1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 08:46:55 +01:00

Merge branch 'develop' into feature/gpu-port

This commit is contained in:
Peter Boyle
2018-12-13 05:11:34 +00:00
647 changed files with 49155 additions and 11160 deletions

1404
Grid/qcd/utils/A2Autils.h Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,129 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/CovariantCshift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTILS_COVARIANT_CSHIFT_H
#define QCD_UTILS_COVARIANT_CSHIFT_H
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////
// Low performance implementation of CovariantCshift API
////////////////////////////////////////////////////////////////////////
// Make these members of an Impl class for BC's.
namespace PeriodicBC {
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
{
return Link*Cshift(field,mu,1);// moves towards negative mu
}
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
{
Lattice<covariant> tmp(field.Grid());
tmp = adj(Link)*field;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
}
namespace ConjugateBC {
// Must give right answers across boundary
// <----
// --
// | |
// xxxxxxxxxxxxxxxxxxxx
// | |
//
// Stap= Cshift(GImpl::CovShiftForward(U[nu],nu,
// GImpl::CovShiftForward(U[nu],nu,
// GImpl::CovShiftBackward(U[mu],mu,
// GImpl::CovShiftBackward(U[nu],nu,
// GImpl::CovShiftIdentityBackward(U[nu],nu,-1))))) , mu, 1);
//
// U U^* U^* U^T U^adj = U (U U U^dag U^T )^*
// = U (U U U^dag)^* ( U^T )^*
//
// So covariant shift rule: Conjugate inward shifted plane when crossing boundary applies.
//
// This Conjugate should be applied to BOTH the link and the covariant field on backward shift
// boundary wrap.
//
// | |
// xxxxxxxxxxxxxxxxx
// | | <---- this link is Conjugated, and the path leading into it. Segment crossing in and out is double Conjugated.
// --
// ------->
template<class covariant,class gauge> Lattice<covariant> CovShiftForward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
{
GridBase * grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu]-1;
conformable(field,Link);
Lattice<iScalar<vInteger> > coor(grid); LatticeCoordinate(coor,mu);
Lattice<covariant> field_bc = Cshift(field,mu,1);// moves towards negative mu;
field_bc = where(coor==Lmu,conjugate(field_bc),field_bc);
// std::cout<<"Gparity::CovCshiftForward mu="<<mu<<std::endl;
return Link*field_bc;
}
template<class covariant,class gauge> Lattice<covariant> CovShiftBackward(const Lattice<gauge> &Link,
int mu,
const Lattice<covariant> &field)
{
GridBase * grid = field.Grid();
int Lmu = grid->GlobalDimensions()[mu]-1;
conformable(field,Link);
Lattice<iScalar<vInteger> > coor(grid); LatticeCoordinate(coor,mu);
Lattice<covariant> tmp(grid);
tmp = adj(Link)*field;
tmp = where(coor==Lmu,conjugate(tmp),tmp);
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
}
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,191 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/scalar/CovariantLaplacian.h
Copyright (C) 2016
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
struct LaplacianParams : Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LaplacianParams,
RealD, lo,
RealD, hi,
int, MaxIter,
RealD, tolerance,
int, degree,
int, precision);
// constructor
LaplacianParams(RealD lo = 0.0,
RealD hi = 1.0,
int maxit = 1000,
RealD tol = 1.0e-8,
int degree = 10,
int precision = 64)
: lo(lo),
hi(hi),
MaxIter(maxit),
tolerance(tol),
degree(degree),
precision(precision){};
};
////////////////////////////////////////////////////////////
// Laplacian operator L on adjoint fields
//
// phi: adjoint field
// L: D_mu^dag D_mu
//
// L phi(x) = Sum_mu [ U_mu(x)phi(x+mu)U_mu(x)^dag +
// U_mu(x-mu)^dag phi(x-mu)U_mu(x-mu)
// -2phi(x)]
//
// Operator designed to be encapsulated by
// an HermitianLinearOperator<.. , ..>
////////////////////////////////////////////////////////////
template <class Impl>
class LaplacianAdjointField: public Metric<typename Impl::Field> {
OperatorFunction<typename Impl::Field> &Solver;
LaplacianParams param;
MultiShiftFunction PowerHalf;
MultiShiftFunction PowerInvHalf;
public:
INHERIT_GIMPL_TYPES(Impl);
LaplacianAdjointField(GridBase* grid, OperatorFunction<GaugeField>& S, LaplacianParams& p, const RealD k = 1.0)
: U(Nd, grid), Solver(S), param(p), kappa(k){
AlgRemez remez(param.lo,param.hi,param.precision);
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
remez.generateApprox(param.degree,1,2);
PowerHalf.Init(remez,param.tolerance,false);
PowerInvHalf.Init(remez,param.tolerance,true);
};
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
}
}
void M(const GaugeField& in, GaugeField& out) {
// in is an antihermitian matrix
// test
//GaugeField herm = in + adj(in);
//std::cout << "AHermiticity: " << norm2(herm) << std::endl;
GaugeLinkField tmp(in.Grid());
GaugeLinkField tmp2(in.Grid());
GaugeLinkField sum(in.Grid());
for (int nu = 0; nu < Nd; nu++) {
sum = Zero();
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_nu, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_nu * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_nu;
}
out_nu = (1.0 - kappa) * in_nu - kappa / (double(4 * Nd)) * sum;
PokeIndex<LorentzIndex>(out, out_nu, nu);
}
}
void MDeriv(const GaugeField& in, GaugeField& der) {
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++){
GaugeLinkField der_mu(der.Grid());
der_mu = Zero();
for (int nu = 0; nu < Nd; nu++){
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
}
// the minus sign comes by using the in_nu instead of the
// adjoint in the last multiplication
PokeIndex<LorentzIndex>(der, -2.0 * factor * der_mu, mu);
}
}
// separating this temporarily
void MDeriv(const GaugeField& left, const GaugeField& right,
GaugeField& der) {
// in is anti-hermitian
RealD factor = -kappa / (double(4 * Nd));
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(der.Grid());
der_mu = Zero();
for (int nu = 0; nu < Nd; nu++) {
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);
der_mu += U[mu] * Cshift(left_nu, mu, 1) * adj(U[mu]) * right_nu;
der_mu += U[mu] * Cshift(right_nu, mu, 1) * adj(U[mu]) * left_nu;
}
PokeIndex<LorentzIndex>(der, -factor * der_mu, mu);
}
}
void Minv(const GaugeField& in, GaugeField& inverted){
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
Solver(HermOp, in, inverted);
}
void MSquareRoot(GaugeField& P){
GaugeField Gp(P.Grid());
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerHalf);
msCG(HermOp,P,Gp);
P = Gp;
}
void MInvSquareRoot(GaugeField& P){
GaugeField Gp(P.Grid());
HermitianLinearOperator<LaplacianAdjointField<Impl>,GaugeField> HermOp(*this);
ConjugateGradientMultiShift<GaugeField> msCG(param.MaxIter,PowerInvHalf);
msCG(HermOp,P,Gp);
P = Gp;
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};
NAMESPACE_END(Grid);

