mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-20 08:46:55 +01:00
Merge branch 'develop' into feature/gpu-port
This commit is contained in:
1404
Grid/qcd/utils/A2Autils.h
Normal file
1404
Grid/qcd/utils/A2Autils.h
Normal file
File diff suppressed because it is too large
Load Diff
129
Grid/qcd/utils/CovariantCshift.h
Normal file
129
Grid/qcd/utils/CovariantCshift.h
Normal file
@ -0,0 +1,129 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/CovariantCshift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_UTILS_COVARIANT_CSHIFT_H
|
||||
#define QCD_UTILS_COVARIANT_CSHIFT_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Low performance implementation of CovariantCshift API
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Make these members of an Impl class for BC's.
|
||||
|
||||
namespace PeriodicBC {
|
||||
|
||||
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
|
||||
int mu,
|
||||
const Lattice<covariant> &field)
|
||||
{
|
||||
return Link*Cshift(field,mu,1);// moves towards negative mu
|
||||
}
|
||||
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
|
||||
int mu,
|
||||
const Lattice<covariant> &field)
|
||||
{
|
||||
Lattice<covariant> tmp(field.Grid());
|
||||
tmp = adj(Link)*field;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
namespace ConjugateBC {
|
||||
|
||||
// Must give right answers across boundary
|
||||
// <----
|
||||
// --
|
||||
// | |
|
||||
// xxxxxxxxxxxxxxxxxxxx
|
||||
// | |
|
||||
//
|
||||
// Stap= Cshift(GImpl::CovShiftForward(U[nu],nu,
|
||||
// GImpl::CovShiftForward(U[nu],nu,
|
||||
// GImpl::CovShiftBackward(U[mu],mu,
|
||||
// GImpl::CovShiftBackward(U[nu],nu,
|
||||
// GImpl::CovShiftIdentityBackward(U[nu],nu,-1))))) , mu, 1);
|
||||
//
|
||||
// U U^* U^* U^T U^adj = U (U U U^dag U^T )^*
|
||||
// = U (U U U^dag)^* ( U^T )^*
|
||||
//
|
||||
// So covariant shift rule: Conjugate inward shifted plane when crossing boundary applies.
|
||||
//
|
||||
// This Conjugate should be applied to BOTH the link and the covariant field on backward shift
|
||||
// boundary wrap.
|
||||
//
|
||||
// | |
|
||||
// xxxxxxxxxxxxxxxxx
|
||||
// | | <---- this link is Conjugated, and the path leading into it. Segment crossing in and out is double Conjugated.
|
||||
// --
|
||||
// ------->
|
||||
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
|
||||
int mu,
|
||||
const Lattice<covariant> &field)
|
||||
{
|
||||
GridBase * grid = Link.Grid();
|
||||
|
||||
int Lmu = grid->GlobalDimensions()[mu]-1;
|
||||
|
||||
conformable(field,Link);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(grid); LatticeCoordinate(coor,mu);
|
||||
|
||||
Lattice<covariant> field_bc = Cshift(field,mu,1);// moves towards negative mu;
|
||||
|
||||
field_bc = where(coor==Lmu,conjugate(field_bc),field_bc);
|
||||
// std::cout<<"Gparity::CovCshiftForward mu="<<mu<<std::endl;
|
||||
return Link*field_bc;
|
||||
}
|
||||
|
||||
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
|
||||
int mu,
|
||||
const Lattice<covariant> &field)
|
||||
{
|
||||
GridBase * grid = field.Grid();
|
||||
|
||||
int Lmu = grid->GlobalDimensions()[mu]-1;
|
||||
|
||||
conformable(field,Link);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(grid); LatticeCoordinate(coor,mu);
|
||||
|
||||
Lattice<covariant> tmp(grid);
|
||||
|
||||
tmp = adj(Link)*field;
|
||||
tmp = where(coor==Lmu,conjugate(tmp),tmp);
|
||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
191
Grid/qcd/utils/CovariantLaplacian.h
Normal file
191
Grid/qcd/utils/CovariantLaplacian.h
Normal file
@ -0,0 +1,191 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
|
||||
|
||||
Copyright (C) 2016
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
struct LaplacianParams : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
|
||||
RealD, lo,
|
||||
RealD, hi,
|
||||
int, MaxIter,
|
||||
RealD, tolerance,
|
||||
int, degree,
|
||||
int, precision);
|
||||
|
||||
// constructor
|
||||
LaplacianParams(RealD lo = 0.0,
|
||||
RealD hi = 1.0,
|
||||
int maxit = 1000,
|
||||
RealD tol = 1.0e-8,
|
||||
int degree = 10,
|
||||
int precision = 64)
|
||||
: lo(lo),
|
||||
hi(hi),
|
||||
MaxIter(maxit),
|
||||
tolerance(tol),
|
||||
degree(degree),
|
||||
precision(precision){};
|
||||
};
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Laplacian operator L on adjoint fields
|
||||
//
|
||||
// phi: adjoint field
|
||||
// L: D_mu^dag D_mu
|
||||
//
|
||||
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
|
||||
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
|
||||
// -2phi(x)]
|
||||
//
|
||||
// Operator designed to be encapsulated by
|
||||
// an HermitianLinearOperator<.. , ..>
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Impl>
|
||||
class LaplacianAdjointField: public Metric<typename Impl::Field> {
|
||||
OperatorFunction<typename Impl::Field> &Solver;
|
||||
LaplacianParams param;
|
||||
MultiShiftFunction PowerHalf;
|
||||
MultiShiftFunction PowerInvHalf;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Impl);
|
||||
|
||||
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
|
||||
: U(Nd, grid), Solver(S), param(p), kappa(k){
|
||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
||||
remez.generateApprox(param.degree,1,2);
|
||||
PowerHalf.Init(remez,param.tolerance,false);
|
||||
PowerInvHalf.Init(remez,param.tolerance,true);
|
||||
|
||||
|
||||
};
|
||||
|
||||
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
|
||||
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
|
||||
|
||||
void ImportGauge(const GaugeField& _U) {
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
|
||||
}
|
||||
}
|
||||
|
||||
void M(const GaugeField& in, GaugeField& out) {
|
||||
// in is an antihermitian matrix
|
||||
// test
|
||||
//GaugeField herm = in + adj(in);
|
||||
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
|
||||
|
||||
GaugeLinkField tmp(in.Grid());
|
||||
GaugeLinkField tmp2(in.Grid());
|
||||
GaugeLinkField sum(in.Grid());
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
sum = Zero();
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
GaugeLinkField out_nu(out.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
|
||||
tmp2 = adj(U[mu]) * in_nu * U[mu];
|
||||
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
|
||||
}
|
||||
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
|
||||
PokeIndex<LorentzIndex>(out, out_nu, nu);
|
||||
}
|
||||
}
|
||||
|
||||
void MDeriv(const GaugeField& in, GaugeField& der) {
|
||||
// in is anti-hermitian
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++){
|
||||
GaugeLinkField der_mu(der.Grid());
|
||||
der_mu = Zero();
|
||||
for (int nu = 0; nu < Nd; nu++){
|
||||
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
|
||||
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
|
||||
}
|
||||
// the minus sign comes by using the in_nu instead of the
|
||||
// adjoint in the last multiplication
|
||||
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
// separating this temporarily
|
||||
void MDeriv(const GaugeField& left, const GaugeField& right,
|
||||
GaugeField& der) {
|
||||
// in is anti-hermitian
|
||||
RealD factor = -kappa / (double(4 * Nd));
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
GaugeLinkField der_mu(der.Grid());
|
||||
der_mu = Zero();
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
|
||||
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
|
||||
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
|
||||
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
|
||||
}
|
||||
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
void Minv(const GaugeField& in, GaugeField& inverted){
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
Solver(HermOp, in, inverted);
|
||||
}
|
||||
|
||||
void MSquareRoot(GaugeField& P){
|
||||
GaugeField Gp(P.Grid());
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
|
||||
msCG(HermOp,P,Gp);
|
||||
P = Gp;
|
||||
}
|
||||
|
||||
void MInvSquareRoot(GaugeField& P){
|
||||
GaugeField Gp(P.Grid());
|
||||
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
|
||||
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
|
||||
msCG(HermOp,P,Gp);
|
||||
P = Gp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
RealD kappa;
|
||||
std::vector<GaugeLinkField> U;
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
193
Grid/qcd/utils/GaugeFix.h
Normal file
193
Grid/qcd/utils/GaugeFix.h
Normal file
@ -0,0 +1,193 @@
|
||||
/*************************************************************************************
|
||||
|
||||
grid` physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//#include <Grid/Grid.h>
|
||||
|
||||
#ifndef GRID_QCD_GAUGE_FIX_H
|
||||
#define GRID_QCD_GAUGE_FIX_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Gimpl>
|
||||
class FourierAcceleratedGaugeFixer : public Gimpl {
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
Complex cmi(0.0,-1.0);
|
||||
A[mu] = Ta(U[mu]) * cmi;
|
||||
}
|
||||
}
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
|
||||
dmuAmu=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
}
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
|
||||
Real old_trace = org_link_trace;
|
||||
Real trG;
|
||||
|
||||
std::vector<GaugeMat> U(Nd,grid);
|
||||
GaugeMat dmuAmu(grid);
|
||||
|
||||
for(int i=0;i<maxiter;i++){
|
||||
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
if ( Fourier==false ) {
|
||||
trG = SteepestDescentStep(U,alpha,dmuAmu);
|
||||
} else {
|
||||
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
|
||||
}
|
||||
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
|
||||
// Monitor progress and convergence test
|
||||
// infrequently to minimise cost overhead
|
||||
if ( i %20 == 0 ) {
|
||||
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
|
||||
|
||||
if (Fourier)
|
||||
std::cout << GridLogMessage << "Fourier Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
|
||||
else
|
||||
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
|
||||
|
||||
Real Phi = 1.0 - old_trace / link_trace ;
|
||||
Real Omega= 1.0 - trG;
|
||||
|
||||
|
||||
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
|
||||
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
|
||||
std::cout << GridLogMessage << "Converged ! "<<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
old_trace = link_trace;
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
GaugeMat g(grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
|
||||
|
||||
|
||||
Real vol = grid->gSites();
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
|
||||
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
Real vol = grid->gSites();
|
||||
|
||||
FFT theFFT((GridCartesian *)grid);
|
||||
|
||||
LatticeComplex Fp(grid);
|
||||
LatticeComplex psq(grid); psq=Zero();
|
||||
LatticeComplex pmu(grid);
|
||||
LatticeComplex one(grid); one = Complex(1.0,0.0);
|
||||
|
||||
GaugeMat g(grid);
|
||||
GaugeMat dmuAmu_p(grid);
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
|
||||
DmuAmu(A,dmuAmu);
|
||||
|
||||
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
|
||||
|
||||
//////////////////////////////////
|
||||
// Work out Fp = psq_max/ psq...
