1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Merge branch 'feature/mpi3' into develop

This commit is contained in:
paboyle 2016-10-25 06:06:36 +01:00
commit b1508e4124
28 changed files with 2422 additions and 2114 deletions

View File

@ -153,9 +153,10 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert (norm2(err)< 1.0e-5 );
Dw.Report();
}
@ -192,7 +193,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Called Dw s_inner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
sDw.Report();
if(0){
@ -208,8 +209,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage<< "res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
RealF sum=0;
RealD sum=0;
for(int x=0;x<latt4[0];x++){
for(int y=0;y<latt4[1];y++){
for(int z=0;z<latt4[2];z++){
@ -227,12 +227,12 @@ int main (int argc, char ** argv)
}
}}}}}
std::cout<<GridLogMessage<<" difference between normal and simd is "<<sum<<std::endl;
assert (sum< 1.0e-5 );
if (1) {
LatticeFermion sr_eo(sFGrid);
LatticeFermion serr(sFGrid);
LatticeFermion ssrc_e (sFrbGrid);
LatticeFermion ssrc_o (sFrbGrid);
@ -244,8 +244,6 @@ int main (int argc, char ** argv)
setCheckerboard(sr_eo,ssrc_o);
setCheckerboard(sr_eo,ssrc_e);
serr = sr_eo-ssrc;
std::cout<<GridLogMessage << "EO src norm diff "<< norm2(serr)<<std::endl;
sr_e = zero;
sr_o = zero;
@ -263,7 +261,7 @@ int main (int argc, char ** argv)
double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "sDeo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "sDeo mflop/s per node "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "sDeo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
sDw.Report();
sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
@ -273,9 +271,18 @@ int main (int argc, char ** argv)
pickCheckerboard(Even,ssrc_e,sresult);
pickCheckerboard(Odd ,ssrc_o,sresult);
ssrc_e = ssrc_e - sr_e;
RealD error = norm2(ssrc_e);
std::cout<<GridLogMessage << "sE norm diff "<< norm2(ssrc_e)<< " vec nrm"<<norm2(sr_e) <<std::endl;
ssrc_o = ssrc_o - sr_o;
error+= norm2(ssrc_o);
std::cout<<GridLogMessage << "sO norm diff "<< norm2(ssrc_o)<< " vec nrm"<<norm2(sr_o) <<std::endl;
if(error>1.0e-5) {
setCheckerboard(ssrc,ssrc_o);
setCheckerboard(ssrc,ssrc_e);
std::cout<< ssrc << std::endl;
}
}
@ -307,7 +314,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert(norm2(err)<1.0e-5);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
@ -334,7 +341,7 @@ int main (int argc, char ** argv)
double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
Dw.Report();
}
Dw.DhopEO(src_o,r_e,DaggerNo);
@ -350,11 +357,14 @@ int main (int argc, char ** argv)
err = r_eo-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert(norm2(err)<1.0e-5);
pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err);
std::cout<<GridLogMessage << "norm diff even "<< norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "norm diff odd "<< norm2(src_o)<<std::endl;
assert(norm2(src_e)<1.0e-5);
assert(norm2(src_o)<1.0e-5);
}

View File

@ -145,7 +145,7 @@ public:
if ( bcast != ptr ) {
std::printf("inconsistent alloc pe %d %lx %lx \n",shmem_my_pe(),bcast,ptr);std::fflush(stdout);
BACKTRACEFILE();
// BACKTRACEFILE();
exit(0);
}
assert( bcast == (void *) ptr);
@ -155,15 +155,6 @@ public:
void deallocate(pointer __p, size_type) {
shmem_free((void *)__p);
}
#elif defined(GRID_COMMS_MPI3)
pointer allocate(size_type __n, const void* _p= 0)
{
#error "implement MPI3 windowed allocate"
}
void deallocate(pointer __p, size_type) {
#error "implement MPI3 windowed allocate"
}
#else
pointer allocate(size_type __n, const void* _p= 0)
{

View File

@ -171,14 +171,17 @@ std::string GridCmdVectorIntToString(const std::vector<int> & vec){
/////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////
static int Grid_is_initialised = 0;
void Grid_init(int *argc,char ***argv)
{
GridLogger::StopWatch.Start();
CartesianCommunicator::Init(argc,argv);
// Parse command line args.
GridLogger::StopWatch.Start();
std::string arg;
std::vector<std::string> logstreams;
std::string defaultLog("Error,Warning,Message,Performance");
@ -216,11 +219,14 @@ void Grid_init(int *argc,char ***argv)
if( GridCmdOptionExists(*argv,*argv+*argc,"--lebesgue") ){
LebesgueOrder::UseLebesgueOrder=1;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--cacheblocking") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--cacheblocking");
GridCmdOptionIntVector(arg,LebesgueOrder::Block);
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--timestamp") ){
GridLogTimestamp(1);
}
GridParseLayout(*argv,*argc,
Grid_default_latt,
Grid_default_mpi);
@ -274,12 +280,14 @@ void Grid_init(int *argc,char ***argv)
std::cout << "GNU General Public License for more details."<<std::endl;
std::cout << COL_BACKGROUND <<std::endl;
std::cout << std::endl;
Grid_is_initialised = 1;
}
void Grid_finalize(void)
{
#ifdef GRID_COMMS_MPI
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3)
MPI_Finalize();
Grid_unquiesce_nodes();
#endif

View File

@ -33,6 +33,7 @@ namespace Grid {
void Grid_init(int *argc,char ***argv);
void Grid_finalize(void);
// internal, controled with --handle
void Grid_sa_signal_handler(int sig,siginfo_t *si,void * ptr);
void Grid_debug_handler_init(void);
@ -44,6 +45,7 @@ namespace Grid {
const std::vector<int> &GridDefaultMpi(void);
const int &GridThreads(void) ;
void GridSetThreads(int t) ;
void GridLogTimestamp(int);
// Common parsing chores
std::string GridCmdOptionPayload(char ** begin, char ** end, const std::string & option);

View File

@ -34,8 +34,13 @@ directory
namespace Grid {
GridStopWatch Logger::StopWatch;
int Logger::timestamp;
std::ostream Logger::devnull(0);
void GridLogTimestamp(int on){
Logger::Timestamp(on);
}
Colours GridLogColours(0);
GridLogger GridLogError(1, "Error", GridLogColours, "RED");
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
@ -73,7 +78,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
////////////////////////////////////////////////////////////
void Grid_quiesce_nodes(void) {
int me = 0;
#ifdef GRID_COMMS_MPI
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3)
MPI_Comm_rank(MPI_COMM_WORLD, &me);
#endif
#ifdef GRID_COMMS_SHMEM

View File

@ -39,8 +39,9 @@
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////
// Dress the output; use std::chrono for time stamping via the StopWatch class
int Rank(void); // used for early stage debug before library init
//////////////////////////////////////////////////////////////////////////////////////////////////
class Colours{
@ -55,7 +56,6 @@ public:
void Active(bool activate){
is_active=activate;
if (is_active){
colour["BLACK"] ="\033[30m";
colour["RED"] ="\033[31m";
@ -77,10 +77,7 @@ public:
colour["WHITE"] ="";
colour["NORMAL"]="";
}
};
};
@ -88,6 +85,7 @@ class Logger {
protected:
Colours &Painter;
int active;
static int timestamp;
std::string name, topName;
std::string COLOUR;
@ -99,8 +97,7 @@ public:
std::string evidence() {return Painter.colour["YELLOW"];}
std::string colour() {return Painter.colour[COLOUR];}
Logger(std::string topNm, int on, std::string nm, Colours& col_class, std::string col)
: active(on),
Logger(std::string topNm, int on, std::string nm, Colours& col_class, std::string col) : active(on),
name(nm),
topName(topNm),
Painter(col_class),
@ -108,16 +105,20 @@ public:
void Active(int on) {active = on;};
int isActive(void) {return active;};
static void Timestamp(int on) {timestamp = on;};
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
stream << log.background()<< log.topName << log.background()<< " : ";
stream << log.colour() <<std::setw(14) << std::left << log.name << log.background() << " : ";
if ( log.timestamp ) {
StopWatch.Stop();
GridTime now = StopWatch.Elapsed();
StopWatch.Start();
stream << log.background()<< log.topName << log.background()<< " : ";
stream << log.colour() <<std::setw(14) << std::left << log.name << log.background() << " : ";
stream << log.evidence()<< now << log.background() << " : " << log.colour();
stream << log.evidence()<< now << log.background() << " : " ;
}
stream << log.colour();
return stream;
} else {
return devnull;
@ -149,7 +150,7 @@ extern void * Grid_backtrace_buffer[_NBACKTRACE];
#define BACKTRACEFILE() {\
char string[20]; \
std::sprintf(string,"backtrace.%d",Rank()); \
std::sprintf(string,"backtrace.%d",CartesianCommunicator::RankWorld()); \
std::FILE * fp = std::fopen(string,"w"); \
BACKTRACEFP(fp)\
std::fclose(fp); \

