mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-11 03:46:55 +01:00
Build reorg with which I am a bit happier
This commit is contained in:
200
lib/cartesian/Grid_cartesian_base.h
Normal file
200
lib/cartesian/Grid_cartesian_base.h
Normal file
@ -0,0 +1,200 @@
|
||||
#ifndef GRID_CARTESIAN_BASE_H
|
||||
#define GRID_CARTESIAN_BASE_H
|
||||
|
||||
#include <Grid.h>
|
||||
#include <Grid_communicator.h>
|
||||
|
||||
namespace Grid{
|
||||
|
||||
class GridBase : public CartesianCommunicator {
|
||||
public:
|
||||
|
||||
// Give Lattice access
|
||||
template<class object> friend class Lattice;
|
||||
|
||||
GridBase(std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
|
||||
|
||||
|
||||
//FIXME
|
||||
// protected:
|
||||
// Lattice wide random support. not yet fully implemented. Need seed strategy
|
||||
// and one generator per site.
|
||||
// std::default_random_engine generator;
|
||||
// static std::mt19937 generator( 9 );
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Commicator provides information on the processor grid
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// unsigned long _ndimension;
|
||||
// std::vector<int> _processors; // processor grid
|
||||
// int _processor; // linear processor rank
|
||||
// std::vector<int> _processor_coor; // linear processor rank
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Physics Grid information.
|
||||
std::vector<int> _simd_layout; // Which dimensions get relayed out over simd lanes.
|
||||
std::vector<int> _fdimensions;// Global dimensions of array prior to cb removal
|
||||
std::vector<int> _gdimensions;// Global dimensions of array after cb removal
|
||||
std::vector<int> _ldimensions;// local dimensions of array with processor images removed
|
||||
std::vector<int> _rdimensions;// Reduced local dimensions with simd lane images and processor images removed
|
||||
std::vector<int> _ostride; // Outer stride for each dimension
|
||||
std::vector<int> _istride; // Inner stride i.e. within simd lane
|
||||
int _osites; // _isites*_osites = product(dimensions).
|
||||
int _isites;
|
||||
std::vector<int> _slice_block; // subslice information
|
||||
std::vector<int> _slice_stride;
|
||||
std::vector<int> _slice_nblock;
|
||||
|
||||
// Might need these at some point
|
||||
// std::vector<int> _lstart; // local start of array in gcoors. _processor_coor[d]*_ldimensions[d]
|
||||
// std::vector<int> _lend; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
|
||||
|
||||
public:
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Checkerboarding interface is virtual and overridden by
|
||||
// GridCartesian / GridRedBlackCartesian
|
||||
////////////////////////////////////////////////////////////////
|
||||
virtual int CheckerBoarded(int dim)=0;
|
||||
virtual int CheckerBoard(std::vector<int> site)=0;
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift)=0;
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
|
||||
inline int CheckerBoardFromOindex (int Oindex){
|
||||
std::vector<int> ocoor;
|
||||
oCoorFromOindex(ocoor,Oindex);
|
||||
int ss=0;
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
ss=ss+ocoor[d];
|
||||
}
|
||||
return ss&0x1;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Local layout calculations
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// These routines are key. Subdivide the linearised cartesian index into
|
||||
// "inner" index identifying which simd lane of object<vFcomplex> is associated with coord
|
||||
// "outer" index identifying which element of _odata in class "Lattice" is associated with coord.
|
||||
//
|
||||
// Compared to, say, Blitz++ we simply need to store BOTH an inner stride and an outer
|
||||
// stride per dimension. The cost of evaluating the indexing information is doubled for an n-dimensional
|
||||
// coordinate. Note, however, for data parallel operations the "inner" indexing cost is not paid and all
|
||||
// lanes are operated upon simultaneously.