193
Grid/qcd/utils/GaugeFix.h Normal file
View File

@ -0,0 +1,193 @@
/*************************************************************************************
grid` physics library, www.github.com/paboyle/Grid
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//#include <Grid/Grid.h>
#ifndef GRID_QCD_GAUGE_FIX_H
#define GRID_QCD_GAUGE_FIX_H
NAMESPACE_BEGIN(Grid);
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false) {
GridBase *grid = Umu.Grid();
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
Real old_trace = org_link_trace;
Real trG;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
if ( Fourier==false ) {
trG = SteepestDescentStep(U,alpha,dmuAmu);
} else {
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
}
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
if ( i %20 == 0 ) {
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
if (Fourier)
std::cout << GridLogMessage << "Fourier Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
else
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
Real Phi = 1.0 - old_trace / link_trace ;
Real Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
return;
}
old_trace = link_trace;
}
}
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0].Grid();
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0].Grid();
Real vol = grid->gSites();
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=Zero();
LatticeComplex pmu(grid);
LatticeComplex one(grid); one = Complex(1.0,0.0);
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu);
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
//////////////////////////////////
Coordinate latt_size = grid->GlobalDimensions();
Coordinate coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
Complex psqMax(16.0);
Fp = psqMax*one/psq;
/*
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}*/
pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
GaugeMat ciadmam(grid);
Complex cialpha(0.0,-alpha);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
GridBase *grid = g.Grid();
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,201 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/LinalgUtils.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_LINALG_UTILS_H
#define GRID_QCD_LINALG_UTILS_H
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////
//This file brings additional linear combination assist that is helpful
//to QCD such as chiral projectors and spin matrices applied to one of the inputs.
//These routines support five-D chiral fermions and contain s-subslice indexing
//on the 5d (rb4d) checkerboarded lattices
////////////////////////////////////////////////////////////////////////
template<class vobj,class Coeff>
void axpibg5x(Lattice<vobj> &z,const Lattice<vobj> &x,Coeff a,Coeff b)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,z);
GridBase *grid=x.Grid();
Gamma G5(Gamma::Algebra::Gamma5);
auto x_v = x.View();
auto z_v = z.View();
accelerator_loop( ss, x_v,{
vobj tmp;
tmp = a*x_v[ss];
tmp = tmp + G5*(b*timesI(x_v[ss]));
vstream(z_v[ss],tmp);
});
}
template<class vobj,class Coeff>
void axpby_ssp(Lattice<vobj> &z, Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,y);
conformable(x,z);
GridBase *grid=x.Grid();
int Ls = grid->_rdimensions[0];
auto x_v = x.View();
auto y_v = y.View();
auto z_v = z.View();
// FIXME -- need a new class of accelerator_loop to implement this
thread_loop( (int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
vobj tmp = a*x_v[ss+s]+b*y_v[ss+sp];
vstream(z_v[ss+s],tmp);
});
}
template<class vobj,class Coeff>
void ag5xpby_ssp(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,y);
conformable(x,z);
GridBase *grid=x.Grid();
int Ls = grid->_rdimensions[0];
Gamma G5(Gamma::Algebra::Gamma5);
auto x_v = x.View();
auto y_v = y.View();
auto z_v = z.View();
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
vobj tmp;
tmp = G5*x_v[ss+s]*a;
tmp = tmp + b*y_v[ss+sp];
vstream(z_v[ss+s],tmp);
});
}
template<class vobj,class Coeff>
void axpbg5y_ssp(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,y);
conformable(x,z);
GridBase *grid=x.Grid();
int Ls = grid->_rdimensions[0];
auto x_v = x.View();
auto y_v = y.View();
auto z_v = z.View();
Gamma G5(Gamma::Algebra::Gamma5);
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
vobj tmp;
tmp = G5*y_v[ss+sp]*b;
tmp = tmp + a*x_v[ss+s];
vstream(z_v[ss+s],tmp);
});
}
template<class vobj,class Coeff>
void ag5xpbg5y_ssp(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,y);
conformable(x,z);
GridBase *grid=x.Grid();
int Ls = grid->_rdimensions[0];
auto x_v = x.View();
auto y_v = y.View();
auto z_v = z.View();
Gamma G5(Gamma::Algebra::Gamma5);
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
vobj tmp1;
vobj tmp2;
tmp1 = a*x_v[ss+s]+b*y_v[ss+sp];
tmp2 = G5*tmp1;
vstream(z_v[ss+s],tmp2);
});
}
template<class vobj,class Coeff>
void axpby_ssp_pminus(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,y);
conformable(x,z);
GridBase *grid=x.Grid();
int Ls = grid->_rdimensions[0];
auto x_v = x.View();
auto y_v = y.View();
auto z_v = z.View();
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
vobj tmp;
spProj5m(tmp,y_v[ss+sp]);
tmp = a*x_v[ss+s]+b*tmp;
vstream(z_v[ss+s],tmp);
});
}
template<class vobj,class Coeff>
void axpby_ssp_pplus(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,const Lattice<vobj> &y,int s,int sp)
{
z.Checkerboard() = x.Checkerboard();
conformable(x,y);
conformable(x,z);
GridBase *grid=x.Grid();
int Ls = grid->_rdimensions[0];
auto x_v = x.View();
auto y_v = y.View();
auto z_v = z.View();
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls),{ // adds Ls
vobj tmp;
spProj5p(tmp,y_v[ss+sp]);
tmp = a*x_v[ss+s]+b*tmp;
vstream(z_v[ss+s],tmp);
});
}
template<class vobj>
void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
{
GridBase *grid=x.Grid();
z.Checkerboard() = x.Checkerboard();
conformable(x,z);
int Ls = grid->_rdimensions[0];
Gamma G5(Gamma::Algebra::Gamma5);
auto x_v = x.View();
auto z_v = z.View();
thread_loop((int ss=0;ss<grid->oSites();ss+=Ls) {
vobj tmp;
for(int s=0;s<Ls;s++){
int sp = Ls-1-s;
tmp = G5*x_v[ss+s];
vstream(z_v[ss+sp],tmp);
}
});
}
NAMESPACE_END(Grid);
#endif

214
Grid/qcd/utils/Metric.h Normal file
View File

@ -0,0 +1,214 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/hmc/integrators/Integrator.h
Copyright (C) 2015
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
//--------------------------------------------------------------------
#pragma once
NAMESPACE_BEGIN(Grid);
template <typename Field>
class Metric{
public:
virtual void ImportGauge(const Field&) = 0;
virtual void M(const Field&, Field&) = 0;
virtual void Minv(const Field&, Field&) = 0;
virtual void MSquareRoot(Field&) = 0;
virtual void MInvSquareRoot(Field&) = 0;
virtual void MDeriv(const Field&, Field&) = 0;
virtual void MDeriv(const Field&, const Field&, Field&) = 0;
};
// Need a trivial operator
template <typename Field>
class TrivialMetric : public Metric<Field>{
public:
virtual void ImportGauge(const Field&){};
virtual void M(const Field& in, Field& out){
out = in;
}
virtual void Minv(const Field& in, Field& out){
out = in;
}
virtual void MSquareRoot(Field& P){
// do nothing
}
virtual void MInvSquareRoot(Field& P){
// do nothing
}
virtual void MDeriv(const Field& in, Field& out){
out = Zero();
}
virtual void MDeriv(const Field& left, const Field& right, Field& out){
out = Zero();
}
};
///////////////////////////////
// Generalised momenta
///////////////////////////////
template <typename Implementation>
class GeneralisedMomenta{
public:
typedef typename Implementation::Field MomentaField; //for readability
typedef typename Implementation::GaugeLinkField MomentaLinkField; //for readability
Metric<MomentaField>& M;
MomentaField Mom;
// Auxiliary fields
// not hard coded but inherit the type from the metric
// created Nd new fields
// hide these in the metric?
//typedef Lattice<iVector<iScalar<iMatrix<vComplex, Nc> >, Nd/2 > > AuxiliaryMomentaType;
MomentaField AuxMom;
MomentaField AuxField;
GeneralisedMomenta(GridBase* grid, Metric<MomentaField>& M): M(M), Mom(grid), AuxMom(grid), AuxField(grid){}
// Correct
void MomentaDistribution(GridParallelRNG& pRNG){
// Generate a distribution for
// P^dag G P
// where G = M^-1
// Generate gaussian momenta
Implementation::generate_momenta(Mom, pRNG);
// Modify the distribution with the metric
M.MSquareRoot(Mom);
if (1) {
// Auxiliary momenta
// do nothing if trivial, so hide in the metric
MomentaField AuxMomTemp(Mom.Grid());
Implementation::generate_momenta(AuxMom, pRNG);
Implementation::generate_momenta(AuxField, pRNG);
// Modify the distribution with the metric
// Aux^dag M Aux
M.MInvSquareRoot(AuxMom); // AuxMom = M^{-1/2} AuxMomTemp
}
}
// Correct
RealD MomentaAction(){
MomentaField inv(Mom.Grid());
inv = Zero();
M.Minv(Mom, inv);
LatticeComplex Hloc(Mom.Grid());
Hloc = Zero();
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the metric
auto Mom_mu = PeekIndex<LorentzIndex>(Mom, mu);
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
Hloc += trace(Mom_mu * inv_mu);
}
if (1) {
// Auxiliary Fields
// hide in the metric
M.M(AuxMom, inv);
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the operators
auto inv_mu = PeekIndex<LorentzIndex>(inv, mu);
auto am_mu = PeekIndex<LorentzIndex>(AuxMom, mu);
auto af_mu = PeekIndex<LorentzIndex>(AuxField, mu);
Hloc += trace(am_mu * inv_mu);// p M p
Hloc += trace(af_mu * af_mu);
}
}
auto Hsum = TensorRemove(sum(Hloc));
return Hsum.real();
}
// Correct
void DerivativeU(MomentaField& in, MomentaField& der){
// Compute the derivative of the kinetic term
// with respect to the gauge field
MomentaField MDer(in.Grid());
MomentaField X(in.Grid());
X = Zero();
M.Minv(in, X); // X = G in
M.MDeriv(X, MDer); // MDer = U * dS/dU
der = Implementation::projectForce(MDer); // Ta if gauge fields
}
void AuxiliaryFieldsDerivative(MomentaField& der){
der = Zero();
if (1){
// Auxiliary fields
MomentaField der_temp(der.Grid());
MomentaField X(der.Grid());
X=Zero();
//M.M(AuxMom, X); // X = M Aux
// Two derivative terms
// the Mderiv need separation of left and right terms
M.MDeriv(AuxMom, der);
// this one should not be necessary (identical to the previous one)
//M.MDeriv(X, AuxMom, der_temp); der += der_temp;
der = -1.0*Implementation::projectForce(der);
}
}
void DerivativeP(MomentaField& der){
der = Zero();
M.Minv(Mom, der);
// is the projection necessary here?
// no for fields in the algebra
der = Implementation::projectForce(der);
}
void update_auxiliary_momenta(RealD ep){
if(1){
AuxMom -= ep * AuxField;
}
}
void update_auxiliary_fields(RealD ep){
if (1) {
MomentaField tmp(AuxMom.Grid());
MomentaField tmp2(AuxMom.Grid());
M.M(AuxMom, tmp);
// M.M(tmp, tmp2);
AuxField += ep * tmp; // M^2 AuxMom
// factor of 2?
}
}
};
NAMESPACE_END(Grid);