View File

@ -1,18 +1,22 @@
extra_sources=
if BUILD_COMMS_MPI
extra_sources+=communicator/Communicator_mpi.cc
extra_sources+=communicator/Communicator_base.cc
endif
if BUILD_COMMS_MPI3
extra_sources+=communicator/Communicator_mpi3.cc
extra_sources+=communicator/Communicator_base.cc
endif
if BUILD_COMMS_SHMEM
extra_sources+=communicator/Communicator_shmem.cc
extra_sources+=communicator/Communicator_base.cc
endif
if BUILD_COMMS_NONE
extra_sources+=communicator/Communicator_none.cc
extra_sources+=communicator/Communicator_base.cc
endif
#

View File

@ -70,20 +70,20 @@
namespace Grid {
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,std::vector<std::pair<int,int> >& table)
inline void Gather_plane_simple_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
int off,std::vector<std::pair<int,int> > & table)
{
table.resize(0);
int rd = rhs._grid->_rdimensions[dimension];
int rd = grid->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
if ( !grid->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so= plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int so= plane*grid->_ostride[dimension]; // base offset for start of plane
int e1=grid->_slice_nblock[dimension];
int e2=grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
int stride=grid->_slice_stride[dimension];
if ( cbmask == 0x3 ) {
table.resize(e1*e2);
for(int n=0;n<e1;n++){
@ -99,7 +99,7 @@ Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,commVector<cobj> &bu
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs._grid->CheckerBoardFromOindexTable(o+b);
int ocb=1<<grid->CheckerBoardFromOindexTable(o+b);
if ( ocb &cbmask ) {
table[bo]=std::pair<int,int>(bo,o+b); bo++;
}
@ -109,8 +109,7 @@ Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,commVector<cobj> &bu
}
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_table (std::vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,commVector<cobj> &buffer,
compressor &compress, int off,int so)
Gather_plane_simple_table (std::vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so)
{
PARALLEL_FOR_LOOP
for(int i=0;i<table.size();i++){
@ -118,19 +117,6 @@ PARALLEL_FOR_LOOP
}
}
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,
double &t_table ,double & t_data )
{
std::vector<std::pair<int,int> > table;
Gather_plane_simple_table_compute (rhs, buffer,dimension,plane,cbmask,compress,off,table);
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
Gather_plane_simple_table (table,rhs,buffer,compress,off,so);
}
struct StencilEntry {
uint64_t _offset;
uint64_t _byte_offset;
@ -143,6 +129,7 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal fill in.
public:
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
typedef uint32_t StencilInteger;
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
@ -158,7 +145,6 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
Integer to_rank;
Integer from_rank;
Integer bytes;
volatile Integer done;
};
std::vector<Packet> Packets;
@ -166,81 +152,53 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
int face_table_computed;
std::vector<std::vector<std::pair<int,int> > > face_table ;
#define SEND_IMMEDIATE
#define SERIAL_SENDS
void AddPacket(void *xmit,void * rcv, Integer to,Integer from,Integer bytes){
#ifdef SEND_IMMEDIATE
commtime-=usecond();
_grid->SendToRecvFrom(xmit,to,rcv,from,bytes);
commtime+=usecond();
#endif
Packet p;
p.send_buf = xmit;
p.recv_buf = rcv;
p.to_rank = to;
p.from_rank= from;
p.bytes = bytes;
p.done = 0;
comms_bytes+=2.0*bytes;
Packets.push_back(p);
}
#ifdef SERIAL_SENDS
void Communicate(void ) {
void CommunicateBegin(std::vector<std::vector<CommsRequest_t> > &reqs)
{
reqs.resize(Packets.size());
commtime-=usecond();
for(int i=0;i<Packets.size();i++){
#ifndef SEND_IMMEDIATE
_grid->SendToRecvFrom(
_grid->StencilSendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes);
#endif
Packets[i].done = 1;
/*
}else{
_grid->SendToRecvFromBegin(reqs[i],
Packets[i].send_buf,
Packets[i].to_rank,
Packets[i].recv_buf,
Packets[i].from_rank,
Packets[i].bytes);
}
*/
}
commtime+=usecond();
}
#else
void Communicate(void ) {
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
std::vector<std::vector<CommsRequest_t> > reqs(Packets.size());
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{
commtime-=usecond();
const int concurrency=2;
for(int i=0;i<Packets.size();i+=concurrency){
for(int ii=0;ii<concurrency;ii++){
int j = i+ii;
if ( j<Packets.size() ) {
#ifndef SEND_IMMEDIATE
_grid->SendToRecvFromBegin(reqs[j],
Packets[j].send_buf,
Packets[j].to_rank,
Packets[j].recv_buf,
Packets[j].from_rank,
Packets[j].bytes);
#endif
}
}
for(int ii=0;ii<concurrency;ii++){
int j = i+ii;
if ( j<Packets.size() ) {
#ifndef SEND_IMMEDIATE
_grid->SendToRecvFromComplete(reqs[i]);
#endif
}
}
for(int ii=0;ii<concurrency;ii++){
int j = i+ii;
if ( j<Packets.size() ) {
Packets[j].done = 1;
}
}
for(int i=0;i<Packets.size();i++){
// if( ShmDirectCopy )
_grid->StencilSendToRecvFromComplete(reqs[i]);
// else
// _grid->SendToRecvFromComplete(reqs[i]);
}
commtime+=usecond();
}
#endif
///////////////////////////////////////////
// Simd merge queue for asynch comms
@ -260,36 +218,19 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
m.rpointers= rpointers;
m.buffer_size = buffer_size;
m.packet_id = packet_id;
#ifdef SEND_IMMEDIATE
mergetime-=usecond();
PARALLEL_FOR_LOOP
for(int o=0;o<m.buffer_size;o++){
merge1(m.mpointer[o],m.rpointers,o);
}
mergetime+=usecond();
#else
Mergers.push_back(m);
#endif
}
void CommsMerge(void ) {
//PARALLEL_NESTED_LOOP2
for(int i=0;i<Mergers.size();i++){
spintime-=usecond();
int packet_id = Mergers[i].packet_id;
while(! Packets[packet_id].done ); // spin for completion
spintime+=usecond();
#ifndef SEND_IMMEDIATE
mergetime-=usecond();
PARALLEL_FOR_LOOP
for(int o=0;o<Mergers[i].buffer_size;o++){
merge1(Mergers[i].mpointer[o],Mergers[i].rpointers,o);
}
mergetime+=usecond();
#endif
}
}
@ -312,24 +253,19 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
// Flat vector, change layout for cache friendly.
Vector<StencilEntry> _entries;
inline StencilEntry * GetEntry(int &ptype,int point,int osite) { ptype = _permute_type[point]; return & _entries[point+_npoints*osite]; }
void PrecomputeByteOffsets(void){
for(int i=0;i<_entries.size();i++){
if( _entries[i]._is_local ) {
_entries[i]._byte_offset = _entries[i]._offset*sizeof(vobj);
} else {
// PrecomputeByteOffsets [5] 16384/32768 140735768678528 140735781261056 2581581952
_entries[i]._byte_offset = _entries[i]._offset*sizeof(cobj);
}
}
};
inline uint64_t Touch(int ent) {
// _mm_prefetch((char *)&_entries[ent],_MM_HINT_T0);
}
inline StencilEntry * GetEntry(int &ptype,int point,int osite) { ptype = _permute_type[point]; return & _entries[point+_npoints*osite]; }
inline uint64_t GetInfo(int &ptype,int &local,int &perm,int point,int ent,uint64_t base) {
uint64_t cbase = (uint64_t)&comm_buf[0];
uint64_t cbase = (uint64_t)&u_recv_buf_p[0];
local = _entries[ent]._is_local;
perm = _entries[ent]._permute;
if (perm) ptype = _permute_type[point];
@ -340,20 +276,33 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
}
}
inline uint64_t GetPFInfo(int ent,uint64_t base) {
