sp<2;  sp++){
 | 
			
		||||
            for(int co=0; co<Nc; co++){
 | 
			
		||||
              vstream(chi[lex]()(sp)(co),   SiteChiP()(sp)(co));
 | 
			
		||||
              vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
 | 
			
		||||
            }}
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    #else
 | 
			
		||||
      {
 | 
			
		||||
        // pointers
 | 
			
		||||
        //  MASK_REGS;
 | 
			
		||||
        #define Chi_00 %%zmm1
 | 
			
		||||
        #define Chi_01 %%zmm2
 | 
			
		||||
        #define Chi_02 %%zmm3
 | 
			
		||||
        #define Chi_10 %%zmm4
 | 
			
		||||
        #define Chi_11 %%zmm5
 | 
			
		||||
        #define Chi_12 %%zmm6
 | 
			
		||||
        #define Chi_20 %%zmm7
 | 
			
		||||
        #define Chi_21 %%zmm8
 | 
			
		||||
        #define Chi_22 %%zmm9
 | 
			
		||||
        #define Chi_30 %%zmm10
 | 
			
		||||
        #define Chi_31 %%zmm11
 | 
			
		||||
        #define Chi_32 %%zmm12
 | 
			
		||||
 | 
			
		||||
        #define BCAST0  %%zmm13
 | 
			
		||||
        #define BCAST1  %%zmm14
 | 
			
		||||
        #define BCAST2  %%zmm15
 | 
			
		||||
        #define BCAST3  %%zmm16
 | 
			
		||||
        #define BCAST4  %%zmm17
 | 
			
		||||
        #define BCAST5  %%zmm18
 | 
			
		||||
        #define BCAST6  %%zmm19
 | 
			
		||||
        #define BCAST7  %%zmm20
 | 
			
		||||
        #define BCAST8  %%zmm21
 | 
			
		||||
        #define BCAST9  %%zmm22
 | 
			
		||||
        #define BCAST10 %%zmm23
 | 
			
		||||
        #define BCAST11 %%zmm24
 | 
			
		||||
 | 
			
		||||
        int incr = LLs*LLs*sizeof(iSinglet<Simd>);
 | 
			
		||||
 | 
			
		||||
        for(int s1=0; s1<LLs; s1++){
 | 
			
		||||
 | 
			
		||||
          for(int s2=0; s2<LLs; s2++){
 | 
			
		||||
 | 
			
		||||
            int lex = s2 + LLs*site;
 | 
			
		||||
            uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
 | 
			
		||||
            uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
 | 
			
		||||
            uint64_t a2 = (uint64_t) &psi[lex];
 | 
			
		||||
 | 
			
		||||
            for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
 | 
			
		||||
 | 
			
		||||
              if((s2+l)==0) {
 | 
			
		||||
                asm(
 | 
			
		||||
                      VPREFETCH1(0,%2)              VPREFETCH1(0,%1)
 | 
			
		||||
                      VPREFETCH1(12,%2)  	          VPREFETCH1(13,%2)
 | 
			
		||||
                      VPREFETCH1(14,%2)  	          VPREFETCH1(15,%2)
 | 
			
		||||
                      VBCASTCDUP(0,%2,BCAST0)
 | 
			
		||||
                      VBCASTCDUP(1,%2,BCAST1)
 | 
			
		||||
                      VBCASTCDUP(2,%2,BCAST2)
 | 
			
		||||
                      VBCASTCDUP(3,%2,BCAST3)
 | 
			
		||||
                      VBCASTCDUP(4,%2,BCAST4)       VMULMEM(0,%0,BCAST0,Chi_00)
 | 
			
		||||
                      VBCASTCDUP(5,%2,BCAST5)       VMULMEM(0,%0,BCAST1,Chi_01)
 | 
			
		||||
                      VBCASTCDUP(6,%2,BCAST6)       VMULMEM(0,%0,BCAST2,Chi_02)
 | 
			
		||||
                      VBCASTCDUP(7,%2,BCAST7)       VMULMEM(0,%0,BCAST3,Chi_10)
 | 
			
		||||
                      VBCASTCDUP(8,%2,BCAST8)       VMULMEM(0,%0,BCAST4,Chi_11)
 | 
			
		||||
                      VBCASTCDUP(9,%2,BCAST9)       VMULMEM(0,%0,BCAST5,Chi_12)
 | 
			
		||||
                      VBCASTCDUP(10,%2,BCAST10)     VMULMEM(0,%1,BCAST6,Chi_20)
 | 
			
		||||
                      VBCASTCDUP(11,%2,BCAST11)     VMULMEM(0,%1,BCAST7,Chi_21)
 | 
			
		||||
                      VMULMEM(0,%1,BCAST8,Chi_22)
 | 
			
		||||
                      VMULMEM(0,%1,BCAST9,Chi_30)
 | 
			
		||||
                      VMULMEM(0,%1,BCAST10,Chi_31)
 | 
			
		||||
                      VMULMEM(0,%1,BCAST11,Chi_32)
 | 
			
		||||
                      : : "r" (a0), "r" (a1), "r" (a2)                            );
 | 
			
		||||
              } else {
 | 
			
		||||
                asm(
 | 
			
		||||
                      VBCASTCDUP(0,%2,BCAST0)   VMADDMEM(0,%0,BCAST0,Chi_00)
 | 
			
		||||
                      VBCASTCDUP(1,%2,BCAST1)   VMADDMEM(0,%0,BCAST1,Chi_01)
 | 
			
		||||
                      VBCASTCDUP(2,%2,BCAST2)   VMADDMEM(0,%0,BCAST2,Chi_02)
 | 
			
		||||
                      VBCASTCDUP(3,%2,BCAST3)   VMADDMEM(0,%0,BCAST3,Chi_10)
 | 
			
		||||
                      VBCASTCDUP(4,%2,BCAST4)   VMADDMEM(0,%0,BCAST4,Chi_11)
 | 
			
		||||
                      VBCASTCDUP(5,%2,BCAST5)   VMADDMEM(0,%0,BCAST5,Chi_12)
 | 
			
		||||
                      VBCASTCDUP(6,%2,BCAST6)   VMADDMEM(0,%1,BCAST6,Chi_20)
 | 
			
		||||
                      VBCASTCDUP(7,%2,BCAST7)   VMADDMEM(0,%1,BCAST7,Chi_21)
 | 
			
		||||
                      VBCASTCDUP(8,%2,BCAST8)   VMADDMEM(0,%1,BCAST8,Chi_22)
 | 
			
		||||
                      VBCASTCDUP(9,%2,BCAST9)   VMADDMEM(0,%1,BCAST9,Chi_30)
 | 
			
		||||
                      VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
 | 
			
		||||
                      VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
 | 
			
		||||
                      : : "r" (a0), "r" (a1), "r" (a2)                            );
 | 
			
		||||
              }
 | 
			
		||||
 | 
			
		||||
              a0 = a0 + incr;
 | 
			
		||||
              a1 = a1 + incr;
 | 
			
		||||
              a2 = a2 + sizeof(Simd::scalar_type);
 | 
			
		||||
            }
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          {
 | 
			
		||||
            int lexa = s1+LLs*site;
 | 
			
		||||
            asm (
 | 
			
		||||
               VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01)  VSTORE(2 ,%0,Chi_02)
 | 
			
		||||
               VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11)  VSTORE(5 ,%0,Chi_12)
 | 
			
		||||
               VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21)  VSTORE(8 ,%0,Chi_22)
 | 
			
		||||
               VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31)  VSTORE(11,%0,Chi_32)
 | 
			
		||||
               : : "r" ((uint64_t)&chi[lexa]) : "memory" );
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      #undef Chi_00
 | 
			
		||||
      #undef Chi_01
 | 
			
		||||
      #undef Chi_02
 | 
			
		||||
      #undef Chi_10
 | 
			
		||||
      #undef Chi_11
 | 
			
		||||
      #undef Chi_12
 | 
			
		||||
      #undef Chi_20
 | 
			
		||||
      #undef Chi_21
 | 
			
		||||
      #undef Chi_22
 | 
			
		||||
      #undef Chi_30
 | 
			
		||||
      #undef Chi_31
 | 
			
		||||
      #undef Chi_32
 | 
			
		||||
 | 
			
		||||
      #undef BCAST0
 | 
			
		||||
      #undef BCAST1
 | 
			
		||||
      #undef BCAST2
 | 
			
		||||
      #undef BCAST3
 | 
			
		||||
      #undef BCAST4
 | 
			
		||||
      #undef BCAST5
 | 
			
		||||
      #undef BCAST6
 | 
			
		||||
      #undef BCAST7
 | 
			
		||||
      #undef BCAST8
 | 
			
		||||
      #undef BCAST9
 | 
			
		||||
      #undef BCAST10
 | 
			
		||||
      #undef BCAST11
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Z-mobius version
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
 | 
			
		||||
    int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
 | 
			
		||||
    exit(-1);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
 | 
			
		||||
  {
 | 
			
		||||
    int Ls  = this->Ls;
 | 
			
		||||
    int LLs = psi._grid->_rdimensions[0];
 | 
			
		||||
    int vol = psi._grid->oSites()/LLs;
 | 
			
		||||
 | 
			
		||||
    chi.checkerboard = psi.checkerboard;
 | 
			
		||||
 | 
			
		||||
    Vector<iSinglet<Simd>>   Matp;
 | 
			
		||||
    Vector<iSinglet<Simd>>   Matm;
 | 
			
		||||
    Vector<iSinglet<Simd>>* _Matp;
 | 
			
		||||
    Vector<iSinglet<Simd>>* _Matm;
 | 
			
		||||
 | 
			
		||||
    //  MooeeInternalCompute(dag,inv,Matp,Matm);
 | 
			
		||||
    if(inv && dag){
 | 
			
		||||
      _Matp = &this->MatpInvDag;
 | 
			
		||||
      _Matm = &this->MatmInvDag;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(inv && (!dag)){
 | 
			
		||||
      _Matp = &this->MatpInv;
 | 
			
		||||
      _Matm = &this->MatmInv;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(!inv){
 | 
			
		||||
      MooeeInternalCompute(dag, inv, Matp, Matm);
 | 
			
		||||
      _Matp = &Matp;
 | 
			
		||||
      _Matm = &Matm;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    assert(_Matp->size() == Ls*LLs);
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvCalls++;
 | 
			
		||||
    this->MooeeInvTime -= usecond();
 | 
			
		||||
 | 
			
		||||
    if(switcheroo<Coeff_t>::iscomplex()){
 | 
			
		||||
      parallel_for(auto site=0; site<vol; site++){
 | 
			
		||||
        MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      parallel_for(auto site=0; site<vol; site++){
 | 
			
