mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 12:47:05 +01:00
multishift conjugate gradient added and a strong test: take a diagonal
but non-identity matrix l1 0 0 0 .... 0 l2 0 0 .... 0 0 l3 0 ... . . . . . . . . . And apply the multishift CG to it. Sum the poles and residues. Insist that this be the same as the exactly taken square root where l1,l2,l3 >= 0.
This commit is contained in:
29
lib/algorithms/approx/MultiShiftFunction.cc
Normal file
29
lib/algorithms/approx/MultiShiftFunction.cc
Normal file
@ -0,0 +1,29 @@
|
||||
#include <Grid.h>
|
||||
|
||||
namespace Grid {
|
||||
double MultiShiftFunction::approx(double x)
|
||||
{
|
||||
double a = norm;
|
||||
for(int n=0;n<poles.size();n++){
|
||||
a = a + residues[n]/(x+poles[n]);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
void MultiShiftFunction::gnuplot(std::ostream &out)
|
||||
{
|
||||
out<<"f(x) = "<<norm<<"";
|
||||
for(int n=0;n<poles.size();n++){
|
||||
out<<"+("<<residues[n]<<"/(x+"<<poles[n]<<"))";
|
||||
}
|
||||
out<<";"<<std::endl;
|
||||
}
|
||||
void MultiShiftFunction::csv(std::ostream &out)
|
||||
{
|
||||
for (double x=lo; x<hi; x*=1.05) {
|
||||
double f = approx(x);
|
||||
double r = sqrt(x);
|
||||
out<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
28
lib/algorithms/approx/MultiShiftFunction.h
Normal file
28
lib/algorithms/approx/MultiShiftFunction.h
Normal file
@ -0,0 +1,28 @@
|
||||
#ifndef MULTI_SHIFT_FUNCTION
|
||||
#define MULTI_SHIFT_FUNCTION
|
||||
namespace Grid {
|
||||
class MultiShiftFunction {
|
||||
public:
|
||||
int order;
|
||||
std::vector<RealD> poles;
|
||||
std::vector<RealD> residues;
|
||||
std::vector<RealD> tolerances;
|
||||
RealD norm;
|
||||
RealD lo,hi;
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
|
||||
RealD approx(RealD x);
|
||||
void csv(std::ostream &out);
|
||||
void gnuplot(std::ostream &out);
|
||||
MultiShiftFunction(AlgRemez & remez,double tol,bool inverse) :
|
||||
order(remez.getDegree()),
|
||||
tolerances(remez.getDegree(),tol),
|
||||
poles(remez.getDegree()),
|
||||
residues(remez.getDegree())
|
||||
{
|
||||
remez.getBounds(lo,hi);
|
||||
if ( inverse ) remez.getIPFE (&residues[0],&poles[0],&norm);
|
||||
else remez.getPFE (&residues[0],&poles[0],&norm);
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -125,8 +125,17 @@ class AlgRemez
|
||||
// Destructor
|
||||
virtual ~AlgRemez();
|
||||
|
||||
int getDegree(void){
|
||||
assert(n==d);
|
||||
return n;
|
||||
}
|
||||
// Reset the bounds of the approximation
|
||||
void setBounds(double lower, double upper);
|
||||
// Reset the bounds of the approximation
|
||||
void getBounds(double &lower, double &upper) {
|
||||
lower=(double)apstrt;
|
||||
upper=(double)apend;
|
||||
}
|
||||
|
||||
// Generate the rational approximation x^(pnum/pden)
|
||||
double generateApprox(int num_degree, int den_degree,
|
||||
|
Reference in New Issue
Block a user