1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-18 15:57:05 +01:00

Merge branch 'develop' into feature/hmc_generalise

This commit is contained in:
Guido Cossu
2016-11-10 18:13:07 +00:00
97 changed files with 5910 additions and 3710 deletions

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
grid` physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cshift.cc
@ -46,57 +46,79 @@ int main (int argc, char ** argv)
for(int d=0;d<latt_size.size();d++){
vol = vol * latt_size[d];
}
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGRID(latt_size,simd_layout,mpi_layout);
LatticeComplexD one(&Fine);
LatticeComplexD zz(&Fine);
LatticeComplexD C(&Fine);
LatticeComplexD Ctilde(&Fine);
LatticeComplexD coor(&Fine);
LatticeComplexD one(&GRID);
LatticeComplexD zz(&GRID);
LatticeComplexD C(&GRID);
LatticeComplexD Ctilde(&GRID);
LatticeComplexD Cref (&GRID);
LatticeComplexD Csav (&GRID);
LatticeComplexD coor(&GRID);
LatticeSpinMatrixD S(&Fine);
LatticeSpinMatrixD Stilde(&Fine);
LatticeSpinMatrixD S(&GRID);
LatticeSpinMatrixD Stilde(&GRID);
std::vector<int> p({1,2,3,2});
std::vector<int> p({1,3,2,3});
one = ComplexD(1.0,0.0);
zz = ComplexD(0.0,0.0);
ComplexD ci(0.0,1.0);
std::cout<<"*************************************************"<<std::endl;
std::cout<<"Testing Fourier from of known plane wave "<<std::endl;
std::cout<<"*************************************************"<<std::endl;
C=zero;
for(int mu=0;mu<4;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
C = C - (TwoPiL * p[mu]) * coor;
C = C + (TwoPiL * p[mu]) * coor;
}
C = exp(C*ci);
Csav = C;
S=zero;
S = S+C;
FFT theFFT(&Fine);
FFT theFFT(&GRID);
theFFT.FFT_dim(Ctilde,C,0,FFT::forward); C=Ctilde; std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Ctilde,C,1,FFT::forward); C=Ctilde; std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Ctilde,C,2,FFT::forward); C=Ctilde; std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Ctilde,C,3,FFT::forward); std::cout << theFFT.MFlops()<<std::endl;
Ctilde=C;
std::cout<<" Benchmarking FFT of LatticeComplex "<<std::endl;
theFFT.FFT_dim(Ctilde,Ctilde,0,FFT::forward); std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
theFFT.FFT_dim(Ctilde,Ctilde,1,FFT::forward); std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
theFFT.FFT_dim(Ctilde,Ctilde,2,FFT::forward); std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
theFFT.FFT_dim(Ctilde,Ctilde,3,FFT::forward); std::cout << theFFT.MFlops()<<" Mflops "<<std::endl;
// C=zero;
// Ctilde = where(abs(Ctilde)<1.0e-10,C,Ctilde);
TComplexD cVol;
cVol()()() = vol;
C=zero;
pokeSite(cVol,C,p);
C=C-Ctilde;
std::cout << "diff scalar "<<norm2(C) << std::endl;
Cref=zero;
pokeSite(cVol,Cref,p);
// std::cout <<"Ctilde "<< Ctilde <<std::endl;
// std::cout <<"Cref "<< Cref <<std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); S=Stilde; std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,1,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,2,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,3,FFT::forward);std::cout << theFFT.MFlops()<<std::endl;
Cref=Cref-Ctilde;
std::cout << "diff scalar "<<norm2(Cref) << std::endl;
C=Csav;
theFFT.FFT_all_dim(Ctilde,C,FFT::forward);
theFFT.FFT_all_dim(Cref,Ctilde,FFT::backward);
std::cout << norm2(C) << " " << norm2(Ctilde) << " " << norm2(Cref)<< " vol " << vol<< std::endl;
Cref= Cref - C;
std::cout << " invertible check " << norm2(Cref)<<std::endl;
Stilde=S;
