mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-18 07:47:06 +01:00
Merge branch 'feature/ddhmc' of https://github.com/paboyle/Grid into feature/ddhmc
This commit is contained in:
@ -223,9 +223,14 @@ class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
Mpc(in,tmp);
|
||||
MpcDag(tmp,out);
|
||||
}
|
||||
virtual void MpcMpcDag(const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = in.Checkerboard();
|
||||
MpcDag(in,tmp);
|
||||
Mpc(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MpcDagMpc(in,out);
|
||||
HermOp(in,out);
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
@ -276,6 +281,16 @@ template<class Matrix,class Field>
|
||||
axpy(out,-1.0,tmp,out);
|
||||
}
|
||||
};
|
||||
// Mpc MpcDag system presented as the HermOp
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeDagOperator : public SchurDiagMooeeOperator<Matrix,Field> {
|
||||
public:
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->MpcMpcDag(in,out);
|
||||
}
|
||||
SchurDiagMooeeDagOperator (Matrix &Mat): SchurDiagMooeeOperator<Matrix,Field>(Mat){};
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
|
@ -40,7 +40,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* (-MoeMee^{-1} 1 )
|
||||
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
|
||||
* L^{-dag}= ( 1 -Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
*
|
||||
* U^-1 = (1 -Mee^{-1} Meo)
|
||||
@ -82,7 +82,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* psi_o = M_oo^-1 phi_o
|
||||
* TODO: Deflation
|
||||
*
|
||||
*
|
||||
*/
|
||||
namespace Grid {
|
||||
|
||||
@ -97,6 +98,7 @@ namespace Grid {
|
||||
protected:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
|
||||
int CBfactorise;
|
||||
bool subGuess;
|
||||
bool useSolnAsInitGuess; // if true user-supplied solution vector is used as initial guess for solver
|
||||
@ -189,13 +191,20 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////
|
||||
// Check unprec residual if possible
|
||||
/////////////////////////////////////////////////
|
||||
if ( ! subGuess ) {
|
||||
_Matrix.M(out[b],resid);
|
||||
if ( ! subGuess ) {
|
||||
|
||||
if ( this->adjoint() ) _Matrix.Mdag(out[b],resid);
|
||||
else _Matrix.M(out[b],resid);
|
||||
|
||||
resid = resid-in[b];
|
||||
RealD ns = norm2(in[b]);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint "<< this->adjoint() << std::endl;
|
||||
if ( this->adjoint() )
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
|
||||
else
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
|
||||
} else {
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
|
||||
}
|
||||
@ -249,12 +258,21 @@ namespace Grid {
|
||||
|
||||
// Verify the unprec residual
|
||||
if ( ! subGuess ) {
|
||||
_Matrix.M(out,resid);
|
||||
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint "<< this->adjoint() << std::endl;
|
||||
|
||||
if ( this->adjoint() ) _Matrix.Mdag(out,resid);
|
||||
else _Matrix.M(out,resid);
|
||||
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
|
||||
if ( this->adjoint() )
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase adjoint solver true unprec resid "<<std::sqrt(nr/ns) << std::endl;
|
||||
else
|
||||
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid "<<std::sqrt(nr/ns) << std::endl;
|
||||
|
||||
} else {
|
||||
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
|
||||
}
|
||||
@ -263,6 +281,7 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Override in derived.
|
||||
/////////////////////////////////////////////////////////////
|
||||
virtual bool adjoint(void) { return false; }
|
||||
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
|
||||
@ -616,6 +635,127 @@ namespace Grid {
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Red black Schur decomposition
|
||||
*
|
||||
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
|
||||
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
|
||||
* = L D U
|
||||
*
|
||||
* L^-1 = (1 0 )
|
||||
* (-MoeMee^{-1} 1 )
|
||||
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
*
|
||||
* U^-1 = (1 -Mee^{-1} Meo)
|
||||
* (0 1 )
|
||||
* U^{dag} = ( 1 0)
|
||||
* (Meo^dag Mee^{-dag} 1)
|
||||
* U^{-dag} = ( 1 0)
|
||||
* (-Meo^dag Mee^{-dag} 1)
|
||||
*
|
||||
*
|
||||
***********************
|
||||
* M^dag psi = eta
|
||||
***********************
|
||||
*
|
||||
* Really for Mobius: (Wilson - easier to just use gamma 5 hermiticity)
|
||||
*
|
||||
* Mdag psi = Udag Ddag Ldag psi = eta
|
||||
*
|
||||
* U^{-dag} = ( 1 0)
|
||||
* (-Meo^dag Mee^{-dag} 1)
|
||||
*
|
||||
*
|
||||
* i) D^dag phi = (U^{-dag} eta)
|
||||
* eta'_e = eta_e
|
||||
* eta'_o = (eta_o - Meo^dag Mee^{-dag} eta_e)
|
||||
*
|
||||
* phi_o = D_oo^-dag eta'_o = D_oo^-dag (eta_o - Meo^dag Mee^{-dag} eta_e)
|
||||
*
|
||||
* phi_e = D_ee^-dag eta'_e = D_ee^-dag eta_e
|
||||
*
|
||||
* Solve:
|
||||
*
|
||||
* D_oo D_oo^dag phi_o = D_oo (eta_o - Meo^dag Mee^{-dag} eta_e)
|
||||
*
|
||||
* ii)
|
||||
* phi = L^dag psi => psi = L^-dag phi.
