1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00

for dwf_precondition

This commit is contained in:
Azusa Yamaguchi 2018-05-30 09:48:52 +01:00
parent 8b3e738269
commit a5645a7efe
3 changed files with 1488 additions and 0 deletions

View File

@ -0,0 +1,278 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/InexactPrecConjugateGradient.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_INEXACT_PREC_CONJUGATE_GRADIENT_H_
#define GRID_INEXACT_PREC_CONJUGATE_GRADIENT_H_
namespace Grid {
//Inexact preconditioned CG based on Golub, Ye, SIAM J. Sci. Comput., 21(4), 1305–1320.
//(https://pdfs.semanticscholar.org/d2a9/d5bab02146a7fe3a244677432d21e33a2d98.pdf)
template <class Field>
class InexactPreconditionedConjugateGradient : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
LinearOperatorBase<Field> &Prec;
InexactPreconditionedConjugateGradient(LinearOperatorBase<Field> &_Prec, RealD tol, Integer maxit, bool err_on_no_conv = true)
: Prec(_Prec),
Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
Real ssq = norm2(src);
RealD rsq = Tolerance * Tolerance * ssq; //inner stopping condition
Field p(src);
Field r(src);
Field rnm1(src);
Field mmp(src);
Field z(src);
//Initialize variables
Linop.HermOp(psi, mmp);
r = src - mmp;
Real cp = norm2(r);
p = zero;
Real alpha = 0, beta = 0;
Real z_nm1_dot_r_nm1;
int n;
for(n=1; n <= MaxIterations; n++) {
//Check stopping condition
if (cp <= rsq) {
Linop.HermOp(psi, mmp);
r = mmp - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(r));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "InexactPreconditionedConjugateGradient Converged on iteration " << n << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = n;
return;
}
std::cout << GridLogIterative << std::setprecision(8)
<< "InexactPreconditionedConjugateGradient: n=" << n << " residual " << cp << " target " << rsq << std::endl;
//Apply preconditioner to current residual
Prec.HermOp(r, z);
//Update beta and store appropriate variables for next iteration
Real z_n_dot_r_n = sqrt(norm(innerProduct(z,r)));
if(n>1){
// z^T_n ( r_n - r_{n-1} )
// -----------------------
// z^T_{n-1} r_{n-1}
Real z_n_dot_r_nm1 = sqrt(norm(innerProduct(z,rnm1)));
beta = ( z_n_dot_r_n - z_n_dot_r_nm1 ) / z_nm1_dot_r_nm1;
std::cout << GridLogIterative << "beta " << beta << std::endl;
}
z_nm1_dot_r_nm1 = z_n_dot_r_n; //for next iteration
rnm1 = r;
axpy(p, beta, p, z); //p = beta * p + z
//Compute alpha
Linop.HermOp(p, mmp);
alpha = z_n_dot_r_n / sqrt(norm(innerProduct(p, mmp)));
std::cout << GridLogIterative << "alpha " << alpha << std::endl;
//Update residual and solution
cp = axpy_norm(r, -alpha, mmp, r);
axpy(psi, alpha, p, psi);
}
std::cout << GridLogMessage << "InexactPreconditionedConjugateGradient did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = n;
}
};
template<class Field>
class PolynomialPreconditioner : public LinearOperatorBase<Field> {
Chebyshev<Field> Cheby;
LinearOperatorBase<Field> &linop;
public:
int InnerIterations;
int order;
PolynomialPreconditioner(LinearOperatorBase<Field> &_linop,RealD lo, RealD hi, int _order)
: linop(_linop), Cheby(lo,hi,_order,__InverseApproximation)
{
InnerIterations=0;
order = _order;
};
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);
n1 = 0; n2 = norm2(out);
}
void HermOp(const Field &in, Field &out){
Cheby(linop,in,out);
InnerIterations+=order;
}
};
template<class Field>
class DoNothingLinearOperator : public LinearOperatorBase<Field> {
public:
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ out = in; n1 = 0; n2 = norm2(out); }
void HermOp(const Field &in, Field &out){ out = in; }
};
template<class Field>
class FixedIterConjugateGradientPreconditioner : public LinearOperatorBase<Field> {
public:
LinearOperatorBase<Field> &linop;
ConjugateGradient<Field> CG;
FixedIterConjugateGradientPreconditioner (LinearOperatorBase<Field> &_linop, Integer _iter): linop(_linop), CG(1e-20, _iter){
CG.ErrorOnNoConverge = false;
}
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out = zero;
CG(linop,in,out);
n2 = norm2(out);
}
void HermOp(const Field &in, Field &out){
out = zero;
CG(linop,in,out);
}
};
template<class Field>
class SloppyConjugateGradientPreconditioner : public LinearOperatorBase<Field> {
public:
LinearOperatorBase<Field> &linop;
ConjugateGradient<Field> CG;
int InnerIterations;
SloppyConjugateGradientPreconditioner (LinearOperatorBase<Field> &_linop, Real _resid, Integer max_iter): linop(_linop), CG(_resid, max_iter), InnerIterations(0){
}
void ResetCounters(){ InnerIterations = 0; }
void OpDiag (const Field &in, Field &out){ assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
void Op (const Field &in, Field &out){ assert(0); }
void AdjOp (const Field &in, Field &out){ assert(0); }