		||||
        MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    this->MooeeInvTime += usecond();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #ifdef MOBIUS_EOFA_DPERP_VEC
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplD);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplF);
 | 
			
		||||
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplFH);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplDF);
 | 
			
		||||
    INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplFH);
 | 
			
		||||
 | 
			
		||||
    template void MobiusEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
    template void MobiusEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
    template void MobiusEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
}}
 | 
			
		||||
@@ -30,60 +30,181 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
#define REGISTER
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHIMU \
 | 
			
		||||
  {const SiteSpinor & ref (in._odata[offset]);	\
 | 
			
		||||
    Chimu_00=ref()(0)(0);\
 | 
			
		||||
    Chimu_01=ref()(0)(1);\
 | 
			
		||||
    Chimu_02=ref()(0)(2);\
 | 
			
		||||
    Chimu_10=ref()(1)(0);\
 | 
			
		||||
    Chimu_11=ref()(1)(1);\
 | 
			
		||||
    Chimu_12=ref()(1)(2);\
 | 
			
		||||
    Chimu_20=ref()(2)(0);\
 | 
			
		||||
    Chimu_21=ref()(2)(1);\
 | 
			
		||||
    Chimu_22=ref()(2)(2);\
 | 
			
		||||
    Chimu_30=ref()(3)(0);\
 | 
			
		||||
    Chimu_31=ref()(3)(1);\
 | 
			
		||||
    Chimu_32=ref()(3)(2);}
 | 
			
		||||
#define LOAD_CHIMU_BODY(F)			\
 | 
			
		||||
  Chimu_00=ref(F)(0)(0);			\
 | 
			
		||||
  Chimu_01=ref(F)(0)(1);			\
 | 
			
		||||
  Chimu_02=ref(F)(0)(2);			\
 | 
			
		||||
  Chimu_10=ref(F)(1)(0);			\
 | 
			
		||||
  Chimu_11=ref(F)(1)(1);			\
 | 
			
		||||
  Chimu_12=ref(F)(1)(2);			\
 | 
			
		||||
  Chimu_20=ref(F)(2)(0);			\
 | 
			
		||||
  Chimu_21=ref(F)(2)(1);			\
 | 
			
		||||
  Chimu_22=ref(F)(2)(2);			\
 | 
			
		||||
  Chimu_30=ref(F)(3)(0);			\
 | 
			
		||||
  Chimu_31=ref(F)(3)(1);			\
 | 
			
		||||
  Chimu_32=ref(F)(3)(2)
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHI\
 | 
			
		||||
  {const SiteHalfSpinor &ref(buf[offset]);	\
 | 
			
		||||
    Chi_00 = ref()(0)(0);\
 | 
			
		||||
    Chi_01 = ref()(0)(1);\
 | 
			
		||||
    Chi_02 = ref()(0)(2);\
 | 
			
		||||
    Chi_10 = ref()(1)(0);\
 | 
			
		||||
    Chi_11 = ref()(1)(1);\
 | 
			
		||||
    Chi_12 = ref()(1)(2);}
 | 
			
		||||
#define LOAD_CHIMU(DIR,F,PERM)						\
 | 
			
		||||
  { const SiteSpinor & ref (in._odata[offset]); LOAD_CHIMU_BODY(F); }
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHI_BODY(F)				\
 | 
			
		||||
    Chi_00 = ref(F)(0)(0);\
 | 
			
		||||
    Chi_01 = ref(F)(0)(1);\
 | 
			
		||||
    Chi_02 = ref(F)(0)(2);\
 | 
			
		||||
    Chi_10 = ref(F)(1)(0);\
 | 
			
		||||
    Chi_11 = ref(F)(1)(1);\
 | 
			
		||||
    Chi_12 = ref(F)(1)(2)
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHI(DIR,F,PERM)					\
 | 
			
		||||
  {const SiteHalfSpinor &ref(buf[offset]); LOAD_CHI_BODY(F); }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity implementations using in-place intrinsic ops
 | 
			
		||||
 | 
			
		||||
//1l 1h -> 1h 1l
 | 
			
		||||
//0l 0h , 1h 1l -> 0l 1h 0h,1l
 | 
			
		||||
//0h,1l -> 1l,0h
 | 
			
		||||
//if( (distance == 1 && !perm_will_occur) || (distance == -1 && perm_will_occur) )
 | 
			
		||||
//Pulled fermion through forwards face, GPBC on upper component
 | 
			
		||||
//Need 0= 0l 1h   1= 1l 0h
 | 
			
		||||
//else if( (distance == -1 && !perm) || (distance == 1 && perm) )
 | 
			
		||||
//Pulled fermion through backwards face, GPBC on lower component
 | 
			
		||||
//Need 0= 1l 0h   1= 0l 1h
 | 
			
		||||
 | 
			
		||||
//1l 1h -> 1h 1l
 | 
			
		||||
//0l 0h , 1h 1l -> 0l 1h 0h,1l
 | 
			
		||||
#define DO_TWIST_0L_1H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3)			\
 | 
			
		||||
  permute##PERM(tmp1, ref(1)(S)(C));				\
 | 
			
		||||
  exchange##PERM(tmp2,tmp3, ref(0)(S)(C), tmp1);		\
 | 
			
		||||
  INTO = tmp2;
 | 
			
		||||
 | 
			
		||||
//0l 0h -> 0h 0l
 | 
			
		||||
//1l 1h, 0h 0l -> 1l 0h, 1h 0l
 | 
			
		||||
#define DO_TWIST_1L_0H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3)			\
 | 
			
		||||
  permute##PERM(tmp1, ref(0)(S)(C));				\
 | 
			
		||||
  exchange##PERM(tmp2,tmp3, ref(1)(S)(C), tmp1);		\
 | 
			
		||||
  INTO = tmp2;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHI_SETUP(DIR,F)						\
 | 
			
		||||
  g = F;								\
 | 
			
		||||
  direction = st._directions[DIR];				\
 | 
			
		||||
  distance = st._distances[DIR];				\
 | 
			
		||||
  sl = st._grid->_simd_layout[direction];			\
 | 
			
		||||
  inplace_twist = 0;						\
 | 
			
		||||
  if(SE->_around_the_world && this->Params.twists[DIR % 4]){		\
 | 
			
		||||
    if(sl == 1){							\
 | 
			
		||||
      g = (F+1) % 2;							\
 | 
			
		||||
    }else{								\
 | 
			
		||||
      inplace_twist = 1;						\
 | 
			
		||||
    }									\
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM)			\
 | 
			
		||||
  { const SiteSpinor &ref(in._odata[offset]);				\
 | 
			
		||||
    LOAD_CHI_SETUP(DIR,F);						\
 | 
			
		||||
    if(!inplace_twist){							\
 | 
			
		||||
      LOAD_CHIMU_BODY(g);						\
 | 
			
		||||
    }else{								\
 | 
			
		||||
      if(  ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
 | 
			
		||||
	   ( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_00,0,0,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_01,0,1,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_02,0,2,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_10,1,0,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_11,1,1,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_12,1,2,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_20,2,0,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_21,2,1,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_22,2,2,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_30,3,0,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_31,3,1,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chimu_32,3,2,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
      }else{								\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_00,0,0,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_01,0,1,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_02,0,2,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_10,1,0,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_11,1,1,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_12,1,2,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_20,2,0,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_21,2,1,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_22,2,2,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_30,3,0,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_31,3,1,F,PERM,  U_00,U_01,U_10);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chimu_32,3,2,F,PERM,  U_11,U_20,U_21);		\
 | 
			
		||||
      } \
 | 
			
		||||
    } \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM)				\
 | 
			
		||||
  { const SiteHalfSpinor &ref(buf[offset]);				\
 | 
			
		||||
    LOAD_CHI_SETUP(DIR,F);						\
 | 
			
		||||
    if(!inplace_twist){							\
 | 
			
		||||
      LOAD_CHI_BODY(g);							\
 | 
			
		||||
    }else{								\
 | 
			
		||||
      if(  ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
 | 
			
		||||
	   ( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
 | 
			
		||||
	DO_TWIST_0L_1H(Chi_00,0,0,F,PERM,  U_00,U_01,U_10);			\
 | 
			
		||||
	DO_TWIST_0L_1H(Chi_01,0,1,F,PERM,  U_11,U_20,U_21);			\
 | 
			
		||||
	DO_TWIST_0L_1H(Chi_02,0,2,F,PERM,  UChi_00,UChi_01,UChi_02);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chi_10,1,0,F,PERM,  UChi_10,UChi_11,UChi_12);		\
 | 
			
		||||
	DO_TWIST_0L_1H(Chi_11,1,1,F,PERM,  U_00,U_01,U_10);			\
 | 
			
		||||
	DO_TWIST_0L_1H(Chi_12,1,2,F,PERM,  U_11,U_20,U_21);			\
 | 
			
		||||
      }else{								\
 | 
			
		||||
	DO_TWIST_1L_0H(Chi_00,0,0,F,PERM,  U_00,U_01,U_10);			\
 | 
			
		||||
	DO_TWIST_1L_0H(Chi_01,0,1,F,PERM,  U_11,U_20,U_21);			\
 | 
			
		||||
	DO_TWIST_1L_0H(Chi_02,0,2,F,PERM,  UChi_00,UChi_01,UChi_02);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chi_10,1,0,F,PERM,  UChi_10,UChi_11,UChi_12);		\
 | 
			
		||||
	DO_TWIST_1L_0H(Chi_11,1,1,F,PERM,  U_00,U_01,U_10);			\
 | 
			
		||||
	DO_TWIST_1L_0H(Chi_12,1,2,F,PERM,  U_11,U_20,U_21);			\
 | 
			
		||||
      }									\
 | 
			
		||||
    }									\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define LOAD_CHI_GPARITY(DIR,F,PERM) LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM)
 | 
			
		||||
#define LOAD_CHIMU_GPARITY(DIR,F,PERM) LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM)
 | 
			