|
||||
|
||||
virtual int oIndex(std::vector<int> &coor)
|
||||
{
|
||||
int idx=0;
|
||||
// Works with either global or local coordinates
|
||||
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
|
||||
return idx;
|
||||
}
|
||||
inline int oIndexReduced(std::vector<int> &ocoor)
|
||||
{
|
||||
int idx=0;
|
||||
// ocoor is already reduced so can eliminate the modulo operation
|
||||
// for fast indexing and inline the routine
|
||||
for(int d=0;d<_ndimension;d++) idx+=_ostride[d]*ocoor[d];
|
||||
return idx;
|
||||
}
|
||||
inline void oCoorFromOindex (std::vector<int>& coor,int Oindex){
|
||||
coor.resize(_ndimension);
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
coor[d] = Oindex % _rdimensions[d];
|
||||
Oindex = Oindex / _rdimensions[d];
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// SIMD lane addressing
|
||||
//////////////////////////////////////////////////////////
|
||||
inline int iIndex(std::vector<int> &lcoor)
|
||||
{
|
||||
int idx=0;
|
||||
for(int d=0;d<_ndimension;d++) idx+=_istride[d]*(lcoor[d]/_rdimensions[d]);
|
||||
return idx;
|
||||
}
|
||||
inline void iCoorFromIindex(std::vector<int> &coor,int lane)
|
||||
{
|
||||
coor.resize(_ndimension);
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
coor[d] = lane % _simd_layout[d];
|
||||
lane = lane / _simd_layout[d];
|
||||
}
|
||||
}
|
||||
inline int PermuteDim(int dimension){
|
||||
return _simd_layout[dimension]>1;
|
||||
}
|
||||
inline int PermuteType(int dimension){
|
||||
int permute_type=0;
|
||||
for(int d=_ndimension-1;d>dimension;d--){
|
||||
if (_simd_layout[d]>1 ) permute_type++;
|
||||
}
|
||||
return permute_type;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Array sizing queries
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
inline int iSites(void) { return _isites; };
|
||||
inline int Nsimd(void) { return _isites; };// Synonymous with iSites
|
||||
inline int oSites(void) { return _osites; };
|
||||
inline int lSites(void) { return _isites*_osites; };
|
||||
inline int gSites(void) { return _isites*_osites*_Nprocessors; };
|
||||
inline int Nd (void) { return _ndimension;};
|
||||
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
|
||||
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
|
||||
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};
|
||||
inline const std::vector<int> &VirtualLocalDimensions(void) { return _ldimensions;};
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void RankIndexToGlobalCoor(int rank, int o_idx, int i_idx , std::vector<int> &gcoor)
|
||||
{
|
||||
gcoor.resize(_ndimension);
|
||||
std::vector<int> coor(_ndimension);
|
||||
|
||||
ProcessorCoorFromRank(rank,coor);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = _ldimensions[mu]&coor[mu];
|
||||
|
||||
iCoorFromIindex(coor,i_idx);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += _rdimensions[mu]&coor[mu];
|
||||
|
||||
oCoorFromOindex (coor,o_idx);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] += coor[mu];
|
||||
|
||||
}
|
||||
void RankIndexCbToFullGlobalCoor(int rank, int o_idx, int i_idx, int cb,std::vector<int> &fcoor)
|
||||
{
|
||||
RankIndexToGlobalCoor(rank,o_idx,i_idx ,fcoor);
|
||||
if(CheckerBoarded(0)){
|
||||
fcoor[0] = fcoor[0]*2+cb;
|
||||
}
|
||||
}
|
||||
void ProcessorCoorLocalCoorToGlobalCoor(std::vector<int> &Pcoor,std::vector<int> &Lcoor,std::vector<int> &gcoor)
|
||||
{
|
||||
gcoor.resize(_ndimension);
|
||||
for(int mu=0;mu<_ndimension;mu++) gcoor[mu] = Pcoor[mu]*_ldimensions[mu]+Lcoor[mu];
|
||||
}
|
||||
void GlobalCoorToProcessorCoorLocalCoor(std::vector<int> &pcoor,std::vector<int> &lcoor,const std::vector<int> &gcoor)
|
||||
{
|
||||
pcoor.resize(_ndimension);
|
||||
lcoor.resize(_ndimension);
|
||||
for(int mu=0;mu<_ndimension;mu++){
|
||||
pcoor[mu] = gcoor[mu]/_ldimensions[mu];
|
||||
lcoor[mu] = gcoor[mu]%_ldimensions[mu];
|
||||
}
|
||||
}
|
||||
void GlobalCoorToRankIndex(int &rank, int &o_idx, int &i_idx ,const std::vector<int> &gcoor)
|
||||
{
|
||||
std::vector<int> pcoor;
|
||||
std::vector<int> lcoor;
|
||||
GlobalCoorToProcessorCoorLocalCoor(pcoor,lcoor,gcoor);
|
||||
rank = RankFromProcessorCoor(pcoor);
|
||||
i_idx= iIndex(lcoor);
|
||||
o_idx= oIndex(lcoor);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
95
lib/cartesian/Grid_cartesian_full.h
Normal file
95
lib/cartesian/Grid_cartesian_full.h
Normal file
@ -0,0 +1,95 @@
|
||||
#ifndef GRID_CARTESIAN_FULL_H
|
||||
#define GRID_CARTESIAN_FULL_H
|
||||
|
||||
namespace Grid{
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Grid Support.