797
Grid/qcd/utils/SUn.h Normal file
View File

@ -0,0 +1,797 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/SUn.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
NAMESPACE_BEGIN(Grid);
template <int ncolour>
class SU {
public:
static const int Dimension = ncolour;
static const int AdjointDimension = ncolour * ncolour - 1;
static int su2subgroups(void) { return (ncolour * (ncolour - 1)) / 2; }
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
template <typename vtype>
using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > >;
template <typename vtype>
using iSUnAlgebraVector =
iScalar<iScalar<iVector<vtype, AdjointDimension> > >;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix,
// SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
typedef iSUnMatrix<vComplex> vMatrix;
typedef iSUnMatrix<vComplexF> vMatrixF;
typedef iSUnMatrix<vComplexD> vMatrixD;
// For the projectors to the algebra
// these should be real...
// keeping complex for consistency with the SIMD vector types
typedef iSUnAlgebraVector<Complex> AlgebraVector;
typedef iSUnAlgebraVector<ComplexF> AlgebraVectorF;
typedef iSUnAlgebraVector<ComplexD> AlgebraVectorD;
typedef iSUnAlgebraVector<vComplex> vAlgebraVector;
typedef iSUnAlgebraVector<vComplexF> vAlgebraVectorF;
typedef iSUnAlgebraVector<vComplexD> vAlgebraVectorD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef Lattice<vAlgebraVector> LatticeAlgebraVector;
typedef Lattice<vAlgebraVectorF> LatticeAlgebraVectorF;
typedef Lattice<vAlgebraVectorD> LatticeAlgebraVectorD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like
// generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => 1/2(delta_{i,i1} delta_{j,i2} +
// delta_{i,i1} delta_{j,i2})
// t^a_ij = { in Nc(Nc-1)/2 ... Nc(Nc-1) - 1} => i/2( delta_{i,i1}
// delta_{j,i2} - i delta_{i,i1} delta_{j,i2})
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
//
////////////////////////////////////////////////////////////////////////
template <class cplx>
static void generator(int lieIndex, iSUnMatrix<cplx> &ta) {
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour * (ncolour - 1);
if (lieIndex >= NNm1) {
diagIndex = lieIndex - NNm1;
generatorDiagonal(diagIndex, ta);
return;
}
sigxy = lieIndex & 0x1; // even or odd
su2Index = lieIndex >> 1;
if (sigxy)
generatorSigmaY(su2Index, ta);
else
generatorSigmaX(su2Index, ta);
}
template <class cplx>
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
ta = Zero();
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = 1.0;
ta()()(i2, i1) = 1.0;
ta = ta * 0.5;
}
template <class cplx>
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
ta = Zero();
cplx i(0.0, 1.0);
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = i;
ta()()(i2, i1) = -i;
ta = ta * 0.5;
}
template <class cplx>
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
ta = Zero();
int k = diagIndex + 1; // diagIndex starts from 0
for (int i = 0; i <= diagIndex; i++) { // k iterations
ta()()(i, i) = 1.0;
}
ta()()(k, k) = -k; // indexing starts from 0
RealD nrm = 1.0 / std::sqrt(2.0 * k * (k + 1));
ta = ta * nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1, int &i2, int su2_index) {
assert((su2_index >= 0) && (su2_index < (ncolour * (ncolour - 1)) / 2));
int spare = su2_index;
for (i1 = 0; spare >= (ncolour - 1 - i1); i1++) {
spare = spare - (ncolour - 1 - i1); // remove the Nc-1-i1 terms
}
i2 = i1 + 1 + spare;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Pull out a subgroup and project on to real coeffs x pauli basis
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx>
static void su2Extract(Lattice<iSinglet<vcplx> > &Determinant,
Lattice<iSU2Matrix<vcplx> > &subgroup,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index) {
GridBase *grid(source.Grid());
conformable(subgroup, source);
conformable(subgroup, Determinant);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
auto subgroup_v = subgroup.View();
auto source_v = source.View();
auto Determinant_v = Determinant.View();
thread_loop( (int ss = 0; ss < grid->oSites(); ss++) ,{
subgroup_v[ss]()()(0, 0) = source_v[ss]()()(i0, i0);
subgroup_v[ss]()()(0, 1) = source_v[ss]()()(i0, i1);
subgroup_v[ss]()()(1, 0) = source_v[ss]()()(i1, i0);
subgroup_v[ss]()()(1, 1) = source_v[ss]()()(i1, i1);
iSU2Matrix<vcplx> Sigma = subgroup_v[ss];
Sigma = Sigma - adj(Sigma) + trace(adj(Sigma));
subgroup_v[ss] = Sigma;
// this should be purely real
Determinant_v[ss] =
Sigma()()(0, 0) * Sigma()()(1, 1) - Sigma()()(0, 1) * Sigma()()(1, 0);
});
}
//////////////////////////////////////////////////////////////////////////////////////////
// Set matrix to one and insert a pauli subgroup
//////////////////////////////////////////////////////////////////////////////////////////
template <class vcplx>
static void su2Insert(const Lattice<iSU2Matrix<vcplx> > &subgroup,
Lattice<iSUnMatrix<vcplx> > &dest, int su2_index) {
GridBase *grid(dest.Grid());
conformable(subgroup, dest);
int i0, i1;
su2SubGroupIndex(i0, i1, su2_index);
dest = 1.0; // start out with identity
auto dest_v = dest.View();
auto subgroup_v = subgroup.View();
thread_loop( (int ss = 0; ss < grid->oSites(); ss++) ,{
dest_v[ss]()()(i0, i0) = subgroup_v[ss]()()(0, 0);
dest_v[ss]()()(i0, i1) = subgroup_v[ss]()()(0, 1);
dest_v[ss]()()(i1, i0) = subgroup_v[ss]()()(1, 0);
dest_v[ss]()()(i1, i1) = subgroup_v[ss]()()(1, 1);
});
}
///////////////////////////////////////////////
// Generate e^{ Re Tr Staple Link} dlink
//
// *** Note Staple should be appropriate linear compbination between all
// staples.
// *** If already by beta pass coefficient 1.0.
// *** This routine applies the additional 1/Nc factor that comes after trace
// in action.
//
///////////////////////////////////////////////
static void SubGroupHeatBath(GridSerialRNG &sRNG, GridParallelRNG &pRNG,
RealD beta, // coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup, int nheatbath, LatticeInteger &wheremask)
{
GridBase *grid = link.Grid();
const RealD twopi = 2.0 * M_PI;
LatticeMatrix staple(grid);
staple = barestaple * (beta / ncolour);
LatticeMatrix V(grid);
V = link * staple;
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
// Some handy constant fields
LatticeComplex ones(grid);
ones = 1.0;
LatticeComplex zeros(grid);
zeros = Zero();
LatticeReal rones(grid);
rones = 1.0;
LatticeReal rzeros(grid);
rzeros = Zero();
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true(grid);
mask_true = 1;
LatticeInteger mask_false(grid);
mask_false = 0;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
Action linear in links h and of form:
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex
arbitrary.
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
// Real part of Pauli decomposition
// Note a subgroup can project to zero in cold start
////////////////////////////////////////////////////////
su2Extract(udet, u, V, su2_subgroup);
//////////////////////////////////////////////////////
// Normalising this vector if possible; else identity
//////////////////////////////////////////////////////
LatticeComplex xi(grid);
LatticeSU2Matrix lident(grid);
SU2Matrix ident = Complex(1.0);
SU2Matrix pauli1;
SU<2>::generator(0, pauli1);
SU2Matrix pauli2;
SU<2>::generator(1, pauli2);
SU2Matrix pauli3;
SU<2>::generator(2, pauli3);
pauli1 = timesI(pauli1) * 2.0;
pauli2 = timesI(pauli2) * 2.0;
pauli3 = timesI(pauli3) * 2.0;
LatticeComplex cone(grid);
LatticeReal adet(grid);
adet = abs(toReal(udet));
lident = Complex(1.0);
cone = Complex(1.0);
Real machine_epsilon = 1.0e-7;
u = where(adet > machine_epsilon, u, lident);
udet = where(adet > machine_epsilon, udet, cone);
xi = 0.5 * sqrt(udet); // 4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5 * u *
pow(xi, -1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv = adj(u);
b = u * uinv - 1.0;
assert(norm2(b) < 1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) +
r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters
through xi
= e^{2 xi (h.u)} dh
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi
h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc
factor in Chroma ]
A. Generate two uniformly distributed pseudo-random numbers R and R', R'',
R''' in the unit interval;
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