		||||
 | 
			
		||||
// To splat or not to splat depends on the implementation
 | 
			
		||||
#define MULT_2SPIN(A)\
 | 
			
		||||
  {auto & ref(U._odata[sU](A));			\
 | 
			
		||||
   Impl::loadLinkElement(U_00,ref()(0,0));	\
 | 
			
		||||
   Impl::loadLinkElement(U_10,ref()(1,0));	\
 | 
			
		||||
   Impl::loadLinkElement(U_20,ref()(2,0));	\
 | 
			
		||||
   Impl::loadLinkElement(U_01,ref()(0,1));	\
 | 
			
		||||
   Impl::loadLinkElement(U_11,ref()(1,1));	\
 | 
			
		||||
   Impl::loadLinkElement(U_21,ref()(2,1));	\
 | 
			
		||||
    UChi_00 = U_00*Chi_00;\
 | 
			
		||||
    UChi_10 = U_00*Chi_10;\
 | 
			
		||||
    UChi_01 = U_10*Chi_00;\
 | 
			
		||||
    UChi_11 = U_10*Chi_10;\
 | 
			
		||||
    UChi_02 = U_20*Chi_00;\
 | 
			
		||||
    UChi_12 = U_20*Chi_10;\
 | 
			
		||||
    UChi_00+= U_01*Chi_01;\
 | 
			
		||||
    UChi_10+= U_01*Chi_11;\
 | 
			
		||||
    UChi_01+= U_11*Chi_01;\
 | 
			
		||||
    UChi_11+= U_11*Chi_11;\
 | 
			
		||||
    UChi_02+= U_21*Chi_01;\
 | 
			
		||||
    UChi_12+= U_21*Chi_11;\
 | 
			
		||||
    Impl::loadLinkElement(U_00,ref()(0,2));	\
 | 
			
		||||
    Impl::loadLinkElement(U_10,ref()(1,2));	\
 | 
			
		||||
    Impl::loadLinkElement(U_20,ref()(2,2));	\
 | 
			
		||||
    UChi_00+= U_00*Chi_02;\
 | 
			
		||||
    UChi_10+= U_00*Chi_12;\
 | 
			
		||||
    UChi_01+= U_10*Chi_02;\
 | 
			
		||||
    UChi_11+= U_10*Chi_12;\
 | 
			
		||||
    UChi_02+= U_20*Chi_02;\
 | 
			
		||||
    UChi_12+= U_20*Chi_12;}
 | 
			
		||||
#define MULT_2SPIN_BODY \
 | 
			
		||||
  Impl::loadLinkElement(U_00,ref()(0,0));	\
 | 
			
		||||
  Impl::loadLinkElement(U_10,ref()(1,0));	\
 | 
			
		||||
  Impl::loadLinkElement(U_20,ref()(2,0));	\
 | 
			
		||||
  Impl::loadLinkElement(U_01,ref()(0,1));	\
 | 
			
		||||
  Impl::loadLinkElement(U_11,ref()(1,1));	\
 | 
			
		||||
  Impl::loadLinkElement(U_21,ref()(2,1));	\
 | 
			
		||||
  UChi_00 = U_00*Chi_00;			\
 | 
			
		||||
  UChi_10 = U_00*Chi_10;			\
 | 
			
		||||
  UChi_01 = U_10*Chi_00;			\
 | 
			
		||||
  UChi_11 = U_10*Chi_10;			\
 | 
			
		||||
  UChi_02 = U_20*Chi_00;			\
 | 
			
		||||
  UChi_12 = U_20*Chi_10;			\
 | 
			
		||||
  UChi_00+= U_01*Chi_01;			\
 | 
			
		||||
  UChi_10+= U_01*Chi_11;			\
 | 
			
		||||
  UChi_01+= U_11*Chi_01;			\
 | 
			
		||||
  UChi_11+= U_11*Chi_11;			\
 | 
			
		||||
  UChi_02+= U_21*Chi_01;			\
 | 
			
		||||
  UChi_12+= U_21*Chi_11;			\
 | 
			
		||||
  Impl::loadLinkElement(U_00,ref()(0,2));	\
 | 
			
		||||
  Impl::loadLinkElement(U_10,ref()(1,2));	\
 | 
			
		||||
  Impl::loadLinkElement(U_20,ref()(2,2));	\
 | 
			
		||||
  UChi_00+= U_00*Chi_02;			\
 | 
			
		||||
  UChi_10+= U_00*Chi_12;			\
 | 
			
		||||
  UChi_01+= U_10*Chi_02;			\
 | 
			
		||||
  UChi_11+= U_10*Chi_12;			\
 | 
			
		||||
  UChi_02+= U_20*Chi_02;			\
 | 
			
		||||
  UChi_12+= U_20*Chi_12
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define MULT_2SPIN(A,F)					\
 | 
			
		||||
  {auto & ref(U._odata[sU](A)); MULT_2SPIN_BODY; }
 | 
			
		||||
 | 
			
		||||
#define MULT_2SPIN_GPARITY(A,F)				\
 | 
			
		||||
  {auto & ref(U._odata[sU](F)(A)); MULT_2SPIN_BODY; }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define PERMUTE_DIR(dir)			\
 | 
			
		||||
@@ -307,84 +428,87 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
  result_31-= UChi_11;	\
 | 
			
		||||
  result_32-= UChi_12;
 | 
			
		||||
 | 
			
		||||
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON)	\
 | 
			
		||||
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
 | 
			
		||||
  SE=st.GetEntry(ptype,DIR,ss);			\
 | 
			
		||||
  offset = SE->_offset;				\
 | 
			
		||||
  local  = SE->_is_local;			\
 | 
			
		||||
  perm   = SE->_permute;			\
 | 
			
		||||
  if ( local ) {				\
 | 
			
		||||
    LOAD_CHIMU;					\
 | 
			
		||||
    LOAD_CHIMU_IMPL(DIR,F,PERM);			\
 | 
			
		||||
    PROJ;					\
 | 
			
		||||
    if ( perm) {				\
 | 
			
		||||
      PERMUTE_DIR(PERM);			\
 | 
			
		||||
    }						\
 | 
			
		||||
  } else {					\
 | 
			
		||||
    LOAD_CHI;					\
 | 
			
		||||
    LOAD_CHI_IMPL(DIR,F,PERM);			\
 | 
			
		||||
  }						\
 | 
			
		||||
  MULT_2SPIN(DIR);				\
 | 
			
		||||
  MULT_2SPIN_IMPL(DIR,F);			\
 | 
			
		||||
  RECON;					
 | 
			
		||||
 | 
			
		||||
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON)	\
 | 
			
		||||
 | 
			
		||||
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL)	\
 | 
			
		||||
  SE=st.GetEntry(ptype,DIR,ss);			\
 | 
			
		||||
  offset = SE->_offset;				\
 | 
			
		||||
  local  = SE->_is_local;			\
 | 
			
		||||
  perm   = SE->_permute;			\
 | 
			
		||||
  if ( local ) {				\
 | 
			
		||||
    LOAD_CHIMU;					\
 | 
			
		||||
    LOAD_CHIMU_IMPL(DIR,F,PERM);			\
 | 
			
		||||
    PROJ;					\
 | 
			
		||||
    if ( perm) {				\
 | 
			
		||||
      PERMUTE_DIR(PERM);			\
 | 
			
		||||
    }						\
 | 
			
		||||
  } else if ( st.same_node[DIR] ) {		\
 | 
			
		||||
    LOAD_CHI;					\
 | 
			
		||||
    LOAD_CHI_IMPL(DIR,F,PERM);			\
 | 
			
		||||
  }						\
 | 
			
		||||
  if (local || st.same_node[DIR] ) {		\
 | 
			
		||||
    MULT_2SPIN(DIR);				\
 | 
			
		||||
    MULT_2SPIN_IMPL(DIR,F);			\
 | 
			
		||||
    RECON;					\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON)	\
 | 
			
		||||
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL)	\
 | 
			
		||||
  SE=st.GetEntry(ptype,DIR,ss);			\
 | 
			
		||||
  offset = SE->_offset;				\
 | 
			
		||||
  local  = SE->_is_local;			\
 | 
			
		||||
  perm   = SE->_permute;			\
 | 
			
		||||
  if((!SE->_is_local)&&(!st.same_node[DIR]) ) {	\
 | 
			
		||||
    LOAD_CHI;					\
 | 
			
		||||
    MULT_2SPIN(DIR);				\
 | 
			
		||||
    LOAD_CHI_IMPL(DIR,F,PERM);			\
 | 
			
		||||
    MULT_2SPIN_IMPL(DIR,F);			\
 | 
			
		||||
    RECON;					\
 | 
			
		||||
    nmu++;					\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define HAND_RESULT(ss)				\
 | 
			
		||||
#define HAND_RESULT(ss,F)			\
 | 
			
		||||
  {						\
 | 
			
		||||
    SiteSpinor & ref (out._odata[ss]);		\
 | 
			
		||||
    vstream(ref()(0)(0),result_00);		\
 | 
			
		||||
    vstream(ref()(0)(1),result_01);		\
 | 
			
		||||
    vstream(ref()(0)(2),result_02);		\
 | 
			
		||||
    vstream(ref()(1)(0),result_10);		\
 | 
			
		||||
    vstream(ref()(1)(1),result_11);		\
 | 
			
		||||
    vstream(ref()(1)(2),result_12);		\
 | 
			
		||||
    vstream(ref()(2)(0),result_20);		\
 | 
			
		||||
    vstream(ref()(2)(1),result_21);		\
 | 
			
		||||
    vstream(ref()(2)(2),result_22);		\
 | 
			
		||||
    vstream(ref()(3)(0),result_30);		\
 | 
			
		||||
    vstream(ref()(3)(1),result_31);		\
 | 
			
		||||
    vstream(ref()(3)(2),result_32);		\
 | 
			
		||||
    vstream(ref(F)(0)(0),result_00);		\
 | 
			
		||||
    vstream(ref(F)(0)(1),result_01);		\
 | 
			
		||||
    vstream(ref(F)(0)(2),result_02);		\
 | 
			
		||||
    vstream(ref(F)(1)(0),result_10);		\
 | 
			
		||||
    vstream(ref(F)(1)(1),result_11);		\
 | 
			
		||||
    vstream(ref(F)(1)(2),result_12);		\
 | 
			
		||||
    vstream(ref(F)(2)(0),result_20);		\
 | 
			
		||||
    vstream(ref(F)(2)(1),result_21);		\
 | 
			
		||||
    vstream(ref(F)(2)(2),result_22);		\
 | 
			
		||||
    vstream(ref(F)(3)(0),result_30);		\
 | 
			
		||||
    vstream(ref(F)(3)(1),result_31);		\
 | 
			
		||||
    vstream(ref(F)(3)(2),result_32);		\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#define HAND_RESULT_EXT(ss)			\
 | 
			