uint64_t cbase = (uint64_t)&comm_buf[0];
uint64_t cbase = (uint64_t)&u_recv_buf_p[0];
int local = _entries[ent]._is_local;
if (local) return base + _entries[ent]._byte_offset;
else return cbase + _entries[ent]._byte_offset;
}
// Comms buffers
std::vector<commVector<scalar_object> > u_simd_send_buf;
std::vector<commVector<scalar_object> > u_simd_recv_buf;
commVector<cobj> u_send_buf;
commVector<cobj> comm_buf;
///////////////////////////////////////////////////////////
// Unified Comms buffers for all directions
///////////////////////////////////////////////////////////
// Vectors that live on the symmetric heap in case of SHMEM
// std::vector<commVector<scalar_object> > u_simd_send_buf_hide;
// std::vector<commVector<scalar_object> > u_simd_recv_buf_hide;
// commVector<cobj> u_send_buf_hide;
// commVector<cobj> u_recv_buf_hide;
// These are used; either SHM objects or refs to the above symmetric heap vectors
// depending on comms target
cobj* u_recv_buf_p;
cobj* u_send_buf_p;
std::vector<scalar_object *> u_simd_send_buf;
std::vector<scalar_object *> u_simd_recv_buf;
int u_comm_offset;
int _unified_buffer_size;
cobj *CommBuf(void) { return u_recv_buf_p; }
/////////////////////////////////////////
// Timing info; ugly; possibly temporary
/////////////////////////////////////////
@ -435,7 +384,6 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
int i = ii; // reverse direction to get SIMD comms done first
int point = i;
int dimension = directions[i];
int displacement = distances[i];
int shift = displacement;
@ -482,18 +430,25 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
}
}
}
u_send_buf.resize(_unified_buffer_size);
comm_buf.resize(_unified_buffer_size);
PrecomputeByteOffsets();
/////////////////////////////////////////////////////////////////////////////////
// Try to allocate for receiving in a shared memory region, fall back to buffer
/////////////////////////////////////////////////////////////////////////////////
const int Nsimd = grid->Nsimd();
_grid->ShmBufferFreeAll();
u_simd_send_buf.resize(Nsimd);
u_simd_recv_buf.resize(Nsimd);
u_send_buf_p=(cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
u_recv_buf_p=(cobj *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(cobj));
for(int l=0;l<Nsimd;l++){
u_simd_send_buf[l].resize(_unified_buffer_size);
u_simd_recv_buf[l].resize(_unified_buffer_size);
u_simd_recv_buf[l] = (scalar_object *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(scalar_object));
u_simd_send_buf[l] = (scalar_object *)_grid->ShmBufferMalloc(_unified_buffer_size*sizeof(scalar_object));
}
PrecomputeByteOffsets();
}
void Local (int point, int dimension,int shiftpm,int cbmask)
@ -717,38 +672,22 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
}
}
template<class compressor>
void HaloExchange(const Lattice<vobj> &source,compressor &compress)
template<class compressor> void HaloExchange(const Lattice<vobj> &source,compressor &compress)
{
std::vector<std::vector<CommsRequest_t> > reqs;
calls++;
Mergers.resize(0);
Packets.resize(0);
_grid->StencilBarrier();
HaloGather(source,compress);
this->Communicate();
this->CommunicateBegin(reqs);
_grid->StencilBarrier();
this->CommunicateComplete(reqs);
_grid->StencilBarrier();
CommsMerge(); // spins
}
#if 0
// Overlapping comms and compute typically slows down compute and is useless
// unless memory bandwidth greatly exceeds network
template<class compressor>
std::thread HaloExchangeBegin(const Lattice<vobj> &source,compressor &compress) {
Mergers.resize(0);
Packets.resize(0);
HaloGather(source,compress);
return std::thread([&] { this->Communicate(); });
}
void HaloExchangeComplete(std::thread &thr)
{
CommsMerge(); // spins
jointime-=usecond();
thr.join();
jointime+=usecond();
}
#endif
template<class compressor>
void HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
template<class compressor> void HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
{
int dimension = _directions[point];
int displacement = _distances[point];
@ -806,7 +745,6 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
assert(source._grid==_grid);
halogtime-=usecond();
assert (comm_buf.size() == _unified_buffer_size );
u_comm_offset=0;
// Gather all comms buffers
@ -863,37 +801,48 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
if ( !face_table_computed ) {
t_table-=usecond();
face_table.resize(face_idx+1);
Gather_plane_simple_table_compute (rhs,u_send_buf,dimension,sx,cbmask,compress,u_comm_offset,face_table[face_idx]);
Gather_plane_simple_table_compute ((GridBase *)_grid,dimension,sx,cbmask,u_comm_offset,
face_table[face_idx]);
t_table+=usecond();
}
t_data-=usecond();
Gather_plane_simple_table (face_table[face_idx],rhs,u_send_buf,compress,u_comm_offset,so);
face_idx++;
t_data+=usecond();
gathertime+=usecond();
// Gather_plane_simple_stencil (rhs,u_send_buf,dimension,sx,cbmask,compress,u_comm_offset,t_table,t_data);
int rank = _grid->_processor;
int recv_from_rank;
int xmit_to_rank;
_grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
assert (xmit_to_rank != _grid->ThisRank());
assert (recv_from_rank != _grid->ThisRank());
// FIXME Implement asynchronous send & also avoid buffer copy
AddPacket((void *)&u_send_buf[u_comm_offset],
(void *) &comm_buf[u_comm_offset],
/////////////////////////////////////////////////////////
// try the direct copy if possible
/////////////////////////////////////////////////////////
cobj *send_buf = (cobj *)_grid->ShmBufferTranslate(xmit_to_rank,u_recv_buf_p);
if ( send_buf==NULL ) {
send_buf = u_send_buf_p;
}
// std::cout << " send_bufs "<<std::hex<< send_buf <<" ubp "<<u_send_buf_p <<std::dec<<std::endl;
t_data-=usecond();
assert(u_send_buf_p!=NULL);
assert(send_buf!=NULL);
Gather_plane_simple_table (face_table[face_idx],rhs,send_buf,compress,u_comm_offset,so); face_idx++;
t_data+=usecond();
AddPacket((void *)&send_buf[u_comm_offset],
(void *)&u_recv_buf_p[u_comm_offset],
xmit_to_rank,
recv_from_rank,
bytes);
gathertime+=usecond();
u_comm_offset+=words;
}
}
}
template<class compressor>
void GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx)
{
@ -974,10 +923,6 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
auto rp = &u_simd_recv_buf[i ][u_comm_offset];
auto sp = &u_simd_send_buf[nbr_lane][u_comm_offset];
void *vrp = (void *)rp;
void *vsp = (void *)sp;
if(nbr_proc){
int recv_from_rank;
@ -985,9 +930,17 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
AddPacket( vsp,vrp,xmit_to_rank,recv_from_rank,bytes);
scalar_object *shm = (scalar_object *) _grid->ShmBufferTranslate(recv_from_rank,sp);
// if ((ShmDirectCopy==0)||(shm==NULL)) {
if (shm==NULL) {
shm = rp;
}
rpointers[i] = rp;
// if Direct, StencilSendToRecvFrom will suppress copy to a peer on node
// assuming above pointer flip
AddPacket((void *)sp,(void *)rp,xmit_to_rank,recv_from_rank,bytes);
rpointers[i] = shm;
} else {
@ -996,7 +949,7 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,i
}
}
AddMerge(&comm_buf[u_comm_offset],rpointers,buffer_size,Packets.size()-1);
AddMerge(&u_recv_buf_p[u_comm_offset],rpointers,buffer_size,Packets.size()-1);
u_comm_offset +=buffer_size;
}