|
||||
*
|
||||
* L^{-dag} = ( 1 -Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
*
|
||||
* => sol_e = M_ee^-dag * ( src_e - Moe^dag phi_o )...
|
||||
* => sol_o = phi_o
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal has Mooee on it, but solve the Adjoint system
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagMooeeDagSolve : public SchurRedBlackBase<Field> {
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
virtual bool adjoint(void) { return true; }
|
||||
SchurRedBlackDiagMooeeDagSolve(OperatorFunction<Field> &HermitianRBSolver,
|
||||
const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess,_solnAsInitGuess) {};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Override RedBlack specialisation
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,src);
|
||||
pickCheckerboard(Odd ,src_o,src);
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = (source_o - Moe^dag MeeInvDag source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInvDag(src_e,tmp); assert( tmp.Checkerboard() ==Even);
|
||||
_Matrix.MeooeDag (tmp,Mtmp); assert( Mtmp.Checkerboard() ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.Checkerboard() ==Odd);
|
||||
|
||||
// get the right Mpc
|
||||
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
_HermOpEO.Mpc(tmp,src_o); assert(src_o.Checkerboard() ==Odd);
|
||||
}
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
|
||||
{
|
||||
SchurDiagMooeeDagOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
};
|
||||
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
|
||||
{
|
||||
SchurDiagMooeeDagOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
Field sol_e(grid);
|
||||
Field tmp(grid);
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-dag * ( src_e - Moe^dag phi_o )...
|
||||
// sol_o = phi_o
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.MeooeDag(sol_o,tmp); assert(tmp.Checkerboard()==Even);
|
||||
tmp = src_e-tmp; assert(tmp.Checkerboard()==Even);
|
||||
_Matrix.MooeeInvDag(tmp,sol_e); assert(sol_e.Checkerboard()==Even);
|
||||
|
||||
setCheckerboard(sol,sol_e); assert( sol_e.Checkerboard() ==Even);
|
||||
setCheckerboard(sol,sol_o); assert( sol_o.Checkerboard() ==Odd );
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -58,6 +58,8 @@ NAMESPACE_CHECK(Scalar);
|
||||
////////////////////////////////////////////
|
||||
// Utility functions
|
||||
////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/momentum/MomentumFilter.h>
|
||||
//#include <Grid/qcd/action/momentum/DDHMCfilter.h>
|
||||
#include <Grid/qcd/utils/Metric.h>
|
||||
NAMESPACE_CHECK(Metric);
|
||||
#include <Grid/qcd/utils/CovariantLaplacian.h>
|
||||
|
@ -60,6 +60,8 @@ public:
|
||||
///////////////////////////////////////////////////////////////
|
||||
virtual void Dminus(const FermionField &psi, FermionField &chi);
|
||||
virtual void DminusDag(const FermionField &psi, FermionField &chi);
|
||||
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported);
|
||||
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported);
|
||||
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
|
||||
virtual void ExportPhysicalFermionSource(const FermionField &solution5d, FermionField &exported4d);
|
||||
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);
|
||||
|
@ -171,6 +171,16 @@ public:
|
||||
///////////////////////////////////////////////
|
||||
virtual void Dminus(const FermionField &psi, FermionField &chi) { chi=psi; }
|
||||
virtual void DminusDag(const FermionField &psi, FermionField &chi) { chi=psi; }
|
||||
|
||||
virtual void ImportFourDimPseudoFermion(const FermionField &input,FermionField &imported)
|
||||
{
|
||||
imported = input;
|
||||
};
|
||||
virtual void ExportFourDimPseudoFermion(const FermionField &solution,FermionField &exported)