		||||
#define HAND_RESULT_EXT(ss,F)			\
 | 
			
		||||
  if (nmu){					\
 | 
			
		||||
    SiteSpinor & ref (out._odata[ss]);		\
 | 
			
		||||
    ref()(0)(0)+=result_00;		\
 | 
			
		||||
    ref()(0)(1)+=result_01;		\
 | 
			
		||||
    ref()(0)(2)+=result_02;		\
 | 
			
		||||
    ref()(1)(0)+=result_10;		\
 | 
			
		||||
    ref()(1)(1)+=result_11;		\
 | 
			
		||||
    ref()(1)(2)+=result_12;		\
 | 
			
		||||
    ref()(2)(0)+=result_20;		\
 | 
			
		||||
    ref()(2)(1)+=result_21;		\
 | 
			
		||||
    ref()(2)(2)+=result_22;		\
 | 
			
		||||
    ref()(3)(0)+=result_30;		\
 | 
			
		||||
    ref()(3)(1)+=result_31;		\
 | 
			
		||||
    ref()(3)(2)+=result_32;		\
 | 
			
		||||
    ref(F)(0)(0)+=result_00;		\
 | 
			
		||||
    ref(F)(0)(1)+=result_01;		\
 | 
			
		||||
    ref(F)(0)(2)+=result_02;		\
 | 
			
		||||
    ref(F)(1)(0)+=result_10;		\
 | 
			
		||||
    ref(F)(1)(1)+=result_11;		\
 | 
			
		||||
    ref(F)(1)(2)+=result_12;		\
 | 
			
		||||
    ref(F)(2)(0)+=result_20;		\
 | 
			
		||||
    ref(F)(2)(1)+=result_21;		\
 | 
			
		||||
    ref(F)(2)(2)+=result_22;		\
 | 
			
		||||
    ref(F)(3)(0)+=result_30;		\
 | 
			
		||||
    ref(F)(3)(1)+=result_31;		\
 | 
			
		||||
    ref(F)(3)(2)+=result_32;		\
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -463,15 +587,18 @@ WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGauge
 | 
			
		||||
  int offset,local,perm, ptype;
 | 
			
		||||
  StencilEntry *SE;
 | 
			
		||||
 | 
			
		||||
  HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
 | 
			
		||||
  HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
 | 
			
		||||
  HAND_RESULT(ss);
 | 
			
		||||
#define HAND_DOP_SITE(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
 | 
			
		||||
  HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);	\
 | 
			
		||||
  HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_RESULT(ss,F)
 | 
			
		||||
 | 
			
		||||
  HAND_DOP_SITE(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -485,16 +612,19 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,Doub
 | 
			
		||||
 | 
			
		||||
  StencilEntry *SE;
 | 
			
		||||
  int offset,local,perm, ptype;
 | 
			
		||||
  
 | 
			
		||||
  HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
 | 
			
		||||
  HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
 | 
			
		||||
  HAND_RESULT(ss);
 | 
			
		||||
 | 
			
		||||
#define HAND_DOP_SITE_DAG(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
 | 
			
		||||
  HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_RESULT(ss,F)
 | 
			
		||||
 | 
			
		||||
  HAND_DOP_SITE_DAG(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl> void 
 | 
			
		||||
@@ -509,16 +639,20 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
 | 
			
		||||
 | 
			
		||||
  int offset,local,perm, ptype;
 | 
			
		||||
  StencilEntry *SE;
 | 
			
		||||
  ZERO_RESULT;
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
 | 
			
		||||
  HAND_RESULT(ss);
 | 
			
		||||
 | 
			
		||||
#define HAND_DOP_SITE_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
 | 
			
		||||
  ZERO_RESULT; \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_RESULT(ss,F)
 | 
			
		||||
 | 
			
		||||
  HAND_DOP_SITE_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -532,16 +666,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,D
 | 
			
		||||
 | 
			
		||||
  StencilEntry *SE;
 | 
			
		||||
  int offset,local,perm, ptype;
 | 
			
		||||
  ZERO_RESULT;
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
 | 
			
		||||
  HAND_RESULT(ss);
 | 
			
		||||
 | 
			
		||||
#define HAND_DOP_SITE_DAG_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL)				\
 | 
			
		||||
  ZERO_RESULT;							\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL);		\
 | 
			
		||||
  HAND_RESULT(ss,F)
 | 
			
		||||
  
 | 
			
		||||
  HAND_DOP_SITE_DAG_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl> void 
 | 
			
		||||
@@ -557,16 +695,20 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
 | 
			
		||||
  int offset,local,perm, ptype;
 | 
			
		||||
  StencilEntry *SE;
 | 
			
		||||
  int nmu=0;
 | 
			
		||||
  ZERO_RESULT;
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
 | 
			
		||||
  HAND_RESULT_EXT(ss);
 | 
			
		||||
 | 
			
		||||
#define HAND_DOP_SITE_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
 | 
			
		||||
  ZERO_RESULT; \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_RESULT_EXT(ss,F)
 | 
			
		||||
 | 
			
		||||
  HAND_DOP_SITE_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class Impl>
 | 
			
		||||
@@ -581,16 +723,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
 | 
			
		||||
  StencilEntry *SE;
 | 
			
		||||
  int offset,local,perm, ptype;
 | 
			
		||||
  int nmu=0;
 | 
			
		||||
  ZERO_RESULT;
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
 | 
			
		||||
  HAND_RESULT_EXT(ss);
 | 
			
		||||
 | 
			
		||||
#define HAND_DOP_SITE_DAG_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
 | 
			
		||||
  ZERO_RESULT; \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
 | 
			
		||||
  HAND_RESULT_EXT(ss,F)
 | 
			
		||||
 | 
			
		||||
  HAND_DOP_SITE_DAG_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////////////////
 | 
			
		||||
@@ -646,11 +792,124 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
 | 
			
		||||
				    const FermionField &in,		\
 | 
			
		||||
				    FermionField &out){ assert(0); }	\
 | 
			
		||||
 | 
			
		||||
  HAND_SPECIALISE_EMPTY(GparityWilsonImplF);
 | 
			
		||||
  HAND_SPECIALISE_EMPTY(GparityWilsonImplD);
 | 
			
		||||
  HAND_SPECIALISE_EMPTY(GparityWilsonImplFH);
 | 
			
		||||
  HAND_SPECIALISE_EMPTY(GparityWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define HAND_SPECIALISE_GPARITY(IMPL)					\
 | 
			
		||||
  template<> void							\
 | 
			
		||||
  WilsonKernels<IMPL>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor  *buf, \
 | 
			
		||||
				    int ss,int sU,const FermionField &in, FermionField &out) \
 | 
			
		||||
  {									\
 | 
			
		||||
    typedef IMPL Impl;							\
 | 
			
		||||
    typedef typename Simd::scalar_type S;				\
 | 
			
		||||
    typedef typename Simd::vector_type V;				\
 | 
			
		||||
									\
 | 
			
		||||
    HAND_DECLARATIONS(ignore);						\
 | 
			
		||||
									\
 | 
			
		||||
    int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
 | 
			
		||||
    StencilEntry *SE;							\
 | 
			
		||||
    HAND_DOP_SITE(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
    HAND_DOP_SITE(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
  }									\
 | 
			
		||||
									\
 | 
			
		||||
  template<>								\
 | 
			
		||||
  void WilsonKernels<IMPL>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
 | 
			
		||||
					    int ss,int sU,const FermionField &in, FermionField &out) \
 | 
			
		||||
  {									\
 | 
			
		||||
    typedef IMPL Impl;							\
 | 
			
		||||
    typedef typename Simd::scalar_type S;				\
 | 
			
		||||
    typedef typename Simd::vector_type V;				\
 | 
			
		||||
									\
 | 
			
		||||
    HAND_DECLARATIONS(ignore);						\
 | 
			
		||||
									\
 | 
			
		||||
    StencilEntry *SE;							\
 | 
			
		||||
    int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist;					\
 | 
			
		||||
    HAND_DOP_SITE_DAG(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
    HAND_DOP_SITE_DAG(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
  }									\
 | 
			
		||||
									\
 | 
			
		||||
  template<> void							\
 | 
			
		||||
  WilsonKernels<IMPL>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor  *buf, \
 | 
			
		||||
						     int ss,int sU,const FermionField &in, FermionField &out) \
 | 
			
		||||
  {									\
 | 
			
		||||
    typedef IMPL Impl;							\
 | 
			
		||||
    typedef typename Simd::scalar_type S;				\
 | 
			
		||||
    typedef typename Simd::vector_type V;				\
 | 
			
		||||
									\
 | 
			
		||||
    HAND_DECLARATIONS(ignore);						\
 | 
			
		||||
									\
 | 
			
		||||
    int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist;					\
 | 
			
		||||
    StencilEntry *SE;							\
 | 
			
		||||
    HAND_DOP_SITE_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
    HAND_DOP_SITE_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
  }									\
 | 
			
		||||
									\
 | 
			
		||||
  template<>								\
 | 
			
		||||
  void WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
 | 
			
		||||
							     int ss,int sU,const FermionField &in, FermionField &out) \
 | 
			
		||||
  {									\
 | 
			
		||||
    typedef IMPL Impl;							\
 | 
			
		||||
    typedef typename Simd::scalar_type S;				\
 | 
			
		||||
    typedef typename Simd::vector_type V;				\
 | 
			
		||||
									\
 | 
			
		||||
    HAND_DECLARATIONS(ignore);						\
 | 
			
		||||
									\
 | 
			
		||||
    StencilEntry *SE;							\
 | 
			
		||||
    int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
 | 
			
		||||
    HAND_DOP_SITE_DAG_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
    HAND_DOP_SITE_DAG_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
  }									\
 | 
			
		||||
									\
 | 
			
		||||
  template<> void							\
 | 
			
		||||
  WilsonKernels<IMPL>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor  *buf, \
 | 
			
		||||
						     int ss,int sU,const FermionField &in, FermionField &out) \
 | 
			
		||||
  {									\
 | 
			
		||||
    typedef IMPL Impl;							\
 | 
			
		||||
    typedef typename Simd::scalar_type S;				\
 | 
			
		||||
    typedef typename Simd::vector_type V;				\
 | 
			
		||||
									\
 | 
			
		||||
    HAND_DECLARATIONS(ignore);						\
 | 
			
		||||
									\
 | 
			
		||||
    int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
 | 
			
		||||
    StencilEntry *SE;							\
 | 
			
		||||
    int nmu=0;								\
 | 
			
		||||
    HAND_DOP_SITE_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
    nmu = 0;								\
 | 
			
		||||
    HAND_DOP_SITE_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
  }									\
 | 
			
		||||
  template<>								\
 | 
			
		||||
  void WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
 | 
			
		||||
							     int ss,int sU,const FermionField &in, FermionField &out) \
 | 
			
		||||
  {									\
 | 
			
		||||
    typedef IMPL Impl;							\
 | 
			
		||||
    typedef typename Simd::scalar_type S;				\
 | 
			
		||||
    typedef typename Simd::vector_type V;				\
 | 
			
		||||
									\
 | 
			
		||||
    HAND_DECLARATIONS(ignore);						\
 | 
			
		||||
									\
 | 
			
		||||
    StencilEntry *SE;							\
 | 
			
		||||
    int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
 | 
			
		||||
    int nmu=0;								\
 | 
			
		||||
    HAND_DOP_SITE_DAG_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
    nmu = 0;								\
 | 
			
		||||
    HAND_DOP_SITE_DAG_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplF);
 | 
			