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out = zero;
CG(linop,in,out);
InnerIterations += CG.IterationsToComplete;
n2 = norm2(out);
}
void HermOp(const Field &in, Field &out){
out = zero;
CG(linop,in,out);
InnerIterations += CG.IterationsToComplete;
}
};
template<class FieldH, class FieldL>
class SloppyConjugateGradientLowerPrecPreconditioner : public LinearOperatorBase<FieldH> {
public:
LinearOperatorBase<FieldL> &linop;
ConjugateGradient<FieldL> CG;
GridBase* L_grid; //lower-prec Grid
int InnerIterations;
FieldL tmp_l1;
FieldL tmp_l2;
SloppyConjugateGradientLowerPrecPreconditioner (LinearOperatorBase<FieldL> &_linop, GridBase* _L_grid, Real _resid, Integer max_iter): linop(_linop), CG(_resid, max_iter), InnerIterations(0), L_grid(_L_grid), tmp_l1(_L_grid), tmp_l2(_L_grid){
CG.ErrorOnNoConverge = false;
}
void ResetCounters(){ InnerIterations = 0; }
void OpDiag (const FieldH &in, FieldH &out){ assert(0); }
void OpDir (const FieldH &in, FieldH &out,int dir,int disp){ assert(0); }
void Op (const FieldH &in, FieldH &out){ assert(0); }
void AdjOp (const FieldH &in, FieldH &out){ assert(0); }
void HermOpAndNorm(const FieldH &in, FieldH &out,RealD &n1,RealD &n2){
precisionChange(tmp_l1, in);
tmp_l2 = zero;
CG(linop,tmp_l1,tmp_l2);
InnerIterations += CG.IterationsToComplete;
precisionChange(out, tmp_l2);
n2 = norm2(tmp_l2);
}
void HermOp(const FieldH &in, FieldH &out){
precisionChange(tmp_l1, in);
tmp_l2 = zero;
CG(linop,tmp_l1,tmp_l2);
InnerIterations += CG.IterationsToComplete;
precisionChange(out, tmp_l2);
}
};
}
#endif

View File

@ -0,0 +1,963 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_cg_prec.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include<bitset>
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
//Preconditioning: M psi = chi
// = M P^-1 P psi = chi
// = M P^-1 psi' = chi
//Solve for psi' using M P^-1 as operator, then apply P^-1 psi' = psi
//Inexact preconditioned CG requires slight modification because we want to avoid computing P^-1 exactly
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
//The compressor
#if 0
//Basic copy of WilsonCompressor for demonstration
template<class _Hspinor,class _Spinor, class projector>
class WilsonTestCompressorTemplate
{
public:
int mu,dag;
void Point(int p) { mu=p; };
WilsonTestCompressorTemplate(int _dag=0){
//printf("WilsonTestCompressorTemplate constructor\n");
dag = _dag;
}
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _Hspinor SiteHalfCommSpinor;
typedef typename SiteHalfSpinor::vector_type vComplexIn;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexIn); //number of complex numbers in SiteHalfSpinor
inline int CommDatumSize(void) {
//printf("WilsonTestCompressorTemplate CommDatumSize\n");
return sizeof(SiteHalfCommSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
inline void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
//printf("WilsonTestCompressorTemplate Compress\n");
projector::Proj(buf[o],in,mu,dag);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
//printf("WilsonTestCompressorTemplate Exchange\n");
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
inline void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o) {
//printf("WilsonTestCompressorTemplate Decompress\n");
assert(0);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
//printf("WilsonTestCompressorTemplate CompressExchange\n");
SiteHalfSpinor temp1, temp2,temp3,temp4;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(out0[j],out1[j],temp1,temp2,type);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return false; }
};
#elif 0
//Compressor that unpacks vectorized data to scalar
template<class _Hspinor,class _Spinor, class projector>
class WilsonTestCompressorTemplate
{
public:
int mu,dag;
void Point(int p) { mu=p; };
WilsonTestCompressorTemplate(int _dag=0){
dag = _dag;
}
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _Hspinor SiteHalfCommSpinor;
typedef typename SiteHalfSpinor::vector_type vComplexIn;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexIn); //number of complex numbers in SiteHalfSpinor
typedef typename SiteHalfSpinor::scalar_object ScalarSiteHalfSpinor;
constexpr static int Nsimd = vComplexIn::Nsimd();
inline int CommDatumSize(void) {
return Nsimd*sizeof(ScalarSiteHalfSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
inline void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
SiteHalfSpinor hsp;
projector::Proj(hsp,in,mu,dag);
ScalarSiteHalfSpinor* to = (ScalarSiteHalfSpinor*)buf + o*Nsimd;
std::vector<ScalarSiteHalfSpinor*> extract_args(Nsimd);
for(int i=0;i<Nsimd;i++) extract_args[i] = to+i;
extract1(hsp,extract_args,0);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
ScalarSiteHalfSpinor* vpp0 = (ScalarSiteHalfSpinor*)vp0 + o*Nsimd;