View File

@ -127,6 +127,22 @@ class GridThread {
ThreadBarrier();
};
static void bcopy(const void *src, void *dst, size_t len) {
#ifdef GRID_OMP
#pragma omp parallel
{
const char *c_src =(char *) src;
char *c_dest=(char *) dst;
int me,mywork,myoff;
GridThread::GetWorkBarrier(len,me, mywork,myoff);
bcopy(&c_src[myoff],&c_dest[myoff],mywork);
}
#else
bcopy(src,dst,len);
#endif
}
};
}

View File

@ -0,0 +1,132 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_none.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include "Grid.h"
namespace Grid {
///////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////
int CartesianCommunicator::ShmRank;
int CartesianCommunicator::ShmSize;
int CartesianCommunicator::GroupRank;
int CartesianCommunicator::GroupSize;
int CartesianCommunicator::WorldRank;
int CartesianCommunicator::WorldSize;
int CartesianCommunicator::Slave;
void * CartesianCommunicator::ShmCommBuf;
/////////////////////////////////
// Alloc, free shmem region
/////////////////////////////////
void *CartesianCommunicator::ShmBufferMalloc(size_t bytes){
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
void *ptr = (void *)heap_top;
heap_top += bytes;
heap_bytes+= bytes;
std::cout <<"Shm alloc "<<ptr<<std::endl;
assert(heap_bytes < MAX_MPI_SHM_BYTES);
return ptr;
}
void CartesianCommunicator::ShmBufferFreeAll(void) {
heap_top =(size_t)ShmBufferSelf();
heap_bytes=0;
}
/////////////////////////////////
// Grid information queries
/////////////////////////////////
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
int CartesianCommunicator::BossRank(void) { return 0; };
int CartesianCommunicator::ThisRank(void) { return _processor; };
const std::vector<int> & CartesianCommunicator::ThisProcessorCoor(void) { return _processor_coor; };
const std::vector<int> & CartesianCommunicator::ProcessorGrid(void) { return _processors; };
int CartesianCommunicator::ProcessorCount(void) { return _Nprocessors; };
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
int CartesianCommunicator::RankWorld(void){ return WorldRank; };
int CartesianCommunicator::Ranks (void) { return WorldSize; };
int CartesianCommunicator::Nodes (void) { return GroupSize; };
int CartesianCommunicator::Cores (void) { return ShmSize; };
int CartesianCommunicator::NodeRank (void) { return GroupRank; };
int CartesianCommunicator::CoreRank (void) { return ShmRank; };
void CartesianCommunicator::GlobalSum(ComplexF &c)
{
GlobalSumVector((float *)&c,2);
}
void CartesianCommunicator::GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void CartesianCommunicator::GlobalSum(ComplexD &c)
{
GlobalSumVector((double *)&c,2);
}
void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
{
GlobalSumVector((double *)c,2*N);
}
#ifndef GRID_COMMS_MPI3
void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes)
{
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall)
{
SendToRecvFromComplete(waitall);
}
void CartesianCommunicator::StencilBarrier(void){};
commVector<uint8_t> CartesianCommunicator::ShmBufStorageVector;
void *CartesianCommunicator::ShmBufferSelf(void) { return ShmCommBuf; }
void *CartesianCommunicator::ShmBuffer(int rank) {
return NULL;
}
void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p) {
return NULL;
}
void CartesianCommunicator::ShmInitGeneric(void){
ShmBufStorageVector.resize(MAX_MPI_SHM_BYTES);
ShmCommBuf=(void *)&ShmBufStorageVector[0];
}
#endif
}

View File

@ -40,27 +40,42 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_COMMS_SHMEM
#include <mpp/shmem.h>
#endif
namespace Grid {
class CartesianCommunicator {
public:
// Communicator should know nothing of the physics grid, only processor grid.
// 65536 ranks per node adequate for now
// 128MB shared memory for comms enought for 48^4 local vol comms
// Give external control (command line override?) of this
static const int MAXLOG2RANKSPERNODE = 16;
static const uint64_t MAX_MPI_SHM_BYTES = 128*1024*1024;
// Communicator should know nothing of the physics grid, only processor grid.
int _Nprocessors; // How many in all
std::vector<int> _processors; // Which dimensions get relayed out over processors lanes.
int _processor; // linear processor rank
std::vector<int> _processor_coor; // linear processor coordinate
unsigned long _ndimension;
#ifdef GRID_COMMS_MPI
MPI_Comm communicator;
typedef MPI_Request CommsRequest_t;
#elif GRID_COMMS_MPI3
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3)
MPI_Comm communicator;
static MPI_Comm communicator_world;
typedef MPI_Request CommsRequest_t;
#else
typedef int CommsRequest_t;
#endif
const int MAXLOG2RANKSPERNODE = 16; // 65536 ranks per node adequate for now
////////////////////////////////////////////////////////////////////
// Helper functionality for SHM Windows common to all other impls
////////////////////////////////////////////////////////////////////
// Longer term; drop this in favour of a master / slave model with
// cartesian communicator on a subset of ranks, slave ranks controlled
// by group leader with data xfer via shared memory
////////////////////////////////////////////////////////////////////
#ifdef GRID_COMMS_MPI3
std::vector<int> WorldDims;
std::vector<int> GroupDims;
std::vector<int> ShmDims;
@ -69,68 +84,87 @@ class CartesianCommunicator {
std::vector<int> ShmCoor;
std::vector<int> WorldCoor;
int GroupRank;
int ShmRank;
int WorldRank;
int GroupSize;
int ShmSize;
int WorldSize;
static std::vector<int> GroupRanks;
static std::vector<int> MyGroup;
static int ShmSetup;
static MPI_Win ShmWindow;
static MPI_Comm ShmComm;
std::vector<int> LexicographicToWorldRank;
#else
typedef int CommsRequest_t;
#endif
static std::vector<void *> ShmCommBufs;
#else
static void ShmInitGeneric(void);
static commVector<uint8_t> ShmBufStorageVector;
#endif
static void * ShmCommBuf;
size_t heap_top;
size_t heap_bytes;
void *ShmBufferSelf(void);
void *ShmBuffer(int rank);
void *ShmBufferTranslate(int rank,void * local_p);
void *ShmBufferMalloc(size_t bytes);
void ShmBufferFreeAll(void) ;
////////////////////////////////////////////////
// Must call in Grid startup
////////////////////////////////////////////////
static void Init(int *argc, char ***argv);
// Constructor
////////////////////////////////////////////////
// Constructor of any given grid
////////////////////////////////////////////////
CartesianCommunicator(const std::vector<int> &pdimensions_in);
// Wraps MPI_Cart routines
////////////////////////////////////////////////////////////////////////////////////////
// Wraps MPI_Cart routines, or implements equivalent on other impls
////////////////////////////////////////////////////////////////////////////////////////
void ShiftedRanks(int dim,int shift,int & source, int & dest);
int RankFromProcessorCoor(std::vector<int> &coor);
void ProcessorCoorFromRank(int rank,std::vector<int> &coor);
/////////////////////////////////
// Grid information queries
// Grid information and queries
/////////////////////////////////
int IsBoss(void) { return _processor==0; };
int BossRank(void) { return 0; };
int ThisRank(void) { return _processor; };
const std::vector<int> & ThisProcessorCoor(void) { return _processor_coor; };
const std::vector<int> & ProcessorGrid(void) { return _processors; };
int ProcessorCount(void) { return _Nprocessors; };
static int ShmRank;
static int ShmSize;
static int GroupSize;
static int GroupRank;
static int WorldRank;
static int WorldSize;
static int Slave;
int IsBoss(void) ;
int BossRank(void) ;
int ThisRank(void) ;
const std::vector<int> & ThisProcessorCoor(void) ;
const std::vector<int> & ProcessorGrid(void) ;
int ProcessorCount(void) ;
static int Ranks (void);
static int Nodes (void);
static int Cores (void);
static int NodeRank (void);
static int CoreRank (void);
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
////////////////////////////////////////////////////////////////////////////////
static int RankWorld(void) ;
static void BroadcastWorld(int root,void* data, int bytes);
////////////////////////////////////////////////////////////
// Reduction
////////////////////////////////////////////////////////////
void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &);
void GlobalSumVector(RealD *,int N);
void GlobalSum(uint32_t &);
void GlobalSum(uint64_t &);
void GlobalSum(ComplexF &c)
{
GlobalSumVector((float *)&c,2);
}
void GlobalSumVector(ComplexF *c,int N)
{
GlobalSumVector((float *)c,2*N);
}
void GlobalSum(ComplexD &c)
{
GlobalSumVector((double *)&c,2);
}
void GlobalSumVector(ComplexD *c,int N)
{
GlobalSumVector((double *)c,2*N);
}
void GlobalSum(ComplexF &c);
void GlobalSumVector(ComplexF *c,int N);
void GlobalSum(ComplexD &c);
void GlobalSumVector(ComplexD *c,int N);
template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type;
@ -138,6 +172,7 @@ class CartesianCommunicator {
scalar_type * ptr = (scalar_type *)& o;
GlobalSumVector(ptr,words);
}
////////////////////////////////////////////////////////////
// Face exchange, buffer swap in translational invariant way
////////////////////////////////////////////////////////////
@ -159,8 +194,19 @@ class CartesianCommunicator {
void *recv,
int recv_from_rank,
int bytes);
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
void StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int xmit_to_rank,
void *recv,
int recv_from_rank,
int bytes);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
void StencilBarrier(void);
////////////////////////////////////////////////////////////
// Barrier
////////////////////////////////////////////////////////////
@ -170,13 +216,12 @@ class CartesianCommunicator {
// Broadcast a buffer and composite larger
////////////////////////////////////////////////////////////
void Broadcast(int root,void* data, int bytes);
template<class obj> void Broadcast(int root,obj &data)
{
Broadcast(root,(void *)&data,sizeof(data));
};
static void BroadcastWorld(int root,void* data, int bytes);
};
}

View File

@ -30,6 +30,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Comm CartesianCommunicator::communicator_world;
// Should error check all MPI calls.
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
@ -37,12 +43,15 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
if ( !flag ) {
MPI_Init(argc,argv);
}
}
int Rank(void) {
int pe;
MPI_Comm_rank(MPI_COMM_WORLD,&pe);
return pe;
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
MPI_Comm_rank(communicator_world,&WorldRank);
MPI_Comm_size(communicator_world,&WorldSize);
ShmRank=0;
ShmSize=1;
GroupRank=WorldRank;
GroupSize=WorldSize;
Slave =0;
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
@ -54,7 +63,7 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
_processors = processors;
_processor_coor.resize(_ndimension);
MPI_Cart_create(MPI_COMM_WORLD, _ndimension,&_processors[0],&periodic[0],1,&communicator);
MPI_Cart_create(communicator_world, _ndimension,&_processors[0],&periodic[0],1,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
@ -67,7 +76,6 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
assert(Size==_Nprocessors);
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
@ -168,7 +176,6 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
@ -187,14 +194,17 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
communicator);
assert(ierr==0);
}
///////////////////////////////////////////////////////
// Should only be used prior to Grid Init finished.
// Check for this?
///////////////////////////////////////////////////////
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
MPI_COMM_WORLD);
communicator_world);
assert(ierr==0);
}