		||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplD);
 | 
			
		||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplFH);
 | 
			
		||||
HAND_SPECIALISE_GPARITY(GparityWilsonImplDF);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
////////////// Wilson ; uses this implementation /////////////////////
 | 
			
		||||
 | 
			
		||||
#define INSTANTIATE_THEM(A) \
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										264
									
								
								lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										264
									
								
								lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,264 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: David Murphy <dmurphy@phys.columbia.edu>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
// Implementation of exact one flavour algorithm (EOFA)         //
 | 
			
		||||
// using fermion classes defined in:                           //
 | 
			
		||||
//    Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
 | 
			
		||||
//    Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius)     //
 | 
			
		||||
// arXiv: 1403.1683, 1706.05843                                //
 | 
			
		||||
/////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
 | 
			
		||||
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
 | 
			
		||||
 | 
			
		||||
namespace Grid{
 | 
			
		||||
namespace QCD{
 | 
			
		||||
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
  // Exact one flavour implementation of DWF determinant ratio //
 | 
			
		||||
  ///////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  template<class Impl>
 | 
			
		||||
  class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
 | 
			
		||||
  {
 | 
			
		||||
    public:
 | 
			
		||||
      INHERIT_IMPL_TYPES(Impl);
 | 
			
		||||
      typedef OneFlavourRationalParams Params;
 | 
			
		||||
      Params param;
 | 
			
		||||
      MultiShiftFunction PowerNegHalf;
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
      bool use_heatbath_forecasting;
 | 
			
		||||
      AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
 | 
			
		||||
      AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
 | 
			
		||||
      SchurRedBlackDiagMooeeSolve<FermionField> Solver;
 | 
			
		||||
      FermionField Phi; // the pseudofermion field for this trajectory
 | 
			
		||||
 | 
			
		||||
    public:
 | 
			
		||||
      ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
 | 
			
		||||
        OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
 | 
			
		||||
        Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
 | 
			
		||||
      {
 | 
			
		||||
        AlgRemez remez(param.lo, param.hi, param.precision);
 | 
			
		||||
 | 
			
		||||
        // MdagM^(+- 1/2)
 | 
			
		||||
        std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
 | 
			
		||||
        remez.generateApprox(param.degree, 1, 2);
 | 
			
		||||
        PowerNegHalf.Init(remez, param.tolerance, true);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
 | 
			
		||||
 | 
			
		||||
      virtual std::string LogParameters() {
 | 
			
		||||
        std::stringstream sstream;
 | 
			
		||||
        sstream << GridLogMessage << "[" << action_name() << "] Low            :" << param.lo << std::endl;
 | 
			
		||||
        sstream << GridLogMessage << "[" << action_name() << "] High           :" << param.hi << std::endl;
 | 
			
		||||
        sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
 | 
			
		||||
        sstream << GridLogMessage << "[" << action_name() << "] Tolerance      :" << param.tolerance << std::endl;
 | 
			
		||||
        sstream << GridLogMessage << "[" << action_name() << "] Degree         :" << param.degree << std::endl;
 | 
			
		||||
        sstream << GridLogMessage << "[" << action_name() << "] Precision      :" << param.precision << std::endl;
 | 
			
		||||
        return sstream.str();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // Spin projection
 | 
			
		||||
      void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
 | 
			
		||||
      {
 | 
			
		||||
        if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
 | 
			
		||||
        else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      // EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
 | 
			
		||||
      // We generate a Gaussian noise vector \eta, and then compute
 | 
			
		||||
      //  \Phi = M_{\rm EOFA}^{-1/2} * \eta
 | 
			
		||||
      // using a rational approximation to the inverse square root
 | 
			
		||||
      virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
 | 
			
		||||
      {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField eta         (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_src      (Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_soln     (Lop.FermionGrid());
 | 
			
		||||
        FermionField Forecast_src(Lop.FermionGrid());
 | 
			
		||||
        std::vector<FermionField> tmp(2, Lop.FermionGrid());
 | 
			
		||||
 | 
			
		||||
        // Use chronological inverter to forecast solutions across poles
 | 
			
		||||
        std::vector<FermionField> prev_solns;
 | 
			
		||||
        if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
 | 
			
		||||
        ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
 | 
			
		||||
 | 
			
		||||
        // Seed with Gaussian noise vector (var = 0.5)
 | 
			
		||||
        RealD scale = std::sqrt(0.5);
 | 
			
		||||
        gaussian(pRNG,eta);
 | 
			
		||||
        eta = eta * scale;
 | 
			
		||||
        printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
 | 
			
		||||
 | 
			
		||||
        // \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
 | 
			
		||||
        RealD N(PowerNegHalf.norm);
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
 | 
			
		||||
        Phi = eta * N;
 | 
			
		||||
 | 
			
		||||
        // LH terms:
 | 
			
		||||
        // \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
 | 
			
		||||
        //          - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
 | 
			
		||||
        RealD gamma_l(0.0);
 | 
			
		||||
        spProj(eta, tmp[0], -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(tmp[0], tmp[1], -1, 0);
 | 
			
		||||
        G5R5(CG_src, tmp[1]);
 | 
			
		||||
        tmp[1] = zero;
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){
 | 
			
		||||
          gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
 | 
			
		||||
          Lop.RefreshShiftCoefficients(-gamma_l);
 | 
			
		||||
          if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
 | 
			
		||||
            Lop.Mdag(CG_src, Forecast_src);
 | 
			
		||||
            CG_soln = Forecast(Lop, Forecast_src, prev_solns);
 | 
			
		||||
            Solver(Lop, CG_src, CG_soln);
 | 
			
		||||
            prev_solns.push_back(CG_soln);
 | 
			
		||||
          } else {
 | 
			
		||||
            CG_soln = zero; // Just use zero as the initial guess
 | 
			
		||||
            Solver(Lop, CG_src, CG_soln);
 | 
			
		||||
          }
 | 
			
		||||
          Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
 | 
			
		||||
        }
 | 
			
		||||
        Lop.Omega(tmp[1], tmp[0], -1, 1);
 | 
			
		||||
        spProj(tmp[0], tmp[1], -1, Lop.Ls);
 | 
			
		||||
        Phi = Phi + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // RH terms:
 | 
			
		||||
        // \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //          + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
 | 
			
		||||
        spProj(eta, tmp[0], 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(tmp[0], tmp[1], 1, 0);
 | 
			
		||||
        G5R5(CG_src, tmp[1]);
 | 
			
		||||
        tmp[1] = zero;
 | 
			
		||||
        if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
 | 
			
		||||
        for(int k=0; k<param.degree; ++k){
 | 
			
		||||
          gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
 | 
			
		||||
          Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
 | 
			
		||||
          if(use_heatbath_forecasting){
 | 
			
		||||
            Rop.Mdag(CG_src, Forecast_src);
 | 
			
		||||
            CG_soln = Forecast(Rop, Forecast_src, prev_solns);
 | 
			
		||||
            Solver(Rop, CG_src, CG_soln);
 | 
			
		||||
            prev_solns.push_back(CG_soln);
 | 
			
		||||
          } else {
 | 
			
		||||
            CG_soln = zero;
 | 
			
		||||
            Solver(Rop, CG_src, CG_soln);
 | 
			
		||||
          }
 | 
			
		||||
          Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
          tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
 | 
			
		||||
        }
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        spProj(tmp[0], tmp[1], 1, Rop.Ls);
 | 
			
		||||
        Phi = Phi + tmp[1];
 | 
			
		||||
 | 
			
		||||
        // Reset shift coefficients for energy and force evals
 | 
			
		||||
        Lop.RefreshShiftCoefficients(0.0);
 | 
			
		||||
        Rop.RefreshShiftCoefficients(-1.0);
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // EOFA action: see Eqn. (10) of arXiv:1706.05843
 | 
			
		||||
      virtual RealD S(const GaugeField& U)
 | 
			
		||||
      {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField spProj_Phi(Lop.FermionGrid());
 | 
			
		||||
        std::vector<FermionField> tmp(2, Lop.FermionGrid());
 | 
			
		||||
 | 
			
		||||
        // S = <\Phi|\Phi>
 | 
			
		||||
        RealD action(norm2(Phi));
 | 
			
		||||
 | 
			
		||||
        // LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(spProj_Phi, tmp[0], -1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
        tmp[0] = zero;
 | 
			
		||||
        Solver(Lop, tmp[1], tmp[0]);
 | 
			
		||||
        Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
 | 
			
		||||
        Lop.Omega(tmp[1], tmp[0], -1, 1);
 | 
			
		||||
        action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
 | 
			
		||||
        // RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
 | 
			
		||||
        //               - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
 | 
			
		||||
        spProj(Phi, spProj_Phi, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_Phi, tmp[0], 1, 0);
 | 
			
		||||
        G5R5(tmp[1], tmp[0]);
 | 
			
		||||
        tmp[0] = zero;
 | 
			
		||||
        Solver(Rop, tmp[1], tmp[0]);
 | 
			
		||||
        Rop.Dtilde(tmp[0], tmp[1]);
 | 
			
		||||
        Rop.Omega(tmp[1], tmp[0], 1, 1);
 | 
			
		||||
        action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
 | 
			
		||||
 | 
			
		||||
        return action;
 | 
			
		||||
      };
 | 
			
		||||
 | 
			
		||||
      // EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
 | 
			
		||||
      virtual void deriv(const GaugeField& U, GaugeField& dSdU)
 | 
			
		||||
      {
 | 
			
		||||
        Lop.ImportGauge(U);
 | 
			
		||||
        Rop.ImportGauge(U);
 | 
			
		||||
 | 
			
		||||
        FermionField spProj_Phi      (Lop.FermionGrid());
 | 
			
		||||
        FermionField Omega_spProj_Phi(Lop.FermionGrid());
 | 
			
		||||
        FermionField CG_src          (Lop.FermionGrid());
 | 
			
		||||
        FermionField Chi             (Lop.FermionGrid());
 | 
			
		||||
        FermionField g5_R5_Chi       (Lop.FermionGrid());
 | 
			
		||||
 | 
			
		||||
        GaugeField force(Lop.GaugeGrid());
 | 
			
		||||
 | 
			
		||||
        // LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
 | 
			
		||||
        //     \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
 | 
			
		||||
        spProj(Phi, spProj_Phi, -1, Lop.Ls);
 | 
			
		||||
        Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
 | 
			
		||||
        G5R5(CG_src, Omega_spProj_Phi);
 | 
			
		||||
        spProj_Phi = zero;
 | 
			
		||||
        Solver(Lop, CG_src, spProj_Phi);
 | 
			
		||||
        Lop.Dtilde(spProj_Phi, Chi);
 | 
			
		||||
        G5R5(g5_R5_Chi, Chi);
 | 
			
		||||
        Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
 | 
			
		||||
        dSdU = Lop.k * force;
 | 
			
		||||
 | 
			
		||||
        // RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
 | 
			
		||||
        //     \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
 | 
			
		||||
        spProj(Phi, spProj_Phi, 1, Rop.Ls);
 | 
			
		||||
        Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
 | 
			
		||||
        G5R5(CG_src, Omega_spProj_Phi);
 | 
			
		||||
        spProj_Phi = zero;
 | 
			
		||||
        Solver(Rop, CG_src, spProj_Phi);
 | 
			
		||||
        Rop.Dtilde(spProj_Phi, Chi);
 | 
			
		||||
        G5R5(g5_R5_Chi, Chi);
 | 
			
		||||
        Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
 | 
			
		||||
        dSdU = dSdU - Rop.k * force;
 | 
			
		||||
      };
 | 
			
		||||
  };
 | 
			
		||||
}}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -38,5 +38,6 @@ directory
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
 | 
			