ScalarSiteHalfSpinor* vpp1 = (ScalarSiteHalfSpinor*)vp1 + o*Nsimd;
std::vector<ScalarSiteHalfSpinor*> merge_args0(Nsimd), merge_args1(Nsimd);
for(int i=0;i<Nsimd;i++){
merge_args0[i] = vpp0+i;
merge_args1[i] = vpp1+i;
}
SiteHalfSpinor vt0,vt1;
merge1(vt0,merge_args0,0);
merge1(vt1,merge_args1,0);
exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
inline void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o) {
ScalarSiteHalfSpinor* hin = (ScalarSiteHalfSpinor*)in + o*Nsimd;
std::vector<ScalarSiteHalfSpinor*> merge_args(Nsimd);
for(int i=0;i<Nsimd;i++) merge_args[i] = hin+i;
merge1(out[o],merge_args,0);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(temp3,temp4,temp1,temp2,type);
ScalarSiteHalfSpinor* hout0 = (ScalarSiteHalfSpinor*)out0 + j*Nsimd;
ScalarSiteHalfSpinor* hout1 = (ScalarSiteHalfSpinor*)out1 + j*Nsimd;
std::vector<ScalarSiteHalfSpinor*> extract_args0(Nsimd), extract_args1(Nsimd);
for(int i=0;i<Nsimd;i++){
extract_args0[i] = hout0+i;
extract_args1[i] = hout1+i;
}
extract1(temp3,extract_args0,0);
extract1(temp4,extract_args1,0);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return true; }
};
#else
//Access elements of std::complex
template<typename T>
inline T & cmplx_reim(std::complex<T> &c, const int reim){
return reinterpret_cast<T(&)[2]>(c)[reim];
}
template<typename T>
inline const T & cmplx_reim(const std::complex<T> &c, const int reim){
return reinterpret_cast<const T(&)[2]>(c)[reim];
}
//Pack and unpack float/double to fixed point representation of SZ bits
template<int SZ>
struct signedIntMap{};
template<>
struct signedIntMap<8>{ typedef int8_t type; };
template<>
struct signedIntMap<16>{ typedef int16_t type; };
template<typename T, int SZ>
inline typename signedIntMap<SZ>::type packN(T val){
return typename signedIntMap<SZ>::type( (1<<(SZ-2) ) * val );
}
template<typename T, int SZ>
inline T unpackN(typename signedIntMap<SZ>::type val){
return T(val)/(1<<(SZ-2));
}
template<typename T>
struct getHalfSpinorColors{
//template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
enum { value = sizeof(typename T::element::element)/sizeof(typename T::element::element::element) };
};
//Compressor that compresses to a single magnitude and Nhs*Dimension fixed point integers of size packSize bits
template<class _Hspinor,class _Spinor, class projector, int packSize = 16>
class WilsonTestCompressorTemplate
{
public:
int mu,dag;
void Point(int p) { mu=p; };
WilsonTestCompressorTemplate(int _dag=0){
dag = _dag;
}
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _Hspinor SiteHalfCommSpinor;
typedef typename SiteHalfSpinor::vector_type vComplexIn;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexIn); //number of complex numbers in SiteHalfSpinor
typedef typename SiteHalfSpinor::scalar_object ScalarSiteHalfSpinor;
constexpr static int Nsimd = vComplexIn::Nsimd();
constexpr static int Dimension = getHalfSpinorColors<SiteHalfSpinor>::value;
typedef typename ScalarSiteHalfSpinor::scalar_type stype; //std::complex
typedef typename stype::value_type srtype; //float/double
//Pack and unpack *scalar* SiteHalfSpinor objects
void packSpinor(void* tov, const ScalarSiteHalfSpinor &from){
uint8_t* to = (uint8_t*)tov;
typedef typename signedIntMap<packSize>::type packedType;
srtype max = 0;
for(int s=0;s<Nhs;s++)
for(int c=0;c<Dimension;c++)
for(int reim=0;reim<2;reim++)
if(fabs(cmplx_reim( from()(s)(c), reim )) > max )
max = fabs(cmplx_reim( from()(s)(c), reim )) ;
*( (srtype*)to ) = max; //copy the normalization to the buffer
to += sizeof(srtype);
packedType *top = (packedType*)to;
packedType p;
srtype q;
for(int s=0;s<Nhs;s++)
for(int c=0;c<Dimension;c++)
for(int reim=0;reim<2;reim++){
q = cmplx_reim( from()(s)(c), reim );
if(max != 0.) q /= max;
*(top++) = packN<srtype,packSize>(q);
}
}
void packSpinor(void* tov, const SiteHalfSpinor &from){
uint8_t* to = (uint8_t*)tov;
std::vector<ScalarSiteHalfSpinor> extracted(Nsimd);
extract(from,extracted);
static const int incr = sizeof(srtype) + Nhs*Dimension*2*sizeof(typename signedIntMap<packSize>::type);
for(int i=0;i<Nsimd;i++){
packSpinor((void*)to, extracted[i]);
to += incr;
}
}
void unpackSpinor(ScalarSiteHalfSpinor &to, void* fromv){
uint8_t* from = (uint8_t*)fromv;
typedef typename signedIntMap<packSize>::type packedType;
srtype norm = *( (srtype*)from );
from += sizeof(srtype);
packedType *fromp = (packedType*)from;
srtype q;
for(int s=0;s<Nhs;s++)
for(int c=0;c<Dimension;c++)
for(int reim=0;reim<2;reim++){
q = unpackN<srtype,packSize>(*(fromp++) );
if(norm != 0.) q *= norm;
cmplx_reim( to()(s)(c), reim ) = q;
}
}
void unpackSpinor(SiteHalfSpinor &to, void* fromv){
uint8_t* from = (uint8_t*)fromv;
std::vector<ScalarSiteHalfSpinor> unpacked(Nsimd);