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
class GridCartesian: public GridBase {
|
||||
|
||||
public:
|
||||
|
||||
virtual int CheckerBoarded(int dim){
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoard(std::vector<int> site){
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoardDestination(int cb,int shift){
|
||||
return 0;
|
||||
}
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift, int osite){
|
||||
return shift;
|
||||
}
|
||||
GridCartesian(std::vector<int> &dimensions,
|
||||
std::vector<int> &simd_layout,
|
||||
std::vector<int> &processor_grid
|
||||
) : GridBase(processor_grid)
|
||||
{
|
||||
///////////////////////
|
||||
// Grid information
|
||||
///////////////////////
|
||||
_ndimension = dimensions.size();
|
||||
|
||||
_fdimensions.resize(_ndimension);
|
||||
_gdimensions.resize(_ndimension);
|
||||
_ldimensions.resize(_ndimension);
|
||||
_rdimensions.resize(_ndimension);
|
||||
_simd_layout.resize(_ndimension);
|
||||
|
||||
_ostride.resize(_ndimension);
|
||||
_istride.resize(_ndimension);
|
||||
|
||||
_osites = 1;
|
||||
_isites = 1;
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
_fdimensions[d] = dimensions[d]; // Global dimensions
|
||||
_gdimensions[d] = _fdimensions[d]; // Global dimensions
|
||||
_simd_layout[d] = simd_layout[d];
|
||||
|
||||
//FIXME check for exact division
|
||||
|
||||
// Use a reduced simd grid
|
||||
_ldimensions[d]= _gdimensions[d]/_processors[d]; //local dimensions
|
||||
_rdimensions[d]= _ldimensions[d]/_simd_layout[d]; //overdecomposition
|
||||
_osites *= _rdimensions[d];
|
||||
_isites *= _simd_layout[d];
|
||||
|
||||
// Addressing support
|
||||
if ( d==0 ) {
|
||||
_ostride[d] = 1;
|
||||
_istride[d] = 1;
|
||||
} else {
|
||||
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
|
||||
_istride[d] = _istride[d-1]*_simd_layout[d-1];
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////
|
||||
// subplane information
|
||||
///////////////////////
|
||||
_slice_block.resize(_ndimension);
|
||||
_slice_stride.resize(_ndimension);
|
||||
_slice_nblock.resize(_ndimension);
|
||||
|
||||
int block =1;
|
||||
int nblock=1;
|
||||
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
nblock/=_rdimensions[d];
|
||||
_slice_block[d] =block;
|
||||
_slice_stride[d]=_ostride[d]*_rdimensions[d];
|
||||
_slice_nblock[d]=nblock;
|
||||
block = block*_rdimensions[d];
|
||||
}
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
#endif
|
121
lib/cartesian/Grid_cartesian_red_black.h
Normal file
121
lib/cartesian/Grid_cartesian_red_black.h
Normal file
@ -0,0 +1,121 @@
|
||||
#ifndef GRID_CARTESIAN_RED_BLACK_H
|
||||
#define GRID_CARTESIAN_RED_BLACK_H
|
||||
|
||||
|
||||
namespace Grid {
|
||||
|
||||
// Specialise this for red black grids storing half the data like a chess board.