View File

@ -30,25 +30,199 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
// Global used by Init and nowhere else. How to hide?
int Rank(void) {
int pe;
MPI_Comm_rank(MPI_COMM_WORLD,&pe);
return pe;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
int CartesianCommunicator::ShmSetup = 0;
MPI_Comm CartesianCommunicator::communicator_world;
MPI_Comm CartesianCommunicator::ShmComm;
MPI_Win CartesianCommunicator::ShmWindow;
std::vector<int> CartesianCommunicator::GroupRanks;
std::vector<int> CartesianCommunicator::MyGroup;
std::vector<void *> CartesianCommunicator::ShmCommBufs;
void *CartesianCommunicator::ShmBufferSelf(void)
{
return ShmCommBufs[ShmRank];
}
// Should error check all MPI calls.
void *CartesianCommunicator::ShmBuffer(int rank)
{
int gpeer = GroupRanks[rank];
if (gpeer == MPI_UNDEFINED){
return NULL;
} else {
return ShmCommBufs[gpeer];
}
}
void *CartesianCommunicator::ShmBufferTranslate(int rank,void * local_p)
{
int gpeer = GroupRanks[rank];
if (gpeer == MPI_UNDEFINED){
return NULL;
} else {
uint64_t offset = (uint64_t)local_p - (uint64_t)ShmCommBufs[ShmRank];
uint64_t remote = (uint64_t)ShmCommBufs[gpeer]+offset;
return (void *) remote;
}
}
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init(argc,argv);
}
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
MPI_Comm_rank(communicator_world,&WorldRank);
MPI_Comm_size(communicator_world,&WorldSize);
/////////////////////////////////////////////////////////////////////
// Split into groups that can share memory
/////////////////////////////////////////////////////////////////////
MPI_Comm_split_type(communicator_world, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
MPI_Comm_rank(ShmComm ,&ShmRank);
MPI_Comm_size(ShmComm ,&ShmSize);
GroupSize = WorldSize/ShmSize;
/////////////////////////////////////////////////////////////////////
// find world ranks in our SHM group (i.e. which ranks are on our node)
/////////////////////////////////////////////////////////////////////
MPI_Group WorldGroup, ShmGroup;
MPI_Comm_group (communicator_world, &WorldGroup);
MPI_Comm_group (ShmComm, &ShmGroup);
std::vector<int> world_ranks(WorldSize);
GroupRanks.resize(WorldSize);
MyGroup.resize(ShmSize);
for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &GroupRanks[0]);
///////////////////////////////////////////////////////////////////
// Identify who is in my group and noninate the leader
///////////////////////////////////////////////////////////////////
int g=0;
for(int rank=0;rank<WorldSize;rank++){
if(GroupRanks[rank]!=MPI_UNDEFINED){
assert(g<ShmSize);
MyGroup[g++] = rank;
}
}
std::sort(MyGroup.begin(),MyGroup.end(),std::less<int>());
int myleader = MyGroup[0];
std::vector<int> leaders_1hot(WorldSize,0);
std::vector<int> leaders_group(GroupSize,0);
leaders_1hot [ myleader ] = 1;
///////////////////////////////////////////////////////////////////
// global sum leaders over comm world
///////////////////////////////////////////////////////////////////
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,communicator_world);
assert(ierr==0);
///////////////////////////////////////////////////////////////////
// find the group leaders world rank
///////////////////////////////////////////////////////////////////
int group=0;
for(int l=0;l<WorldSize;l++){
if(leaders_1hot[l]){
leaders_group[group++] = l;
}
}
///////////////////////////////////////////////////////////////////
// Identify the rank of the group in which I (and my leader) live
///////////////////////////////////////////////////////////////////
GroupRank=-1;
for(int g=0;g<GroupSize;g++){
if (myleader == leaders_group[g]){
GroupRank=g;
}
}
assert(GroupRank!=-1);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the shared window for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = 0;
ierr = MPI_Win_allocate_shared(MAX_MPI_SHM_BYTES,1,MPI_INFO_NULL,ShmComm,&ShmCommBuf,&ShmWindow);
assert(ierr==0);
// KNL hack -- force to numa-domain 1 in flat
#if 0
//#include <numaif.h>
for(uint64_t page=0;page<MAX_MPI_SHM_BYTES;page+=4096){
void *pages = (void *) ( page + ShmCommBuf );
int status;
int flags=MPOL_MF_MOVE_ALL;
int nodes=1; // numa domain == MCDRAM
unsigned long count=1;
ierr= move_pages(0,count, &pages,&nodes,&status,flags);
if (ierr && (page==0)) perror("numa relocate command failed");
}
#endif
MPI_Win_lock_all (MPI_MODE_NOCHECK, ShmWindow);
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Plan: allocate a fixed SHM region. Scratch that is just used via some scheme during stencil comms, with no allocate free.
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBufs.resize(ShmSize);
for(int r=0;r<ShmSize;r++){
MPI_Aint sz;
int dsp_unit;
MPI_Win_shared_query (ShmWindow, r, &sz, &dsp_unit, &ShmCommBufs[r]);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// Verbose for now
//////////////////////////////////////////////////////////////////////////////////////////////////////////
if (WorldRank == 0){
std::cout<<GridLogMessage<< "Grid MPI-3 configuration: detected ";
std::cout<< WorldSize << " Ranks " ;
std::cout<< GroupSize << " Nodes " ;
std::cout<< ShmSize << " with ranks-per-node "<<std::endl;
std::cout<<GridLogMessage <<"Grid MPI-3 configuration: allocated shared memory region of size ";
std::cout<<std::hex << MAX_MPI_SHM_BYTES <<" ShmCommBuf address = "<<ShmCommBuf << std::dec<<std::endl;
for(int g=0;g<GroupSize;g++){
std::cout<<GridLogMessage<<" Node "<<g<<" led by MPI rank "<<leaders_group[g]<<std::endl;
}
std::cout<<GridLogMessage<<" Boss Node Shm Pointers are {";
for(int g=0;g<ShmSize;g++){
std::cout<<std::hex<<ShmCommBufs[g]<<std::dec;
if(g!=ShmSize-1) std::cout<<",";
else std::cout<<"}"<<std::endl;
}
}
for(int g=0;g<GroupSize;g++){
if ( (ShmRank == 0) && (GroupRank==g) ) std::cout<<GridLogMessage<<"["<<g<<"] Node Group "<<g<<" is ranks {";
for(int r=0;r<ShmSize;r++){
if ( (ShmRank == 0) && (GroupRank==g) ) {
std::cout<<MyGroup[r];
if(r<ShmSize-1) std::cout<<",";
else std::cout<<"}"<<std::endl;
}
MPI_Barrier(communicator_world);
}
}
assert(ShmSetup==0); ShmSetup=1;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Want to implement some magic ... Group sub-cubes into those on same node
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
std::vector<int> coor = _processor_coor;
@ -78,27 +252,11 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &c
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
int ierr;
communicator=communicator_world;
_ndimension = processors.size();
std::cout << "Creating "<< _ndimension << " dim communicator "<<std::endl;
for(int d =0;d<_ndimension;d++){
std::cout << processors[d]<<" ";
};
std::cout << std::endl;
WorldDims = processors;
communicator = MPI_COMM_WORLD;
MPI_Comm shmcomm;
MPI_Comm_split_type(communicator, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&shmcomm);
MPI_Comm_rank(communicator,&WorldRank);
MPI_Comm_size(communicator,&WorldSize);
MPI_Comm_rank(shmcomm ,&ShmRank);
MPI_Comm_size(shmcomm ,&ShmSize);
GroupSize = WorldSize/ShmSize;
std::cout<< "Ranks per node "<< ShmSize << std::endl;
std::cout<< "Nodes "<< GroupSize << std::endl;
std::cout<< "Ranks "<< WorldSize << std::endl;
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
@ -118,46 +276,27 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
////////////////////////////////////////////////////////////////
int dim = 0;
std::vector<int> WorldDims = processors;
ShmDims.resize(_ndimension,1);
GroupDims.resize(_ndimension);
ShmCoor.resize(_ndimension);
GroupCoor.resize(_ndimension);
WorldCoor.resize(_ndimension);
for(int l2=0;l2<log2size;l2++){
while ( WorldDims[dim] / ShmDims[dim] <= 1 ) dim=(dim+1)%_ndimension;
ShmDims[dim]*=2;
dim=(dim+1)%_ndimension;
}
std::cout << "Shm group dims "<<std::endl;
for(int d =0;d<_ndimension;d++){
std::cout << ShmDims[d]<<" ";
};
std::cout << std::endl;
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
////////////////////////////////////////////////////////////////
for(int d=0;d<_ndimension;d++){
GroupDims[d] = WorldDims[d]/ShmDims[d];
}
std::cout << "Group dims "<<std::endl;
for(int d =0;d<_ndimension;d++){
std::cout << GroupDims[d]<<" ";
};
std::cout << std::endl;
MPI_Group WorldGroup, ShmGroup;
MPI_Comm_group (communicator, &WorldGroup);
MPI_Comm_group (shmcomm, &ShmGroup);
std::vector<int> world_ranks(WorldSize);
std::vector<int> group_ranks(WorldSize);
std::vector<int> mygroup(GroupSize);
for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &group_ranks[0]);
////////////////////////////////////////////////////////////////
// Check processor counts match
@ -166,56 +305,10 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
_processors = processors;
_processor_coor.resize(_ndimension);
for(int i=0;i<_ndimension;i++){
std::cout << " p " << _processors[i]<<std::endl;
_Nprocessors*=_processors[i];
}
std::cout << " World " <<WorldSize <<" Nproc "<<_Nprocessors<<std::endl;
assert(WorldSize==_Nprocessors);
///////////////////////////////////////////////////////////////////
// Identify who is in my group and noninate the leader
///////////////////////////////////////////////////////////////////
int g=0;
for(int rank=0;rank<WorldSize;rank++){
if(group_ranks[rank]!=MPI_UNDEFINED){
mygroup[g] = rank;
}
}
std::sort(mygroup.begin(),mygroup.end(),std::greater<int>());
int myleader = mygroup[0];
std::vector<int> leaders_1hot(WorldSize,0);
std::vector<int> leaders_group(GroupSize,0);
leaders_1hot [ myleader ] = 1;
///////////////////////////////////////////////////////////////////
// global sum leaders over comm world
///////////////////////////////////////////////////////////////////
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,communicator);
assert(ierr==0);
///////////////////////////////////////////////////////////////////
// find the group leaders world rank
///////////////////////////////////////////////////////////////////
int group=0;
for(int l=0;l<WorldSize;l++){
if(leaders_1hot[l]){
leaders_group[group++] = l;
}
}
///////////////////////////////////////////////////////////////////
// Identify the rank of the group in which I (and my leader) live
///////////////////////////////////////////////////////////////////
GroupRank=-1;
for(int g=0;g<GroupSize;g++){
if (myleader == leaders_group[g]){
GroupRank=g;
}
}
assert(GroupRank!=-1);
////////////////////////////////////////////////////////////////
// Establish mapping between lexico physics coord and WorldRank
//
@ -307,6 +400,80 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
int from,
int bytes)
{
#if 0
this->StencilBarrier();
MPI_Request xrq;
MPI_Request rrq;
static int sequence;
int ierr;
int tag;
int check;
assert(dest != _processor);
assert(from != _processor);
int gdest = GroupRanks[dest];
int gfrom = GroupRanks[from];
int gme = GroupRanks[_processor];
sequence++;
char *from_ptr = (char *)ShmCommBufs[ShmRank];
int small = (bytes<MAX_MPI_SHM_BYTES);
typedef uint64_t T;
int words = bytes/sizeof(T);
assert(((size_t)bytes &(sizeof(T)-1))==0);
assert(gme == ShmRank);
if ( small && (gdest !=MPI_UNDEFINED) ) {
char *to_ptr = (char *)ShmCommBufs[gdest];
assert(gme != gdest);
T *ip = (T *)xmit;
T *op = (T *)to_ptr;
PARALLEL_FOR_LOOP
for(int w=0;w<words;w++) {
op[w]=ip[w];
}
bcopy(&_processor,&to_ptr[bytes],sizeof(_processor));
bcopy(& sequence,&to_ptr[bytes+4],sizeof(sequence));
} else {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
this->StencilBarrier();
if (small && (gfrom !=MPI_UNDEFINED) ) {
T *ip = (T *)from_ptr;
T *op = (T *)recv;
PARALLEL_FOR_LOOP
for(int w=0;w<words;w++) {
op[w]=ip[w];
}
bcopy(&from_ptr[bytes] ,&tag ,sizeof(tag));
bcopy(&from_ptr[bytes+4],&check,sizeof(check));
assert(check==sequence);
assert(tag==from);
} else {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
}
this->StencilBarrier();
#else
MPI_Request xrq;
MPI_Request rrq;
int rank = _processor;
@ -318,13 +485,62 @@ void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &lis
list.push_back(xrq);
list.push_back(rrq);
#endif
}
void CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
MPI_Request xrq;
MPI_Request rrq;
int ierr;
assert(dest != _processor);
assert(from != _processor);
int gdest = GroupRanks[dest];
int gfrom = GroupRanks[from];
int gme = GroupRanks[_processor];
assert(gme == ShmRank);
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
assert(ierr==0);
list.push_back(xrq);
}
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(rrq);
}
}
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
SendToRecvFromComplete(list);
}
void CartesianCommunicator::StencilBarrier(void)
{
MPI_Win_sync (ShmWindow);
MPI_Barrier (ShmComm);
MPI_Win_sync (ShmWindow);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
@ -350,7 +566,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
bytes,
MPI_BYTE,
root,
MPI_COMM_WORLD);
communicator_world);
assert(ierr==0);
}

