mirror of
https://github.com/paboyle/Grid.git
synced 2025-07-29 02:37:07 +01:00
GPU changes and threading macros replaced
This commit is contained in:
@@ -30,13 +30,14 @@ directory
|
||||
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
|
||||
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
|
||||
|
||||
#include <Grid/lattice/Lattice_matrix_reduction.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS };
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Block conjugate gradient. Dimension zero should be the block direction
|
||||
// Block Conjugate gradient. Dimension zero should be the block direction
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template <class Field>
|
||||
class BlockConjugateGradient : public OperatorFunction<Field> {
|
||||
@@ -178,7 +179,7 @@ public:
|
||||
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
|
||||
|
||||
/************************************************************************
|
||||
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
||||
* Block Conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
|
||||
************************************************************************
|
||||
* Dimensions:
|
||||
*
|
||||
@@ -276,7 +277,7 @@ public:
|
||||
|
||||
for(int b=0;b<Nblock;b++) {
|
||||
rrsum+=real(m_rr(b,b));
|
||||
rr = real(m_rr(b,b))/ssq[b];
|
||||
rr =real(m_rr(b,b))/ssq[b];
|
||||
if ( rr > max_resid ) max_resid = rr;
|
||||
}
|
||||
|
||||
@@ -317,7 +318,7 @@ public:
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Block conjugate gradient; Original O'Leary Dimension zero should be the block direction
|
||||
// Block Conjugate gradient; Original O'Leary Dimension zero should be the block direction
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
void BlockCGsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
||||
{
|
||||
@@ -360,7 +361,7 @@ public:
|
||||
|
||||
|
||||
/************************************************************************
|
||||
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
|
||||
* Block Conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
|
||||
************************************************************************
|
||||
* O'Leary : R = B - A X
|
||||
* O'Leary : P = M R ; preconditioner M = 1
|
||||
@@ -463,7 +464,7 @@ public:
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// multiRHS conjugate gradient. Dimension zero should be the block direction
|
||||
// multiRHS Conjugate gradient. Dimension zero should be the block direction
|
||||
// Use this for spread out across nodes
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
|
||||
|
@@ -135,12 +135,12 @@ public:
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD srcnorm = std::sqrt(norm2(src));
|
||||
RealD resnorm = std::sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
|
@@ -110,7 +110,7 @@ public:
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -180,12 +180,12 @@ public:
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD srcnorm = std::sqrt(norm2(src));
|
||||
RealD resnorm = std::sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
|
@@ -49,7 +49,7 @@ public:
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
|
||||
RealD a, b, c, d;
|
||||
RealD a, b; // c, d;
|
||||
RealD cp, ssq,rsq;
|
||||
|
||||
RealD rAr, rAAr, rArp;
|
||||
@@ -95,8 +95,8 @@ public:
|
||||
axpy(r,-1.0,src,Ap);
|
||||
RealD true_resid = norm2(r)/ssq;
|
||||
std::cout<<GridLogMessage<<"ConjugateResidual: Converged on iteration " <<k
|
||||
<< " computed residual "<<sqrt(cp/ssq)
|
||||
<< " true residual "<<sqrt(true_resid)
|
||||
<< " computed residual "<<std::sqrt(cp/ssq)
|
||||
<< " true residual "<<std::sqrt(true_resid)
|
||||
<< " target " <<Tolerance <<std::endl;
|
||||
return;
|
||||
}
|
||||
|
@@ -299,7 +299,7 @@ public:
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
nn = std::sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
@@ -464,7 +464,7 @@ until convergence
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
beta_k = std::sqrt(beta_k);
|
||||
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
@@ -817,7 +817,7 @@ void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD dd = std::sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
|
Reference in New Issue
Block a user