std::cout<<" Benchmarking FFT of LatticeSpinMatrix "<<std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
theFFT.FFT_dim(Stilde,S,1,FFT::forward); std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
theFFT.FFT_dim(Stilde,S,2,FFT::forward); std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
theFFT.FFT_dim(Stilde,S,3,FFT::forward); std::cout << theFFT.MFlops()<<" mflops "<<std::endl;
SpinMatrixD Sp;
Sp = zero; Sp = Sp+cVol;
@ -107,5 +129,331 @@ int main (int argc, char ** argv)
S= S-Stilde;
std::cout << "diff FT[SpinMat] "<<norm2(S) << std::endl;
/*
*/
std::vector<int> seeds({1,2,3,4});
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds); // naughty seeding
GridParallelRNG pRNG(&GRID);
pRNG.SeedFixedIntegers(seeds);
LatticeGaugeFieldD Umu(&GRID);
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
// Umu=zero;
////////////////////////////////////////////////////
// Wilson test
////////////////////////////////////////////////////
{
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
RealD mass=0.01;
WilsonFermionD Dw(Umu,GRID,RBGRID,mass);
Dw.M(src,tmp);
std::cout << "Dw src = " <<norm2(src)<<std::endl;
std::cout << "Dw tmp = " <<norm2(tmp)<<std::endl;
Dw.FreePropagator(tmp,ref,mass);
std::cout << "Dw ref = " <<norm2(ref)<<std::endl;
ref = ref - src;
std::cout << "Dw ref-src = " <<norm2(ref)<<std::endl;
}
////////////////////////////////////////////////////
// Dwf matrix
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout<<"Testing Fourier representation of Ddwf"<<std::endl;
std::cout<<"****************************************"<<std::endl;
const int Ls=16;
const int sdir=0;
RealD mass=0.01;
RealD M5 =1.0;
Gamma G5(Gamma::Gamma5);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
std::cout<<"Making Ddwf"<<std::endl;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds);
LatticeFermionD src5(FGrid); gaussian(RNG5,src5);
LatticeFermionD src5_p(FGrid);
LatticeFermionD result5(FGrid);
LatticeFermionD ref5(FGrid);
LatticeFermionD tmp5(FGrid);
/////////////////////////////////////////////////////////////////
// result5 is the non pert operator in 4d mom space
/////////////////////////////////////////////////////////////////
Ddwf.M(src5,tmp5);
ref5 = tmp5;
FFT theFFT5(FGrid);
theFFT5.FFT_dim(result5,tmp5,1,FFT::forward); tmp5 = result5;
theFFT5.FFT_dim(result5,tmp5,2,FFT::forward); tmp5 = result5;
theFFT5.FFT_dim(result5,tmp5,3,FFT::forward); tmp5 = result5;
theFFT5.FFT_dim(result5,tmp5,4,FFT::forward); result5 = result5*ComplexD(::sqrt(1.0/vol),0.0);
std::cout<<"Fourier xformed Ddwf"<<std::endl;
tmp5 = src5;
theFFT5.FFT_dim(src5_p,tmp5,1,FFT::forward); tmp5 = src5_p;
theFFT5.FFT_dim(src5_p,tmp5,2,FFT::forward); tmp5 = src5_p;
theFFT5.FFT_dim(src5_p,tmp5,3,FFT::forward); tmp5 = src5_p;
theFFT5.FFT_dim(src5_p,tmp5,4,FFT::forward); src5_p = src5_p*ComplexD(::sqrt(1.0/vol),0.0);
std::cout<<"Fourier xformed src5"<<std::endl;
/////////////////////////////////////////////////////////////////
// work out the predicted from Fourier
/////////////////////////////////////////////////////////////////
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT,
Gamma::Gamma5
};
LatticeFermionD Kinetic(FGrid); Kinetic = zero;
LatticeComplexD kmu(FGrid);
LatticeInteger scoor(FGrid);
LatticeComplexD sk (FGrid); sk = zero;
LatticeComplexD sk2(FGrid); sk2= zero;
LatticeComplexD W(FGrid); W= zero;
// LatticeComplexD a(FGrid); a= zero;
LatticeComplexD one(FGrid); one =ComplexD(1.0,0.0);
