mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-16 14:57:05 +01:00
One flavour rational unprec added; untested but does compile.
Moving param structs into a single header for later connection to file I/O using macromagic.h
This commit is contained in:
@ -4,85 +4,6 @@
|
||||
namespace Grid{
|
||||
namespace QCD{
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag * N(M^dag*M)/D(M^dag*M) * chi
|
||||
//
|
||||
// Here, M is some operator
|
||||
// N and D makeup the rat. poly
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag P/Q d[N/D] P/Q chi
|
||||
//
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
//
|
||||
// N/D is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(M^dagM + bk)
|
||||
//
|
||||
// d[N/D] is then
|
||||
//
|
||||
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M + bk]^{-1}
|
||||
//
|
||||
// Need
|
||||
//
|
||||
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
||||
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf Phi_k
|
||||
// S = innerprodReal(Phi,Mf Phi);
|
||||
|
||||
///////////////////////////////////////
|
||||
// One flavour rational ratio
|
||||
///////////////////////////////////////
|
||||
|
||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||
//
|
||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||
//
|
||||
// Need
|
||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||
// + chi^dag P/Q d[N/D] P/Q chi
|
||||
// + chi^dag P/Q N/D d[P/Q] chi
|
||||
//
|
||||
// Here P/Q \sim R_{1/4} ~ (V^dagV)^{1/4}
|
||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||
//
|
||||
// P/Q is expressed as partial fraction expansion:
|
||||
//
|
||||
// a0 + \sum_k ak/(V^dagV + bk)
|
||||
//
|
||||
// d[P/Q] is then
|
||||
//
|
||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||
//
|
||||
// and similar for N/D.
|
||||
//
|
||||
// Need
|
||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||
//
|
||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||
//
|
||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||
//
|
||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||
//
|
||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||
//
|
||||
// With these building blocks
|
||||
//
|
||||
// dS/dU =
|
||||
// \sum_k -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k <- deriv on P left
|
||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k
|
||||
// + \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Two flavour pseudofermion action for any dop
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
Reference in New Issue
Block a user