|
||||
//////////////////////////////////
|
||||
Coordinate latt_size = grid->GlobalDimensions();
|
||||
Coordinate coor(grid->_ndimension,0);
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
LatticeCoordinate(pmu,mu);
|
||||
pmu = TwoPiL * pmu ;
|
||||
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
|
||||
}
|
||||
|
||||
Complex psqMax(16.0);
|
||||
Fp = psqMax*one/psq;
|
||||
|
||||
/*
|
||||
static int once;
|
||||
if ( once == 0 ) {
|
||||
std::cout << " Fp " << Fp <<std::endl;
|
||||
once ++;
|
||||
}*/
|
||||
|
||||
pokeSite(TComplex(1.0),Fp,coor);
|
||||
|
||||
dmuAmu_p = dmuAmu_p * Fp;
|
||||
|
||||
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
|
||||
|
||||
GaugeMat ciadmam(grid);
|
||||
Complex cialpha(0.0,-alpha);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
|
||||
GridBase *grid = g.Grid();
|
||||
Complex cialpha(0.0,-alpha);
|
||||
GaugeMat ciadmam(grid);
|
||||
DmuAmu(A,dmuAmu);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
201
Grid/qcd/utils/LinalgUtils.h
Normal file
201
Grid/qcd/utils/LinalgUtils.h
Normal file
@ -0,0 +1,201 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/LinalgUtils.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_LINALG_UTILS_H
|
||||
#define GRID_QCD_LINALG_UTILS_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//This file brings additional linear combination assist that is helpful
|
||||
//to QCD such as chiral projectors and spin matrices applied to one of the inputs.
|
||||
//These routines support five-D chiral fermions and contain s-subslice indexing
|
||||
//on the 5d (rb4d) checkerboarded lattices
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void axpibg5x(Lattice<vobj> &z,const Lattice<vobj> &x,Coeff a,Coeff b)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,z);
|
||||
|
||||
GridBase *grid=x.Grid();
|
||||
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
auto x_v = x.View();
|
||||
auto z_v = z.View();
|
||||
accelerator_loop( ss, x_v,{
|
||||
vobj tmp;
|
||||
tmp = a*x_v[ss];
|
||||
tmp = tmp + G5*(b*timesI(x_v[ss]));
|
||||
vstream(z_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void axpby_ssp(Lattice<vobj> &z, Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,y);
|
||||
conformable(x,z);
|
||||
GridBase *grid=x.Grid();
|
||||
int Ls = grid->_rdimensions[0];
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
auto z_v = z.View();
|
||||
// FIXME -- need a new class of accelerator_loop to implement this
|
||||
thread_loop( (int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
|
||||
vobj tmp = a*x_v[ss+s]+b*y_v[ss+sp];
|
||||
vstream(z_v[ss+s],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void ag5xpby_ssp(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,y);
|
||||
conformable(x,z);
|
||||
GridBase *grid=x.Grid();
|
||||
int Ls = grid->_rdimensions[0];
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
auto z_v = z.View();
|
||||
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
|
||||
vobj tmp;
|
||||
tmp = G5*x_v[ss+s]*a;
|
||||
tmp = tmp + b*y_v[ss+sp];
|
||||
vstream(z_v[ss+s],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void axpbg5y_ssp(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,y);
|
||||
conformable(x,z);
|
||||
GridBase *grid=x.Grid();
|
||||
int Ls = grid->_rdimensions[0];
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
auto z_v = z.View();
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
|
||||
vobj tmp;
|
||||
tmp = G5*y_v[ss+sp]*b;
|
||||
tmp = tmp + a*x_v[ss+s];
|
||||
vstream(z_v[ss+s],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void ag5xpbg5y_ssp(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,y);
|
||||
conformable(x,z);
|
||||
GridBase *grid=x.Grid();
|
||||
int Ls = grid->_rdimensions[0];
|
||||
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
auto z_v = z.View();
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
|
||||
vobj tmp1;
|
||||
vobj tmp2;
|
||||
tmp1 = a*x_v[ss+s]+b*y_v[ss+sp];
|
||||
tmp2 = G5*tmp1;
|
||||
vstream(z_v[ss+s],tmp2);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void axpby_ssp_pminus(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,y);
|
||||
conformable(x,z);
|
||||
GridBase *grid=x.Grid();
|
||||
int Ls = grid->_rdimensions[0];
|
||||
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
auto z_v = z.View();
|
||||
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
|
||||
vobj tmp;
|
||||
spProj5m(tmp,y_v[ss+sp]);
|
||||
tmp = a*x_v[ss+s]+b*tmp;
|
||||
vstream(z_v[ss+s],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj,class Coeff>
|
||||
void axpby_ssp_pplus(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
|
||||
{
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,y);
|
||||
conformable(x,z);
|
||||
GridBase *grid=x.Grid();
|
||||
int Ls = grid->_rdimensions[0];
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
auto z_v = z.View();
|
||||
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
|
||||
vobj tmp;
|
||||
spProj5p(tmp,y_v[ss+sp]);
|
||||
tmp = a*x_v[ss+s]+b*tmp;
|
||||
vstream(z_v[ss+s],tmp);
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
|
||||
{
|
||||
GridBase *grid=x.Grid();
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x,z);
|
||||
int Ls = grid->_rdimensions[0];
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
auto x_v = x.View();
|
||||
auto z_v = z.View();
|
||||
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls) {
|
||||
vobj tmp;
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sp = Ls-1-s;
|
||||
tmp = G5*x_v[ss+s];
|
||||
vstream(z_v[ss+sp],tmp);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
214
Grid/qcd/utils/Metric.h
Normal file
214
Grid/qcd/utils/Metric.h
Normal file
@ -0,0 +1,214 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/hmc/integrators/Integrator.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//--------------------------------------------------------------------
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <typename Field>
|
||||
class Metric{
|
||||
public:
|
||||
virtual void ImportGauge(const Field&) = 0;
|
||||
virtual void M(const Field&, Field&) = 0;
|
||||
virtual void Minv(const Field&, Field&) = 0;
|
||||
virtual void MSquareRoot(Field&) = 0;
|
||||
virtual void MInvSquareRoot(Field&) = 0;
|
||||
virtual void MDeriv(const Field&, Field&) = 0;
|
||||
virtual void MDeriv(const Field&, const Field&, Field&) = 0;
|
||||
};
|
||||
|
||||
|
||||
// Need a trivial operator
|
||||
template <typename Field>
|
||||
class TrivialMetric : public Metric<Field>{
|
||||
public:
|
||||
virtual void ImportGauge(const Field&){};
|
||||
virtual void M(const Field& in, Field& out){
|
||||
out = in;
|
||||
}
|
||||
virtual void Minv(const Field& in, Field& out){
|
||||
out = in;
|
||||
}
|
||||
virtual void MSquareRoot(Field& P){
|
||||
// do nothing
|
||||
}
|
||||
virtual void MInvSquareRoot(Field& P){
|
||||
// do nothing
|
||||
}
|
||||
virtual void MDeriv(const Field& in, Field& out){
|
||||
out = Zero();
|
||||
}
|
||||
virtual void MDeriv(const Field& left, const Field& right, Field& out){
|
||||
out = Zero();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
///////////////////////////////
|
||||
// Generalised momenta
|
||||
///////////////////////////////
|
||||
|
||||
template <typename Implementation>
|
||||
class GeneralisedMomenta{
|
||||
public:
|
||||
typedef typename Implementation::Field MomentaField; //for readability
|
||||
typedef typename Implementation::GaugeLinkField MomentaLinkField; //for readability
|
||||
Metric<MomentaField>& M;
|
||||
MomentaField Mom;
|
||||
|
||||
// Auxiliary fields
|
||||
// not hard coded but inherit the type from the metric
|
||||
// created Nd new fields
|
||||
// hide these in the metric?