View File

@ -28,12 +28,22 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include "Grid.h"
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
void CartesianCommunicator::Init(int *argc, char *** arv)
{
WorldRank = 0;
WorldSize = 1;
ShmRank=0;
ShmSize=1;
GroupRank=WorldRank;
GroupSize=WorldSize;
Slave =0;
ShmInitGeneric();
}
int Rank(void ){ return 0; };
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_processors = processors;
@ -89,30 +99,16 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
assert(0);
}
void CartesianCommunicator::Barrier(void)
{
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
}
void CartesianCommunicator::Barrier(void){}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) { return 0;}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ assert(0);}
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
source =0;
dest=0;
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
return 0;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
}
}

View File

@ -39,17 +39,22 @@ namespace Grid {
BACKTRACEFILE(); \
}\
}
int Rank(void) {
return shmem_my_pe();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////////////////////////////////////////
typedef struct HandShake_t {
uint64_t seq_local;
uint64_t seq_remote;
} HandShake;
static Vector< HandShake > XConnections;
static Vector< HandShake > RConnections;
void CartesianCommunicator::Init(int *argc, char ***argv) {
shmem_init();
XConnections.resize(shmem_n_pes());
@ -60,8 +65,17 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
RConnections[pe].seq_local = 0;
RConnections[pe].seq_remote= 0;
}
WorldSize = shmem_n_pes();
WorldRank = shmem_my_pe();
ShmRank=0;
ShmSize=1;
GroupRank=WorldRank;
GroupSize=WorldSize;
Slave =0;
shmem_barrier_all();
ShmInitGeneric();
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();
@ -230,12 +244,9 @@ void CartesianCommunicator::SendRecvPacket(void *xmit,
if ( _processor == sender ) {
printf("Sender SHMEM pt2pt %d -> %d\n",sender,receiver);
// Check he has posted a receive
while(SendSeq->seq_remote == SendSeq->seq_local);
printf("Sender receive %d posted\n",sender,receiver);
// Advance our send count
seq = ++(SendSeq->seq_local);
@ -244,26 +255,19 @@ void CartesianCommunicator::SendRecvPacket(void *xmit,
shmem_putmem(recv,xmit,bytes,receiver);
shmem_fence();
printf("Sender sent payload %d\n",seq);
//Notify him we're done
shmem_putmem((void *)&(RecvSeq->seq_remote),&seq,sizeof(seq),receiver);
shmem_fence();
printf("Sender ringing door bell %d\n",seq);
}
if ( _processor == receiver ) {
printf("Receiver SHMEM pt2pt %d->%d\n",sender,receiver);
// Post a receive
seq = ++(RecvSeq->seq_local);
shmem_putmem((void *)&(SendSeq->seq_remote),&seq,sizeof(seq),sender);
printf("Receiver Opening letter box %d\n",seq);
// Now wait until he has advanced our reception counter
while(RecvSeq->seq_remote != RecvSeq->seq_local);
printf("Receiver Got the mail %d\n",seq);
}
}

View File

@ -297,8 +297,9 @@ namespace Grid {
int l_idx=generator_idx(o_idx,i_idx);
std::vector<int> site_seeds(4);
for(int i=0;i<4;i++){
const int num_rand_seed=16;
std::vector<int> site_seeds(num_rand_seed);
for(int i=0;i<site_seeds.size();i++){
site_seeds[i]= ui(pseeder);
}

