1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 16:56:55 +01:00

Merge branch 'develop' into feature/gpu-port

This commit is contained in:
Peter Boyle
2018-12-13 05:11:34 +00:00
647 changed files with 49155 additions and 11160 deletions

View File

@ -0,0 +1,152 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
/*!
@brief Declaration of Smear_APE class for APE smearing
*/
#pragma once
NAMESPACE_BEGIN(Grid);
/*! @brief APE type smearing of link variables. */
template <class Gimpl>
class Smear_APE: public Smear<Gimpl>{
private:
const std::vector<double> rho;/*!< Array of weights */
//This member must be private - we do not want to control from outside
std::vector<double> set_rho(const double common_rho) const {
std::vector<double> res;
for(int mn=0; mn<Nd*Nd; ++mn) res.push_back(common_rho);
for(int mu=0; mu<Nd; ++mu) res[mu + mu*Nd] = 0.0;
return res;
}
public:
// Defines the gauge field types
INHERIT_GIMPL_TYPES(Gimpl)
// Constructors and destructors
Smear_APE(const std::vector<double>& rho_):rho(rho_){} // check vector size
Smear_APE(double rho_val):rho(set_rho(rho_val)){}
Smear_APE():rho(set_rho(1.0)){}
~Smear_APE(){}
///////////////////////////////////////////////////////////////////////////////
void smear(GaugeField& u_smr, const GaugeField& U)const{
GridBase *grid = U.Grid();
GaugeLinkField Cup(grid), tmp_stpl(grid);
WilsonLoops<Gimpl> WL;
u_smr = Zero();
for(int mu=0; mu<Nd; ++mu){
Cup = Zero();
for(int nu=0; nu<Nd; ++nu){
if (nu != mu) {
// get the staple in direction mu, nu
WL.Staple(tmp_stpl, U, mu, nu); //nb staple conventions of IroIro and Grid differ by a dagger
Cup += tmp_stpl*rho[mu + Nd * nu];
}
}
// save the Cup link-field on the u_smr gauge-field
pokeLorentz(u_smr, adj(Cup), mu); // u_smr[mu] = Cup^dag see conventions for Staple
}
}
////////////////////////////////////////////////////////////////////////////////
void derivative(GaugeField& SigmaTerm,
const GaugeField& iLambda,
const GaugeField& U)const{
// Reference
// Morningstar, Peardon, Phys.Rev.D69,054501(2004)
// Equation 75
// Computing Sigma_mu, derivative of S[fat links] with respect to the thin links
// Output SigmaTerm
GridBase *grid = U.Grid();
WilsonLoops<Gimpl> WL;
GaugeLinkField staple(grid), u_tmp(grid);
GaugeLinkField iLambda_mu(grid), iLambda_nu(grid);
GaugeLinkField U_mu(grid), U_nu(grid);
GaugeLinkField sh_field(grid), temp_Sigma(grid);
Real rho_munu, rho_numu;
for(int mu = 0; mu < Nd; ++mu){
U_mu = peekLorentz( U, mu);
iLambda_mu = peekLorentz(iLambda, mu);
for(int nu = 0; nu < Nd; ++nu){
if(nu==mu) continue;
U_nu = peekLorentz( U, nu);
iLambda_nu = peekLorentz(iLambda, nu);
rho_munu = rho[mu + Nd * nu];
rho_numu = rho[nu + Nd * mu];
WL.StapleUpper(staple, U, mu, nu);
temp_Sigma = -rho_numu*staple*iLambda_nu; //ok
//-r_numu*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)*Lambda_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
sh_field = Cshift(iLambda_nu, mu, 1);// general also for Gparity?