|
||||
//typedef Lattice<iVector<iScalar<iMatrix<vComplex, Nc> >, Nd/2 > > AuxiliaryMomentaType;
|
||||
MomentaField AuxMom;
|
||||
MomentaField AuxField;
|
||||
|
||||
GeneralisedMomenta(GridBase* grid, Metric<MomentaField>& M): M(M), Mom(grid), AuxMom(grid), AuxField(grid){}
|
||||
|
||||
// Correct
|
||||
void MomentaDistribution(GridParallelRNG& pRNG){
|
||||
// Generate a distribution for
|
||||
// P^dag G P
|
||||
// where G = M^-1
|
||||
|
||||
// Generate gaussian momenta
|
||||
Implementation::generate_momenta(Mom, pRNG);
|
||||
// Modify the distribution with the metric
|
||||
M.MSquareRoot(Mom);
|
||||
|
||||
if (1) {
|
||||
// Auxiliary momenta
|
||||
// do nothing if trivial, so hide in the metric
|
||||
MomentaField AuxMomTemp(Mom.Grid());
|
||||
Implementation::generate_momenta(AuxMom, pRNG);
|
||||
Implementation::generate_momenta(AuxField, pRNG);
|
||||
// Modify the distribution with the metric
|
||||
// Aux^dag M Aux
|
||||
M.MInvSquareRoot(AuxMom); // AuxMom = M^{-1/2} AuxMomTemp
|
||||
}
|
||||
}
|
||||
|
||||
// Correct
|
||||
RealD MomentaAction(){
|
||||
MomentaField inv(Mom.Grid());
|
||||
inv = Zero();
|
||||
M.Minv(Mom, inv);
|
||||
LatticeComplex Hloc(Mom.Grid());
|
||||
Hloc = Zero();
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// This is not very general
|
||||
// hide in the metric
|
||||
auto Mom_mu = PeekIndex<LorentzIndex>(Mom, mu);
|
||||
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
|
||||
Hloc += trace(Mom_mu * inv_mu);
|
||||
}
|
||||
|
||||
if (1) {
|
||||
// Auxiliary Fields
|
||||
// hide in the metric
|
||||
M.M(AuxMom, inv);
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
// This is not very general
|
||||
// hide in the operators
|
||||
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
|
||||
auto am_mu = PeekIndex<LorentzIndex>(AuxMom, mu);
|
||||
auto af_mu = PeekIndex<LorentzIndex>(AuxField, mu);
|
||||
Hloc += trace(am_mu * inv_mu);// p M p
|
||||
Hloc += trace(af_mu * af_mu);
|
||||
}
|
||||
}
|
||||
|
||||
auto Hsum = TensorRemove(sum(Hloc));
|
||||
return Hsum.real();
|
||||
}
|
||||
|
||||
// Correct
|
||||
void DerivativeU(MomentaField& in, MomentaField& der){
|
||||
|
||||
// Compute the derivative of the kinetic term
|
||||
// with respect to the gauge field
|
||||
MomentaField MDer(in.Grid());
|
||||
MomentaField X(in.Grid());
|
||||
X = Zero();
|
||||
M.Minv(in, X); // X = G in
|
||||
M.MDeriv(X, MDer); // MDer = U * dS/dU
|
||||
der = Implementation::projectForce(MDer); // Ta if gauge fields
|
||||
|
||||
}
|
||||
|
||||
void AuxiliaryFieldsDerivative(MomentaField& der){
|
||||
der = Zero();
|
||||
if (1){
|
||||
// Auxiliary fields
|
||||
MomentaField der_temp(der.Grid());
|
||||
MomentaField X(der.Grid());
|
||||
X=Zero();
|
||||
//M.M(AuxMom, X); // X = M Aux
|
||||
// Two derivative terms
|
||||
// the Mderiv need separation of left and right terms
|
||||
M.MDeriv(AuxMom, der);
|
||||
|
||||
|
||||
// this one should not be necessary (identical to the previous one)
|
||||
//M.MDeriv(X, AuxMom, der_temp); der += der_temp;
|
||||
|
||||
der = -1.0*Implementation::projectForce(der);
|
||||
}
|
||||
}
|
||||
|
||||
void DerivativeP(MomentaField& der){
|
||||
der = Zero();
|
||||
M.Minv(Mom, der);
|
||||
// is the projection necessary here?
|
||||
// no for fields in the algebra
|
||||
der = Implementation::projectForce(der);
|
||||
}
|
||||
|
||||
void update_auxiliary_momenta(RealD ep){
|
||||
if(1){
|
||||
AuxMom -= ep * AuxField;
|
||||
}
|
||||
}
|
||||
|
||||
void update_auxiliary_fields(RealD ep){
|
||||
if (1) {
|
||||
MomentaField tmp(AuxMom.Grid());
|
||||
MomentaField tmp2(AuxMom.Grid());
|
||||
M.M(AuxMom, tmp);
|
||||
// M.M(tmp, tmp2);
|
||||
AuxField += ep * tmp; // M^2 AuxMom
|
||||
// factor of 2?
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
797
Grid/qcd/utils/SUn.h
Normal file
797
Grid/qcd/utils/SUn.h
Normal file
@ -0,0 +1,797 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/SUn.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_UTIL_SUN_H
|
||||
#define QCD_UTIL_SUN_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <int ncolour>
|
||||
class SU {
|
||||
public:
|
||||
static const int Dimension = ncolour;
|
||||
static const int AdjointDimension = ncolour * ncolour - 1;
|
||||
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
template <typename vtype>
|
||||
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
|
||||
template <typename vtype>
|
||||
using iSUnAlgebraVector =
|
||||
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
|
||||
// SU<2>::LatticeMatrix etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef iSUnMatrix<Complex> Matrix;
|
||||
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||
|
||||
typedef iSUnMatrix<vComplex> vMatrix;
|
||||
typedef iSUnMatrix<vComplexF> vMatrixF;
|
||||
typedef iSUnMatrix<vComplexD> vMatrixD;
|
||||
|
||||
// For the projectors to the algebra
|
||||
// these should be real...
|
||||
// keeping complex for consistency with the SIMD vector types
|
||||
typedef iSUnAlgebraVector<Complex> AlgebraVector;
|
||||
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
|
||||
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
|
||||
|
||||
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
|
||||
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
|
||||
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
|
||||
|
||||
typedef Lattice<vMatrix> LatticeMatrix;
|
||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||
typedef Lattice<vMatrixD> LatticeMatrixD;
|
||||
|
||||
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
|
||||
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
|
||||
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
|
||||
|
||||
typedef iSU2Matrix<Complex> SU2Matrix;
|
||||
typedef iSU2Matrix<ComplexF> SU2MatrixF;
|
||||
typedef iSU2Matrix<ComplexD> SU2MatrixD;
|
||||
|
||||
typedef iSU2Matrix<vComplex> vSU2Matrix;
|
||||
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
|
||||
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
|
||||
|
||||
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
|
||||
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
||||
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
|
||||
// generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
|
||||
// delta_{i,i1} delta_{j,i2})
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
|
||||
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template <class cplx>
|
||||
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = ncolour * (ncolour - 1);
|
||||
if (lieIndex >= NNm1) {
|
||||
diagIndex = lieIndex - NNm1;
|
||||
generatorDiagonal(diagIndex, ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex & 0x1; // even or odd
|
||||
su2Index = lieIndex >> 1;
|
||||
if (sigxy)
|
||||
generatorSigmaY(su2Index, ta);
|
||||
else
|
||||
generatorSigmaX(su2Index, ta);
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = 1.0;
|
||||
ta()()(i2, i1) = 1.0;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
|
||||
ta = Zero();
|
||||
cplx i(0.0, 1.0);
|
||||
int i1, i2;
|
||||
su2SubGroupIndex(i1, i2, su2Index);
|
||||
ta()()(i1, i2) = i;
|
||||
ta()()(i2, i1) = -i;
|
||||
ta = ta * 0.5;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
|
||||
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
|
||||
ta = Zero();
|
||||
int k = diagIndex + 1; // diagIndex starts from 0
|
||||
for (int i = 0; i <= diagIndex; i++) { // k iterations
|
||||
ta()()(i, i) = 1.0;
|
||||
}
|
||||
ta()()(k, k) = -k; // indexing starts from 0
|
||||
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
|
||||
ta = ta * nrm;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
|
||||
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
|
||||
|
||||
int spare = su2_index;
|
||||
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
|
||||
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2 = i1 + 1 + spare;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx>
|
||||
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
|
||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index) {
|
||||
GridBase *grid(source.Grid());
|
||||
conformable(subgroup, source);
|
||||
conformable(subgroup, Determinant);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
auto subgroup_v = subgroup.View();
|
||||
auto source_v = source.View();
|
||||
auto Determinant_v = Determinant.View();
|
||||
thread_loop( (int ss = 0; ss < grid->oSites(); ss++) ,{
|
||||
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
|
||||
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
|
||||
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
|
||||
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
|
||||
|
||||
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
|
||||
|
||||
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
|
||||
|
||||
subgroup_v[ss] = Sigma;
|
||||
|
||||
// this should be purely real
|
||||
Determinant_v[ss] =
|
||||
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
|
||||
});
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set matrix to one and insert a pauli subgroup
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vcplx>
|
||||
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
|
||||
GridBase *grid(dest.Grid());
|
||||
conformable(subgroup, dest);
|
||||
int i0, i1;
|
||||
su2SubGroupIndex(i0, i1, su2_index);
|
||||
|
||||
dest = 1.0; // start out with identity
|
||||
auto dest_v = dest.View();
|
||||
auto subgroup_v = subgroup.View();
|
||||
thread_loop( (int ss = 0; ss < grid->oSites(); ss++) ,{
|
||||
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
|
||||
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
|
||||
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
|
||||
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
|
||||
});
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Generate e^{ Re Tr Staple Link} dlink
|
||||
//
|
||||
// *** Note Staple should be appropriate linear compbination between all
|
||||
// staples.