static const int incr = sizeof(srtype) + Nhs*Dimension*2*sizeof(typename signedIntMap<packSize>::type);
for(int i=0;i<Nsimd;i++){
unpackSpinor(unpacked[i],(void*)from);
from += incr;
}
merge(to,unpacked);
}
inline int CommDatumSize(void) {
return Nsimd*( sizeof(srtype) + Nhs*Dimension*2*sizeof(typename signedIntMap<packSize>::type) );
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
SiteHalfSpinor hsp;
projector::Proj(hsp,in,mu,dag);
uint8_t* to = (uint8_t*)buf + o*CommDatumSize();
packSpinor(to, hsp);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
uint8_t* vpp0 = (uint8_t*)vp0 + o*CommDatumSize();
uint8_t* vpp1 = (uint8_t*)vp1 + o*CommDatumSize();
SiteHalfSpinor vt0, vt1;
unpackSpinor(vt0, vpp0);
unpackSpinor(vt1, vpp1);
exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o) {
uint8_t* hin = (uint8_t*)in + o*CommDatumSize();
unpackSpinor(out[o],hin);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(temp3,temp4,temp1,temp2,type);
uint8_t* hout0 = (uint8_t*)out0 + j*CommDatumSize();
uint8_t* hout1 = (uint8_t*)out1 + j*CommDatumSize();
packSpinor(hout0, temp3);
packSpinor(hout1, temp4);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return true; }
};
#endif
template<typename HS,typename S, int packSize> using WilsonTestCompressor = WilsonTestCompressorTemplate<HS,S,WilsonProjector,packSize>;
template<class vobj,class cobj>
class WilsonStencilBasic : public CartesianStencil<vobj,cobj> {
public:
double timer0;
double timer1;
double timer2;
double timer3;
double timer4;
double timer5;
double timer6;
uint64_t callsi;
void ZeroCountersi(void)
{
timer0=0;
timer1=0;
timer2=0;
timer3=0;
timer4=0;
timer5=0;
timer6=0;
callsi=0;
}
void Reporti(int calls)
{
if ( timer0 ) std::cout << GridLogMessage << " timer0 (HaloGatherOpt) " <<timer0/calls <<std::endl;
if ( timer1 ) std::cout << GridLogMessage << " timer1 (Communicate) " <<timer1/calls <<std::endl;
if ( timer2 ) std::cout << GridLogMessage << " timer2 (CommsMerge ) " <<timer2/calls <<std::endl;
if ( timer3 ) std::cout << GridLogMessage << " timer3 (commsMergeShm) " <<timer3/calls <<std::endl;
if ( timer4 ) std::cout << GridLogMessage << " timer4 " <<timer4 <<std::endl;
}
std::vector<int> same_node;
std::vector<int> surface_list;
WilsonStencilBasic(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances)
: CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances) ,
same_node(npoints)
{
ZeroCountersi();
surface_list.resize(0);
};
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
{
std::vector<std::vector<CommsRequest_t> > reqs;
this->HaloExchangeOptGather(source,compress);
double t1=usecond();
this->Communicate();
double t2=usecond(); timer1 += t2-t1;
this->CommsMerge(compress);
double t3=usecond(); timer2 += t3-t2;
this->CommsMergeSHM(compress);
double t4=usecond(); timer3 += t4-t3;
}
template <class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress){
this->Prepare();
double t0=usecond();
this->HaloGatherOpt(source,compress);
double t1=usecond();
timer0 += t1-t0;
callsi++;
}
template <class compressor>
void HaloGatherOpt(const Lattice<vobj> &source,compressor &compress)
{
this->halogtime-=usecond();
this->HaloGather(source,compress);
this->halogtime+=usecond();
}
};
//This is hideous
template<class S, int packSize = 16>
class WilsonCompressedCommsImpl: public WilsonImpl<S,FundamentalRepresentation,CoeffReal>{
public:
typedef WilsonImpl<S,FundamentalRepresentation,CoeffReal> WilsonBase;
#define INHERIT_BASE(TYPE) typedef typename WilsonBase::TYPE TYPE
INHERIT_BASE(Gimpl);
INHERIT_GIMPL_TYPES(Gimpl);
INHERIT_BASE(Coeff_t);
INHERIT_BASE(SiteSpinor);
INHERIT_BASE(SitePropagator);
INHERIT_BASE(SiteHalfSpinor);
INHERIT_BASE(SiteHalfCommSpinor);
INHERIT_BASE(SiteDoubledGaugeField);
INHERIT_BASE(FermionField);
INHERIT_BASE(PropagatorField);
INHERIT_BASE(DoubledGaugeField);
//typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonTestCompressor<SiteHalfSpinor, SiteSpinor, packSize> Compressor;
INHERIT_BASE(ImplParams);
//INHERIT_BASE(StencilImpl);
typedef WilsonStencilBasic<SiteSpinor, SiteHalfSpinor> StencilImpl;
WilsonCompressedCommsImpl(const ImplParams &p = ImplParams()) : WilsonBase(p){}
inline void multLink(SiteHalfSpinor &phi,
const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi,
int mu,
StencilEntry *SE,
StencilImpl &St) {
mult(&phi(), &U(mu), &chi());
}
#undef INHERIT_BASE
};
typedef WilsonCompressedCommsImpl<vComplexF,8> WilsonCompressedComms8ImplF;
typedef WilsonCompressedCommsImpl<vComplexD,8> WilsonCompressedComms8ImplD;
typedef WilsonCompressedCommsImpl<vComplexF,16> WilsonCompressedComms16ImplF;
typedef WilsonCompressedCommsImpl<vComplexD,16> WilsonCompressedComms16ImplD;
#define TO_INSTANTIATE \
DOIT(WilsonCompressedComms8ImplF)\
DOIT(WilsonCompressedComms8ImplD)\