|
||||
{
|
||||
exported=solution;
|
||||
};
|
||||
|
||||
virtual void ImportPhysicalFermionSource(const FermionField &input,FermionField &imported)
|
||||
{
|
||||
imported = input;
|
||||
|
@ -112,7 +112,6 @@ void CayleyFermion5D<Impl>::ImportUnphysicalFermion(const FermionField &input4d,
|
||||
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
|
||||
imported5d=tmp;
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d)
|
||||
{
|
||||
@ -127,6 +126,37 @@ void CayleyFermion5D<Impl>::ImportPhysicalFermionSource(const FermionField &inpu
|
||||
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
|
||||
Dminus(tmp,imported5d);
|
||||
}
|
||||
////////////////////////////////////////////////////
|
||||
// Added for fourD pseudofermion det estimation
|
||||
////////////////////////////////////////////////////
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::ImportFourDimPseudoFermion(const FermionField &input4d,FermionField &imported5d)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
FermionField tmp(this->FermionGrid());
|
||||
conformable(imported5d.Grid(),this->FermionGrid());
|
||||
conformable(input4d.Grid() ,this->GaugeGrid());
|
||||
tmp = Zero();
|
||||
InsertSlice(input4d, tmp, 0 , 0);
|
||||
InsertSlice(input4d, tmp, Ls-1, 0);
|
||||
axpby_ssp_pminus(tmp, 0., tmp, 1., tmp, 0, 0);
|
||||
axpby_ssp_pplus (tmp, 0., tmp, 1., tmp, Ls-1, Ls-1);
|
||||
imported5d=tmp;
|
||||
}
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::ExportFourDimPseudoFermion(const FermionField &solution5d,FermionField &exported4d)
|
||||
{
|
||||
int Ls = this->Ls;
|
||||
FermionField tmp(this->FermionGrid());
|
||||
tmp = solution5d;
|
||||
conformable(solution5d.Grid(),this->FermionGrid());
|
||||
conformable(exported4d.Grid(),this->GaugeGrid());
|
||||
axpby_ssp_pminus(tmp, 0., solution5d, 1., solution5d, 0, 0);
|
||||
axpby_ssp_pplus (tmp, 1., tmp , 1., solution5d, 0, Ls-1);
|
||||
ExtractSlice(exported4d, tmp, 0, 0);
|
||||
}
|
||||
|
||||
// Dminus
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::Dminus(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
|
79
Grid/qcd/action/momentum/DDHMCfilter.h
Normal file
79
Grid/qcd/action/momentum/DDHMCfilter.h
Normal file
@ -0,0 +1,79 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/hmc/DDHMC.h
|
||||
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// DDHMC filter with sub-block size B[mu]
|
||||
////////////////////////////////////////////////////
|
||||
|
||||
template<typename MomentaField>
|
||||
struct DDHMCFilter: public MomentumFilterBase<MomentaField>
|
||||
{
|
||||
typedef typename MomentaField::vector_type vector_type; //SIMD-vectorized complex type
|
||||
typedef typename MomentaField::scalar_type scalar_type; //scalar complex type
|
||||
typedef iVector<iScalar<iScalar<vector_type> >, Nd > LorentzScalarType; //complex phase for each site/direction
|
||||
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
|
||||
typedef Lattice<LorentzScalarType> LatticeLorentzScalarType;
|
||||
typedef Lattice<ScalarType> LatticeScalarType;
|
||||
|
||||
Coordinate Block;
|
||||
|
||||
// Could also zero links in plane like Luscher advocates.
|
||||
|
||||
DDHMCFilter(const Coordinate &_Block): Block(_Block){}
|
||||
|
||||
void applyFilter(MomentaField &P) const override
|
||||
{
|
||||
GridBase *grid = P.Grid();
|
||||
LatticeScalarType mask_mu(grid);
|
||||
LatticeLorentzScalarType mask(grid);
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Zero strictly links crossing between domains
|
||||
// Luscher also zeroes links in plane of domain boundaries
|
||||
// Keeping interior only. This prevents force from plaquettes
|
||||
// crossing domains and keeps whole MD trajectory local.
|
||||
// Step further than I want to go.