|
||||
// *** If already by beta pass coefficient 1.0.
|
||||
// *** This routine applies the additional 1/Nc factor that comes after trace
|
||||
// in action.
|
||||
//
|
||||
///////////////////////////////////////////////
|
||||
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
|
||||
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||
int su2_subgroup, int nheatbath, LatticeInteger &wheremask)
|
||||
{
|
||||
GridBase *grid = link.Grid();
|
||||
|
||||
const RealD twopi = 2.0 * M_PI;
|
||||
|
||||
LatticeMatrix staple(grid);
|
||||
|
||||
staple = barestaple * (beta / ncolour);
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link * staple;
|
||||
|
||||
// Subgroup manipulation in the lie algebra space
|
||||
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||
LatticeSU2Matrix uinv(grid);
|
||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||
|
||||
// Some handy constant fields
|
||||
LatticeComplex ones(grid);
|
||||
ones = 1.0;
|
||||
LatticeComplex zeros(grid);
|
||||
zeros = Zero();
|
||||
LatticeReal rones(grid);
|
||||
rones = 1.0;
|
||||
LatticeReal rzeros(grid);
|
||||
rzeros = Zero();
|
||||
LatticeComplex udet(grid); // determinant of real(staple)
|
||||
LatticeInteger mask_true(grid);
|
||||
mask_true = 1;
|
||||
LatticeInteger mask_false(grid);
|
||||
mask_false = 0;
|
||||
|
||||
/*
|
||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||
|
||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||
passed to this routine has "beta" already multiplied in
|
||||
|
||||
Action linear in links h and of form:
|
||||
|
||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||
|
||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||
|
||||
beta S = const - beta/Nc Re Tr h Sigma'
|
||||
= const - Re Tr h Sigma
|
||||
|
||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
|
||||
arbitrary.
|
||||
|
||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||
|
||||
Normalised re Sigma_j = xi u_j
|
||||
|
||||
With u_j a unit vector and U can be in SU(2);
|
||||
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||
|
||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
xi = sqrt(Det)/2;
|
||||
|
||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||
|
||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Real part of Pauli decomposition
|
||||
// Note a subgroup can project to zero in cold start
|
||||
////////////////////////////////////////////////////////
|
||||
su2Extract(udet, u, V, su2_subgroup);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Normalising this vector if possible; else identity
|
||||
//////////////////////////////////////////////////////
|
||||
LatticeComplex xi(grid);
|
||||
|
||||
LatticeSU2Matrix lident(grid);
|
||||
|
||||
SU2Matrix ident = Complex(1.0);
|
||||
SU2Matrix pauli1;
|
||||
SU<2>::generator(0, pauli1);
|
||||
SU2Matrix pauli2;
|
||||
SU<2>::generator(1, pauli2);
|
||||
SU2Matrix pauli3;
|
||||
SU<2>::generator(2, pauli3);
|
||||
pauli1 = timesI(pauli1) * 2.0;
|
||||
pauli2 = timesI(pauli2) * 2.0;
|
||||
pauli3 = timesI(pauli3) * 2.0;
|
||||
|
||||
LatticeComplex cone(grid);
|
||||
LatticeReal adet(grid);
|
||||
adet = abs(toReal(udet));
|
||||
lident = Complex(1.0);
|
||||
cone = Complex(1.0);
|
||||
Real machine_epsilon = 1.0e-7;
|
||||
u = where(adet > machine_epsilon, u, lident);
|
||||
udet = where(adet > machine_epsilon, udet, cone);
|
||||
|
||||
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 0.5 * u *
|
||||
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
// Debug test for sanity
|
||||
uinv = adj(u);
|
||||
b = u * uinv - 1.0;
|
||||
assert(norm2(b) < 1.0e-4);
|
||||
|
||||
/*
|
||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||
In polars:
|
||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
|
||||
r) )
|
||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||
|
||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
|
||||
through xi
|
||||
= e^{2 xi (h.u)} dh
|
||||
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
|
||||
h2u2}.e^{2 xi h3u3} dh
|
||||
|
||||
Therefore for each site, take xi for that site
|
||||
i) generate |a0|<1 with dist
|
||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||
|
||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
|
||||
factor in Chroma ]
|
||||
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
|
||||
R''' in the unit interval;
|
||||
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
|
||||
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
|
||||
D. Set A = XC;
|
||||
E. Let d = X'+A;
|
||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
G. Set a0 = 1 - d;
|
||||
|
||||
Note that in step D setting B ~ X - A and using B in place of A in step E will
|
||||
generate a second independent a 0 value.
|
||||
*/
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// count the number of sites by picking "1"'s out of hat
|
||||
/////////////////////////////////////////////////////////
|
||||
Integer hit = 0;
|
||||
LatticeReal rtmp(grid);
|
||||
rtmp = where(wheremask, rones, rzeros);
|
||||
RealD numSites = sum(rtmp);
|
||||
RealD numAccepted;
|
||||
LatticeInteger Accepted(grid);
|
||||
Accepted = Zero();
|
||||
LatticeInteger newlyAccepted(grid);
|
||||
|
||||
std::vector<LatticeReal> xr(4, grid);
|
||||
std::vector<LatticeReal> a(4, grid);
|
||||
LatticeReal d(grid);
|
||||
d = Zero();
|
||||
LatticeReal alpha(grid);
|
||||
|
||||
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
|
||||
alpha = toReal(2.0 * xi);
|
||||
|
||||
do {
|
||||
// A. Generate two uniformly distributed pseudo-random numbers R and R',
|
||||
// R'', R''' in the unit interval;
|
||||
random(pRNG, xr[0]);
|
||||
random(pRNG, xr[1]);
|
||||
random(pRNG, xr[2]);
|
||||
random(pRNG, xr[3]);
|
||||
|
||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||
xr[1] = -log(xr[1]) / alpha;
|
||||
xr[2] = -log(xr[2]) / alpha;
|
||||
|
||||
// C. Set C = cos^2(2piR'')
|
||||
xr[3] = cos(xr[3] * twopi);
|
||||
xr[3] = xr[3] * xr[3];
|
||||
|
||||
LatticeReal xrsq(grid);
|
||||
|
||||
// D. Set A = XC;
|
||||
// E. Let d = X'+A;
|
||||
xrsq = xr[2] + xr[1] * xr[3];
|
||||
|
||||
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
|
||||
|
||||
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
LatticeReal thresh(grid);
|
||||
thresh = 1.0 - d * 0.5;
|
||||
xrsq = xr[0] * xr[0];
|
||||
LatticeInteger ione(grid);
|
||||
ione = 1;
|
||||
LatticeInteger izero(grid);
|
||||
izero = Zero();
|
||||
|
||||
newlyAccepted = where(xrsq < thresh, ione, izero);
|
||||
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
|
||||
Accepted = where(wheremask, Accepted, izero);
|
||||
|
||||
// FIXME need an iSum for integer to avoid overload on return type??
|
||||
rtmp = where(Accepted, rones, rzeros);
|
||||
numAccepted = sum(rtmp);
|
||||
|
||||
hit++;
|
||||
|
||||
} while ((numAccepted < numSites) && (hit < nheatbath));
|
||||
|
||||
// G. Set a0 = 1 - d;
|
||||
a[0] = Zero();
|
||||
a[0] = where(wheremask, 1.0 - d, a[0]);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||
//////////////////////////////////////////
|
||||
|
||||
LatticeReal a123mag(grid);
|
||||
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
|
||||
|
||||
LatticeReal cos_theta(grid);
|
||||
LatticeReal sin_theta(grid);
|
||||
LatticeReal phi(grid);
|
||||
|
||||
random(pRNG, phi);
|
||||
phi = phi * twopi; // uniform in [0,2pi]
|
||||
random(pRNG, cos_theta);
|
||||
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
|
||||
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
|
||||
|
||||
a[1] = a123mag * sin_theta * cos(phi);
|
||||
a[2] = a123mag * sin_theta * sin(phi);
|
||||
a[3] = a123mag * cos_theta;
|
||||
|
||||
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
|
||||
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
|
||||
|
||||
b = 1.0;
|
||||
b = where(wheremask, uinv * ua, b);
|
||||
su2Insert(b, V, su2_subgroup);
|
||||
|
||||
// mask the assignment back based on Accptance
|
||||
link = where(Accepted, V * link, link);
|
||||
|
||||
//////////////////////////////
|
||||
// Debug Checks
|
||||
// SU2 check
|
||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||
u = Zero();
|
||||
check = ua * adj(ua) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
check = b * adj(b) - 1.0;
|
||||
check = where(Accepted, check, u);
|
||||
assert(norm2(check) < 1.0e-4);
|
||||
|
||||
LatticeMatrix Vcheck(grid);
|
||||
Vcheck = Zero();
|
||||
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
|
||||
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
|
||||
// Verify the link stays in SU(3)
|
||||
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
|
||||
Vcheck = link * adj(link) - 1.0;
|
||||
assert(norm2(Vcheck) < 1.0e-4);
|
||||
/////////////////////////////////
|
||||
}
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < AdjointDimension; gen++) {
|
||||
Matrix ta;
|
||||
generator(gen, ta);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << ta << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void testGenerators(void) {
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout << GridLogMessage
|
||||
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
for (int b = 0; b < AdjointDimension; b++) {
|
||||
generator(a, ta);
|
||||
generator(b, tb);
|
||||
Complex tr = TensorRemove(trace(ta * tb));
|
||||
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
|
||||
<< std::endl;
|
||||
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
|
||||
if (a != b) assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(ta - adj(ta)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
Complex tr = TensorRemove(trace(ta));
|
||||
std::cout << GridLogMessage << a << " " << std::endl;
|
||||
assert(abs(tr) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
// reunitarise??