DOIT(WilsonCompressedComms16ImplF)\
DOIT(WilsonCompressedComms16ImplD)
#include "InstantiateImpl.impl"
#undef TO_INSTANTIATE
typedef DomainWallFermion<WilsonCompressedComms8ImplD> DomainWallFermionCompressedComms8D;
typedef DomainWallFermion<WilsonCompressedComms8ImplF> DomainWallFermionCompressedComms8F;
typedef DomainWallFermion<WilsonCompressedComms16ImplD> DomainWallFermionCompressedComms16D;
typedef DomainWallFermion<WilsonCompressedComms16ImplF> DomainWallFermionCompressedComms16F;
template<typename T>
T parse(const std::string &name, std::istream &in){
std::string p;
in >> p;
assert(p==name);
char eq;
in >> eq;
assert(eq == '=');
T out;
in >> out;
return out;
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int Ls=8;
RealD mass=0.1;
RealD outer_tol = 1e-8;
RealD inner_tol_full = 1e-5;
RealD inner_tol_half = 1e-5;
RealD inner_tol_16c = 1e-5;
RealD inner_tol_8c = 1e-5;
RealD relup_delta_full = 0.1;
RealD relup_delta_half = 0.1;
RealD relup_delta_16c = 0.1;
RealD relup_delta_8c = 0.1;
std::string config_file = "";
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--params"){
std::ifstream f(argv[i+1]);
f.exceptions ( std::ifstream::failbit | std::ifstream::badbit );
Ls = parse<int>("Ls", f);
#define PARSEIT(NM) NM = parse<RealD>(#NM, f)
PARSEIT(mass);
PARSEIT(outer_tol);
PARSEIT(inner_tol_full);
PARSEIT(inner_tol_half);
PARSEIT(inner_tol_16c);
PARSEIT(inner_tol_8c);
PARSEIT(relup_delta_full);
PARSEIT(relup_delta_half);
PARSEIT(relup_delta_16c);
PARSEIT(relup_delta_8c);
#undef PARSEIT
//f >> outer_tol >> inner_tol_full >> inner_tol_half >> inner_tol_16c >> inner_tol_8c;
}else if(std::string(argv[i]) == "--config"){
config_file = argv[i+1];
}
}
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
GridCartesian * UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
GridCartesian * FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_f);
GridRedBlackCartesian * FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_f);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeFermionD src(FGrid); random(RNG5,src);
LatticeFermionD result(FGrid); result=zero;
LatticeGaugeFieldD Umu(UGrid);
LatticeGaugeFieldF Umu_f(UGrid_f);
if(config_file.size() > 0){
FieldMetaData header;
NerscIO::readConfiguration(Umu,header,config_file);
}else{
SU3::HotConfiguration(RNG4,Umu);
}
precisionChange(Umu_f,Umu);
RealD M5=1.8;
LatticeFermionD src_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
if(0){ //Test preconditioned CG
LatticeFermionD result_o(FrbGrid);
LatticeFermionD result_o_2(FrbGrid);
result_o.checkerboard = Odd;
result_o = zero;
result_o_2.checkerboard = Odd;
result_o_2 = zero;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
//DoNothingLinearOperator<LatticeFermionD> Prec;
//FixedIterConjugateGradientPreconditioner<LatticeFermionD> Prec(HermOpEO, 20);
SloppyConjugateGradientPreconditioner<LatticeFermionD> Prec(HermOpEO, 1e-2, 1000);
std::cout << "Preconditioned CG" << std::endl;
InexactPreconditionedConjugateGradient<LatticeFermionD> pCG(Prec,1.0e-8,10000);
pCG(HermOpEO,src_o,result_o);
std::cout << "Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o_2);
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << "pCG HermOp applications " << pCG.IterationsToComplete << "(outer) + " << Prec.InnerIterations << "(inner) = " << pCG.IterationsToComplete + Prec.InnerIterations << std::endl;
std::cout << "CG HermOp applications " << CG.IterationsToComplete << std::endl;
std::cout << "Diff between results: " << diff << std::endl;
}
if(0){ //Test compressor
LatticeFermionD result_o(FrbGrid);
LatticeFermionD result_o_2(FrbGrid);
result_o.checkerboard = Odd;
result_o = zero;
result_o_2.checkerboard = Odd;
result_o_2 = zero;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
DomainWallFermionCompressedComms16D DdwfC(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionCompressedComms16D,LatticeFermionD> HermOpEOC(DdwfC);
std::cout << "Starting regular CG with compressed operator" << std::endl;
Integer iter1;
{
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG.ErrorOnNoConverge = false;
CG(HermOpEOC,src_o,result_o);
iter1 = CG.IterationsToComplete;
}
Integer iter2;
{
std::cout << "Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o_2);
iter2 = CG.IterationsToComplete;
}
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << "CG HermOp CC applications " << iter1 << std::endl;
std::cout << "CG HermOp applications " << iter2 << std::endl;
std::cout << "Diff between results: " << diff << std::endl;
}
if(1){ //Compare mixed prec restarted single/single internal with same but with single/compressed
LatticeFermionD result_o_full(FrbGrid);
LatticeFermionD result_o_half(FrbGrid);
LatticeFermionD result_o_16(FrbGrid);
LatticeFermionD result_o_8(FrbGrid);