D. Set A = XC;
E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E will
generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
// count the number of sites by picking "1"'s out of hat
/////////////////////////////////////////////////////////
Integer hit = 0;
LatticeReal rtmp(grid);
rtmp = where(wheremask, rones, rzeros);
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid);
Accepted = Zero();
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4, grid);
std::vector<LatticeReal> a(4, grid);
LatticeReal d(grid);
d = Zero();
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
alpha = toReal(2.0 * xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',
// R'', R''' in the unit interval;
random(pRNG, xr[0]);
random(pRNG, xr[1]);
random(pRNG, xr[2]);
random(pRNG, xr[3]);
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
xr[1] = -log(xr[1]) / alpha;
xr[2] = -log(xr[2]) / alpha;
// C. Set C = cos^2(2piR'')
xr[3] = cos(xr[3] * twopi);
xr[3] = xr[3] * xr[3];
LatticeReal xrsq(grid);
// D. Set A = XC;
// E. Let d = X'+A;
xrsq = xr[2] + xr[1] * xr[3];
d = where(Accepted, d, xr[2] + xr[1] * xr[3]);
// F. If R'''^2 :> 1 - 0.5 d, go back to A;
LatticeReal thresh(grid);
thresh = 1.0 - d * 0.5;
xrsq = xr[0] * xr[0];
LatticeInteger ione(grid);
ione = 1;
LatticeInteger izero(grid);
izero = Zero();
newlyAccepted = where(xrsq < thresh, ione, izero);
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
Accepted = where(wheremask, Accepted, izero);
// FIXME need an iSum for integer to avoid overload on return type??
rtmp = where(Accepted, rones, rzeros);
numAccepted = sum(rtmp);
hit++;
} while ((numAccepted < numSites) && (hit < nheatbath));
// G. Set a0 = 1 - d;
a[0] = Zero();
a[0] = where(wheremask, 1.0 - d, a[0]);
//////////////////////////////////////////
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
//////////////////////////////////////////
LatticeReal a123mag(grid);
a123mag = sqrt(abs(1.0 - a[0] * a[0]));
LatticeReal cos_theta(grid);
LatticeReal sin_theta(grid);
LatticeReal phi(grid);
random(pRNG, phi);
phi = phi * twopi; // uniform in [0,2pi]
random(pRNG, cos_theta);
cos_theta = (cos_theta * 2.0) - 1.0; // uniform in [-1,1]
sin_theta = sqrt(abs(1.0 - cos_theta * cos_theta));
a[1] = a123mag * sin_theta * cos(phi);
a[2] = a123mag * sin_theta * sin(phi);
a[3] = a123mag * cos_theta;
ua = toComplex(a[0]) * ident + toComplex(a[1]) * pauli1 +
toComplex(a[2]) * pauli2 + toComplex(a[3]) * pauli3;
b = 1.0;
b = where(wheremask, uinv * ua, b);
su2Insert(b, V, su2_subgroup);
// mask the assignment back based on Accptance
link = where(Accepted, V * link, link);
//////////////////////////////
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = Zero();
check = ua * adj(ua) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
check = b * adj(b) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = Zero();
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck) < 1.0e-4);
// Verify the link stays in SU(3)
// std::cout<<GridLogMessage <<"Checking the modified link"<<std::endl;
Vcheck = link * adj(link) - 1.0;
assert(norm2(Vcheck) < 1.0e-4);
/////////////////////////////////
}
static void printGenerators(void) {
for (int gen = 0; gen < AdjointDimension; gen++) {
Matrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
static void testGenerators(void) {
Matrix ta;
Matrix tb;
std::cout << GridLogMessage
<< "Fundamental - Checking trace ta tb is 0.5 delta_ab"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
for (int b = 0; b < AdjointDimension; b++) {
generator(a, ta);
generator(b, tb);
Complex tr = TensorRemove(trace(ta * tb));
std::cout << GridLogMessage << "(" << a << "," << b << ") = " << tr
<< std::endl;
if (a == b) assert(abs(tr - Complex(0.5)) < 1.0e-6);
if (a != b) assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
std::cout << GridLogMessage << "Fundamental - Checking if hermitian"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(ta - adj(ta)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Fundamental - Checking if traceless"
<< std::endl;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
Complex tr = TensorRemove(trace(ta));
std::cout << GridLogMessage << a << " " << std::endl;
assert(abs(tr) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
// reunitarise??
template <typename LatticeMatrixType>
static void LieRandomize(GridParallelRNG &pRNG, LatticeMatrixType &out,
double scale = 1.0) {
GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type;
typedef typename LatticeMatrixType::scalar_type scalar_type;
typedef iSinglet<vector_type> vTComplexType;
typedef Lattice<vTComplexType> LatticeComplexType;
typedef typename GridTypeMapper<
typename LatticeMatrixType::vector_object>::scalar_object MatrixType;
LatticeComplexType ca(grid);
LatticeMatrixType lie(grid);
LatticeMatrixType la(grid);
ComplexD ci(0.0, scale);
// ComplexD cone(1.0, 0.0);
MatrixType ta;
lie = Zero();
for (int a = 0; a < AdjointDimension; a++) {
random(pRNG, ca);
ca = (ca + conjugate(ca)) * 0.5;
ca = ca - 0.5;
generator(a, ta);
la = ci * ca * ta;
lie = lie + la; // e^{i la ta}
}
taExp(lie, out);
}
static void GaussianFundamentalLieAlgebraMatrix(GridParallelRNG &pRNG,
LatticeMatrix &out,
Real scale = 1.0) {
GridBase *grid = out.Grid();
LatticeReal ca(grid);
LatticeMatrix la(grid);
Complex ci(0.0, scale);
Matrix ta;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
la = toComplex(ca) * ta;
out += la;
}
out *= ci;
}
static void FundamentalLieAlgebraMatrix(const LatticeAlgebraVector &h,
LatticeMatrix &out,
Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeMatrix la(grid);
Matrix ta;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
out += la;
}
}
/*
add GaugeTrans
*/
template<typename GaugeField,typename GaugeMat>
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
GridBase *grid = Umu.Grid();
conformable(grid,g.Grid());
GaugeMat U(grid);
GaugeMat ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U= PeekIndex<LorentzIndex>(Umu,mu);
U = g*U*Cshift(ag, mu, 1);
PokeIndex<LorentzIndex>(Umu,U,mu);
}
}
template<typename GaugeMat>
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
GridBase *grid = g.Grid();
GaugeMat ag(grid); ag = adj(g);
for(int mu=0;mu<Nd;mu++){
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
}
}
template<typename GaugeField,typename GaugeMat>
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
LieRandomize(pRNG,g,1.0);
GaugeTransform(Umu,g);
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
// inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AdjointDimension; a++) {
generator(a, Ta);
pokeColour(h_out, - 2.0 * (trace(timesI(Ta) * in)) * scale, a);
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
LieRandomize(pRNG, Umu, 1.0);
PokeIndex<LorentzIndex>(out, Umu, mu);
}
}
template<typename GaugeField>
static void TepidConfiguration(GridParallelRNG &pRNG,GaugeField &out){
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
for(int mu=0;mu<Nd;mu++){
LieRandomize(pRNG,Umu,0.01);
PokeIndex<LorentzIndex>(out,Umu,mu);
}
}
template<typename GaugeField>
static void ColdConfiguration(GaugeField &out){
typedef typename GaugeField::vector_type vector_type;
typedef iSUnMatrix<vector_type> vMatrixType;
typedef Lattice<vMatrixType> LatticeMatrixType;
LatticeMatrixType Umu(out.Grid());
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
PokeIndex<LorentzIndex>(out,Umu,mu);
}
}
template<typename GaugeField>
static void ColdConfiguration(GridParallelRNG &pRNG,GaugeField &out){
ColdConfiguration(out);
}
template<typename LatticeMatrixType>
static void taProj( const LatticeMatrixType &in, LatticeMatrixType &out){
out = Ta(in);
}
template <typename LatticeMatrixType>
static void taExp(const LatticeMatrixType &x, LatticeMatrixType &ex) {
typedef typename LatticeMatrixType::scalar_type ComplexType;
LatticeMatrixType xn(x.Grid());
RealD nfac = 1.0;
xn = x;
ex = xn + ComplexType(1.0); // 1+x
// Do a 12th order exponentiation
for (int i = 2; i <= 12; ++i) {
nfac = nfac / RealD(i); // 1/2, 1/2.3 ...
xn = xn * x; // x2, x3,x4....
ex = ex + xn * nfac; // x2/2!, x3/3!....
}
}
};
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
typedef SU<Nc> FundamentalMatrices;
NAMESPACE_END(Grid);
#endif