		||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -72,7 +72,7 @@ protected:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual unsigned int Ls(){
 | 
			
		||||
    return 0;  
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual void print_parameters(){
 | 
			
		||||
@@ -97,7 +97,7 @@ class HMC_FermionOperatorModuleFactory
 | 
			
		||||
    : public Factory < FermionOperatorModuleBase<QCD::FermionOperator<FermionImpl> > ,  Reader<ReaderClass> > {
 | 
			
		||||
 public:
 | 
			
		||||
  // use SINGLETON FUNCTOR MACRO HERE
 | 
			
		||||
  typedef Reader<ReaderClass> TheReader; 
 | 
			
		||||
  typedef Reader<ReaderClass> TheReader;
 | 
			
		||||
 | 
			
		||||
  HMC_FermionOperatorModuleFactory(const HMC_FermionOperatorModuleFactory& e) = delete;
 | 
			
		||||
  void operator=(const HMC_FermionOperatorModuleFactory& e) = delete;
 | 
			
		||||
@@ -122,7 +122,7 @@ namespace QCD{
 | 
			
		||||
// Modules
 | 
			
		||||
class WilsonFermionParameters : Serializable {
 | 
			
		||||
 public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters, 
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
 | 
			
		||||
    RealD, mass);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -144,7 +144,7 @@ class WilsonFermionModule: public FermionOperatorModule<WilsonFermion, FermionIm
 | 
			
		||||
 | 
			
		||||
class MobiusFermionParameters : Serializable {
 | 
			
		||||
 public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters, 
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
 | 
			
		||||
    RealD, mass,
 | 
			
		||||
    RealD, M5,
 | 
			
		||||
    RealD, b,
 | 
			
		||||
@@ -166,7 +166,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
 | 
			
		||||
    auto GridMod = this->GridRefs[0];
 | 
			
		||||
    auto GridMod5d = this->GridRefs[1];
 | 
			
		||||
    typename FermionImpl::GaugeField U(GridMod->get_full());
 | 
			
		||||
    this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()), 
 | 
			
		||||
    this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
 | 
			
		||||
                                                      *(GridMod5d->get_full()), *(GridMod5d->get_rb()),
 | 
			
		||||
                                                      this->Par_.mass, this->Par_.M5, this->Par_.b, this->Par_.c));
 | 
			
		||||
  }
 | 
			
		||||
@@ -175,7 +175,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
 | 
			
		||||
 | 
			
		||||
class DomainWallFermionParameters : Serializable {
 | 
			
		||||
 public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters, 
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
 | 
			
		||||
    RealD, mass,
 | 
			
		||||
    RealD, M5,
 | 
			
		||||
    unsigned int, Ls);
 | 
			
		||||
@@ -195,16 +195,49 @@ class DomainWallFermionModule: public FermionOperatorModule<DomainWallFermion, F
 | 
			
		||||
    auto GridMod = this->GridRefs[0];
 | 
			
		||||
    auto GridMod5d = this->GridRefs[1];
 | 
			
		||||
    typename FermionImpl::GaugeField U(GridMod->get_full());
 | 
			
		||||
    this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()), 
 | 
			
		||||
    this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
 | 
			
		||||
                                                      *(GridMod5d->get_full()), *(GridMod5d->get_rb()),
 | 
			
		||||
                                                      this->Par_.mass, this->Par_.M5));
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DomainWallEOFAFermionParameters : Serializable {
 | 
			
		||||
 public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallEOFAFermionParameters,
 | 
			
		||||
    RealD, mq1,
 | 
			
		||||
    RealD, mq2,
 | 
			
		||||
    RealD, mq3,
 | 
			
		||||
    RealD, shift,
 | 
			
		||||
    int, pm,
 | 
			
		||||
    RealD, M5,
 | 
			
		||||
    unsigned int, Ls);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class FermionImpl >
 | 
			
		||||
class DomainWallEOFAFermionModule: public FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> {
 | 
			
		||||
  typedef FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> FermBase;
 | 
			
		||||
  using FermBase::FermBase; // for constructors
 | 
			
		||||
 | 
			
		||||
  virtual unsigned int Ls(){
 | 
			
		||||
    return this->Par_.Ls;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // acquire resource
 | 
			
		||||
  virtual void initialize(){
 | 
			
		||||
    auto GridMod = this->GridRefs[0];
 | 
			
		||||
    auto GridMod5d = this->GridRefs[1];
 | 
			
		||||
    typename FermionImpl::GaugeField U(GridMod->get_full());
 | 
			
		||||
    this->FOPtr.reset(new DomainWallEOFAFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
 | 
			
		||||
                                                      *(GridMod5d->get_full()), *(GridMod5d->get_rb()),
 | 
			
		||||
                                                      this->Par_.mq1, this->Par_.mq2, this->Par_.mq3,
 | 
			
		||||
                                                      this->Par_.shift, this->Par_.pm, this->Par_.M5));
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
} // QCD
 | 
			
		||||
} // Grid
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#endif //FERMIONOPERATOR_MODULES_H
 | 
			
		||||
#endif //FERMIONOPERATOR_MODULES_H
 | 
			
		||||
 
 | 
			
		||||
@@ -60,7 +60,7 @@ GridCartesian         *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian
 | 
			
		||||
    simd5.push_back(FourDimGrid->_simd_layout[d]);
 | 
			
		||||
     mpi5.push_back(FourDimGrid->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
  return new GridCartesian(latt5,simd5,mpi5); 
 | 
			
		||||
  return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -68,18 +68,14 @@ GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridC
 | 
			
		||||
{
 | 
			
		||||
  int N4=FourDimGrid->_ndimension;
 | 
			
		||||
  int cbd=1;
 | 
			
		||||
  std::vector<int> latt5(1,Ls);
 | 
			
		||||
  std::vector<int> simd5(1,1);
 | 
			
		||||
  std::vector<int>  mpi5(1,1);
 | 
			
		||||
  std::vector<int>   cb5(1,0);
 | 
			
		||||
    
 | 
			
		||||
  for(int d=0;d<N4;d++){
 | 
			
		||||
    latt5.push_back(FourDimGrid->_fdimensions[d]);
 | 
			
		||||
    simd5.push_back(FourDimGrid->_simd_layout[d]);
 | 
			
		||||
     mpi5.push_back(FourDimGrid->_processors[d]);
 | 
			
		||||
      cb5.push_back(  1);
 | 
			
		||||
    }
 | 
			
		||||
  return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd); 
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian *tmp = makeFiveDimGrid(Ls,FourDimGrid);
 | 
			
		||||
  GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd); 
 | 
			
		||||
  delete tmp;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -97,26 +93,24 @@ GridCartesian         *SpaceTimeGrid::makeFiveDimDWFGrid(int Ls,const GridCartes
 | 
			
		||||
    simd5.push_back(1);
 | 
			
		||||
     mpi5.push_back(FourDimGrid->_processors[d]);
 | 
			
		||||
  }
 | 
			
		||||
  return new GridCartesian(latt5,simd5,mpi5); 
 | 
			
		||||
  return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid); 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
// Interface is inefficient and forces the deletion
 | 
			
		||||
// Pass in the non-redblack grid
 | 
			
		||||
///////////////////////////////////////////////////
 | 
			
		||||
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
 | 
			
		||||
{
 | 
			
		||||
  int N4=FourDimGrid->_ndimension;
 | 
			
		||||
  int nsimd = FourDimGrid->Nsimd();
 | 
			
		||||
  int cbd=1;
 | 
			
		||||
  std::vector<int> latt5(1,Ls);
 | 
			
		||||
  std::vector<int> simd5(1,nsimd);
 | 
			
		||||
  std::vector<int>  mpi5(1,1);
 | 
			
		||||
  std::vector<int>   cb5(1,0);
 | 
			
		||||
    
 | 
			
		||||
  for(int d=0;d<N4;d++){
 | 
			
		||||
    latt5.push_back(FourDimGrid->_fdimensions[d]);
 | 
			
		||||
    simd5.push_back(1);
 | 
			
		||||
     mpi5.push_back(FourDimGrid->_processors[d]);
 | 
			
		||||
      cb5.push_back(1);
 | 
			
		||||
    }
 | 
			
		||||
  return new GridRedBlackCartesian(latt5,simd5,mpi5,cb5,cbd); 
 | 
			
		||||
  }
 | 
			
		||||
  GridCartesian *tmp         = makeFiveDimDWFGrid(Ls,FourDimGrid);
 | 
			
		||||
  GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd); 
 | 
			
		||||
  delete tmp;
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -86,7 +86,7 @@ namespace Grid {
 | 
			
		||||
                                      or element<T>::is_number;
 | 
			
		||||
  };
 | 
			
		||||
  
 | 
			
		||||
  // Vector flatening utility class ////////////////////////////////////////////
 | 
			
		||||
  // Vector flattening utility class ////////////////////////////////////////////
 | 
			
		||||
  // Class to flatten a multidimensional std::vector
 | 
			
		||||
  template <typename V>
 | 
			
		||||
  class Flatten
 | 
			
		||||
 
 | 
			
		||||
@@ -42,6 +42,7 @@ JSONWriter::~JSONWriter(void)
 | 
			
		||||
 | 
			
		||||
  // write prettified JSON to file
 | 
			
		||||
  std::ofstream os(fileName_);
 | 
			
		||||
  //std::cout << "JSONWriter::~JSONWriter" << std::endl;
 | 
			
		||||
  os << std::setw(2) << json::parse(ss_.str()) << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -56,6 +57,7 @@ void JSONWriter::push(const string &s)
 | 
			