|
||||
////////////////////////////////////////////////////
|
||||
ScalarType zz = scalar_type(0.0);
|
||||
ScalarType one= scalar_type(1.0);
|
||||
|
||||
LatticeInteger coor(grid);
|
||||
for(int mu=0;mu<Nd;mu++) {
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
mask_mu = where(mod(coor,Block[mu])==Block[mu]-1,zz,one);
|
||||
|
||||
PokeIndex<LorentzIndex>(mask, mask_mu, mu);
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
346
Grid/qcd/action/pseudofermion/DomainDecomposedBoundary.h
Normal file
346
Grid/qcd/action/pseudofermion/DomainDecomposedBoundary.h
Normal file
@ -0,0 +1,346 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class Impl>
|
||||
class DomainDecomposedBoundary {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
typedef typename GaugeField::vector_type vector_type; //SIMD-vectorized complex type
|
||||
typedef typename GaugeField::scalar_type scalar_type; //scalar complex type
|
||||
|
||||
typedef iVector<iScalar<iScalar<vector_type> >, Nd > LorentzScalarType; //complex phase for each site/direction
|
||||
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
|
||||
typedef Lattice<LorentzScalarType> LatticeLorentzScalarType;
|
||||
typedef Lattice<ScalarType> LatticeScalarType;
|
||||
|
||||
Coordinate Block;
|
||||
DDHMCFilter Filter;
|
||||
const int Omega=0;
|
||||
const int OmegaBar=1;
|
||||
|
||||
void ProjectBoundaryBothDomains (FermionField &f,int sgn)
|
||||
{
|
||||
assert((sgn==1)||(sgn==-1));
|
||||
|
||||
Gamma::Algebra Gmu [] = {
|
||||
Gamma::Algebra::GammaX,
|
||||
Gamma::Algebra::GammaY,
|
||||
Gamma::Algebra::GammaZ,
|
||||
Gamma::Algebra::GammaT
|
||||
};
|
||||
|
||||
GridBase *grid = f.Grid();
|
||||
LatticeInteger coor(grid);
|
||||
LatticeInteger face(grid);
|
||||
LatticeInteger nface(grid); nface=Zero();
|
||||
|
||||
ComplexField zz(grid); zz=Zero();
|
||||
|
||||
FermionField projected(grid); projected=Zero();
|
||||
FermionField sp_proj (grid);
|
||||
|
||||
int dims = grid->Nd();
|
||||
int isDWF= (dims==Nd+1);
|
||||
assert((dims==Nd)||(dims==Nd+1));
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
// need to worry about DWF 5th dim first
|
||||
// Could extend to domain decompose in FIFTH dimension.
|
||||
// With chiral projectors here
|
||||
LatticeCoordinate(coor,mu+isDWF);
|
||||
|
||||
face = (mod(coor,Block[mu]) == 0 );
|
||||
nface = nface + face;
|
||||
|
||||
// Lower face receives (1-gamma)/2 in normal forward hopping term
|
||||
sp_proj = 0.5*(f-sgn*Gamma(Gmu[mu])*f)
|
||||
projected= where(face==cb,f,projected);
|
||||
|
||||
face = (mod(coor,Block[mu]) == Block[mu]-1 );
|
||||
nface = nface + face;
|
||||
|
||||
// Upper face receives (1+gamma)/2 in normal backward hopping term
|
||||
sp_proj = 0.5*(f+sgn*Gamma(Gmu[mu])*f)
|
||||
projected= where(face==cb,f,projected);
|
||||
|
||||
}
|
||||
// Keep the spin projected faces where nface==1 and initial Zero() where nface==0.
|
||||
projected = where(nface>1,f,projected);
|
||||
}
|
||||
void ProjectDomain(FermionField &f,int cb)
|
||||
{
|
||||
GridBase *grid = f.Grid();
|
||||
ComplexField zz(grid); zz=Zero();
|
||||
LatticeInteger coor(grid);
|
||||
LatticeInteger domaincb(grid); domaincb=Zero();
|
||||
for(int d=0;d<grid->Nd();d++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
domaincb = domaincb + div(coor,Block[d]);
|
||||
}
|
||||
f = where(mod(domaincb,2)==cb,f,zz);
|
||||
};
|
||||
|
||||
void ProjectOmegaBar (FermionField &f) {ProjectDomain(f,OmegaBar);}
|
||||
void ProjectOmega (FermionField &f) {ProjectDomain(f,Omega);}
|
||||
|
||||
// See my notes(!).
|
||||
// Notation: Following Luscher, we introduce projectors $\hPdb$ with both spinor and space structure
|
||||
// projecting all spinor elements in $\Omega$ connected by $\Ddb$ to $\bar{\Omega}$,
|
||||
void ProjectBoundaryBar(FermionField &f)
|
||||
{
|
||||
ProjectBoundaryBothDomains(f);
|
||||
ProjectOmega(f);
|
||||
}
|
||||
// and $\hPd$ projecting all spinor elements in $\bar{\Omega}$ connected by $\Dd$ to $\Omega$.