ComplexD ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu+1);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu) *sin(kmu);
// -1/2 Dw -> 1/2 gmu (eip - emip) = i sinp gmu
Kinetic = Kinetic + sin(kmu)*ci*(Gamma(Gmu[mu])*src5_p);
}
// NB implicit sum over mu
//
// 1-1/2 Dw = 1 - 1/2 ( eip+emip)
// = - 1/2 (ei - 2 + emi)
// = - 1/4 2 (eih - eimh)(eih - eimh)
// = 2 sink/2 ink/2 = sk2
W = one - M5 + sk2;
Kinetic = Kinetic + W * src5_p;
LatticeCoordinate(scoor,sdir);
tmp5 = Cshift(src5_p,sdir,+1);
tmp5 = (tmp5 - G5*tmp5)*0.5;
tmp5 = where(scoor==Integer(Ls-1),mass*tmp5,-tmp5);
Kinetic = Kinetic + tmp5;
tmp5 = Cshift(src5_p,sdir,-1);
tmp5 = (tmp5 + G5*tmp5)*0.5;
tmp5 = where(scoor==Integer(0),mass*tmp5,-tmp5);
Kinetic = Kinetic + tmp5;
std::cout<<"Momentum space Ddwf "<< norm2(Kinetic)<<std::endl;
std::cout<<"Stencil Ddwf "<< norm2(result5)<<std::endl;
result5 = result5 - Kinetic;
std::cout<<"diff "<< norm2(result5)<<std::endl;
}
////////////////////////////////////////////////////
// Dwf prop
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout << "Testing Ddwf Ht Mom space 4d propagator \n";
std::cout<<"****************************************"<<std::endl;
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD diff(&GRID);
std::vector<int> point(4,0);
src=zero;
SpinColourVectorD ferm; gaussian(sRNG,ferm);
pokeSite(ferm,src,point);
const int Ls=32;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.01;
RealD M5 =0.8;
DomainWallFermionD Ddwf(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5);
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Ddwf.FreePropagator(src,ref,mass) ;
Gamma G5(Gamma::Gamma5);
LatticeFermionD src5(FGrid); src5=zero;
LatticeFermionD tmp5(FGrid);
LatticeFermionD result5(FGrid); result5=zero;
LatticeFermionD result4(&GRID);
const int sdir=0;
////////////////////////////////////////////////////////////////////////
// Domain wall physical field source
////////////////////////////////////////////////////////////////////////
/*
chi_5[0] = chiralProjectPlus(chi);
chi_5[Ls-1]= chiralProjectMinus(chi);
*/
tmp = (src + G5*src)*0.5; InsertSlice(tmp,src5, 0,sdir);
tmp = (src - G5*src)*0.5; InsertSlice(tmp,src5,Ls-1,sdir);
////////////////////////////////////////////////////////////////////////
// Conjugate gradient on normal equations system
////////////////////////////////////////////////////////////////////////
std::cout << " Solving by Conjugate Gradient (CGNE)" <<std::endl;
Ddwf.Mdag(src5,tmp5);
src5=tmp5;
MdagMLinearOperator<DomainWallFermionD,LatticeFermionD> HermOp(Ddwf);
ConjugateGradient<LatticeFermionD> CG(1.0e-16,10000);
CG(HermOp,src5,result5);
////////////////////////////////////////////////////////////////////////
// Domain wall physical field propagator
////////////////////////////////////////////////////////////////////////
/*
psi = chiralProjectMinus(psi_5[0]);
psi += chiralProjectPlus(psi_5[Ls-1]);
*/
ExtractSlice(tmp,result5,0 ,sdir); result4 = (tmp-G5*tmp)*0.5;
ExtractSlice(tmp,result5,Ls-1,sdir); result4 = result4+(tmp+G5*tmp)*0.5;
std::cout << " Taking difference" <<std::endl;
std::cout << "Ddwf result4 "<<norm2(result4)<<std::endl;
std::cout << "Ddwf ref "<<norm2(ref)<<std::endl;
diff = ref - result4;
std::cout << "result - ref "<<norm2(diff)<<std::endl;
}
////////////////////////////////////////////////////
// Dwf prop
////////////////////////////////////////////////////
{