|
||||
class GridRedBlackCartesian : public GridBase
|
||||
{
|
||||
public:
|
||||
virtual int CheckerBoarded(int dim){
|
||||
if( dim==0) return 1;
|
||||
else return 0;
|
||||
}
|
||||
virtual int CheckerBoard(std::vector<int> site){
|
||||
return (site[0]+site[1]+site[2]+site[3])&0x1;
|
||||
}
|
||||
|
||||
// Depending on the cb of site, we toggle source cb.
|
||||
// for block #b, element #e = (b, e)
|
||||
// we need
|
||||
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
|
||||
|
||||
if(dim != 0) return shift;
|
||||
|
||||
int fulldim =_fdimensions[0];
|
||||
shift = (shift+fulldim)%fulldim;
|
||||
|
||||
// Probably faster with table lookup;
|
||||
// or by looping over x,y,z and multiply rather than computing checkerboard.
|
||||
int ocb=CheckerBoardFromOindex(osite);
|
||||
|
||||
if ( (source_cb+ocb)&1 ) {
|
||||
return (shift)/2;
|
||||
} else {
|
||||
return (shift+1)/2;
|
||||
}
|
||||
}
|
||||
|
||||
virtual int CheckerBoardDestination(int source_cb,int shift){
|
||||
if ((shift+_fdimensions[0])&0x1) {
|
||||
return 1-source_cb;
|
||||
} else {
|
||||
return source_cb;
|
||||
}
|
||||
};
|
||||
GridRedBlackCartesian(std::vector<int> &dimensions,
|
||||
std::vector<int> &simd_layout,
|
||||
std::vector<int> &processor_grid) : GridBase(processor_grid)
|
||||
{
|
||||
///////////////////////
|
||||
// Grid information
|
||||
///////////////////////
|
||||
_ndimension = dimensions.size();
|
||||
|
||||
_fdimensions.resize(_ndimension);
|
||||
_gdimensions.resize(_ndimension);
|
||||
_ldimensions.resize(_ndimension);
|
||||
_rdimensions.resize(_ndimension);
|
||||
_simd_layout.resize(_ndimension);
|
||||
|
||||
_ostride.resize(_ndimension);
|
||||
_istride.resize(_ndimension);
|
||||
|
||||
_osites = 1;
|
||||
_isites = 1;
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
_fdimensions[d] = dimensions[d];
|
||||
_gdimensions[d] = _fdimensions[d];
|
||||
if (d==0) _gdimensions[0] = _gdimensions[0]/2; // Remove a checkerboard
|
||||
_ldimensions[d] = _gdimensions[d]/_processors[d];
|
||||
|
||||
// Use a reduced simd grid
|
||||
_simd_layout[d] = simd_layout[d];
|
||||
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
|
||||
|
||||
_osites *= _rdimensions[d];
|
||||
_isites *= _simd_layout[d];
|
||||
|
||||
// Addressing support
|
||||
if ( d==0 ) {
|
||||
_ostride[d] = 1;
|
||||
_istride[d] = 1;
|
||||
} else {
|
||||
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
|
||||
_istride[d] = _istride[d-1]*_simd_layout[d-1];
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// subplane information
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
_slice_block.resize(_ndimension);
|
||||
_slice_stride.resize(_ndimension);
|
||||
_slice_nblock.resize(_ndimension);
|
||||
|
||||
int block =1;
|
||||
int nblock=1;
|
||||
for(int d=0;d<_ndimension;d++) nblock*=_rdimensions[d];
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
nblock/=_rdimensions[d];
|
||||
_slice_block[d] =block;
|
||||
_slice_stride[d]=_ostride[d]*_rdimensions[d];
|
||||
_slice_nblock[d]=nblock;
|
||||
block = block*_rdimensions[d];
|
||||
}
|
||||
|
||||
};
|
||||
protected:
|
||||
virtual int oIndex(std::vector<int> &coor)
|
||||
{
|
||||
int idx=_ostride[0]*((coor[0]/2)%_rdimensions[0]);
|
||||
for(int d=1;d<_ndimension;d++) idx+=_ostride[d]*(coor[d]%_rdimensions[d]);
|
||||
return idx;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user