181
Grid/qcd/utils/SUnAdjoint.h Normal file
View File

@ -0,0 +1,181 @@
#ifndef QCD_UTIL_SUNADJOINT_H
#define QCD_UTIL_SUNADJOINT_H
////////////////////////////////////////////////////////////////////////
//
// * Adjoint representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN hermitian traceless matrices
// normalized to 1:
//
// (e_Adj)^a = t^a / sqrt(T_F)
//
// then the real, antisymmetric generators for the adjoint representations
// are computed ( shortcut: e^a == (e_Adj)^a )
//
// (iT_adj)^d_ba = i tr[e^a t^d e^b - t^d e^a e^b]
//
////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
template <int ncolour>
class SU_Adjoint : public SU<ncolour> {
public:
static const int Dimension = ncolour * ncolour - 1;
template <typename vtype>
using iSUnAdjointMatrix =
iScalar<iScalar<iMatrix<vtype, Dimension > > >;
// Actually the adjoint matrices are real...
// Consider this overhead... FIXME
typedef iSUnAdjointMatrix<Complex> AMatrix;
typedef iSUnAdjointMatrix<ComplexF> AMatrixF;
typedef iSUnAdjointMatrix<ComplexD> AMatrixD;
typedef iSUnAdjointMatrix<vComplex> vAMatrix;
typedef iSUnAdjointMatrix<vComplexF> vAMatrixF;
typedef iSUnAdjointMatrix<vComplexD> vAMatrixD;
typedef Lattice<vAMatrix> LatticeAdjMatrix;
typedef Lattice<vAMatrixF> LatticeAdjMatrixF;
typedef Lattice<vAMatrixD> LatticeAdjMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeAdjField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeAdjFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeAdjFieldD;
template <class cplx>
static void generator(int Index, iSUnAdjointMatrix<cplx> &iAdjTa) {
// returns i(T_Adj)^index necessary for the projectors
// see definitions above
iAdjTa = Zero();
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
// FIXME not very efficient to get all the generators everytime
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) {
tmp = ta[a] * ta[Index] - ta[Index] * ta[a];
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
2.0 * tmp * ta[b]; // 2.0 from the normalization
Complex iTr = TensorRemove(timesI(trace(tmp1)));
//iAdjTa()()(b, a) = iTr;
iAdjTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < Dimension; gen++) {
AMatrix ta;
generator(gen, ta);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << ta << std::endl;
}
}
static void testGenerators(void) {
AMatrix adjTa;
std::cout << GridLogMessage << "Adjoint - Checking if real" << std::endl;
for (int a = 0; a < Dimension; a++) {
generator(a, adjTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adjTa - conjugate(adjTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "Adjoint - Checking if antisymmetric"
<< std::endl;
for (int a = 0; a < Dimension; a++) {
generator(a, adjTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adjTa + transpose(adjTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
}
static void AdjointLieAlgebraMatrix(
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeAdjMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeAdjMatrix la(grid);
AMatrix iTa;
out = Zero();
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
la = peekColour(h, a) * iTa;
out += la;
}
out *= scale;
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
AMatrix iTa;
Real coefficient = - 1.0/(ncolour) * scale;// 1/Nc for the normalization of the trace in the adj rep
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
auto tmp = real(trace(iTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of recomputing them
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
static std::vector<AMatrix> iTa(Dimension); // to store the generators
h_out = Zero();
static bool precalculated = false;
if (!precalculated){
precalculated = true;
for (int a = 0; a < Dimension; a++) generator(a, iTa[a]);
}
Real coefficient = -1.0 / (ncolour) * scale; // 1/Nc for the normalization of
// the trace in the adj rep
for (int a = 0; a < Dimension; a++) {
auto tmp = real(trace(iTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef SU_Adjoint<2> SU2Adjoint;
typedef SU_Adjoint<3> SU3Adjoint;
typedef SU_Adjoint<4> SU4Adjoint;
typedef SU_Adjoint<5> SU5Adjoint;
typedef SU_Adjoint<Nc> AdjointMatrices;
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,273 @@
////////////////////////////////////////////////////////////////////////
//
// * Two index representation generators
//
// * Normalisation for the fundamental generators:
// trace ta tb = 1/2 delta_ab = T_F delta_ab
// T_F = 1/2 for SU(N) groups
//
//
// base for NxN two index (anti-symmetric) matrices
// normalized to 1 (d_ij is the kroenecker delta)
//
// (e^(ij)_{kl} = 1 / sqrt(2) (d_ik d_jl +/- d_jk d_il)
//
// Then the generators are written as
//
// (iT_a)^(ij)(lk) = i * ( tr[e^(ij)^dag e^(lk) T^trasp_a] +
// tr[e^(lk)e^(ij)^dag T_a] ) //
//
//
////////////////////////////////////////////////////////////////////////
// Authors: David Preti, Guido Cossu
#ifndef QCD_UTIL_SUN2INDEX_H
#define QCD_UTIL_SUN2INDEX_H
NAMESPACE_BEGIN(Grid);
enum TwoIndexSymmetry { Symmetric = 1, AntiSymmetric = -1 };
inline Real delta(int a, int b) { return (a == b) ? 1.0 : 0.0; }
template <int ncolour, TwoIndexSymmetry S>
class SU_TwoIndex : public SU<ncolour> {
public:
static const int Dimension = ncolour * (ncolour + S) / 2;
static const int NumGenerators = SU<ncolour>::AdjointDimension;
template <typename vtype>
using iSUnTwoIndexMatrix = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iSUnTwoIndexMatrix<Complex> TIMatrix;
typedef iSUnTwoIndexMatrix<ComplexF> TIMatrixF;
typedef iSUnTwoIndexMatrix<ComplexD> TIMatrixD;
typedef iSUnTwoIndexMatrix<vComplex> vTIMatrix;
typedef iSUnTwoIndexMatrix<vComplexF> vTIMatrixF;
typedef iSUnTwoIndexMatrix<vComplexD> vTIMatrixD;
typedef Lattice<vTIMatrix> LatticeTwoIndexMatrix;
typedef Lattice<vTIMatrixF> LatticeTwoIndexMatrixF;
typedef Lattice<vTIMatrixD> LatticeTwoIndexMatrixD;
typedef Lattice<iVector<iScalar<iMatrix<vComplex, Dimension> >, Nd> >
LatticeTwoIndexField;
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> >
LatticeTwoIndexFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> >
LatticeTwoIndexFieldD;
template <typename vtype>
using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > >;
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
template <class cplx>
static void base(int Index, iSUnMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
static bool filled = false;
if (!filled) {
int counter = 0;
for (int i = 1; i < ncolour; i++) {
for (int j = 0; j < i; j++) {
a[counter][0] = i;
a[counter][1] = j;
counter++;
}
}
filled = true;
}
if (Index < ncolour * (ncolour - 1) / 2) {
baseOffDiagonal(a[Index][0], a[Index][1], eij);
} else {
baseDiagonal(Index, eij);
}
}
template <class cplx>
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) = delta(i, k) * delta(j, l) +
S * delta(j, k) * delta(i, l);
RealD nrm = 1. / std::sqrt(2.0);
eij = eij * nrm;
}
static void printBase(void) {
for (int gen = 0; gen < Dimension; gen++) {
Matrix tmp;
base(gen, tmp);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << tmp << std::endl;
}
}
template <class cplx>
static void generator(int Index, iSUnTwoIndexMatrix<cplx> &i2indTa) {
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(
ncolour * ncolour - 1);
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
i2indTa = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++)
SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) base(a, eij[a]);
for (int a = 0; a < Dimension; a++) {
tmp = transpose(ta[Index]) * adj(eij[a]) + adj(eij[a]) * ta[Index];
for (int b = 0; b < Dimension; b++) {
typename SU<ncolour>::template iSUnMatrix<cplx> tmp1 =
tmp * eij[b];
Complex iTr = TensorRemove(timesI(trace(tmp1)));
i2indTa()()(a, b) = iTr;
}
}
}
static void printGenerators(void) {
for (int gen = 0; gen < ncolour * ncolour - 1; gen++) {
TIMatrix i2indTa;
generator(gen, i2indTa);
std::cout << GridLogMessage << "Nc = " << ncolour << " t_" << gen
<< std::endl;
std::cout << GridLogMessage << i2indTa << std::endl;
}
}
static void testGenerators(void) {
TIMatrix i2indTa, i2indTb;
std::cout << GridLogMessage << "2IndexRep - Checking if traceless"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(trace(i2indTa)) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "2IndexRep - Checking if antihermitean"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
std::cout << GridLogMessage << a << std::endl;
assert(norm2(adj(i2indTa) + i2indTa) < 1.0e-6);
}
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage
<< "2IndexRep - Checking Tr[Ta*Tb]=delta(a,b)*(N +- 2)/2"
<< std::endl;
for (int a = 0; a < ncolour * ncolour - 1; a++) {
for (int b = 0; b < ncolour * ncolour - 1; b++) {
generator(a, i2indTa);
generator(b, i2indTb);
// generator returns iTa, so we need a minus sign here
Complex Tr = -TensorRemove(trace(i2indTa * i2indTb));
std::cout << GridLogMessage << "a=" << a << "b=" << b << "Tr=" << Tr
<< std::endl;
}
}
std::cout << GridLogMessage << std::endl;
}
static void TwoIndexLieAlgebraMatrix(
const typename SU<ncolour>::LatticeAlgebraVector &h,
LatticeTwoIndexMatrix &out, Real scale = 1.0) {
conformable(h, out);
GridBase *grid = out.Grid();
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
out += la;
}
out *= scale;
}
// Projects the algebra components
// of a lattice matrix ( of dimension ncol*ncol -1 )
static void projectOnAlgebra(
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
auto tmp = real(trace(i2indTa * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
// a projector that keeps the generators stored to avoid the overhead of
// recomputing them
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;
for (int a = 0; a < ncolour * ncolour - 1; a++) generator(a, i2indTa[a]);
}
Real coefficient =
-2.0 / (ncolour + 2 * S) * scale; // 2/(Nc +/- 2) for the normalization
// of the trace in the two index rep
for (int a = 0; a < ncolour * ncolour - 1; a++) {
auto tmp = real(trace(i2indTa[a] * in)) * coefficient;
pokeColour(h_out, tmp, a);
}
}
};
// Some useful type names
typedef SU_TwoIndex<Nc, Symmetric> TwoIndexSymmMatrices;
typedef SU_TwoIndex<Nc, AntiSymmetric> TwoIndexAntiSymmMatrices;
typedef SU_TwoIndex<2, Symmetric> SU2TwoIndexSymm;
typedef SU_TwoIndex<3, Symmetric> SU3TwoIndexSymm;
typedef SU_TwoIndex<4, Symmetric> SU4TwoIndexSymm;
typedef SU_TwoIndex<5, Symmetric> SU5TwoIndexSymm;
typedef SU_TwoIndex<2, AntiSymmetric> SU2TwoIndexAntiSymm;
typedef SU_TwoIndex<3, AntiSymmetric> SU3TwoIndexAntiSymm;
typedef SU_TwoIndex<4, AntiSymmetric> SU4TwoIndexAntiSymm;
typedef SU_TwoIndex<5, AntiSymmetric> SU5TwoIndexAntiSymm;
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,93 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/WilsonLoops.h
Copyright (C) 2015
Author: neo <cossu@post.kek.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef SCALAR_OBJS_H
#define SCALAR_OBJS_H
NAMESPACE_BEGIN(Grid);
// Scalar field obs
template <class Impl>
class ScalarObs {
public:
//////////////////////////////////////////////////
// squared field
//////////////////////////////////////////////////
static void phisquared(typename Impl::Field &fsq,
const typename Impl::Field &f) {
fsq = f * f;
}
//////////////////////////////////////////////////
// phi^4 interaction term
//////////////////////////////////////////////////
static void phifourth(typename Impl::Field &fsq,
const typename Impl::Field &f) {
fsq = f * f * f * f;
}
//////////////////////////////////////////////////
// phi(x)phi(x+mu)
//////////////////////////////////////////////////
static void phider(typename Impl::Field &fsq,
const typename Impl::Field &f) {
fsq = Cshift(f, 0, -1) * f;
for (int mu = 1; mu < Nd; mu++) fsq += Cshift(f, mu, -1) * f;
}
//////////////////////////////////////////////////
// Vol sum of the previous obs.
//////////////////////////////////////////////////
static RealD sumphider(const typename Impl::Field &f) {
typename Impl::Field tmp(f.Grid());
tmp = Cshift(f, 0, -1) * f;
for (int mu = 1; mu < Nd; mu++) {
tmp += Cshift(f, mu, -1) * f;
}
return -sum(trace(tmp));
}
static RealD sumphisquared(const typename Impl::Field &f) {
typename Impl::Field tmp(f.Grid());
tmp = f * f;
return sum(trace(tmp));
}
static RealD sumphifourth(const typename Impl::Field &f) {
typename Impl::Field tmp(f.Grid());
phifourth(tmp, f);
return sum(trace(tmp));
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,115 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/SpaceTimeGrid.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////
// Public interface
/////////////////////////////////////////////////////////////////
GridCartesian *SpaceTimeGrid::makeFourDimGrid(const Coordinate & latt,const Coordinate &simd,const Coordinate &mpi)
{
return new GridCartesian(latt,simd,mpi);
}
GridRedBlackCartesian *SpaceTimeGrid::makeFourDimRedBlackGrid(const GridCartesian *FourDimGrid)
{
return new GridRedBlackCartesian(FourDimGrid);
}
GridCartesian *SpaceTimeGrid::makeFourDimDWFGrid(const Coordinate & latt,const Coordinate &mpi)
{
Coordinate simd(4,1);
return makeFourDimGrid(latt,simd,mpi);
}
GridCartesian *SpaceTimeGrid::makeFiveDimGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
Coordinate latt5(1,Ls);
Coordinate simd5(1,1);
Coordinate mpi5(1,1);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(FourDimGrid->_simd_layout[d]);
mpi5.push_back(FourDimGrid->_processors[d]);
}
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
}
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
int cbd=1;
Coordinate cb5(1,0);
for(int d=0;d<N4;d++){
cb5.push_back( 1);
}
GridCartesian *tmp = makeFiveDimGrid(Ls,FourDimGrid);
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
delete tmp;
return ret;
}
GridCartesian *SpaceTimeGrid::makeFiveDimDWFGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4 = FourDimGrid->_ndimension;
int nsimd = FourDimGrid->Nsimd();
Coordinate latt5(1,Ls);
Coordinate simd5(1,nsimd);
Coordinate mpi5(1,1);
for(int d=0;d<N4;d++){
latt5.push_back(FourDimGrid->_fdimensions[d]);
simd5.push_back(1);
mpi5.push_back(FourDimGrid->_processors[d]);
}
return new GridCartesian(latt5,simd5,mpi5,*FourDimGrid);
}
///////////////////////////////////////////////////
// Interface is inefficient and forces the deletion
// Pass in the non-redblack grid
///////////////////////////////////////////////////
GridRedBlackCartesian *SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid)
{
int N4=FourDimGrid->_ndimension;
int cbd=1;
Coordinate cb5(1,0);
for(int d=0;d<N4;d++){
cb5.push_back(1);
}
GridCartesian *tmp = makeFiveDimDWFGrid(Ls,FourDimGrid);
GridRedBlackCartesian *ret = new GridRedBlackCartesian(tmp,cb5,cbd);
delete tmp;
return ret;
}
NAMESPACE_END(Grid);