|
||||
template <typename LatticeMatrixType>
|
||||
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
|
||||
double scale = 1.0) {
|
||||
GridBase *grid = out.Grid();
|
||||
|
||||
typedef typename LatticeMatrixType::vector_type vector_type;
|
||||
typedef typename LatticeMatrixType::scalar_type scalar_type;
|
||||
|
||||
typedef iSinglet<vector_type> vTComplexType;
|
||||
|
||||
typedef Lattice<vTComplexType> LatticeComplexType;
|
||||
typedef typename GridTypeMapper<
|
||||
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
|
||||
|
||||
LatticeComplexType ca(grid);
|
||||
LatticeMatrixType lie(grid);
|
||||
LatticeMatrixType la(grid);
|
||||
ComplexD ci(0.0, scale);
|
||||
// ComplexD cone(1.0, 0.0);
|
||||
MatrixType ta;
|
||||
|
||||
lie = Zero();
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
random(pRNG, ca);
|
||||
|
||||
ca = (ca + conjugate(ca)) * 0.5;
|
||||
ca = ca - 0.5;
|
||||
|
||||
generator(a, ta);
|
||||
|
||||
la = ci * ca * ta;
|
||||
|
||||
lie = lie + la; // e^{i la ta}
|
||||
}
|
||||
taExp(lie, out);
|
||||
}
|
||||
|
||||
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
|
||||
LatticeMatrix &out,
|
||||
Real scale = 1.0) {
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeReal ca(grid);
|
||||
LatticeMatrix la(grid);
|
||||
Complex ci(0.0, scale);
|
||||
Matrix ta;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
gaussian(pRNG, ca);
|
||||
generator(a, ta);
|
||||
la = toComplex(ca) * ta;
|
||||
out += la;
|
||||
}
|
||||
out *= ci;
|
||||
}
|
||||
|
||||
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
|
||||
LatticeMatrix &out,
|
||||
Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeMatrix la(grid);
|
||||
Matrix ta;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, ta);
|
||||
la = peekColour(h, a) * timesI(ta) * scale;
|
||||
out += la;
|
||||
}
|
||||
}
|
||||
/*
|
||||
add GaugeTrans
|
||||
*/
|
||||
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid,g.Grid());
|
||||
|
||||
GaugeMat U(grid);
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
U = g*U*Cshift(ag, mu, 1);
|
||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeMat>
|
||||
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
|
||||
GridBase *grid = g.Grid();
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
|
||||
LieRandomize(pRNG,g,1.0);
|
||||
GaugeTransform(Umu,g);
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||
// inverse operation: FundamentalLieAlgebraMatrix
|
||||
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
Matrix Ta;
|
||||
|
||||
for (int a = 0; a < AdjointDimension; a++) {
|
||||
generator(a, Ta);
|
||||
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename GaugeField>
|
||||
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
LieRandomize(pRNG, Umu, 1.0);
|
||||
PokeIndex<LorentzIndex>(out, Umu, mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LieRandomize(pRNG,Umu,0.01);
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GaugeField &out){
|
||||
typedef typename GaugeField::vector_type vector_type;
|
||||
typedef iSUnMatrix<vector_type> vMatrixType;
|
||||
typedef Lattice<vMatrixType> LatticeMatrixType;
|
||||
|
||||
LatticeMatrixType Umu(out.Grid());
|
||||
Umu=1.0;
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
PokeIndex<LorentzIndex>(out,Umu,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeField>
|
||||
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
|
||||
ColdConfiguration(out);
|
||||
}
|
||||
|
||||
template<typename LatticeMatrixType>
|
||||
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
|
||||
out = Ta(in);
|
||||
}
|
||||
template <typename LatticeMatrixType>
|
||||
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
|
||||
typedef typename LatticeMatrixType::scalar_type ComplexType;
|
||||
|
||||
LatticeMatrixType xn(x.Grid());
|
||||
RealD nfac = 1.0;
|
||||
|
||||
xn = x;
|
||||
ex = xn + ComplexType(1.0); // 1+x
|
||||
|
||||
// Do a 12th order exponentiation
|
||||
for (int i = 2; i <= 12; ++i) {
|
||||
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
|
||||
xn = xn * x; // x2, x3,x4....
|
||||
ex = ex + xn * nfac; // x2/2!, x3/3!....
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef SU<2> SU2;
|
||||
typedef SU<3> SU3;
|
||||
typedef SU<4> SU4;
|
||||
typedef SU<5> SU5;
|
||||
|
||||
|
||||
typedef SU<Nc> FundamentalMatrices;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
181
Grid/qcd/utils/SUnAdjoint.h
Normal file
181
Grid/qcd/utils/SUnAdjoint.h
Normal file
@ -0,0 +1,181 @@
|
||||
#ifndef QCD_UTIL_SUNADJOINT_H
|
||||
#define QCD_UTIL_SUNADJOINT_H
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// * Adjoint representation generators
|
||||
//
|
||||
// * Normalisation for the fundamental generators:
|
||||
// trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
//
|
||||
// base for NxN hermitian traceless matrices
|
||||
// normalized to 1:
|
||||
//
|
||||
// (e_Adj)^a = t^a / sqrt(T_F)
|
||||
//
|
||||
// then the real, antisymmetric generators for the adjoint representations
|
||||
// are computed ( shortcut: e^a == (e_Adj)^a )
|
||||
//
|
||||
// (iT_adj)^d_ba = i tr[e^a t^d e^b - t^d e^a e^b]
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <int ncolour>
|
||||
class SU_Adjoint : public SU<ncolour> {
|
||||
public:
|
||||
static const int Dimension = ncolour * ncolour - 1;
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnAdjointMatrix =
|
||||
iScalar<iScalar<iMatrix<vtype, Dimension > > >;
|
||||
|
||||
// Actually the adjoint matrices are real...
|
||||
// Consider this overhead... FIXME
|
||||
typedef iSUnAdjointMatrix<Complex> AMatrix;
|
||||
typedef iSUnAdjointMatrix<ComplexF> AMatrixF;
|
||||
typedef iSUnAdjointMatrix<ComplexD> AMatrixD;
|
||||
|
||||
typedef iSUnAdjointMatrix<vComplex> vAMatrix;
|
||||
typedef iSUnAdjointMatrix<vComplexF> vAMatrixF;
|
||||
typedef iSUnAdjointMatrix<vComplexD> vAMatrixD;
|
||||
|
||||
typedef Lattice<vAMatrix> LatticeAdjMatrix;
|
||||
typedef Lattice<vAMatrixF> LatticeAdjMatrixF;
|
||||
typedef Lattice<vAMatrixD> LatticeAdjMatrixD;
|
||||
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
|
||||
LatticeAdjField;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
|
||||
LatticeAdjFieldF;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
|
||||
LatticeAdjFieldD;
|
||||
|
||||
|
||||
|
||||
|
||||
template <class cplx>
|
||||
static void generator(int Index, iSUnAdjointMatrix<cplx> &iAdjTa) {
|
||||
// returns i(T_Adj)^index necessary for the projectors
|
||||
// see definitions above
|
||||
iAdjTa = Zero();
|
||||
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
|
||||
|
||||
// FIXME not very efficient to get all the generators everytime
|
||||
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
|
||||
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
|
||||
2.0 * tmp * ta[b]; // 2.0 from the normalization
|
||||
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
||||
//iAdjTa()()(b, a) = iTr;
|
||||
iAdjTa()()(a, b) = iTr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < Dimension; gen++) {
|
||||
AMatrix ta;
|
||||
generator(gen, ta);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << ta << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static void testGenerators(void) {
|
||||
AMatrix adjTa;
|
||||
std::cout << GridLogMessage << "Adjoint - Checking if real" << std::endl;
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
generator(a, adjTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(adjTa - conjugate(adjTa)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Adjoint - Checking if antisymmetric"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
generator(a, adjTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(adjTa + transpose(adjTa)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
static void AdjointLieAlgebraMatrix(
|
||||
const typename SU<ncolour>::LatticeAlgebraVector &h,
|
||||
LatticeAdjMatrix &out, Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeAdjMatrix la(grid);
|
||||
AMatrix iTa;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
generator(a, iTa);
|
||||
la = peekColour(h, a) * iTa;
|
||||
out += la;
|
||||
}
|
||||
out *= scale;
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
AMatrix iTa;
|
||||
Real coefficient = - 1.0/(ncolour) * scale;// 1/Nc for the normalization of the trace in the adj rep
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
generator(a, iTa);
|
||||
auto tmp = real(trace(iTa * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
|
||||
// a projector that keeps the generators stored to avoid the overhead of recomputing them
|
||||
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
static std::vector<AMatrix> iTa(Dimension); // to store the generators
|
||||
h_out = Zero();
|
||||
static bool precalculated = false;
|
||||
if (!precalculated){
|
||||
precalculated = true;
|
||||
for (int a = 0; a < Dimension; a++) generator(a, iTa[a]);
|
||||
}
|
||||
|
||||
Real coefficient = -1.0 / (ncolour) * scale; // 1/Nc for the normalization of
|
||||
// the trace in the adj rep
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
auto tmp = real(trace(iTa[a] * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// Some useful type names
|
||||
|
||||
typedef SU_Adjoint<2> SU2Adjoint;
|
||||
typedef SU_Adjoint<3> SU3Adjoint;
|
||||
typedef SU_Adjoint<4> SU4Adjoint;
|
||||
typedef SU_Adjoint<5> SU5Adjoint;
|
||||
|
||||
typedef SU_Adjoint<Nc> AdjointMatrices;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