result_o_full.checkerboard = Odd;
result_o_full = zero;
result_o_16 = result_o_8 = result_o_half = result_o_full;
//Std
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
DomainWallFermionF Ddwf_f(Umu_f,*FGrid_f,*FrbGrid_f,*UGrid_f,*UrbGrid_f,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionF,LatticeFermionF> HermOpEO_f(Ddwf_f);
//1/2 prec
DomainWallFermionFH Ddwfhalf_f(Umu_f,*FGrid_f,*FrbGrid_f,*UGrid_f,*UrbGrid_f,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionFH,LatticeFermionF> HermOpEOhalf_f(Ddwfhalf_f);
//16
DomainWallFermionCompressedComms16F DdwfC16_f(Umu_f,*FGrid_f,*FrbGrid_f,*UGrid_f,*UrbGrid_f,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionCompressedComms16F,LatticeFermionF> HermOpEOC16_f(DdwfC16_f);
//8
DomainWallFermionCompressedComms8F DdwfC8_f(Umu_f,*FGrid_f,*FrbGrid_f,*UGrid_f,*UrbGrid_f,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionCompressedComms8F,LatticeFermionF> HermOpEOC8_f(DdwfC8_f);
#define ALGORITHM_MIXEDCG
//#define ALGORITHM_RELUP
//#define ALGORITHM_SLOPPY_PREC_CG
#ifdef ALGORITHM_MIXEDCG
std::cout << "Starting mixed CG with single/compressed-16 inner\n";
Integer inner_16, outer_16, patchup_16;
{
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(outer_tol, 10000, 50, FrbGrid_f, HermOpEOC16_f, HermOpEO);
mCG.InnerTolerance = inner_tol_16c;
mCG(src_o,result_o_16);
inner_16 = mCG.TotalInnerIterations; outer_16 = mCG.TotalOuterIterations; patchup_16 = mCG.TotalFinalStepIterations;
}
std::cout << "Starting mixed CG with single/compressed-8 inner\n";
Integer inner_8, outer_8, patchup_8;
{
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(outer_tol, 10000, 50, FrbGrid_f, HermOpEOC8_f, HermOpEO);
mCG.InnerTolerance = inner_tol_8c;
mCG(src_o,result_o_8);
inner_8 = mCG.TotalInnerIterations; outer_8 = mCG.TotalOuterIterations; patchup_8 = mCG.TotalFinalStepIterations;
}
std::cout << "Starting mixed CG with single/half inner\n";
Integer inner_half, outer_half, patchup_half;
{
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(outer_tol, 10000, 50, FrbGrid_f, HermOpEOhalf_f, HermOpEO);
mCG.InnerTolerance = inner_tol_half;
mCG(src_o,result_o_half);
inner_half = mCG.TotalInnerIterations; outer_half = mCG.TotalOuterIterations; patchup_half = mCG.TotalFinalStepIterations;
}
std::cout << "Starting mixed CG with single/single inner\n";
Integer inner_full, outer_full, patchup_full;
{
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(outer_tol, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
mCG.InnerTolerance = inner_tol_full;
mCG(src_o,result_o_full);
inner_full = mCG.TotalInnerIterations; outer_full = mCG.TotalOuterIterations; patchup_full = mCG.TotalFinalStepIterations;
}
#elif defined(ALGORITHM_RELUP)
std::cout << "Starting relup CG with single/compressed-16 inner\n";
Integer inner_16, outer_16, patchup_16;
{
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> relup(outer_tol, 2000, relup_delta_16c, FrbGrid_f, HermOpEOC16_f, HermOpEO);
relup(src_o,result_o_16);
inner_16 = relup.IterationsToComplete; outer_16 = relup.ReliableUpdatesPerformed; patchup_16 = relup.IterationsToCleanup;
}
std::cout << "Starting relup CG with single/compressed-8 inner\n";
Integer inner_8, outer_8, patchup_8;
{
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> relup(outer_tol, 2000, relup_delta_8c, FrbGrid_f, HermOpEOC8_f, HermOpEO);
relup.ErrorOnNoConverge = false;
relup(src_o,result_o_8);
inner_8 = relup.IterationsToComplete; outer_8 = relup.ReliableUpdatesPerformed; patchup_8 = relup.IterationsToCleanup;
}
std::cout << "Starting relup CG with single/half inner\n";
Integer inner_half, outer_half, patchup_half;
{
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> relup(outer_tol, 2000, relup_delta_half, FrbGrid_f, HermOpEOhalf_f, HermOpEO);
relup(src_o,result_o_half);
inner_half = relup.IterationsToComplete; outer_half = relup.ReliableUpdatesPerformed; patchup_half = relup.IterationsToCleanup;
}
std::cout << "Starting relup CG with single/single inner\n";
Integer inner_full, outer_full, patchup_full;
{
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> relup(outer_tol, 2000, relup_delta_full, FrbGrid_f, HermOpEO_f, HermOpEO);
relup(src_o,result_o_full);
inner_full = relup.IterationsToComplete; outer_full = relup.ReliableUpdatesPerformed; patchup_full = relup.IterationsToCleanup;
}
#elif defined(ALGORITHM_SLOPPY_PREC_CG)
std::cout << "Starting sloppy pCG with single/compressed-16 inner\n";
Integer inner_16, outer_16;
{
SloppyConjugateGradientLowerPrecPreconditioner<LatticeFermionD,LatticeFermionF> prec(HermOpEOC16_f, FrbGrid_f, inner_tol_16c, 1000);
InexactPreconditionedConjugateGradient<LatticeFermionD> CG(prec, outer_tol, 100);
CG(HermOpEO,src_o,result_o_16);