std::cout<<"****************************************"<<std::endl;
std::cout << "Testing Dov Ht Mom space 4d propagator \n";
std::cout<<"****************************************"<<std::endl;
LatticeFermionD src(&GRID); gaussian(pRNG,src);
LatticeFermionD tmp(&GRID);
LatticeFermionD ref(&GRID);
LatticeFermionD diff(&GRID);
std::vector<int> point(4,0);
src=zero;
SpinColourVectorD ferm; gaussian(sRNG,ferm);
pokeSite(ferm,src,point);
const int Ls=48;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,&GRID);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,&GRID);
RealD mass=0.01;
RealD M5 =0.8;
OverlapWilsonCayleyTanhFermionD Dov(Umu,*FGrid,*FrbGrid,GRID,RBGRID,mass,M5,1.0);
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Dov.FreePropagator(src,ref,mass) ;
Gamma G5(Gamma::Gamma5);
LatticeFermionD src5(FGrid); src5=zero;
LatticeFermionD tmp5(FGrid);
LatticeFermionD result5(FGrid); result5=zero;
LatticeFermionD result4(&GRID);
const int sdir=0;
////////////////////////////////////////////////////////////////////////
// Domain wall physical field source; need D_minus
////////////////////////////////////////////////////////////////////////
/*
chi_5[0] = chiralProjectPlus(chi);
chi_5[Ls-1]= chiralProjectMinus(chi);
*/
tmp = (src + G5*src)*0.5; InsertSlice(tmp,src5, 0,sdir);
tmp = (src - G5*src)*0.5; InsertSlice(tmp,src5,Ls-1,sdir);
////////////////////////////////////////////////////////////////////////
// Conjugate gradient on normal equations system
////////////////////////////////////////////////////////////////////////
std::cout << " Solving by Conjugate Gradient (CGNE)" <<std::endl;
Dov.Dminus(src5,tmp5);
src5=tmp5;
Dov.Mdag(src5,tmp5);
src5=tmp5;
MdagMLinearOperator<OverlapWilsonCayleyTanhFermionD,LatticeFermionD> HermOp(Dov);
ConjugateGradient<LatticeFermionD> CG(1.0e-16,10000);
CG(HermOp,src5,result5);
////////////////////////////////////////////////////////////////////////
// Domain wall physical field propagator
////////////////////////////////////////////////////////////////////////
/*
psi = chiralProjectMinus(psi_5[0]);
psi += chiralProjectPlus(psi_5[Ls-1]);
*/
ExtractSlice(tmp,result5,0 ,sdir); result4 = (tmp-G5*tmp)*0.5;
ExtractSlice(tmp,result5,Ls-1,sdir); result4 = result4+(tmp+G5*tmp)*0.5;
std::cout << " Taking difference" <<std::endl;
std::cout << "Dov result4 "<<norm2(result4)<<std::endl;
std::cout << "Dov ref "<<norm2(ref)<<std::endl;
diff = ref - result4;
std::cout << "result - ref "<<norm2(diff)<<std::endl;
}
{
/*
*
typedef GaugeImplTypes<vComplexD, 1> QEDGimplTypesD;
typedef Photon<QEDGimplTypesD> QEDGaction;
QEDGaction Maxwell(QEDGaction::FEYNMAN_L);
QEDGaction::GaugeField Prop(&GRID);Prop=zero;
QEDGaction::GaugeField Source(&GRID);Source=zero;
Maxwell.FreePropagator (Source,Prop);
std::cout << " MaxwellFree propagator\n";
*/
}
Grid_finalize();
}

300
tests/core/Test_fft_gfix.cc Normal file
View File

@ -0,0 +1,300 @@
/*************************************************************************************
grid` physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cshift.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
// ImplComplex cmi(0.0,-1.0);
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
dmuAmu=zero;
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol) {
GridBase *grid = Umu._grid;
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
Real old_trace = org_link_trace;
Real trG;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