temp_Sigma = rho_numu*sh_field*staple; //ok
//r_numu*Lambda_nu(mu)*U_nu(x+mu)*Udag_mu(x+nu)*Udag_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
sh_field = Cshift(iLambda_mu, nu, 1);
temp_Sigma = -rho_munu*staple*U_nu*sh_field*adj(U_nu); //ok
//-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
staple = Zero();
sh_field = Cshift(U_nu, mu, 1);
temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu;
temp_Sigma += rho_numu*adj(sh_field)*adj(U_mu)*iLambda_nu*U_nu;
u_tmp = adj(U_nu)*iLambda_nu;
sh_field = Cshift(u_tmp, mu, 1);
temp_Sigma += -rho_numu*sh_field*adj(U_mu)*U_nu;
sh_field = Cshift(temp_Sigma, nu, -1);
Gimpl::AddLink(SigmaTerm, sh_field, mu);
}
}
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,44 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
/*
@brief Declares base smearing class Smear
*/
#pragma once
NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class Smear{
public:
INHERIT_GIMPL_TYPES(Gimpl) // inherits the types for the gauge fields
virtual ~Smear(){}
virtual void smear (GaugeField&,const GaugeField&)const = 0;
virtual void derivative(GaugeField&, const GaugeField&,const GaugeField&) const = 0;
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,309 @@
/*!
@file GaugeConfiguration.h
@brief Declares the GaugeConfiguration class
*/
#pragma once
NAMESPACE_BEGIN(Grid);
//trivial class for no smearing
template< class Impl >
class NoSmearing
{
public:
INHERIT_FIELD_TYPES(Impl);
Field* ThinField;
NoSmearing(): ThinField(NULL) {}
void set_Field(Field& U) { ThinField = &U; }
void smeared_force(Field&) const {}
Field& get_SmearedU() { return *ThinField; }
Field &get_U(bool smeared = false)
{
return *ThinField;
}
};
/*!
@brief Smeared configuration container
It will behave like a configuration from the point of view of
the HMC update and integrators.
An "advanced configuration" object that can provide not only the
data to store the gauge configuration but also operations to manipulate
it, like smearing.
It stores a list of smeared configurations.
*/
template <class Gimpl>
class SmearedConfiguration
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
private:
const unsigned int smearingLevels;
Smear_Stout<Gimpl> StoutSmearing;
std::vector<GaugeField> SmearedSet;
// Member functions
//====================================================================
void fill_smearedSet(GaugeField &U)
{
ThinLinks = &U; // attach the smearing routine to the field U
// check the pointer is not null
if (ThinLinks == NULL)
std::cout << GridLogError
<< "[SmearedConfiguration] Error in ThinLinks pointer\n";
if (smearingLevels > 0)
{
std::cout << GridLogDebug
<< "[SmearedConfiguration] Filling SmearedSet\n";
GaugeField previous_u(ThinLinks->Grid());
previous_u = *ThinLinks;
for (int smearLvl = 0; smearLvl < smearingLevels; ++smearLvl)
{
StoutSmearing.smear(SmearedSet[smearLvl], previous_u);
previous_u = SmearedSet[smearLvl];
// For debug purposes
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(previous_u);
std::cout << GridLogDebug
<< "[SmearedConfiguration] Plaq: " << impl_plaq << std::endl;
}
}
}
//====================================================================
GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK) const
{
GridBase* grid = GaugeK.Grid();
GaugeField C(grid), SigmaK(grid), iLambda(grid);
GaugeLinkField iLambda_mu(grid);
GaugeLinkField iQ(grid), e_iQ(grid);
GaugeLinkField SigmaKPrime_mu(grid);
GaugeLinkField GaugeKmu(grid), Cmu(grid);