View File

@ -33,7 +33,6 @@ directory
#define GRID_QCD_FERMION_OPERATOR_IMPL_H
namespace Grid {
namespace QCD {
@ -108,13 +107,14 @@ namespace Grid {
INHERIT_GIMPL_TYPES(Base) \
INHERIT_FIMPL_TYPES(Base)
///////
/////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index
///////
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation,class _Coeff_t = RealD >
class WilsonImpl
: public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
@ -124,7 +124,6 @@ namespace Grid {
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
@ -158,8 +157,7 @@ namespace Grid {
}
template <class ref>
inline void loadLinkElement(Simd &reg,
ref &memory) {
inline void loadLinkElement(Simd &reg, ref &memory) {
reg = memory;
}
@ -202,9 +200,10 @@ namespace Grid {
}
};
///////
////////////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index, 5d redblack
///////
////////////////////////////////////////////////////////////////////////////////////
template<class S,int Nrepresentation=Nc,class _Coeff_t = RealD>
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepresentation> > {
public:
@ -227,12 +226,9 @@ namespace Grid {
typedef Lattice<SiteSpinor> FermionField;
// Make the doubled gauge field a *scalar*
typedef iImplDoubledGaugeField<typename Simd::scalar_type>
SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type>
SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type>
SiteScalarGaugeLink; // scalar
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
@ -250,6 +246,7 @@ namespace Grid {
inline void loadLinkElement(Simd &reg, ref &memory) {
vsplat(reg, memory);
}
inline void multLink(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
StencilImpl &St) {
@ -262,8 +259,8 @@ namespace Grid {
mult(&phi(), &UU(), &chi());
}
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,
const GaugeField &Umu) {
inline void DoubleStore(GridBase *GaugeGrid, DoubledGaugeField &Uds,const GaugeField &Umu)
{
SiteScalarGaugeField ScalarUmu;
SiteDoubledGaugeField ScalarUds;
@ -289,13 +286,13 @@ namespace Grid {
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,
FermionField &A, int mu) {
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,FermionField &A, int mu)
{
assert(0);
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde,
FermionField &Atilde, int mu) {
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde,FermionField &Atilde, int mu)
{
assert(0);
}
};
@ -305,9 +302,9 @@ namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////
template <class S, int Nrepresentation,class _Coeff_t = RealD>
class GparityWilsonImpl
: public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
public:
static const int Dimension = Nrepresentation;
const bool LsVectorised=false;
@ -317,15 +314,9 @@ namespace Grid {
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype>
using iImplSpinor =
iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype>
using iImplHalfSpinor =
iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
template <typename vtype>
using iImplDoubledGaugeField =
iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
@ -341,7 +332,6 @@ namespace Grid {
ImplParams Params;
GparityWilsonImpl(const ImplParams &p = ImplParams()) : Params(p){};
bool overlapCommsCompute(void) { return Params.overlapCommsCompute; };
@ -351,6 +341,7 @@ namespace Grid {
inline void multLink(SiteHalfSpinor &phi, const SiteDoubledGaugeField &U,
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
StencilImpl &St) {
typedef SiteHalfSpinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
@ -419,7 +410,6 @@ namespace Grid {
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid);
conformable(Umu._grid,GaugeGrid);
@ -429,7 +419,6 @@ namespace Grid {
Lattice<iScalar<vInteger> > coor(GaugeGrid);
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
@ -443,7 +432,6 @@ namespace Grid {
Uconj = where(coor==neglink,-Uconj,Uconj);
}
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](0)(mu) = U[ss]();
@ -477,8 +465,8 @@ namespace Grid {
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde,
FermionField &A, int mu) {
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
// DhopDir provides U or Uconj depending on coor/flavour.
GaugeLinkField link(mat._grid);
// use lorentz for flavour as hack.
@ -491,8 +479,8 @@ namespace Grid {
return;
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde,
FermionField &Atilde, int mu) {
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
int Ls = Btilde._grid->_fdimensions[0];
GaugeLinkField tmp(mat._grid);
@ -508,13 +496,13 @@ namespace Grid {
PokeIndex<LorentzIndex>(mat, tmp, mu);
return;
}
};
typedef WilsonImpl<vComplex, FundamentalRepresentation > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation > WilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, ComplexD > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, ComplexD > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, ComplexD > ZWilsonImplD; // Double
@ -538,6 +526,7 @@ namespace Grid {
typedef GparityWilsonImpl<vComplex , Nc> GparityWilsonImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc> GparityWilsonImplD; // Double
}
}
}}
#endif

View File

@ -166,7 +166,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
////////////////////////
PARALLEL_FOR_LOOP
for (int sss = 0; sss < B._grid->oSites(); sss++) {
Kernels::DiracOptDhopDir(st, U, st.comm_buf, sss, sss, B, Btilde, mu,
Kernels::DiracOptDhopDir(st, U, st.CommBuf(), sss, sss, B, Btilde, mu,
gamma);
}
@ -277,7 +277,7 @@ void WilsonFermion<Impl>::DhopDirDisp(const FermionField &in, FermionField &out,
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DiracOptDhopDir(Stencil, Umu, Stencil.comm_buf, sss, sss, in, out,
Kernels::DiracOptDhopDir(Stencil, Umu, Stencil.CommBuf(), sss, sss, in, out,
dirdisp, gamma);
}
};
@ -295,13 +295,13 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
if (dag == DaggerYes) {
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DiracOptDhopSiteDag(st, lo, U, st.comm_buf, sss, sss, 1, 1, in,
Kernels::DiracOptDhopSiteDag(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in,
out);
}
} else {
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DiracOptDhopSite(st, lo, U, st.comm_buf, sss, sss, 1, 1, in,
Kernels::DiracOptDhopSite(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in,
out);
}
}

View File

@ -185,18 +185,14 @@ void WilsonFermion5D<Impl>::Report(void)
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of Dhop Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Communication time : " << DhopCommTime
<< " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Compute time : "
<< DhopComputeTime << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Communication time : " << DhopCommTime<< " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Compute time : " << DhopComputeTime << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
RealD mflops = 1344*volume*DhopCalls/DhopComputeTime;
RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
}
@ -210,12 +206,9 @@ void WilsonFermion5D<Impl>::Report(void)
std::cout << GridLogMessage << "WilsonFermion5D Total Dhop Compute time : " <<DerivDhopComputeTime <<" us"<<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
}
if (DerivCalls > 0 || DhopCalls > 0){
@ -275,7 +268,7 @@ PARALLEL_FOR_LOOP
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
Kernels::DiracOptDhopDir(Stencil,Umu,Stencil.comm_buf,sF,sU,in,out,dirdisp,gamma);
Kernels::DiracOptDhopDir(Stencil,Umu,Stencil.CommBuf(),sF,sU,in,out,dirdisp,gamma);
}
}
};
@ -327,8 +320,7 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
assert(sF < B._grid->oSites());
assert(sU < U._grid->oSites());
Kernels::DiracOptDhopDir(st, U, st.comm_buf, sF, sU, B, Btilde, mu,
gamma);
Kernels::DiracOptDhopDir(st, U, st.CommBuf(), sF, sU, B, Btilde, mu, gamma);
////////////////////////////
// spin trace outer product
@ -396,7 +388,6 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
// assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor(dag);
@ -413,8 +404,7 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU = ss;
int sF = LLs * sU;
Kernels::DiracOptDhopSiteDag(st, lo, U, st.comm_buf, sF, sU, LLs, 1, in,
out);
Kernels::DiracOptDhopSiteDag(st, lo, U, st.CommBuf(), sF, sU, LLs, 1, in, out);
}
#ifdef AVX512
} else if (stat.is_init() ) {
@ -428,11 +418,10 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
int mythread = omp_get_thread_num();
stat.enter(mythread);
#pragma omp for nowait
for(int ss=0;ss<U._grid->oSites();ss++)
{
for(int ss=0;ss<U._grid->oSites();ss++) {
int sU=ss;
int sF=LLs*sU;
Kernels::DiracOptDhopSite(st,lo,U,st.comm_buf,sF,sU,LLs,1,in,out);
Kernels::DiracOptDhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out);
}
stat.exit(mythread);
}
@ -443,8 +432,7 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU = ss;
int sF = LLs * sU;
Kernels::DiracOptDhopSite(st, lo, U, st.comm_buf, sF, sU, LLs, 1, in,
out);
Kernels::DiracOptDhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out);
}
}
DhopComputeTime+=usecond();
@ -454,6 +442,7 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
template<class Impl>
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
@ -465,6 +454,7 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
@ -476,6 +466,7 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
DhopCalls+=2;
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);

View File

@ -34,7 +34,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/Stat.h>
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////
@ -182,7 +181,7 @@ namespace Grid {
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};
}
}
}}
#endif