		||||
 | 
			
		||||
void JSONWriter::pop(void)
 | 
			
		||||
{
 | 
			
		||||
  //std::cout << "JSONWriter::pop" << std::endl;
 | 
			
		||||
  delete_comma();
 | 
			
		||||
  ss_ << "},";
 | 
			
		||||
}
 | 
			
		||||
@@ -67,20 +69,22 @@ void JSONWriter::delete_comma()
 | 
			
		||||
  ss_.str(dlast);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// here we are hitting a g++ bug (Bug 56480)
 | 
			
		||||
// compiles fine with clang
 | 
			
		||||
// have to wrap in the Grid namespace
 | 
			
		||||
// annoying, but necessary for TravisCI
 | 
			
		||||
namespace Grid
 | 
			
		||||
{
 | 
			
		||||
  template<>
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s,
 | 
			
		||||
				const std::string &x)
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s,	const std::string &x)
 | 
			
		||||
  {
 | 
			
		||||
    //std::cout << "JSONWriter::writeDefault(string) : " << s <<  std::endl;
 | 
			
		||||
    std::ostringstream os;
 | 
			
		||||
    os << std::boolalpha << x;
 | 
			
		||||
    if (s.size())
 | 
			
		||||
      ss_ << "\""<< s << "\" : \"" << x << "\" ," ; 
 | 
			
		||||
      ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
 | 
			
		||||
    else
 | 
			
		||||
      ss_ << "\"" << x << "\" ," ;
 | 
			
		||||
     ss_ << os.str() << " ," ;
 | 
			
		||||
  }
 | 
			
		||||
}// namespace Grid 
 | 
			
		||||
 | 
			
		||||
@@ -138,6 +142,7 @@ void JSONReader::pop(void)
 | 
			
		||||
 | 
			
		||||
bool JSONReader::nextElement(const std::string &s)
 | 
			
		||||
{
 | 
			
		||||
  // Work in progress
 | 
			
		||||
  // JSON dictionaries do not support multiple names 
 | 
			
		||||
  // Same name objects must be packed in vectors
 | 
			
		||||
  ++it_;
 | 
			
		||||
 
 | 
			
		||||
@@ -58,10 +58,15 @@ namespace Grid
 | 
			
		||||
    void writeDefault(const std::string &s, const std::complex<U> &x);
 | 
			
		||||
    template <typename U>
 | 
			
		||||
    void writeDefault(const std::string &s, const std::vector<U> &x);
 | 
			
		||||
    template <typename U, typename P>
 | 
			
		||||
    void writeDefault(const std::string &s, const std::pair<U,P> &x);
 | 
			
		||||
 | 
			
		||||
    template<std::size_t N>
 | 
			
		||||
    void writeDefault(const std::string &s, const char(&x)[N]);
 | 
			
		||||
 | 
			
		||||
    void writeDefault(const std::string &s, const std::string &x);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    void delete_comma();
 | 
			
		||||
    std::string         fileName_;
 | 
			
		||||
@@ -82,6 +87,8 @@ namespace Grid
 | 
			
		||||
    void readDefault(const std::string &s, std::complex<U> &output);
 | 
			
		||||
    template <typename U>
 | 
			
		||||
    void readDefault(const std::string &s, std::vector<U> &output);
 | 
			
		||||
    template <typename U, typename P>
 | 
			
		||||
    void readDefault(const std::string &s, std::pair<U,P> &output);
 | 
			
		||||
  private:
 | 
			
		||||
    json                jobject_; // main object
 | 
			
		||||
    json                jcur_;  // current json object
 | 
			
		||||
@@ -106,7 +113,7 @@ namespace Grid
 | 
			
		||||
  template <typename U>
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s, const U &x)
 | 
			
		||||
  {
 | 
			
		||||
    //std::cout << "JSONReader::writeDefault(U) : " << s <<  std::endl;
 | 
			
		||||
    //std::cout << "JSONWriter::writeDefault(U) : " << s <<  " " << x <<std::endl;
 | 
			
		||||
    std::ostringstream os;
 | 
			
		||||
    os << std::boolalpha << x;
 | 
			
		||||
    if (s.size())
 | 
			
		||||
@@ -118,7 +125,7 @@ namespace Grid
 | 
			
		||||
  template <typename U>
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s, const std::complex<U> &x)
 | 
			
		||||
  {
 | 
			
		||||
    //std::cout << "JSONReader::writeDefault(complex) : " << s <<  std::endl;
 | 
			
		||||
    //std::cout << "JSONWriter::writeDefault(complex) : " << s <<  " " << x <<  std::endl;
 | 
			
		||||
    std::ostringstream os;
 | 
			
		||||
    os << "["<< std::boolalpha << x.real() << ", " << x.imag() << "]";
 | 
			
		||||
    if (s.size())
 | 
			
		||||
@@ -127,10 +134,22 @@ namespace Grid
 | 
			
		||||
     ss_ << os.str() << " ," ;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename U, typename P>
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s, const std::pair<U,P> &x)
 | 
			
		||||
  {
 | 
			
		||||
    //std::cout << "JSONWriter::writeDefault(pair) : " << s <<  " " << x <<  std::endl;
 | 
			
		||||
    std::ostringstream os;
 | 
			
		||||
    os << "["<< std::boolalpha << "\""<< x.first << "\" , \"" << x.second << "\" ]";
 | 
			
		||||
    if (s.size())
 | 
			
		||||
      ss_ << "\""<< s << "\" : " << os.str() << " ," ;
 | 
			
		||||
    else
 | 
			
		||||
     ss_ << os.str() << " ," ;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename U>
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s, const std::vector<U> &x)
 | 
			
		||||
  {
 | 
			
		||||
    //std::cout << "JSONReader::writeDefault(vec U) : " << s <<  std::endl;
 | 
			
		||||
    //std::cout << "JSONWriter::writeDefault(vec U) : " << s <<  std::endl;
 | 
			
		||||
 | 
			
		||||
    if (s.size())
 | 
			
		||||
      ss_ << " \""<<s<<"\" : [";
 | 
			
		||||
@@ -146,12 +165,12 @@ namespace Grid
 | 
			
		||||
 | 
			
		||||
  template<std::size_t N>
 | 
			
		||||
  void JSONWriter::writeDefault(const std::string &s, const char(&x)[N]){
 | 
			
		||||
    //std::cout << "JSONReader::writeDefault(char U) : " << s <<  std::endl;
 | 
			
		||||
    //std::cout << "JSONWriter::writeDefault(char U) : " << s <<  "  " << x << std::endl;
 | 
			
		||||
 | 
			
		||||
    if (s.size())
 | 
			
		||||
    ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
 | 
			
		||||
      ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
 | 
			
		||||
    else
 | 
			
		||||
    ss_ << "\"" << x << "\" ," ;
 | 
			
		||||
      ss_ << "\"" << x << "\" ," ;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Reader template implementation ////////////////////////////////////////////
 | 
			
		||||
@@ -173,11 +192,35 @@ namespace Grid
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Reader template implementation ////////////////////////////////////////////
 | 
			
		||||
  template <typename U, typename P>
 | 
			
		||||
  void JSONReader::readDefault(const std::string &s, std::pair<U,P> &output)
 | 
			
		||||
  {
 | 
			
		||||
    U first;
 | 
			
		||||
    P second;
 | 
			
		||||
    json j;
 | 
			
		||||
    if (s.size()){
 | 
			
		||||
      //std::cout << "JSONReader::readDefault(pair) : " << s << "  |  "<< jcur_[s] << std::endl;
 | 
			
		||||
      j = jcur_[s];
 | 
			
		||||
    } else {
 | 
			
		||||
      j = jcur_;
 | 
			
		||||
    }
 | 
			
		||||
    json::iterator it = j.begin();
 | 
			
		||||
    jcur_ = *it;
 | 
			
		||||
    read("", first);
 | 
			
		||||
    it++;
 | 
			
		||||
    jcur_ = *it;
 | 
			
		||||
    read("", second);
 | 
			
		||||
    output = std::pair<U,P>(first,second);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  template <typename U>
 | 
			
		||||
  void JSONReader::readDefault(const std::string &s, std::complex<U> &output)
 | 
			
		||||
  {
 | 
			
		||||
    U tmp1, tmp2;
 | 
			
		||||
    //std::cout << "JSONReader::readDefault( complex U) : " << s << "  :  "<< jcur_ << std::endl;
 | 
			
		||||
    //std::cout << "JSONReader::readDefault(complex U) : " << s << "  :  "<< jcur_ << std::endl;
 | 
			
		||||
    json j = jcur_;
 | 
			
		||||
    json::iterator it = j.begin();
 | 
			
		||||
    jcur_ = *it;
 | 
			
		||||
 
 | 
			
		||||
@@ -82,11 +82,11 @@ namespace Optimization {
 | 
			
		||||
      double tmp[2]={a,b};
 | 
			
		||||
      return vld1q_f64(tmp);
 | 
			
		||||
    }
 | 
			
		||||
    //Real double // N:tbc
 | 
			
		||||
    //Real double
 | 
			
		||||
    inline float64x2_t operator()(double a){
 | 
			
		||||
      return vdupq_n_f64(a);
 | 
			
		||||
    }
 | 
			
		||||
    //Integer // N:tbc
 | 
			
		||||
    //Integer
 | 
			
		||||
    inline uint32x4_t operator()(Integer a){
 | 
			
		||||
      return vdupq_n_u32(a);
 | 
			
		||||
    }
 | 
			
		||||
@@ -124,33 +124,32 @@ namespace Optimization {
 | 
			
		||||
  // Nils: Vset untested; not used currently in Grid at all;
 | 
			
		||||
  // git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
 | 
			
		||||
  struct Vset{
 | 
			
		||||
    // Complex float // N:ok
 | 
			
		||||
    // Complex float
 | 
			
		||||
    inline float32x4_t operator()(Grid::ComplexF *a){
 | 
			
		||||
      float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
 | 
			
		||||
      return vld1q_f32(tmp);
 | 
			
		||||
    }
 | 
			
		||||
    // Complex double // N:ok
 | 
			
		||||
    // Complex double
 | 
			
		||||
    inline float64x2_t operator()(Grid::ComplexD *a){
 | 
			
		||||
      double tmp[2]={a[0].imag(),a[0].real()};
 | 
			
		||||
      return vld1q_f64(tmp);
 | 
			
		||||
    }
 | 
			
		||||
    // Real float // N:ok
 | 
			
		||||
    // Real float
 | 
			
		||||
    inline float32x4_t operator()(float *a){
 | 
			
		||||
      float tmp[4]={a[3],a[2],a[1],a[0]};
 | 
			
		||||
      return vld1q_f32(tmp);
 | 
			
		||||
    }
 | 
			
		||||
    // Real double // N:ok
 | 
			
		||||
    // Real double
 | 
			
		||||
    inline float64x2_t operator()(double *a){
 | 
			
		||||
      double tmp[2]={a[1],a[0]};
 | 
			
		||||
      return vld1q_f64(tmp);
 | 
			
		||||
    }
 | 
			
		||||
    // Integer // N:ok
 | 
			
		||||
    // Integer
 | 
			
		||||
    inline uint32x4_t operator()(Integer *a){
 | 
			
		||||
      return vld1q_dup_u32(a);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // N:leaving as is
 | 
			