StoutSmearing.BaseSmear(C, GaugeK);
SigmaK = Zero();
iLambda = Zero();
for (int mu = 0; mu < Nd; mu++)
{
Cmu = peekLorentz(C, mu);
GaugeKmu = peekLorentz(GaugeK, mu);
SigmaKPrime_mu = peekLorentz(SigmaKPrime, mu);
iQ = Ta(Cmu * adj(GaugeKmu));
set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
pokeLorentz(iLambda, iLambda_mu, mu);
}
StoutSmearing.derivative(SigmaK, iLambda,
GaugeK); // derivative of SmearBase
return SigmaK;
}
/*! @brief Returns smeared configuration at level 'Level' */
const GaugeField &get_smeared_conf(int Level) const
{
return SmearedSet[Level];
}
//====================================================================
void set_iLambda(GaugeLinkField& iLambda, GaugeLinkField& e_iQ,
const GaugeLinkField& iQ, const GaugeLinkField& Sigmap,
const GaugeLinkField& GaugeK) const
{
GridBase* grid = iQ.Grid();
GaugeLinkField iQ2(grid), iQ3(grid), B1(grid), B2(grid), USigmap(grid);
GaugeLinkField unity(grid);
unity = 1.0;
LatticeComplex u(grid), w(grid);
LatticeComplex f0(grid), f1(grid), f2(grid);
LatticeComplex xi0(grid), xi1(grid), tmp(grid);
LatticeComplex u2(grid), w2(grid), cosw(grid);
LatticeComplex emiu(grid), e2iu(grid), qt(grid), fden(grid);
LatticeComplex r01(grid), r11(grid), r21(grid), r02(grid), r12(grid);
LatticeComplex r22(grid), tr1(grid), tr2(grid);
LatticeComplex b10(grid), b11(grid), b12(grid), b20(grid), b21(grid),
b22(grid);
LatticeComplex LatticeUnitComplex(grid);
LatticeUnitComplex = 1.0;
// Exponential
iQ2 = iQ * iQ;
iQ3 = iQ * iQ2;
StoutSmearing.set_uw(u, w, iQ2, iQ3);
StoutSmearing.set_fj(f0, f1, f2, u, w);
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
// Getting B1, B2, Gamma and Lambda
// simplify this part, reduntant calculations in set_fj
xi0 = StoutSmearing.func_xi0(w);
xi1 = StoutSmearing.func_xi1(w);
u2 = u * u;
w2 = w * w;
cosw = cos(w);
emiu = cos(u) - timesI(sin(u));
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
r01 = (2.0 * u + timesI(2.0 * (u2 - w2))) * e2iu +
emiu * ((16.0 * u * cosw + 2.0 * u * (3.0 * u2 + w2) * xi0) +
timesI(-8.0 * u2 * cosw + 2.0 * (9.0 * u2 + w2) * xi0));
r11 = (2.0 * LatticeUnitComplex + timesI(4.0 * u)) * e2iu +
emiu * ((-2.0 * cosw + (3.0 * u2 - w2) * xi0) +
timesI((2.0 * u * cosw + 6.0 * u * xi0)));
r21 =
2.0 * timesI(e2iu) + emiu * (-3.0 * u * xi0 + timesI(cosw - 3.0 * xi0));
r02 = -2.0 * e2iu +
emiu * (-8.0 * u2 * xi0 +
timesI(2.0 * u * (cosw + xi0 + 3.0 * u2 * xi1)));
r12 = emiu * (2.0 * u * xi0 + timesI(-cosw - xi0 + 3.0 * u2 * xi1));
r22 = emiu * (xi0 - timesI(3.0 * u * xi1));
fden = LatticeUnitComplex / (2.0 * (9.0 * u2 - w2) * (9.0 * u2 - w2));
b10 = 2.0 * u * r01 + (3.0 * u2 - w2) * r02 - (30.0 * u2 + 2.0 * w2) * f0;
b11 = 2.0 * u * r11 + (3.0 * u2 - w2) * r12 - (30.0 * u2 + 2.0 * w2) * f1;
b12 = 2.0 * u * r21 + (3.0 * u2 - w2) * r22 - (30.0 * u2 + 2.0 * w2) * f2;
b20 = r01 - (3.0 * u) * r02 - (24.0 * u) * f0;
b21 = r11 - (3.0 * u) * r12 - (24.0 * u) * f1;
b22 = r21 - (3.0 * u) * r22 - (24.0 * u) * f2;
b10 *= fden;
b11 *= fden;
b12 *= fden;
b20 *= fden;
b21 *= fden;
b22 *= fden;
B1 = b10 * unity + timesMinusI(b11) * iQ - b12 * iQ2;
B2 = b20 * unity + timesMinusI(b21) * iQ - b22 * iQ2;
USigmap = GaugeK * Sigmap;
tr1 = trace(USigmap * B1);
tr2 = trace(USigmap * B2);
GaugeLinkField QUS = iQ * USigmap;
GaugeLinkField USQ = USigmap * iQ;
GaugeLinkField iGamma = tr1 * iQ - timesI(tr2) * iQ2 +
timesI(f1) * USigmap + f2 * QUS + f2 * USQ;
iLambda = Ta(iGamma);
}