//trG = SteepestDescentStep(U,alpha,dmuAmu);
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
if ( i %20 == 0 ) {
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
Real Phi = 1.0 - old_trace / link_trace ;
Real Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
return;
}
old_trace = link_trace;
}
}
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
Real vol = grid->gSites();
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=zero;
LatticeComplex pmu(grid);
LatticeComplex one(grid); one = Complex(1.0,0.0);
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu);
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
//////////////////////////////////
std::vector<int> latt_size = grid->GlobalDimensions();
std::vector<int> coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
Complex psqMax(16.0);
Fp = psqMax*one/psq;
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}
pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
GaugeMat ciadmam(grid);
Complex cialpha(0.0,-alpha);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
GridBase *grid = g._grid;
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}
/*
////////////////////////////////////////////////////////////////
// NB The FT for fields living on links has an extra phase in it
// Could add these to the FFT class as a later task since this code
// might be reused elsewhere ????
////////////////////////////////////////////////////////////////
static void InverseFourierTransformAmu(FFT &theFFT,const std::vector<GaugeMat> &Ap,std::vector<GaugeMat> &Ax) {
GridBase * grid = theFFT.Grid();
std::vector<int> latt_size = grid->GlobalDimensions();
ComplexField pmu(grid);
ComplexField pha(grid);
GaugeMat Apha(grid);
Complex ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++){
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
pha = exp(pmu * (0.5 *ci)); // e(ipmu/2) since Amu(x+mu/2)
Apha = Ap[mu] * pha;
theFFT.FFT_all_dim(Apha,Ax[mu],FFT::backward);
}
}
static void FourierTransformAmu(FFT & theFFT,const std::vector<GaugeMat> &Ax,std::vector<GaugeMat> &Ap) {
GridBase * grid = theFFT.Grid();
std::vector<int> latt_size = grid->GlobalDimensions();
ComplexField pmu(grid);
ComplexField pha(grid);
Complex ci(0.0,1.0);
// Sign convention for FFTW calls:
// A(x)= Sum_p e^ipx A(p) / V
// A(p)= Sum_p e^-ipx A(x)
for(int mu=0;mu<Nd;mu++){
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
pha = exp(-pmu * (0.5 *ci)); // e(+ipmu/2) since Amu(x+mu/2)
theFFT.FFT_all_dim(Ax[mu],Ap[mu],FFT::backward);
Ap[mu] = Ap[mu] * pha;
}
}
*/
};
int main (int argc, char ** argv)
{
std::vector<int> seeds({1,2,3,4});
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout( { vComplex::Nsimd(),1,1,1});
std::vector<int> mpi_layout = GridDefaultMpi();
int vol = 1;
for(int d=0;d<latt_size.size();d++){
vol = vol * latt_size[d];
}
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(seeds); // naughty seeding
GridParallelRNG pRNG(&GRID); pRNG.SeedFixedIntegers(seeds);
FFT theFFT(&GRID);
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
std::cout<< "* Testing we can gauge fix steep descent a RGT of Unit gauge *" <<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
LatticeGaugeField Umu(&GRID);
LatticeGaugeField Uorg(&GRID);
LatticeColourMatrix g(&GRID); // Gauge xform
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
Uorg=Umu;
SU3::RandomGaugeTransform(pRNG,Umu,g); // Unit gauge