273
Grid/qcd/utils/SUnTwoIndex.h
Normal file
273
Grid/qcd/utils/SUnTwoIndex.h
Normal file
@ -0,0 +1,273 @@
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// * Two index representation generators
|
||||
//
|
||||
// * Normalisation for the fundamental generators:
|
||||
// trace ta tb = 1/2 delta_ab = T_F delta_ab
|
||||
// T_F = 1/2 for SU(N) groups
|
||||
//
|
||||
//
|
||||
// base for NxN two index (anti-symmetric) matrices
|
||||
// normalized to 1 (d_ij is the kroenecker delta)
|
||||
//
|
||||
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
|
||||
//
|
||||
// Then the generators are written as
|
||||
//
|
||||
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
|
||||
// tr[e^(lk)e^(ij)^dag T_a] ) //
|
||||
//
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Authors: David Preti, Guido Cossu
|
||||
|
||||
#ifndef QCD_UTIL_SUN2INDEX_H
|
||||
#define QCD_UTIL_SUN2INDEX_H
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
|
||||
|
||||
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
|
||||
|
||||
template <int ncolour, TwoIndexSymmetry S>
|
||||
class SU_TwoIndex : public SU<ncolour> {
|
||||
public:
|
||||
static const int Dimension = ncolour * (ncolour + S) / 2;
|
||||
static const int NumGenerators = SU<ncolour>::AdjointDimension;
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
|
||||
|
||||
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
|
||||
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
|
||||
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
|
||||
|
||||
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
|
||||
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
|
||||
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
|
||||
|
||||
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
|
||||
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
|
||||
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
|
||||
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
|
||||
LatticeTwoIndexField;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
|
||||
LatticeTwoIndexFieldF;
|
||||
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
|
||||
LatticeTwoIndexFieldD;
|
||||
|
||||
template <typename vtype>
|
||||
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
|
||||
|
||||
typedef iSUnMatrix<Complex> Matrix;
|
||||
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||
|
||||
template <class cplx>
|
||||
static void base(int Index, iSUnMatrix<cplx> &eij) {
|
||||
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
|
||||
assert(Index < NumGenerators);
|
||||
eij = Zero();
|
||||
|
||||
// for the linearisation of the 2 indexes
|
||||
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
|
||||
static bool filled = false;
|
||||
if (!filled) {
|
||||
int counter = 0;
|
||||
for (int i = 1; i < ncolour; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
a[counter][0] = i;
|
||||
a[counter][1] = j;
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
filled = true;
|
||||
}
|
||||
|
||||
if (Index < ncolour * (ncolour - 1) / 2) {
|
||||
baseOffDiagonal(a[Index][0], a[Index][1], eij);
|
||||
} else {
|
||||
baseDiagonal(Index, eij);
|
||||
}
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
|
||||
eij = Zero();
|
||||
eij()()(Index - ncolour * (ncolour - 1) / 2,
|
||||
Index - ncolour * (ncolour - 1) / 2) = 1.0;
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
|
||||
eij = Zero();
|
||||
for (int k = 0; k < ncolour; k++)
|
||||
for (int l = 0; l < ncolour; l++)
|
||||
eij()()(l, k) = delta(i, k) * delta(j, l) +
|
||||
S * delta(j, k) * delta(i, l);
|
||||
|
||||
RealD nrm = 1. / std::sqrt(2.0);
|
||||
eij = eij * nrm;
|
||||
}
|
||||
|
||||
static void printBase(void) {
|
||||
for (int gen = 0; gen < Dimension; gen++) {
|
||||
Matrix tmp;
|
||||
base(gen, tmp);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << tmp << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template <class cplx>
|
||||
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
|
||||
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
|
||||
ncolour * ncolour - 1);
|
||||
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
|
||||
i2indTa = Zero();
|
||||
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++)
|
||||
SU<ncolour>::generator(a, ta[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
|
||||
|
||||
for (int a = 0; a < Dimension; a++) {
|
||||
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
|
||||
for (int b = 0; b < Dimension; b++) {
|
||||
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
|
||||
tmp * eij[b];
|
||||
Complex iTr = TensorRemove(timesI(trace(tmp1)));
|
||||
i2indTa()()(a, b) = iTr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void printGenerators(void) {
|
||||
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
|
||||
TIMatrix i2indTa;
|
||||
generator(gen, i2indTa);
|
||||
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
|
||||
<< std::endl;
|
||||
std::cout << GridLogMessage << i2indTa << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static void testGenerators(void) {
|
||||
TIMatrix i2indTa, i2indTb;
|
||||
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(trace(i2indTa)) < 1.0e-6);
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
std::cout << GridLogMessage << a << std::endl;
|
||||
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
|
||||
<< std::endl;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
for (int b = 0; b < ncolour * ncolour - 1; b++) {
|
||||
generator(a, i2indTa);
|
||||
generator(b, i2indTb);
|
||||
|
||||
// generator returns iTa, so we need a minus sign here
|
||||
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
|
||||
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
}
|
||||
|
||||
static void TwoIndexLieAlgebraMatrix(
|
||||
const typename SU<ncolour>::LatticeAlgebraVector &h,
|
||||
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
|
||||
conformable(h, out);
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeTwoIndexMatrix la(grid);
|
||||
TIMatrix i2indTa;
|
||||
|
||||
out = Zero();
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
la = peekColour(h, a) * i2indTa;
|
||||
out += la;
|
||||
}
|
||||
out *= scale;
|
||||
}
|
||||
|
||||
// Projects the algebra components
|
||||
// of a lattice matrix ( of dimension ncol*ncol -1 )
|
||||
static void projectOnAlgebra(
|
||||
typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
h_out = Zero();
|
||||
TIMatrix i2indTa;
|
||||
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
|
||||
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
generator(a, i2indTa);
|
||||
auto tmp = real(trace(i2indTa * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
|
||||
// a projector that keeps the generators stored to avoid the overhead of
|
||||
// recomputing them
|
||||
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
|
||||
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
|
||||
conformable(h_out, in);
|
||||
// to store the generators
|
||||
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
|
||||
h_out = Zero();
|
||||
static bool precalculated = false;
|
||||
if (!precalculated) {
|
||||
precalculated = true;
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
|
||||
}
|
||||
|
||||
Real coefficient =
|
||||
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
|
||||
// of the trace in the two index rep
|
||||
|
||||
for (int a = 0; a < ncolour * ncolour - 1; a++) {
|
||||
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
|
||||
pokeColour(h_out, tmp, a);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Some useful type names
|
||||
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
|
||||
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
|
||||
|
||||
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
|
||||
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
|
||||
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
|
||||
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
|
||||
|
||||
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
|
||||
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
93
Grid/qcd/utils/ScalarObjs.h
Normal file
93
Grid/qcd/utils/ScalarObjs.h
Normal file
@ -0,0 +1,93 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/WilsonLoops.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef SCALAR_OBJS_H
|
||||
#define SCALAR_OBJS_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Scalar field obs
|
||||
template <class Impl>
|
||||
class ScalarObs {
|
||||
public:
|
||||
//////////////////////////////////////////////////
|
||||
// squared field
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
static void phisquared(typename Impl::Field &fsq,
|
||||
const typename Impl::Field &f) {
|
||||
fsq = f * f;
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// phi^4 interaction term
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
static void phifourth(typename Impl::Field &fsq,
|
||||
const typename Impl::Field &f) {
|
||||
fsq = f * f * f * f;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// phi(x)phi(x+mu)
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
static void phider(typename Impl::Field &fsq,
|
||||
const typename Impl::Field &f) {
|
||||
fsq = Cshift(f, 0, -1) * f;
|
||||
for (int mu = 1; mu < Nd; mu++) fsq += Cshift(f, mu, -1) * f;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// Vol sum of the previous obs.