//====================================================================
public:
GaugeField*
ThinLinks; /* Pointer to the thin links configuration */
/* Standard constructor */
SmearedConfiguration(GridCartesian* UGrid, unsigned int Nsmear,
Smear_Stout<Gimpl>& Stout)
: smearingLevels(Nsmear), StoutSmearing(Stout), ThinLinks(NULL)
{
for (unsigned int i = 0; i < smearingLevels; ++i)
SmearedSet.push_back(*(new GaugeField(UGrid)));
}
/*! For just thin links */
SmearedConfiguration()
: smearingLevels(0), StoutSmearing(), SmearedSet(), ThinLinks(NULL) {}
// attach the smeared routines to the thin links U and fill the smeared set
void set_Field(GaugeField &U)
{
double start = usecond();
fill_smearedSet(U);
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "Smearing in " << time << " ms" << std::endl;
}
//====================================================================
void smeared_force(GaugeField &SigmaTilde) const
{
if (smearingLevels > 0)
{
double start = usecond();
GaugeField force = SigmaTilde; // actually = U*SigmaTilde
GaugeLinkField tmp_mu(SigmaTilde.Grid());
for (int mu = 0; mu < Nd; mu++)
{
// to get just SigmaTilde
tmp_mu = adj(peekLorentz(SmearedSet[smearingLevels - 1], mu)) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
for (int ismr = smearingLevels - 1; ismr > 0; --ismr)
force = AnalyticSmearedForce(force, get_smeared_conf(ismr - 1));
force = AnalyticSmearedForce(force, *ThinLinks);
for (int mu = 0; mu < Nd; mu++)
{
tmp_mu = peekLorentz(*ThinLinks, mu) * peekLorentz(force, mu);
pokeLorentz(SigmaTilde, tmp_mu, mu);
}
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "Smearing force in " << time << " ms" << std::endl;
} // if smearingLevels = 0 do nothing
}
//====================================================================
GaugeField& get_SmearedU() { return SmearedSet[smearingLevels - 1]; }
GaugeField &get_U(bool smeared = false)
{
// get the config, thin links by default
if (smeared)
{
if (smearingLevels)
{
RealD impl_plaq =
WilsonLoops<Gimpl>::avgPlaquette(SmearedSet[smearingLevels - 1]);
std::cout << GridLogDebug << "getting Usmr Plaq: " << impl_plaq
<< std::endl;
return get_SmearedU();
}
else
{
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(*ThinLinks);
std::cout << GridLogDebug << "getting Thin Plaq: " << impl_plaq
<< std::endl;
return *ThinLinks;
}
}
else
{
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(*ThinLinks);
std::cout << GridLogDebug << "getting Thin Plaq: " << impl_plaq
<< std::endl;
return *ThinLinks;
}
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,8 @@
#pragma once
#include <Grid/qcd/smearing/BaseSmearing.h>
#include <Grid/qcd/smearing/APEsmearing.h>
#include <Grid/qcd/smearing/StoutSmearing.h>
#include <Grid/qcd/smearing/GaugeConfiguration.h>
#include <Grid/qcd/smearing/WilsonFlow.h>

View File

@ -0,0 +1,157 @@
/*
@file stoutSmear.hpp
@brief Declares Stout smearing class
*/
#pragma once
NAMESPACE_BEGIN(Grid);
/*! @brief Stout smearing of link variable. */
template <class Gimpl>
class Smear_Stout : public Smear<Gimpl> {
private:
const Smear<Gimpl>* SmearBase;
public:
INHERIT_GIMPL_TYPES(Gimpl)
Smear_Stout(Smear<Gimpl>* base) : SmearBase(base) {
assert(Nc == 3);// "Stout smearing currently implemented only for Nc==3");
}
/*! Default constructor */
Smear_Stout(double rho = 1.0) : SmearBase(new Smear_APE<Gimpl>(rho)) {
assert(Nc == 3);// "Stout smearing currently implemented only for Nc==3");
}
~Smear_Stout() {} // delete SmearBase...
