1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-24 12:45:56 +01:00

Start at the Domain decomposed supprt

This commit is contained in:
Peter Boyle 2021-05-06 23:28:28 +02:00
parent ffcab64890
commit b32fd473f8

View File

@ -0,0 +1,346 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class DomainDecomposedBoundary {
public:
INHERIT_IMPL_TYPES(Impl);
typedef typename GaugeField::vector_type vector_type; //SIMD-vectorized complex type
typedef typename GaugeField::scalar_type scalar_type; //scalar complex type
typedef iVector<iScalar<iScalar<vector_type> >, Nd > LorentzScalarType; //complex phase for each site/direction
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
typedef Lattice<LorentzScalarType> LatticeLorentzScalarType;
typedef Lattice<ScalarType> LatticeScalarType;
Coordinate Block;
DDHMCFilter Filter;
const int Omega=0;
const int OmegaBar=1;
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
{
assert((sgn==1)||(sgn==-1));
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
GridBase *grid = f.Grid();
LatticeInteger coor(grid);
LatticeInteger face(grid);
LatticeInteger nface(grid); nface=Zero();
ComplexField zz(grid); zz=Zero();
FermionField projected(grid); projected=Zero();
FermionField sp_proj (grid);
int dims = grid->Nd();
int isDWF= (dims==Nd+1);
assert((dims==Nd)||(dims==Nd+1));
for(int mu=0;mu<Nd;mu++){
// need to worry about DWF 5th dim first
// Could extend to domain decompose in FIFTH dimension.
// With chiral projectors here
LatticeCoordinate(coor,mu+isDWF);
face = (mod(coor,Block[mu]) == 0 );
nface = nface + face;
// Lower face receives (1-gamma)/2 in normal forward hopping term
sp_proj = 0.5*(f-sgn*Gamma(Gmu[mu])*f)
projected= where(face==cb,f,projected);
face = (mod(coor,Block[mu]) == Block[mu]-1 );
nface = nface + face;
// Upper face receives (1+gamma)/2 in normal backward hopping term
sp_proj = 0.5*(f+sgn*Gamma(Gmu[mu])*f)
projected= where(face==cb,f,projected);
}
// Keep the spin projected faces where nface==1 and initial Zero() where nface==0.
projected = where(nface>1,f,projected);
}
void ProjectDomain(FermionField &f,int cb)
{
GridBase *grid = f.Grid();
ComplexField zz(grid); zz=Zero();
LatticeInteger coor(grid);
LatticeInteger domaincb(grid); domaincb=Zero();
for(int d=0;d<grid->Nd();d++){
LatticeCoordinate(coor,mu);
domaincb = domaincb + div(coor,Block[d]);
}
f = where(mod(domaincb,2)==cb,f,zz);
};
void ProjectOmegaBar (FermionField &f) {ProjectDomain(f,OmegaBar);}
void ProjectOmega (FermionField &f) {ProjectDomain(f,Omega);}
// See my notes(!).
// Notation: Following Luscher, we introduce projectors $\hPdb$ with both spinor and space structure
// projecting all spinor elements in $\Omega$ connected by $\Ddb$ to $\bar{\Omega}$,
void ProjectBoundaryBar(FermionField &f)
{
ProjectBoundaryBothDomains(f);
ProjectOmega(f);
}
// and $\hPd$ projecting all spinor elements in $\bar{\Omega}$ connected by $\Dd$ to $\Omega$.
void ProjectBoundary (FermionField &f)
{
ProjectBoundaryBothDomains(f);
ProjectOmegaBar(f);
};
void dBoundary (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
Op.M(tmp,out);
ProjectOmega(out);
};
void dBoundaryBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
Op.M(tmp,out);
ProjectOmegaBar(out);
};
void dOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmega(tmp);
Op.M(tmp,out);
ProjectOmega(out);
};
void dOmegaBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
{
FermionField tmp(in);
ProjectOmegaBar(tmp);
Op.M(tmp,out);
ProjectOmegaBar(out);
};
void SolveOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void SolveOmegaBar(FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void SolveOmegaAndOmegaBar(FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
void dInverse (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
// R = Pdbar - Pdbar DomegaInv Dd DomegabarInv Ddbar
void R(FermionOperator<Impl> &Op,FermionOperator<Impl> &OpDirichlet,FermionField &in,FermionField &out)
{
FermionField tmp1(Op.FermionGrid());
FermionField tmp2(Op.FermionGrid());
dBoundaryBar(Op,in,tmp1);
SolveOmegaBar(OpDirichlet,tmp1,tmp2); // 1/2 cost
dBoundary(Op,tmp2,tmp1);
SolveOmega(OpDirichlet,tmp1,tmp2); // 1/2 cost
out = in - tmp2 ;
ProjectBoundaryBar(out);
};
// R = Pdbar - Pdbar Dinv Ddbar
void Rinverse(FermionField &in,FermionField &out)
{
FermionField tmp1(NumOp.FermionGrid());
out = in;
ProjectBoundaryBar(out);
dInverse(out,tmp1);
ProjectBoundaryBar(tmp1);
out = out -tmp1;
};
}
template<class Impl>
class DomainDecomposedBoundaryPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
FermionOperator<Impl> & NumOpDirichlet;// the basic operator
FermionOperator<Impl> & DenOpDirichlet;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &ActionSolver;
FermionField Phi; // the pseudo fermion field for this trajectory
public:
DomainBoundaryPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
FermionOperator<Impl> &_NumOpDirichlet,
FermionOperator<Impl> &_DenOpDirichlet,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS,
Coordinate &_Block
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
ActionSolver(AS),
Phi(_NumOp.FermionGrid()),
Block(_Block)
// LinkFilter(Block)
{};
virtual std::string action_name(){return "DomainBoundaryPseudoFermionRatioAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] Block "<<_Block << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG)
{
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
gaussian(pRNG,eta);
ProjectBoundary(eta);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
// Note: this hard codes normal equations type solvers; alternate implementation needed for
// non-herm style solvers.
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.Mdag(eta,Phi); // Mdag eta
tmp = Zero();
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
Phi=Phi*scale;
};
//////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=Zero();
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
RealD action = norm2(Y);
return action;
};
//////////////////////////////////////////////////////
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
// + phi^dag V (Mdag M)^-1 dV^dag phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=Vdag phi
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=Zero();
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
// phi^dag V (Mdag M)^-1 dV^dag phi
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force;
// phi^dag dV (Mdag M)^-1 V^dag phi
NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force;
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);