inner_16 = prec.InnerIterations; outer_16 = CG.IterationsToComplete;
}
std::cout << "Starting sloppy pCG with single/compressed-8 inner\n";
Integer inner_8, outer_8;
{
SloppyConjugateGradientLowerPrecPreconditioner<LatticeFermionD,LatticeFermionF> prec(HermOpEOC8_f, FrbGrid_f, inner_tol_8c, 1000);
InexactPreconditionedConjugateGradient<LatticeFermionD> CG(prec, outer_tol, 100);
CG(HermOpEO,src_o,result_o_8);
inner_8 = prec.InnerIterations; outer_8 = CG.IterationsToComplete;
}
std::cout << "Starting sloppy pCG with single/half inner\n";
Integer inner_half, outer_half;
{
SloppyConjugateGradientLowerPrecPreconditioner<LatticeFermionD,LatticeFermionF> prec(HermOpEOhalf_f, FrbGrid_f, inner_tol_half, 1000);
InexactPreconditionedConjugateGradient<LatticeFermionD> CG(prec, outer_tol, 100);
CG(HermOpEO,src_o,result_o_half);
inner_half = prec.InnerIterations; outer_half = CG.IterationsToComplete;
}
std::cout << "Starting sloppy pCG with single/single inner\n";
Integer inner_full, outer_full;
{
SloppyConjugateGradientLowerPrecPreconditioner<LatticeFermionD,LatticeFermionF> prec(HermOpEO_f, FrbGrid_f, inner_tol_full, 1000);
InexactPreconditionedConjugateGradient<LatticeFermionD> CG(prec, outer_tol, 100);
CG(HermOpEO,src_o,result_o_full);
inner_full = prec.InnerIterations; outer_full = CG.IterationsToComplete;
}
#endif
std::cout << "Ls " << Ls << std::endl;
std::cout << "Mass " << mass << std::endl;
std::cout << "Outer tolerance " << outer_tol << std::endl;
#if defined(ALGORITHM_MIXEDCG) || defined(ALGORITHM_SLOPPY_PREC_CG)
std::cout << "Inner tol full " << inner_tol_full << std::endl;
std::cout << "Inner tol 1/2 prec " << inner_tol_half << std::endl;
std::cout << "Inner tol compressed-16 " << inner_tol_16c << std::endl;
std::cout << "Inner tol compressed-8 " << inner_tol_8c << std::endl;
#elif defined(ALGORITHM_RELUP)
std::cout << "Relup delta full " << relup_delta_full << std::endl;
std::cout << "Relup delta 1/2 prec " << relup_delta_half << std::endl;
std::cout << "Relup delta compressed-16 " << relup_delta_16c << std::endl;
std::cout << "Relup delta compressed-8 " << relup_delta_8c << std::endl;
#endif
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o_16, result_o_full);
std::cout << "Diff between results (s/c16): " << diff << std::endl;
diff = axpy_norm(diff_o, -1.0, result_o_8, result_o_full);
std::cout << "Diff between results (s/c8): " << diff << std::endl;
diff = axpy_norm(diff_o, -1.0, result_o_half, result_o_full);
std::cout << "Diff between results (s/h): " << diff << std::endl;
#if defined(ALGORITHM_MIXEDCG) || defined(ALGORITHM_RELUP)
std::cout << "Iterations (s/c16) inner: " << inner_16 << " outer: " << outer_16 << " patchup: " << patchup_16 << std::endl;
std::cout << "Iterations (s/c8) inner: " << inner_8 << " outer: " << outer_8 << " patchup: " << patchup_8 << std::endl;
std::cout << "Iterations (s/h) inner: " << inner_half << " outer: " << outer_half << " patchup: " << patchup_half << std::endl;
std::cout << "Iterations (s/s) inner: " << inner_full << " outer: " << outer_full << " patchup: " << patchup_full << std::endl;
#else
std::cout << "Iterations (s/c16) inner: " << inner_16 << " outer: " << outer_16 << std::endl;
std::cout << "Iterations (s/c8) inner: " << inner_8 << " outer: " << outer_8 << std::endl;
std::cout << "Iterations (s/h) inner: " << inner_half << " outer: " << outer_half << std::endl;
std::cout << "Iterations (s/s) inner: " << inner_full << " outer: " << outer_full << std::endl;
#endif
}
Grid_finalize();
}

247
tests/solver/Test_pcg.cc Normal file
View File

@ -0,0 +1,247 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_pcg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include<bitset>
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
//Preconditioning: M psi = chi
// = M P^-1 P psi = chi
// = M P^-1 psi' = chi
//Solve for psi' using M P^-1 as operator, then apply P^-1 psi' = psi
//Inexact preconditioned CG requires slight modification because we want to avoid computing P^-1 exactly
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<typename T>
T parse(const std::string &name, std::istream &in){
std::string p;
in >> p;
assert(p==name);
char eq;
in >> eq;
assert(eq == '=');
T out;
in >> out;
return out;
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int Ls=12;
RealD mass=0.01;
RealD outer_tol = 1e-8;
RealD inner_tol_full = 1e-5;
RealD inner_tol_half = 1e-5;
RealD inner_tol_16c = 1e-5;
RealD inner_tol_8c = 1e-5;
RealD relup_delta_full = 0.1;
RealD relup_delta_half = 0.1;
RealD relup_delta_16c = 0.1;
RealD relup_delta_8c = 0.1;
std::string config_file = "";
RealD lo = 1.0;
RealD hi = 64.0;
int order=10;
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--params"){
std::ifstream f(argv[i+1]);
f.exceptions ( std::ifstream::failbit | std::ifstream::badbit );