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
static RealD sumphider(const typename Impl::Field &f) {
|
||||
typename Impl::Field tmp(f.Grid());
|
||||
tmp = Cshift(f, 0, -1) * f;
|
||||
for (int mu = 1; mu < Nd; mu++) {
|
||||
tmp += Cshift(f, mu, -1) * f;
|
||||
}
|
||||
return -sum(trace(tmp));
|
||||
}
|
||||
|
||||
static RealD sumphisquared(const typename Impl::Field &f) {
|
||||
typename Impl::Field tmp(f.Grid());
|
||||
tmp = f * f;
|
||||
return sum(trace(tmp));
|
||||
}
|
||||
|
||||
static RealD sumphifourth(const typename Impl::Field &f) {
|
||||
typename Impl::Field tmp(f.Grid());
|
||||
phifourth(tmp, f);
|
||||
return sum(trace(tmp));
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
115
Grid/qcd/utils/SpaceTimeGrid.cc
Normal file
115
Grid/qcd/utils/SpaceTimeGrid.cc
Normal file
@ -0,0 +1,115 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/SpaceTimeGrid.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/GridQCDcore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Public interface
|
||||
/////////////////////////////////////////////////////////////////
|
||||
GridCartesian *SpaceTimeGrid::makeFourDimGrid(const Coordinate & latt,const Coordinate &simd,const Coordinate &mpi)
|
||||
{
|
||||
return new GridCartesian(latt,simd,mpi);
|
||||
}
|
||||
GridRedBlackCartesian *SpaceTimeGrid::makeFourDimRedBlackGrid(const GridCartesian *FourDimGrid)
|
||||
{
|
||||
return new GridRedBlackCartesian(FourDimGrid);
|
||||
}
|
||||
GridCartesian *SpaceTimeGrid::makeFourDimDWFGrid(const Coordinate & latt,const Coordinate &mpi)
|
||||
{
|
||||
Coordinate simd(4,1);
|
||||
return makeFourDimGrid(latt,simd,mpi);
|
||||
}
|
||||
GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian *FourDimGrid)
|
||||
{
|
||||
int N4=FourDimGrid->_ndimension;
|
||||
|
||||
Coordinate latt5(1,Ls);
|
||||
Coordinate simd5(1,1);
|
||||
Coordinate mpi5(1,1);
|
||||
|
||||
for(int d=0;d<N4;d++){
|
||||
latt5.push_back(FourDimGrid->_fdimensions[d]);
|
||||
simd5.push_back(FourDimGrid->_simd_layout[d]);
|
||||
mpi5.push_back(FourDimGrid->_processors[d]);
|
||||
}
|
||||
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
|
||||
}
|
||||
|
||||
|
||||
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
|
||||
{
|
||||
int N4=FourDimGrid->_ndimension;
|
||||
int cbd=1;
|
||||
Coordinate cb5(1,0);
|
||||
for(int d=0;d<N4;d++){
|
||||
cb5.push_back( 1);
|
||||
}
|
||||
GridCartesian *tmp = makeFiveDimGrid(Ls,FourDimGrid);
|
||||
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
|
||||
delete tmp;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
GridCartesian *SpaceTimeGrid::makeFiveDimDWFGrid(int Ls,const GridCartesian *FourDimGrid)
|
||||
{
|
||||
int N4 = FourDimGrid->_ndimension;
|
||||
int nsimd = FourDimGrid->Nsimd();
|
||||
|
||||
Coordinate latt5(1,Ls);
|
||||
Coordinate simd5(1,nsimd);
|
||||
Coordinate mpi5(1,1);
|
||||
|
||||
for(int d=0;d<N4;d++){
|
||||
latt5.push_back(FourDimGrid->_fdimensions[d]);
|
||||
simd5.push_back(1);
|
||||
mpi5.push_back(FourDimGrid->_processors[d]);
|
||||
}
|
||||
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
|
||||
}
|
||||
///////////////////////////////////////////////////
|
||||
// Interface is inefficient and forces the deletion
|
||||
// Pass in the non-redblack grid
|
||||
///////////////////////////////////////////////////
|
||||
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
|
||||
{
|
||||
int N4=FourDimGrid->_ndimension;
|
||||
int cbd=1;
|
||||
Coordinate cb5(1,0);
|
||||
for(int d=0;d<N4;d++){
|
||||
cb5.push_back(1);
|
||||
}
|
||||
GridCartesian *tmp = makeFiveDimDWFGrid(Ls,FourDimGrid);
|
||||
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
|
||||
delete tmp;
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
50
Grid/qcd/utils/SpaceTimeGrid.h
Normal file
50
Grid/qcd/utils/SpaceTimeGrid.h
Normal file
@ -0,0 +1,50 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/SpaceTimeGrid.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_SPACE_TIME_GRID_H
|
||||
#define GRID_QCD_SPACE_TIME_GRID_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class SpaceTimeGrid {
|
||||
public:
|
||||
|
||||
static GridCartesian *makeFourDimGrid(const Coordinate & latt,const Coordinate &simd,const Coordinate &mpi);
|
||||
static GridRedBlackCartesian *makeFourDimRedBlackGrid (const GridCartesian *FourDimGrid);
|
||||
|
||||
static GridCartesian *makeFiveDimGrid (int Ls,const GridCartesian *FourDimGrid);
|
||||
static GridRedBlackCartesian *makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid);
|
||||
|
||||
static GridCartesian *makeFiveDimDWFGrid (int Ls,const GridCartesian *FourDimGrid);
|
||||
static GridRedBlackCartesian *makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid);
|
||||
static GridCartesian *makeFourDimDWFGrid (const Coordinate & latt,const Coordinate &mpi);
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
21
Grid/qcd/utils/Utils.h
Normal file
21
Grid/qcd/utils/Utils.h
Normal file
@ -0,0 +1,21 @@
|
||||
#ifndef QCD_UTILS_H
|
||||
#define QCD_UTILS_H
|
||||
#include <Grid/qcd/utils/SpaceTimeGrid.h>
|
||||
#include <Grid/qcd/utils/LinalgUtils.h>
|
||||
#include <Grid/qcd/utils/CovariantCshift.h>
|
||||
|
||||
// Scalar field
|
||||
#include <Grid/qcd/utils/ScalarObjs.h>
|
||||
|
||||
// Include representations
|
||||
#include <Grid/qcd/utils/SUn.h>
|
||||
#include <Grid/qcd/utils/SUnAdjoint.h>
|
||||
#include <Grid/qcd/utils/SUnTwoIndex.h>
|
||||
|
||||
// All-to-all contraction kernels that touch the
|
||||
// internal lattice structure
|
||||
#include <Grid/qcd/utils/A2Autils.h>
|
||||
|
||||
|
||||
|
||||
#endif
|
657
Grid/qcd/utils/WilsonLoops.h
Normal file
657
Grid/qcd/utils/WilsonLoops.h
Normal file
@ -0,0 +1,657 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/utils/WilsonLoops.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_UTILS_WILSON_LOOPS_H
|
||||
#define QCD_UTILS_WILSON_LOOPS_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Common wilson loop observables
|
||||
template <class Gimpl> class WilsonLoops : public Gimpl {
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// directed plaquette oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U,
|
||||
const int mu, const int nu) {
|
||||
// Annoyingly, must use either scope resolution to find dependent base
|
||||
// class,
|
||||
// or this-> ; there is no "this" in a static method. This forces explicit
|
||||
// Gimpl scope
|
||||
// resolution throughout the usage in this file, and rather defeats the
|
||||
// purpose of deriving
|
||||
// from Gimpl.
|
||||
/*
|
||||
plaq = Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftBackward(
|
||||
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu])));
|
||||
*/
|
||||
// _
|
||||
//|< _|
|
||||
plaq = Gimpl::CovShiftForward(U[mu],mu,
|
||||
Gimpl::CovShiftForward(U[nu],nu,
|
||||
Gimpl::CovShiftBackward(U[mu],mu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu], nu))));
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// trace of directed plaquette oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void traceDirPlaquette(ComplexField &plaq,
|
||||
const std::vector<GaugeMat> &U, const int mu,
|
||||
const int nu) {
|
||||
GaugeMat sp(U[0].Grid());
|
||||
dirPlaquette(sp, U, mu, nu);
|
||||
plaq = trace(sp);
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static void sitePlaquette(ComplexField &Plaq,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
ComplexField sitePlaq(U[0].Grid());
|
||||
Plaq = Zero();
|
||||
for (int mu = 1; mu < Nd; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
}
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD sumPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
// inefficient here
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
ComplexField Plaq(Umu.Grid());
|
||||
|
||||
sitePlaquette(Plaq, U);
|
||||
auto Tp = sum(Plaq);
|
||||
auto p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD avgPlaquette(const GaugeLorentz &Umu) {
|
||||
RealD sumplaq = sumPlaquette(Umu);
|
||||
double vol = Umu.Grid()->gSites();
|
||||
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
|
||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z the temporal loop
|
||||
//////////////////////////////////////////////////
|
||||
static ComplexD avgPolyakovLoop(const GaugeField &Umu) { //assume Nd=4
|
||||
GaugeMat Ut(Umu._grid), P(Umu._grid);
|
||||
ComplexD out;
|
||||
int T = Umu._grid->GlobalDimensions()[3];
|
||||
int X = Umu._grid->GlobalDimensions()[0];
|
||||
int Y = Umu._grid->GlobalDimensions()[1];
|
||||
int Z = Umu._grid->GlobalDimensions()[2];
|
||||
|
||||
Ut = peekLorentz(Umu,3); //Select temporal direction
|
||||
P = Ut;
|
||||
for (int t=1;t<T;t++){
|
||||
P = Gimpl::CovShiftForward(Ut,3,P);
|
||||
}
|
||||
RealD norm = 1.0/(Nc*X*Y*Z*T);
|
||||
out = sum(trace(P))*norm;
|
||||
return out;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over traced single links
|
||||
//////////////////////////////////////////////////
|
||||
static RealD linkTrace(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
|
||||
ComplexField Tr(Umu.Grid());
|
||||
Tr = Zero();
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
Tr = Tr + trace(U[mu]);
|
||||
}
|
||||
|
||||
auto Tp = sum(Tr);
|
||||
auto p = TensorRemove(Tp);
|
||||
|
||||
double vol = Umu.Grid()->gSites();
|
||||
|
||||
return p.real() / vol / 4.0 / 3.0;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site in direction mu,nu
|
||||
//////////////////////////////////////////////////
|
||||
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
|
||||
int nu) {
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
staple = Zero();
|
||||
|
||||
if (nu != mu) {
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// |
|
||||
// __|
|
||||
//
|
||||
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |
|
||||
// |__
|
||||
//
|
||||
//
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu], nu,
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// For the force term
|
||||
/*
|
||||
static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
// this operation is taking too much time
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
staple = Zero();
|
||||
GaugeMat tmp1(grid);
|
||||
GaugeMat tmp2(grid);
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
if (nu != mu) {
|
||||
// this is ~10% faster than the Staple -- PAB: so what it gives the WRONG answers for other BC's!