		||||
  template <typename Out_type, typename In_type>
 | 
			
		||||
  struct Reduce{
 | 
			
		||||
    //Need templated class to overload output type
 | 
			
		||||
@@ -249,9 +248,9 @@ namespace Optimization {
 | 
			
		||||
      return vfmaq_f32(r4, r0, a); //  ar*br-ai*bi ai*br+ar*bi ...
 | 
			
		||||
 | 
			
		||||
      // no fma, use mul and add
 | 
			
		||||
      //float32x4_t r5;
 | 
			
		||||
      //r5 = vmulq_f32(r0, a);
 | 
			
		||||
      //return vaddq_f32(r4, r5);
 | 
			
		||||
      // float32x4_t r5;
 | 
			
		||||
      // r5 = vmulq_f32(r0, a);
 | 
			
		||||
      // return vaddq_f32(r4, r5);
 | 
			
		||||
    }
 | 
			
		||||
    // Complex double
 | 
			
		||||
    inline float64x2_t operator()(float64x2_t a, float64x2_t b){
 | 
			
		||||
@@ -272,9 +271,9 @@ namespace Optimization {
 | 
			
		||||
      return vfmaq_f64(r4, r0, a); //  ar*br-ai*bi ai*br+ar*bi
 | 
			
		||||
 | 
			
		||||
      // no fma, use mul and add
 | 
			
		||||
      //float64x2_t r5;
 | 
			
		||||
      //r5 = vmulq_f64(r0, a);
 | 
			
		||||
      //return vaddq_f64(r4, r5);
 | 
			
		||||
      // float64x2_t r5;
 | 
			
		||||
      // r5 = vmulq_f64(r0, a);
 | 
			
		||||
      // return vaddq_f64(r4, r5);
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
@@ -421,11 +420,6 @@ namespace Optimization {
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
// working, but no restriction on n
 | 
			
		||||
//    template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
 | 
			
		||||
//    template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
 | 
			
		||||
 | 
			
		||||
// restriction on n
 | 
			
		||||
    template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
 | 
			
		||||
    template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
 | 
			
		||||
 | 
			
		||||
@@ -441,7 +435,7 @@ namespace Optimization {
 | 
			
		||||
      sb = vcvt_high_f32_f16(h);
 | 
			
		||||
      // there is no direct conversion from lower float32x4_t to float64x2_t
 | 
			
		||||
      // vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
 | 
			
		||||
      //float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
 | 
			
		||||
      // float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
 | 
			
		||||
      // workaround for clang
 | 
			
		||||
      uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
 | 
			
		||||
      float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
 | 
			
		||||
@@ -547,7 +541,7 @@ namespace Optimization {
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Complex double Reduce
 | 
			
		||||
  template<> // N:by Boyle
 | 
			
		||||
  template<>
 | 
			
		||||
  inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
 | 
			
		||||
    u128d conv; conv.v = in;
 | 
			
		||||
    return Grid::ComplexD(conv.f[0],conv.f[1]);
 | 
			
		||||
@@ -562,9 +556,7 @@ namespace Optimization {
 | 
			
		||||
  //Integer Reduce
 | 
			
		||||
  template<>
 | 
			
		||||
  inline Integer Reduce<Integer, uint32x4_t>::operator()(uint32x4_t in){
 | 
			
		||||
    // FIXME unimplemented
 | 
			
		||||
    printf("Reduce : Missing integer implementation -> FIX\n");
 | 
			
		||||
    assert(0);
 | 
			
		||||
    return vaddvq_u32(in);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -603,4 +595,5 @@ namespace Optimization {
 | 
			
		||||
  typedef Optimization::TimesMinusI TimesMinusISIMD;
 | 
			
		||||
  typedef Optimization::TimesI      TimesISIMD;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -376,7 +376,18 @@ class Grid_simd {
 | 
			
		||||
      Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  friend inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){    
 | 
			
		||||
    Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
 | 
			
		||||
  }
 | 
			
		||||
  friend inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){    
 | 
			
		||||
    Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
 | 
			
		||||
  }
 | 
			
		||||
  friend inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){    
 | 
			
		||||
    Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
 | 
			
		||||
  }
 | 
			
		||||
  friend inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){    
 | 
			
		||||
    Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
 | 
			
		||||
  }
 | 
			
		||||
  ////////////////////////////////////////////////////////////////////
 | 
			
		||||
  // General permute; assumes vector length is same across
 | 
			
		||||
  // all subtypes; may not be a good assumption, but could
 | 
			
		||||
 
 | 
			
		||||
@@ -400,11 +400,13 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
 | 
			
		||||
      if ( sshift[0] == sshift[1] ) {
 | 
			
		||||
	if (splice_dim) {
 | 
			
		||||
	  splicetime-=usecond();
 | 
			
		||||
	  same_node = same_node && GatherSimd(source,dimension,shift,0x3,compress,face_idx);
 | 
			
		||||
	  auto tmp  = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
 | 
			
		||||
	  same_node = same_node && tmp;
 | 
			
		||||
	  splicetime+=usecond();
 | 
			
		||||
	} else { 
 | 
			
		||||
	  nosplicetime-=usecond();
 | 
			
		||||
	  same_node = same_node && Gather(source,dimension,shift,0x3,compress,face_idx);
 | 
			
		||||
	  auto tmp  = Gather(source,dimension,shift,0x3,compress,face_idx);
 | 
			
		||||
	  same_node = same_node && tmp;
 | 
			
		||||
	  nosplicetime+=usecond();
 | 
			
		||||
	}
 | 
			
		||||
      } else {
 | 
			
		||||
@@ -412,13 +414,15 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
 | 
			
		||||
	  splicetime-=usecond();
 | 
			
		||||
	  // if checkerboard is unfavourable take two passes
 | 
			
		||||
	  // both with block stride loop iteration
 | 
			
		||||
	  same_node = same_node && GatherSimd(source,dimension,shift,0x1,compress,face_idx);
 | 
			
		||||
	  same_node = same_node && GatherSimd(source,dimension,shift,0x2,compress,face_idx);
 | 
			
		||||
	  auto tmp1 =  GatherSimd(source,dimension,shift,0x1,compress,face_idx);
 | 
			
		||||
	  auto tmp2 =  GatherSimd(source,dimension,shift,0x2,compress,face_idx);
 | 
			
		||||
	  same_node = same_node && tmp1 && tmp2;
 | 
			
		||||
	  splicetime+=usecond();
 | 
			
		||||
	} else {
 | 
			
		||||
	  nosplicetime-=usecond();
 | 
			
		||||
	  same_node = same_node && Gather(source,dimension,shift,0x1,compress,face_idx);
 | 
			
		||||
	  same_node = same_node && Gather(source,dimension,shift,0x2,compress,face_idx);
 | 
			
		||||
	  auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx);
 | 
			
		||||
	  auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx);
 | 
			
		||||
	  same_node = same_node && tmp1 && tmp2;
 | 
			
		||||
	  nosplicetime+=usecond();
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
@@ -175,7 +175,7 @@ class TensorIndexRecursion {
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  template<class vtype,int N> inline static 
 | 
			
		||||
    void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0)),N> &arg, int i,int j)
 | 
			
		||||
    void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0,0)),N> &arg, int i,int j)
 | 
			
		||||
    {
 | 
			
		||||
      for(int ii=0;ii<N;ii++){
 | 
			
		||||
	TensorIndexRecursion<Level-1>::pokeIndex(ret._internal[ii],arg._internal[ii],i,j);
 | 
			
		||||
@@ -191,7 +191,7 @@ class TensorIndexRecursion {
 | 
			
		||||
      }}
 | 
			
		||||
    }
 | 
			
		||||
  template<class vtype,int N> inline static 
 | 
			
		||||
    void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0)),N> &arg, int i,int j)
 | 
			
		||||
    void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0,0)),N> &arg, int i,int j)
 | 
			
		||||
    {
 | 
			
		||||
      for(int ii=0;ii<N;ii++){
 | 
			
		||||
      for(int jj=0;jj<N;jj++){
 | 
			
		||||
 
 | 
			
		||||
@@ -219,7 +219,8 @@ void Grid_init(int *argc,char ***argv)
 | 
			
		||||
    int MB;
 | 
			
		||||
    arg= GridCmdOptionPayload(*argv,*argv+*argc,"--shm");
 | 
			
		||||
    GridCmdOptionInt(arg,MB);
 | 
			
		||||
    CartesianCommunicator::MAX_MPI_SHM_BYTES = MB*1024*1024;
 | 
			
		||||
    uint64_t MB64 = MB;
 | 
			
		||||
    CartesianCommunicator::MAX_MPI_SHM_BYTES = MB64*1024LL*1024LL;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if( GridCmdOptionExists(*argv,*argv+*argc,"--shm-hugepages") ){
 | 
			
		||||
@@ -242,6 +243,12 @@ void Grid_init(int *argc,char ***argv)
 | 
			
		||||
    fname<<CartesianCommunicator::RankWorld();
 | 
			
		||||
    fp=freopen(fname.str().c_str(),"w",stdout);
 | 
			
		||||
    assert(fp!=(FILE *)NULL);
 | 
			
		||||
 | 
			
		||||
    std::ostringstream ename;
 | 
			
		||||
    ename<<"Grid.stderr.";
 | 
			
		||||
    ename<<CartesianCommunicator::RankWorld();
 | 
			
		||||
    fp=freopen(ename.str().c_str(),"w",stderr);
 | 
			
		||||
    assert(fp!=(FILE *)NULL);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -7,7 +7,7 @@ namespace Grid{
 | 
			
		||||
  class Lexicographic {
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
    static inline void CoorFromIndex (std::vector<int>& coor,int index,std::vector<int> &dims){
 | 
			
		||||
    static inline void CoorFromIndex (std::vector<int>& coor,int index,const std::vector<int> &dims){
 | 
			
		||||
      int nd= dims.size();
 | 
			
		||||
      coor.resize(nd);
 | 
			
		||||
      for(int d=0;d<nd;d++){
 | 
			
		||||
@@ -16,7 +16,7 @@ namespace Grid{
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    static inline void IndexFromCoor (std::vector<int>& coor,int &index,std::vector<int> &dims){
 | 
			
		||||
    static inline void IndexFromCoor (const std::vector<int>& coor,int &index,const std::vector<int> &dims){
 | 
			
		||||
      int nd=dims.size();
 | 
			
		||||
      int stride=1;
 | 
			
		||||
      index=0;
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user