void smear(GaugeField& u_smr, const GaugeField& U) const {
GaugeField C(U.Grid());
GaugeLinkField tmp(U.Grid()), iq_mu(U.Grid()), Umu(U.Grid());
std::cout << GridLogDebug << "Stout smearing started\n";
// Smear the configurations
SmearBase->smear(C, U);
for (int mu = 0; mu < Nd; mu++) {
tmp = peekLorentz(C, mu);
Umu = peekLorentz(U, mu);
iq_mu = Ta(
tmp *
adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper
exponentiate_iQ(tmp, iq_mu);
pokeLorentz(u_smr, tmp * Umu, mu); // u_smr = exp(iQ_mu)*U_mu
}
std::cout << GridLogDebug << "Stout smearing completed\n";
};
void derivative(GaugeField& SigmaTerm, const GaugeField& iLambda,
const GaugeField& Gauge) const {
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
};
void BaseSmear(GaugeField& C, const GaugeField& U) const {
SmearBase->smear(C, U);
};
// Repetion of code here (use the Tensor_exp.h function)
void exponentiate_iQ(GaugeLinkField& e_iQ, const GaugeLinkField& iQ) const {
// Put this outside
// only valid for SU(3) matrices
// only one Lorentz direction at a time
// notice that it actually computes
// exp ( input matrix )
// the i sign is coming from outside
// input matrix is anti-hermitian NOT hermitian
GridBase* grid = iQ.Grid();
GaugeLinkField unity(grid);
unity = 1.0;
GaugeLinkField iQ2(grid), iQ3(grid);
LatticeComplex u(grid), w(grid);
LatticeComplex f0(grid), f1(grid), f2(grid);
iQ2 = iQ * iQ;
iQ3 = iQ * iQ2;
set_uw(u, w, iQ2, iQ3);
set_fj(f0, f1, f2, u, w);
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
};
void set_uw(LatticeComplex& u, LatticeComplex& w, GaugeLinkField& iQ2,
GaugeLinkField& iQ3) const {
Complex one_over_three = 1.0 / 3.0;
Complex one_over_two = 1.0 / 2.0;
GridBase* grid = u.Grid();
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
// sign in c0 from the conventions on the Ta
c0 = -imag(trace(iQ3)) * one_over_three;
c1 = -real(trace(iQ2)) * one_over_two;
// Cayley Hamilton checks to machine precision, tested
tmp = c1 * one_over_three;
c0max = 2.0 * pow(tmp, 1.5);
theta = acos(c0 / c0max) *
one_over_three; // divide by three here, now leave as it is
u = sqrt(tmp) * cos(theta);
w = sqrt(c1) * sin(theta);
}
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
const LatticeComplex& u, const LatticeComplex& w) const {
GridBase* grid = u.Grid();
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
LatticeComplex fden(grid);
LatticeComplex h0(grid), h1(grid), h2(grid);
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
LatticeComplex unity(grid);
unity = 1.0;
xi0 = func_xi0(w);
u2 = u * u;
w2 = w * w;
cosw = cos(w);
ixi0 = timesI(xi0);
emiu = cos(u) - timesI(sin(u));
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
h0 = e2iu * (u2 - w2) +
emiu * ((8.0 * u2 * cosw) + (2.0 * u * (3.0 * u2 + w2) * ixi0));
h1 = e2iu * (2.0 * u) - emiu * ((2.0 * u * cosw) - (3.0 * u2 - w2) * ixi0);
h2 = e2iu - emiu * (cosw + (3.0 * u) * ixi0);
fden = unity / (9.0 * u2 - w2); // reals
f0 = h0 * fden;
f1 = h1 * fden;
f2 = h2 * fden;
}
LatticeComplex func_xi0(const LatticeComplex& w) const {
// Define a function to do the check
// if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small:
// "<< w <<"\n";
return sin(w) / w;
}
LatticeComplex func_xi1(const LatticeComplex& w) const {
// Define a function to do the check
// if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small:
// "<< w <<"\n";
return cos(w) / (w * w) - sin(w) / (w * w * w);
}
};
NAMESPACE_END(Grid);

View File

@ -0,0 +1,208 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/modules/plaquette.h
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class WilsonFlow: public Smear<Gimpl>{
unsigned int Nstep;
unsigned int measure_interval;