Ls = parse<int>("Ls", f);
#define PARSEIT(NM) NM = parse<RealD>(#NM, f)
PARSEIT(mass);
PARSEIT(outer_tol);
PARSEIT(inner_tol_full);
PARSEIT(inner_tol_half);
PARSEIT(inner_tol_16c);
PARSEIT(inner_tol_8c);
PARSEIT(relup_delta_full);
PARSEIT(relup_delta_half);
PARSEIT(relup_delta_16c);
PARSEIT(relup_delta_8c);
#undef PARSEIT
//f >> outer_tol >> inner_tol_full >> inner_tol_half >> inner_tol_16c >> inner_tol_8c;
}else if(std::string(argv[i]) == "--config"){
config_file = argv[i+1];
}else if(std::string(argv[i]) == "--order"){
std::string ss(argv[i+1]);
std::stringstream f(ss);
f>>order; std::cout << " Order poly set to " <<order<<std::endl;
}else if(std::string(argv[i]) == "--lo"){
std::string ss(argv[i+1]);
std::stringstream f(ss);
f>>lo; std::cout << " Lo poly set to " <<lo<<std::endl;
}else if(std::string(argv[i]) == "--hi"){
std::string ss(argv[i+1]);
std::stringstream f(ss);
f>>hi; std::cout << " Hi poly set to " <<hi<<std::endl;
}
}
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
GridCartesian * UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
GridCartesian * FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_f);
GridRedBlackCartesian * FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_f);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeFermionD src(FGrid); random(RNG5,src);
LatticeFermionD result(FGrid); result=zero;
LatticeGaugeFieldD Umu(UGrid);
LatticeGaugeFieldF Umu_f(UGrid_f);
if(config_file.size() > 0){
FieldMetaData header;
NerscIO::readConfiguration(Umu,header,config_file);
}else{
SU3::HotConfiguration(RNG4,Umu);
}
precisionChange(Umu_f,Umu);
RealD M5=1.8;
LatticeFermionD src_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
//if(0){ //Test preconditioned CG
std::cout << "Test preconditioned CG" << std::endl;
LatticeFermionD result_o(FrbGrid);
LatticeFermionD result_o_2(FrbGrid);
result_o.checkerboard = Odd;
result_o = zero;
result_o_2.checkerboard = Odd;
result_o_2 = zero;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
//DoNothingLinearOperator<LatticeFermionD> Prec;
//FixedIterConjugateGradientPreconditioner<LatticeFermionD> Prec(HermOpEO, 20);
// SloppyConjugateGradientPreconditioner<LatticeFermionD> Prec(HermOpEO, 1e-2, 1000);
PolynomialPreconditioner<LatticeFermionD> Prec(HermOpEO,lo,hi,order) ;
std::cout << "Preconditioned CG" << std::endl;
InexactPreconditionedConjugateGradient<LatticeFermionD> pCG(Prec,1.0e-8,10000);
pCG(HermOpEO,src_o,result_o);
std::cout << "Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o_2);
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << "pCG HermOp applications " << " Lo " << lo << " Hi " << hi << " Order " << order << " " << pCG.IterationsToComplete << "(outer) + " << Prec.InnerIterations << "(inner) = " << pCG.IterationsToComplete + Prec.InnerIterations << std::endl;
std::cout << "CG HermOp applications " << CG.IterationsToComplete << std::endl;
std::cout << "Diff between results: " << diff << std::endl;
//}
if(0){ //Test compressor
LatticeFermionD result_o(FrbGrid);
LatticeFermionD result_o_2(FrbGrid);
result_o.checkerboard = Odd;
result_o = zero;
result_o_2.checkerboard = Odd;
result_o_2 = zero;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
DomainWallFermionDF DdwfC(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionDF,LatticeFermionD> HermOpEOC(DdwfC);
std::cout << "Starting regular CG with compressed operator" << std::endl;
Integer iter1;
{
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG.ErrorOnNoConverge = false;
CG(HermOpEOC,src_o,result_o);
iter1 = CG.IterationsToComplete;
}
Integer iter2;
{
std::cout << "Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o_2);
iter2 = CG.IterationsToComplete;
}
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << "CG HermOp CC applications " << iter1 << std::endl;
std::cout << "CG HermOp applications " << iter2 << std::endl;
std::cout << "Diff between results: " << diff << std::endl;
}
if(1){ //Compare mixed prec restarted single/single internal with same but with single/compressed
LatticeFermionD result_o_full(FrbGrid);
LatticeFermionD result_o_half(FrbGrid);
LatticeFermionD result_o_16(FrbGrid);
LatticeFermionD result_o_8(FrbGrid);
result_o_full.checkerboard = Odd;
result_o_full = zero;
result_o_16 = result_o_8 = result_o_half = result_o_full;
//Std
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
DomainWallFermionF Ddwf_f(Umu_f,*FGrid_f,*FrbGrid_f,*UGrid_f,*UrbGrid_f,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionF,LatticeFermionF> HermOpEO_f(Ddwf_f);
//1/2 prec
DomainWallFermionFH Ddwfhalf_f(Umu_f,*FGrid_f,*FrbGrid_f,*UGrid_f,*UrbGrid_f,mass,M5);
SchurDiagMooeeOperator<DomainWallFermionFH,LatticeFermionF> HermOpEOhalf_f(Ddwfhalf_f);
}
Grid_finalize();
}