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;
Real alpha=0.1;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-10, 1.0e-10);
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Final plaquette "<<plaq << std::endl;
Uorg = Uorg - Umu;
std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "* Testing Fourier accelerated fixing *" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "* Testing non-unit configuration *" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
Grid_finalize();
}

View File

@ -93,10 +93,10 @@ int main (int argc, char ** argv)
C=C-Ctilde;
std::cout << "diff scalar "<<norm2(C) << std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); S=Stilde; std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,1,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,2,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,3,FFT::forward);std::cout << theFFT.MFlops()<<std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<< " "<<theFFT.USec() <<std::endl;
theFFT.FFT_dim(Stilde,S,1,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<< " "<<theFFT.USec() <<std::endl;
theFFT.FFT_dim(Stilde,S,2,FFT::forward); S=Stilde;std::cout << theFFT.MFlops()<< " "<<theFFT.USec() <<std::endl;
theFFT.FFT_dim(Stilde,S,3,FFT::forward);std::cout << theFFT.MFlops()<<" "<<theFFT.USec() <<std::endl;
SpinMatrixF Sp;
Sp = zero; Sp = Sp+cVol;

View File

@ -0,0 +1,138 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_poisson_fft.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
int N=128;
int N2=64;
int W=16;
int D=8;
std::vector<int> latt_size ({N,N});
std::vector<int> simd_layout({vComplexD::Nsimd(),1});
std::vector<int> mpi_layout ({1,1});
int vol = 1;
int nd = latt_size.size();
for(int d=0;d<nd;d++){
vol = vol * latt_size[d];
}
GridCartesian GRID(latt_size,simd_layout,mpi_layout);
LatticeComplexD pos(&GRID);
LatticeComplexD zz(&GRID);
LatticeComplexD neg(&GRID);
LatticeInteger coor(&GRID);
LatticeComplexD Charge(&GRID);
LatticeComplexD ChargeTilde(&GRID);
LatticeComplexD V(&GRID);
LatticeComplexD Vtilde(&GRID);
pos = ComplexD(1.0,0.0);
neg = -pos;
zz = ComplexD(0.0,0.0);
Charge=zero;
// Parallel plate capacitor
{
int mu=0;
LatticeCoordinate(coor,mu);
Charge=where(coor==Integer(N2-D),pos,zz);
Charge=where(coor==Integer(N2+D),neg,Charge);
}
{
int mu=1;
LatticeCoordinate(coor,mu);
Charge=where(coor<Integer(N2-W),zz,Charge);
Charge=where(coor>Integer(N2+W),zz,Charge);
}
// std::cout << Charge <<std::endl;
std::vector<LatticeComplexD> k(4,&GRID);
LatticeComplexD ksq(&GRID);
ksq=zero;
for(int mu=0;mu<nd;mu++) {
Integer L=latt_size[mu];
LatticeCoordinate(coor,mu);
LatticeCoordinate(k[mu],mu);
k[mu] = where ( coor > (L/2), k[mu]-L, k[mu]);
// std::cout << k[mu]<<std::endl;
RealD TwoPiL = M_PI * 2.0/ L;
k[mu] = TwoPiL * k[mu];
ksq = ksq + k[mu]*k[mu];
}
// D^2 V = - rho
// ksq Vtilde = rhoTilde
// Vtilde = rhoTilde/Ksq
// Fix zero of potential : Vtilde(0) = 0;
std::vector<int> zero_mode(nd,0);
TComplexD Tone = ComplexD(1.0,0.0);
pokeSite(Tone,ksq,zero_mode);
// std::cout << "Charge\n" << Charge <<std::endl;
FFT theFFT(&GRID);
theFFT.FFT_all_dim(ChargeTilde,Charge,FFT::forward);
// std::cout << "Rhotilde\n" << ChargeTilde <<std::endl;
Vtilde = ChargeTilde / ksq;
// std::cout << "Vtilde\n" << Vtilde <<std::endl;
TComplexD Tzero = ComplexD(0.0,0.0);
pokeSite(Tzero,Vtilde,zero_mode);
theFFT.FFT_all_dim(V,Vtilde,FFT::backward);
std::cout << "V\n" << V <<std::endl;
Grid_finalize();
}