|
||||
tmp1 = Cshift(U[nu], mu, 1);
|
||||
tmp2 = Cshift(U[mu], nu, 1);
|
||||
staple += tmp1* adj(U[nu]*tmp2);
|
||||
tmp2 = adj(U[mu]*tmp1)*U[nu];
|
||||
staple += Cshift(tmp2, nu, -1);
|
||||
}
|
||||
}
|
||||
staple = U[mu]*staple;
|
||||
}
|
||||
*/
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
staple = Zero();
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
|
||||
if (nu != mu) {
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// |
|
||||
// __|
|
||||
//
|
||||
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |
|
||||
// |__
|
||||
//
|
||||
//
|
||||
|
||||
staple += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu], nu,
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site in direction mu,nu, upper part
|
||||
//////////////////////////////////////////////////
|
||||
static void StapleUpper(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
|
||||
int nu) {
|
||||
if (nu != mu) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);// some redundant copies
|
||||
}
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// |
|
||||
// __|
|
||||
//
|
||||
|
||||
staple = Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// the sum over all staples on each site in direction mu,nu, lower part
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void StapleLower(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
|
||||
int nu) {
|
||||
if (nu != mu) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);// some redundant copies
|
||||
}
|
||||
|
||||
// mu
|
||||
// ^
|
||||
// |__> nu
|
||||
|
||||
// __
|
||||
// |
|
||||
// |__
|
||||
//
|
||||
//
|
||||
staple = Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(U[nu], nu,
|
||||
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
|
||||
mu);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Field Strength
|
||||
//////////////////////////////////////////////////////
|
||||
static void FieldStrength(GaugeMat &FS, const GaugeLorentz &Umu, int mu, int nu){
|
||||
// Fmn +--<--+ Ut +--<--+
|
||||
// | | | |
|
||||
// (x)+-->--+ +-->--+(x) - h.c.
|
||||
// | | | |
|
||||
// +--<--+ +--<--+
|
||||
|
||||
GaugeMat Vup(Umu.Grid()), Vdn(Umu.Grid());
|
||||
StapleUpper(Vup, Umu, mu, nu);
|
||||
StapleLower(Vdn, Umu, mu, nu);
|
||||
GaugeMat v = Vup - Vdn;
|
||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||
GaugeMat vu = v*u;
|
||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Cshift(vu, mu, -1));
|
||||
FS = 0.125*(FS - adj(FS));
|
||||
}
|
||||
|
||||
static Real TopologicalCharge(GaugeLorentz &U){
|
||||
// 4d topological charge
|
||||
assert(Nd==4);
|
||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||
GaugeMat Bx(U.Grid()), By(U.Grid()), Bz(U.Grid());
|
||||
FieldStrength(Bx, U, Ydir, Zdir);
|
||||
FieldStrength(By, U, Zdir, Xdir);
|
||||
FieldStrength(Bz, U, Xdir, Ydir);
|
||||
|
||||
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
|
||||
GaugeMat Ex(U.Grid()), Ey(U.Grid()), Ez(U.Grid());
|
||||
FieldStrength(Ex, U, Tdir, Xdir);
|
||||
FieldStrength(Ey, U, Tdir, Ydir);
|
||||
FieldStrength(Ez, U, Tdir, Zdir);
|
||||
|
||||
double coeff = 8.0/(32.0*M_PI*M_PI);
|
||||
|
||||
ComplexField qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
|
||||
auto Tq = sum(qfield);
|
||||
return TensorRemove(Tq).real();
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Similar to above for rectangle is required
|
||||
//////////////////////////////////////////////////////
|
||||
static void dirRectangle(GaugeMat &rect, const std::vector<GaugeMat> &U,
|
||||
const int mu, const int nu) {
|
||||
rect = Gimpl::CovShiftForward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[mu], mu, U[nu])) * // ->->|
|
||||
adj(Gimpl::CovShiftForward(
|
||||
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[mu])));
|
||||
rect = rect +
|
||||
Gimpl::CovShiftForward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])) * // ->||
|
||||
adj(Gimpl::CovShiftForward(
|
||||
U[nu], nu, Gimpl::CovShiftForward(U[nu], nu, U[mu])));
|
||||
}
|
||||
static void traceDirRectangle(ComplexField &rect,
|
||||
const std::vector<GaugeMat> &U, const int mu,
|
||||
const int nu) {
|
||||
GaugeMat sp(U[0].Grid());
|
||||
dirRectangle(sp, U, mu, nu);
|
||||
rect = trace(sp);
|
||||
}
|
||||
static void siteRectangle(ComplexField &Rect,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
ComplexField siteRect(U[0].Grid());
|
||||
Rect = Zero();
|
||||
for (int mu = 1; mu < Nd; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirRectangle(siteRect, U, mu, nu);
|
||||
Rect = Rect + siteRect;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD sumRectangle(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
ComplexField Rect(Umu.Grid());
|
||||
|
||||
siteRectangle(Rect, U);
|
||||
|
||||
auto Tp = sum(Rect);
|
||||
auto p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static RealD avgRectangle(const GaugeLorentz &Umu) {
|
||||
|
||||
RealD sumrect = sumRectangle(Umu);
|
||||
|
||||
double vol = Umu.Grid()->gSites();
|
||||
|
||||
double faces = (1.0 * Nd * (Nd - 1)); // 2 distinct orientations summed
|
||||
|
||||
return sumrect / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
|
||||
U2 = U * Cshift(U, mu, 1);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Hop by two optimisation strategy does not work nicely with Gparity. (could
|
||||
// do,
|
||||
// but need to track two deep where cross boundary and apply a conjugation).
|
||||
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
|
||||
// so .
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
|
||||
std::vector<GaugeMat> &U, int mu) {
|
||||
|
||||
Stap = Zero();
|
||||
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
GaugeMat Staple2x1(grid);
|
||||
GaugeMat tmp(grid);
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
if (nu != mu) {
|
||||
|
||||
// Up staple ___ ___
|
||||
// | |
|
||||
tmp = Cshift(adj(U[nu]), nu, -1);
|
||||
tmp = adj(U2[mu]) * tmp;
|
||||
tmp = Cshift(tmp, mu, -2);
|
||||
|
||||
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
|
||||
|
||||
// Down staple
|
||||
// |___ ___|
|
||||
//
|
||||
tmp = adj(U2[mu]) * U[nu];
|
||||
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
|
||||
|
||||
// ___ ___
|
||||
// | ___|
|
||||
// |___ ___|
|
||||
//
|
||||
|
||||
Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
|
||||
|
||||
// ___ ___
|
||||
// |___ |
|
||||
// |___ ___|
|
||||
//
|
||||
|
||||
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
|
||||
// Stap+= Cshift(tmp,mu,1) ;
|
||||
Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
|
||||
;
|
||||
|
||||
// --
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
|
||||
tmp = Cshift(adj(U2[nu]), nu, -2);
|
||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
|
||||
tmp = U2[nu] * Cshift(tmp, nu, 2);
|
||||
Stap += Cshift(tmp, mu, 1);
|
||||
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
// --
|
||||
|
||||
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
|
||||
tmp = adj(U2[nu]) * tmp;
|
||||
tmp = Cshift(tmp, nu, -2);
|
||||
Stap += Cshift(tmp, mu, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
|
||||
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
|
||||
int mu) {
|
||||
if (Gimpl::isPeriodicGaugeField()) {
|
||||
RectStapleOptimised(Stap, U2, U, mu);
|
||||
} else {
|
||||
RectStapleUnoptimised(Stap, Umu, mu);
|
||||
}
|
||||
}
|
||||
|
||||
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
|
||||
int mu) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
std::vector<GaugeMat> U(Nd, grid);
|
||||
for (int d = 0; d < Nd; d++) {
|
||||
U[d] = PeekIndex<LorentzIndex>(Umu, d);
|
||||
}
|
||||
|
||||
Stap = Zero();
|
||||
|
||||
for (int nu = 0; nu < Nd; nu++) {
|
||||
if (nu != mu) {
|
||||
// __ ___
|
||||
// | __ |
|
||||
//
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |__ __ |
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftBackward(U[mu], mu, U[nu])))),
|
||||
mu);
|
||||
|
||||
// __
|
||||
// |__ __ |
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[mu])))),
|
||||
mu);
|
||||
|
||||
// __ ___
|
||||
// |__ |
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftBackward(U[nu], nu, U[mu])))),
|
||||
mu);
|
||||
|
||||
// --
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftForward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
|
||||
mu);
|
||||
|
||||
// | |
|
||||
//
|
||||
// | |
|
||||
// --
|
||||
|
||||
Stap += Gimpl::ShiftStaple(
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[nu], nu,
|
||||
Gimpl::CovShiftBackward(
|
||||
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])))),
|
||||
mu);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> U1WilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> SU2WilsonLoops;
|
||||
typedef WilsonLoops<PeriodicGimplR> SU3WilsonLoops;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user