View File

@ -43,9 +43,8 @@ WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf, int sF,
void WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -220,9 +219,8 @@ void WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(
// Need controls to do interior, exterior, or both
template <class Impl>
void WilsonKernels<Impl>::DiracOptGenericDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf, int sF,
void WilsonKernels<Impl>::DiracOptGenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -396,10 +394,9 @@ void WilsonKernels<Impl>::DiracOptGenericDhopSite(
};
template <class Impl>
void WilsonKernels<Impl>::DiracOptDhopDir(
StencilImpl &st, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf, int sF,
void WilsonKernels<Impl>::DiracOptDhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out, int dir, int gamma) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteSpinor result;

View File

@ -32,7 +32,6 @@ directory
#define GRID_QCD_DHOP_H
namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -56,16 +55,11 @@ namespace Grid {
template <bool EnableBool = true>
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 &&EnableBool, void>::type
DiracOptDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
DiracOptDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out) {
#ifdef AVX512
if (AsmOpt) {
WilsonKernels<Impl>::DiracOptAsmDhopSite(st, lo, U, buf, sF, sU, Ls, Ns,
in, out);
WilsonKernels<Impl>::DiracOptAsmDhopSite(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
} else {
#else
{
@ -73,11 +67,9 @@ namespace Grid {
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if (HandOpt)
WilsonKernels<Impl>::DiracOptHandDhopSite(st, lo, U, buf, sF, sU,
in, out);
WilsonKernels<Impl>::DiracOptHandDhopSite(st,lo,U,buf,sF,sU,in,out);
else
WilsonKernels<Impl>::DiracOptGenericDhopSite(st, lo, U, buf, sF, sU,
in, out);
WilsonKernels<Impl>::DiracOptGenericDhopSite(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
@ -87,15 +79,12 @@ namespace Grid {
template <bool EnableBool = true>
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool, void>::type
DiracOptDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
DiracOptDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out) {
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
WilsonKernels<Impl>::DiracOptGenericDhopSite(st, lo, U, buf, sF, sU, in,
out);
WilsonKernels<Impl>::DiracOptGenericDhopSite(st, lo, U, buf, sF, sU, in, out);
sF++;
}
sU++;
@ -103,17 +92,12 @@ namespace Grid {
}
template <bool EnableBool = true>
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 && EnableBool,
void>::type
DiracOptDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 && EnableBool,void>::type
DiracOptDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out) {
#ifdef AVX512
if (AsmOpt) {
WilsonKernels<Impl>::DiracOptAsmDhopSiteDag(st, lo, U, buf, sF, sU, Ls,
Ns, in, out);
WilsonKernels<Impl>::DiracOptAsmDhopSiteDag(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
} else {
#else
{
@ -121,11 +105,9 @@ namespace Grid {
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if (HandOpt)
WilsonKernels<Impl>::DiracOptHandDhopSiteDag(st, lo, U, buf, sF, sU,
in, out);
WilsonKernels<Impl>::DiracOptHandDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else
WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(st, lo, U, buf, sF,
sU, in, out);
WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
@ -134,73 +116,48 @@ namespace Grid {
}
template <bool EnableBool = true>
typename std::enable_if<
(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool,
void>::type
DiracOptDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool,void>::type
DiracOptDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out) {
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(st, lo, U, buf, sF, sU,
in, out);
WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
}
}
void DiracOptDhopDir(
StencilImpl &st, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, const FermionField &in, FermionField &out, int dirdisp,
int gamma);
void DiracOptDhopDir(StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out, int dirdisp, int gamma);
private:
// Specialised variants
void DiracOptGenericDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
void DiracOptGenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DiracOptGenericDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
void DiracOptGenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DiracOptAsmDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out);
void DiracOptAsmDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void DiracOptAsmDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out);
void DiracOptAsmDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void DiracOptHandDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
void DiracOptHandDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DiracOptHandDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
void DiracOptHandDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
public:
WilsonKernels(const ImplParams &p = ImplParams());
};
}
}
}}
#endif

View File

@ -38,26 +38,22 @@ namespace Grid {
///////////////////////////////////////////////////////////
// Default to no assembler implementation
///////////////////////////////////////////////////////////
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<class Impl> void
WilsonKernels<Impl >::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
template<class Impl> void
WilsonKernels<Impl >::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
#if defined(AVX512)
///////////////////////////////////////////////////////////
// If we are AVX512 specialise the single precision routine
///////////////////////////////////////////////////////////
@ -84,16 +80,14 @@ namespace Grid {
#define FX(A) WILSONASM_ ##A
#undef KERNEL_DAG
template<>
void WilsonKernels<WilsonImplF>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<WilsonImplF>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#define KERNEL_DAG
template<>
void WilsonKernels<WilsonImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<WilsonImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
@ -109,31 +103,26 @@ namespace Grid {
#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN_LS(ptr,pf)
#undef KERNEL_DAG
template<>
void WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#define KERNEL_DAG
template<>
void WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#endif
#define INSTANTIATE_ASM(A)\
template void WilsonKernels<A>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,\
commVector<SiteHalfSpinor> &buf,\
template void WilsonKernels<A>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,\
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out);\
template void WilsonKernels<A>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,\
commVector<SiteHalfSpinor> &buf,\
\
template void WilsonKernels<A>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,\
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out);\
INSTANTIATE_ASM(WilsonImplF);
INSTANTIATE_ASM(WilsonImplD);
INSTANTIATE_ASM(ZWilsonImplF);
@ -144,6 +133,6 @@ INSTANTIATE_ASM(DomainWallVec5dImplF);
INSTANTIATE_ASM(DomainWallVec5dImplD);
INSTANTIATE_ASM(ZDomainWallVec5dImplF);
INSTANTIATE_ASM(ZDomainWallVec5dImplD);
}
}
}}

View File

@ -311,9 +311,8 @@ namespace Grid {
namespace QCD {
template<class Impl>
void WilsonKernels<Impl>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<class Impl> void
WilsonKernels<Impl>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
typedef typename Simd::scalar_type S;
@ -555,8 +554,7 @@ namespace QCD {
}
template<class Impl>
void WilsonKernels<Impl>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
void WilsonKernels<Impl>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
// std::cout << "Hand op Dhop "<<std::endl;
@ -798,37 +796,34 @@ namespace QCD {
}
}
////////////////////////////////////////////////
// Specialise Gparity to simple implementation
////////////////////////////////////////////////
template<>
void WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
}
template<>
void WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
}
template<>
void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
}
template<>
void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
commVector<SiteHalfSpinor> &buf,
template<> void
WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
@ -840,11 +835,9 @@ void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSiteDag(StencilImpl &st,
// Need Nc=3 though //
#define INSTANTIATE_THEM(A) \
template void WilsonKernels<A>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,\
commVector<SiteHalfSpinor> &buf,\
template void WilsonKernels<A>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,\
commVector<SiteHalfSpinor> &buf,\
template void WilsonKernels<A>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out);
INSTANTIATE_THEM(WilsonImplF);

View File

@ -42,20 +42,14 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid{
namespace Optimization {
template<class vtype>
union uconv {
__m512 f;
vtype v;
};
union u512f {
__m512 v;
float f[8];
float f[16];
};
union u512d {
__m512 v;
double f[4];
__m512d v;
double f[8];
};
struct Vsplat{
@ -377,9 +371,14 @@ namespace Optimization {
// Some Template specialization
// Hack for CLANG until mm512_reduce_add_ps etc... are implemented in GCC and Clang releases
<<<<<<< HEAD
#define GNU_CLANG_COMPILER
#ifdef GNU_CLANG_COMPILER
=======
#ifndef __INTEL_COMPILER
#warning "Slow reduction due to incomplete reduce intrinsics"
>>>>>>> develop
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m512>::operator()(__m512 in){

View File

@ -116,7 +116,7 @@ int main (int argc, char ** argv)
else if (SE->_is_local)
Check._odata[i] = Foo._odata[SE->_offset];
else
Check._odata[i] = myStencil.comm_buf[SE->_offset];
Check._odata[i] = myStencil.CommBuf()[SE->_offset];
}
Real nrmC = norm2(Check);
@ -207,7 +207,7 @@ int main (int argc, char ** argv)
else if (SE->_is_local)
OCheck._odata[i] = EFoo._odata[SE->_offset];
else
OCheck._odata[i] = EStencil.comm_buf[SE->_offset];
OCheck._odata[i] = EStencil.CommBuf()[SE->_offset];
}
for(int i=0;i<ECheck._grid->oSites();i++){
int permute_type;
@ -220,7 +220,7 @@ int main (int argc, char ** argv)
else if (SE->_is_local)
ECheck._odata[i] = OFoo._odata[SE->_offset];
else
ECheck._odata[i] = OStencil.comm_buf[SE->_offset];
ECheck._odata[i] = OStencil.CommBuf()[SE->_offset];
}
setCheckerboard(Check,ECheck);