mutable RealD epsilon, taus;
mutable WilsonGaugeAction<Gimpl> SG;
void evolve_step(typename Gimpl::GaugeField&) const;
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
public:
INHERIT_GIMPL_TYPES(Gimpl)
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
Nstep(Nstep),
epsilon(epsilon),
measure_interval(interval),
SG(WilsonGaugeAction<Gimpl>(3.0)) {
// WilsonGaugeAction with beta 3.0
assert(epsilon > 0.0);
LogMessage();
}
void LogMessage() {
std::cout << GridLogMessage
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
std::cout << GridLogMessage
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
std::cout << GridLogMessage
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
}
virtual void smear(GaugeField&, const GaugeField&) const;
virtual void derivative(GaugeField&, const GaugeField&, const GaugeField&) const {
assert(0);
// undefined for WilsonFlow
}
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
RealD energyDensityPlaquette(const GaugeField& U) const;
};
////////////////////////////////////////////////////////////////////////////////
// Implementations
////////////////////////////////////////////////////////////////////////////////
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
GaugeField Z(U.Grid());
GaugeField tmp(U.Grid());
SG.deriv(U, Z);
Z *= 0.25; // Z0 = 1/4 * F(U)
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
Z *= -17.0/8.0;
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
Z *= -4.0/3.0;
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
}
template <class Gimpl>
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
if (maxTau - taus < epsilon){
epsilon = maxTau-taus;
}
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
GaugeField Z(U.Grid());
GaugeField Zprime(U.Grid());
GaugeField tmp(U.Grid()), Uprime(U.Grid());
Uprime = U;
SG.deriv(U, Z);
Zprime = -Z;
Z *= 0.25; // Z0 = 1/4 * F(U)
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
Z *= -17.0/8.0;
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
Zprime += 2.0*tmp;
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
Z *= -4.0/3.0;
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
// Ramos
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
// Compute distance as norm^2 of the difference
GaugeField diffU = U - Uprime;
RealD diff = norm2(diffU);
// adjust integration step
taus += epsilon;
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
RealD td = tau(step);
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
}
template <class Gimpl>
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
}
//#define WF_TIMING
template <class Gimpl>
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
out = in;
for (unsigned int step = 1; step <= Nstep; step++) {
auto start = std::chrono::high_resolution_clock::now();
evolve_step(out);
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end - start;
#ifdef WF_TIMING
std::cout << "Time to evolve " << diff.count() << " s\n";
#endif
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << tau(step) << " "
<< energyDensityPlaquette(step,out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
}
}
template <class Gimpl>
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
out = in;
taus = epsilon;
unsigned int step = 0;
do{
step++;
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
evolve_step_adaptive(out, maxTau);
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
<< step << " " << taus << " "
<< energyDensityPlaquette(out) << std::endl;
if( step % measure_interval == 0){
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
<< step << " "
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
}
} while (taus < maxTau);
}
NAMESPACE_END(Grid);