View File

@ -0,0 +1,50 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/SpaceTimeGrid.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_SPACE_TIME_GRID_H
#define GRID_QCD_SPACE_TIME_GRID_H
NAMESPACE_BEGIN(Grid);
class SpaceTimeGrid {
public:
static GridCartesian *makeFourDimGrid(const Coordinate & latt,const Coordinate &simd,const Coordinate &mpi);
static GridRedBlackCartesian *makeFourDimRedBlackGrid (const GridCartesian *FourDimGrid);
static GridCartesian *makeFiveDimGrid (int Ls,const GridCartesian *FourDimGrid);
static GridRedBlackCartesian *makeFiveDimRedBlackGrid(int Ls,const GridCartesian *FourDimGrid);
static GridCartesian *makeFiveDimDWFGrid (int Ls,const GridCartesian *FourDimGrid);
static GridRedBlackCartesian *makeFiveDimDWFRedBlackGrid(int Ls,const GridCartesian *FourDimGrid);
static GridCartesian *makeFourDimDWFGrid (const Coordinate & latt,const Coordinate &mpi);
};
NAMESPACE_END(Grid);
#endif

21
Grid/qcd/utils/Utils.h Normal file
View File

@ -0,0 +1,21 @@
#ifndef QCD_UTILS_H
#define QCD_UTILS_H
#include <Grid/qcd/utils/SpaceTimeGrid.h>
#include <Grid/qcd/utils/LinalgUtils.h>
#include <Grid/qcd/utils/CovariantCshift.h>
// Scalar field
#include <Grid/qcd/utils/ScalarObjs.h>
// Include representations
#include <Grid/qcd/utils/SUn.h>
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
// All-to-all contraction kernels that touch the
// internal lattice structure
#include <Grid/qcd/utils/A2Autils.h>
#endif

View File

@ -0,0 +1,657 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/utils/WilsonLoops.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_UTILS_WILSON_LOOPS_H
#define QCD_UTILS_WILSON_LOOPS_H
NAMESPACE_BEGIN(Grid);
// Common wilson loop observables
template <class Gimpl> class WilsonLoops : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
//////////////////////////////////////////////////
// directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void dirPlaquette(GaugeMat &plaq, const std::vector<GaugeMat> &U,
const int mu, const int nu) {
// Annoyingly, must use either scope resolution to find dependent base
// class,
// or this-> ; there is no "this" in a static method. This forces explicit
// Gimpl scope
// resolution throughout the usage in this file, and rather defeats the
// purpose of deriving
// from Gimpl.
/*
plaq = Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[nu])));
*/
// _
//|< _|
plaq = Gimpl::CovShiftForward(U[mu],mu,
Gimpl::CovShiftForward(U[nu],nu,
Gimpl::CovShiftBackward(U[mu],mu,
Gimpl::CovShiftIdentityBackward(U[nu], nu))));
}
//////////////////////////////////////////////////
// trace of directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceDirPlaquette(ComplexField &plaq,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0].Grid());
dirPlaquette(sp, U, mu, nu);
plaq = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of plaquette
//////////////////////////////////////////////////
static void sitePlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = Zero();
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
Plaq = Plaq + sitePlaq;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD sumPlaquette(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
// inefficient here
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Plaq(Umu.Grid());
sitePlaquette(Plaq, U);
auto Tp = sum(Plaq);
auto p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD avgPlaquette(const GaugeLorentz &Umu) {
RealD sumplaq = sumPlaquette(Umu);
double vol = Umu.Grid()->gSites();
double faces = (1.0 * Nd * (Nd - 1)) / 2.0;
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z the temporal loop
//////////////////////////////////////////////////
static ComplexD avgPolyakovLoop(const GaugeField &Umu) { //assume Nd=4
GaugeMat Ut(Umu._grid), P(Umu._grid);
ComplexD out;
int T = Umu._grid->GlobalDimensions()[3];
int X = Umu._grid->GlobalDimensions()[0];
int Y = Umu._grid->GlobalDimensions()[1];
int Z = Umu._grid->GlobalDimensions()[2];
Ut = peekLorentz(Umu,3); //Select temporal direction
P = Ut;
for (int t=1;t<T;t++){
P = Gimpl::CovShiftForward(Ut,3,P);
}
RealD norm = 1.0/(Nc*X*Y*Z*T);
out = sum(trace(P))*norm;
return out;
}
//////////////////////////////////////////////////
// average over traced single links
//////////////////////////////////////////////////
static RealD linkTrace(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
ComplexField Tr(Umu.Grid());
Tr = Zero();
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
Tr = Tr + trace(U[mu]);
}
auto Tp = sum(Tr);
auto p = TensorRemove(Tp);
double vol = Umu.Grid()->gSites();
return p.real() / vol / 4.0 / 3.0;
};
//////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
int nu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = Zero();
if (nu != mu) {
// mu
// ^
// |__> nu
// __
// |
// __|
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
mu);
// __
// |
// |__
//
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
mu);
}
}
// For the force term
/*
static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
// this operation is taking too much time
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = Zero();
GaugeMat tmp1(grid);
GaugeMat tmp2(grid);
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// this is ~10% faster than the Staple -- PAB: so what it gives the WRONG answers for other BC's!
tmp1 = Cshift(U[nu], mu, 1);
tmp2 = Cshift(U[mu], nu, 1);
staple += tmp1* adj(U[nu]*tmp2);
tmp2 = adj(U[mu]*tmp1)*U[nu];
staple += Cshift(tmp2, nu, -1);
}
}
staple = U[mu]*staple;
}
*/
//////////////////////////////////////////////////
// the sum over all staples on each site
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = Zero();
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// mu
// ^
// |__> nu
// __
// |
// __|
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
mu);
// __
// |
// |__
//
//
staple += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])), mu);
}
}
}
//////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu, upper part
//////////////////////////////////////////////////
static void StapleUpper(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
int nu) {
if (nu != mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);// some redundant copies
}
// mu
// ^
// |__> nu
// __
// |
// __|
//
staple = Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftIdentityBackward(U[nu], nu))),
mu);
}
}
////////////////////////////////////////////////////////////////////////
// the sum over all staples on each site in direction mu,nu, lower part
////////////////////////////////////////////////////////////////////////
static void StapleLower(GaugeMat &staple, const GaugeLorentz &Umu, int mu,
int nu) {
if (nu != mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);// some redundant copies
}
// mu
// ^
// |__> nu
// __
// |
// |__
//
//
staple = Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(U[nu], nu,
Gimpl::CovShiftBackward(U[mu], mu, U[nu])),
mu);
}
}
//////////////////////////////////////////////////////
// Field Strength
//////////////////////////////////////////////////////
static void FieldStrength(GaugeMat &FS, const GaugeLorentz &Umu, int mu, int nu){
// Fmn +--<--+ Ut +--<--+
// | | | |
// (x)+-->--+ +-->--+(x) - h.c.
// | | | |
// +--<--+ +--<--+
GaugeMat Vup(Umu.Grid()), Vdn(Umu.Grid());
StapleUpper(Vup, Umu, mu, nu);
StapleLower(Vdn, Umu, mu, nu);
GaugeMat v = Vup - Vdn;
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
GaugeMat vu = v*u;
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
FS = (u*v + Cshift(vu, mu, -1));
FS = 0.125*(FS - adj(FS));
}
static Real TopologicalCharge(GaugeLorentz &U){
// 4d topological charge
assert(Nd==4);
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
GaugeMat Bx(U.Grid()), By(U.Grid()), Bz(U.Grid());
FieldStrength(Bx, U, Ydir, Zdir);
FieldStrength(By, U, Zdir, Xdir);
FieldStrength(Bz, U, Xdir, Ydir);
// Ex = -iF(t,x), Ey = -iF(t,y), Ez = -iF(t,z)
GaugeMat Ex(U.Grid()), Ey(U.Grid()), Ez(U.Grid());
FieldStrength(Ex, U, Tdir, Xdir);
FieldStrength(Ey, U, Tdir, Ydir);
FieldStrength(Ez, U, Tdir, Zdir);
double coeff = 8.0/(32.0*M_PI*M_PI);
ComplexField qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
auto Tq = sum(qfield);
return TensorRemove(Tq).real();
}
//////////////////////////////////////////////////////
// Similar to above for rectangle is required
//////////////////////////////////////////////////////
static void dirRectangle(GaugeMat &rect, const std::vector<GaugeMat> &U,
const int mu, const int nu) {
rect = Gimpl::CovShiftForward(
U[mu], mu, Gimpl::CovShiftForward(U[mu], mu, U[nu])) * // ->->|
adj(Gimpl::CovShiftForward(
U[nu], nu, Gimpl::CovShiftForward(U[mu], mu, U[mu])));
rect = rect +
Gimpl::CovShiftForward(
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])) * // ->||
adj(Gimpl::CovShiftForward(
U[nu], nu, Gimpl::CovShiftForward(U[nu], nu, U[mu])));
}
static void traceDirRectangle(ComplexField &rect,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0].Grid());
dirRectangle(sp, U, mu, nu);
rect = trace(sp);
}
static void siteRectangle(ComplexField &Rect,
const std::vector<GaugeMat> &U) {
ComplexField siteRect(U[0].Grid());
Rect = Zero();
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirRectangle(siteRect, U, mu, nu);
Rect = Rect + siteRect;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD sumRectangle(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu.Grid());
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
ComplexField Rect(Umu.Grid());
siteRectangle(Rect, U);
auto Tp = sum(Rect);
auto p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of plaquette
//////////////////////////////////////////////////
static RealD avgRectangle(const GaugeLorentz &Umu) {
RealD sumrect = sumRectangle(Umu);
double vol = Umu.Grid()->gSites();
double faces = (1.0 * Nd * (Nd - 1)); // 2 distinct orientations summed
return sumrect / vol / faces / Nc; // Nd , Nc dependent... FIXME
}
//////////////////////////////////////////////////
// the sum over all staples on each site
//////////////////////////////////////////////////
static void RectStapleDouble(GaugeMat &U2, const GaugeMat &U, int mu) {
U2 = U * Cshift(U, mu, 1);
}
////////////////////////////////////////////////////////////////////////////
// Hop by two optimisation strategy does not work nicely with Gparity. (could
// do,
// but need to track two deep where cross boundary and apply a conjugation).
// Must differentiate this in Gimpl, and use Gimpl::isPeriodicGaugeField to do
// so .
////////////////////////////////////////////////////////////////////////////
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
std::vector<GaugeMat> &U, int mu) {
Stap = Zero();
GridBase *grid = U[0].Grid();
GaugeMat Staple2x1(grid);
GaugeMat tmp(grid);
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// Up staple ___ ___
// | |
tmp = Cshift(adj(U[nu]), nu, -1);
tmp = adj(U2[mu]) * tmp;
tmp = Cshift(tmp, mu, -2);
Staple2x1 = Gimpl::CovShiftForward(U[nu], nu, tmp);
// Down staple
// |___ ___|
//
tmp = adj(U2[mu]) * U[nu];
Staple2x1 += Gimpl::CovShiftBackward(U[nu], nu, Cshift(tmp, mu, -2));
// ___ ___
// | ___|
// |___ ___|
//
Stap += Cshift(Gimpl::CovShiftForward(U[mu], mu, Staple2x1), mu, 1);
// ___ ___
// |___ |
// |___ ___|
//
// tmp= Staple2x1* Cshift(U[mu],mu,-2);
// Stap+= Cshift(tmp,mu,1) ;
Stap += Cshift(Staple2x1, mu, 1) * Cshift(U[mu], mu, -1);
;
// --
// | |
//
// | |
tmp = Cshift(adj(U2[nu]), nu, -2);
tmp = Gimpl::CovShiftBackward(U[mu], mu, tmp);
tmp = U2[nu] * Cshift(tmp, nu, 2);
Stap += Cshift(tmp, mu, 1);
// | |
//
// | |
// --
tmp = Gimpl::CovShiftBackward(U[mu], mu, U2[nu]);
tmp = adj(U2[nu]) * tmp;
tmp = Cshift(tmp, nu, -2);
Stap += Cshift(tmp, mu, 1);
}
}
}
static void RectStaple(GaugeMat &Stap, const GaugeLorentz &Umu, int mu) {
RectStapleUnoptimised(Stap, Umu, mu);
}
static void RectStaple(const GaugeLorentz &Umu, GaugeMat &Stap,
std::vector<GaugeMat> &U2, std::vector<GaugeMat> &U,
int mu) {
if (Gimpl::isPeriodicGaugeField()) {
RectStapleOptimised(Stap, U2, U, mu);
} else {
RectStapleUnoptimised(Stap, Umu, mu);
}
}
static void RectStapleUnoptimised(GaugeMat &Stap, const GaugeLorentz &Umu,
int mu) {
GridBase *grid = Umu.Grid();
std::vector<GaugeMat> U(Nd, grid);
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
Stap = Zero();
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// __ ___
// | __ |
//
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[mu], mu,
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
mu);
// __
// |__ __ |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(U[mu], mu, U[nu])))),
mu);
// __
// |__ __ |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[mu])))),
mu);
// __ ___
// |__ |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftBackward(U[nu], nu, U[mu])))),
mu);
// --
// | |
//
// | |
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftForward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu,
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftIdentityBackward(U[nu], nu))))),
mu);
// | |
//
// | |
// --
Stap += Gimpl::ShiftStaple(
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[nu], nu,
Gimpl::CovShiftBackward(
U[mu], mu, Gimpl::CovShiftForward(U[nu], nu, U[nu])))),
mu);
}
}
}
};
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
typedef WilsonLoops<PeriodicGimplR> U1WilsonLoops;
typedef WilsonLoops<PeriodicGimplR> SU2WilsonLoops;
typedef WilsonLoops<PeriodicGimplR> SU3WilsonLoops;
NAMESPACE_END(Grid);
#endif