|
||||
void ProjectBoundary (FermionField &f)
|
||||
{
|
||||
ProjectBoundaryBothDomains(f);
|
||||
ProjectOmegaBar(f);
|
||||
};
|
||||
|
||||
void dBoundary (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp(in);
|
||||
ProjectOmegaBar(tmp);
|
||||
Op.M(tmp,out);
|
||||
ProjectOmega(out);
|
||||
};
|
||||
void dBoundaryBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp(in);
|
||||
ProjectOmega(tmp);
|
||||
Op.M(tmp,out);
|
||||
ProjectOmegaBar(out);
|
||||
};
|
||||
void dOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp(in);
|
||||
ProjectOmega(tmp);
|
||||
Op.M(tmp,out);
|
||||
ProjectOmega(out);
|
||||
};
|
||||
void dOmegaBar (FermionOperator<Impl> &Op,FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp(in);
|
||||
ProjectOmegaBar(tmp);
|
||||
Op.M(tmp,out);
|
||||
ProjectOmegaBar(out);
|
||||
};
|
||||
|
||||
void SolveOmega (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void SolveOmegaBar(FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void SolveOmegaAndOmegaBar(FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
void dInverse (FermionOperator<Impl> &Op,FermionField &in,FermionField &out){ assert(0); };
|
||||
|
||||
// R = Pdbar - Pdbar DomegaInv Dd DomegabarInv Ddbar
|
||||
void R(FermionOperator<Impl> &Op,FermionOperator<Impl> &OpDirichlet,FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp1(Op.FermionGrid());
|
||||
FermionField tmp2(Op.FermionGrid());
|
||||
dBoundaryBar(Op,in,tmp1);
|
||||
SolveOmegaBar(OpDirichlet,tmp1,tmp2); // 1/2 cost
|
||||
dBoundary(Op,tmp2,tmp1);
|
||||
SolveOmega(OpDirichlet,tmp1,tmp2); // 1/2 cost
|
||||
out = in - tmp2 ;
|
||||
ProjectBoundaryBar(out);
|
||||
};
|
||||
|
||||
// R = Pdbar - Pdbar Dinv Ddbar
|
||||
void Rinverse(FermionField &in,FermionField &out)
|
||||
{
|
||||
FermionField tmp1(NumOp.FermionGrid());
|
||||
out = in;
|
||||
ProjectBoundaryBar(out);
|
||||
dInverse(out,tmp1);
|
||||
ProjectBoundaryBar(tmp1);
|
||||
out = out -tmp1;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
class DomainDecomposedBoundaryPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
FermionOperator<Impl> & NumOpDirichlet;// the basic operator
|
||||
FermionOperator<Impl> & DenOpDirichlet;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
|
||||
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||
|
||||
|
||||
public:
|
||||
DomainBoundaryPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
FermionOperator<Impl> &_NumOpDirichlet,
|
||||
FermionOperator<Impl> &_DenOpDirichlet,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS,
|
||||
Coordinate &_Block
|
||||
) : NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
Phi(_NumOp.FermionGrid()),
|
||||
Block(_Block)
|
||||
// LinkFilter(Block)
|
||||
{};
|
||||
|
||||
virtual std::string action_name(){return "DomainBoundaryPseudoFermionRatioAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] Block "<<_Block << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridParallelRNG& pRNG)
|
||||
{
|
||||
// P(phi) = e^{- phi^dag V (MdagM)^-1 Vdag phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi = Vdag^{-1} Mdag eta ; eta = Mdag^{-1} Vdag Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta(NumOp.FermionGrid());
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta);
|
||||
|
||||
ProjectBoundary(eta);
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
// Note: this hard codes normal equations type solvers; alternate implementation needed for
|
||||
// non-herm style solvers.
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
|
||||
|
||||
DenOp.Mdag(eta,Phi); // Mdag eta
|
||||
tmp = Zero();
|
||||
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
|
||||
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
|
||||
|
||||
Phi=Phi*scale;
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag V (Mdag M)^-1 Vdag phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
|
||||
NumOp.Mdag(Phi,Y); // Y= Vdag phi
|
||||
X=Zero();
|
||||
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
|
||||
RealD action = norm2(Y);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 [ Mdag dM + dMdag M ] (Mdag M)^-1 V^dag phi
|
||||
// + phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
|
||||
GaugeField force(NumOp.GaugeGrid());
|
||||
|
||||
|
||||
//Y=Vdag phi
|
||||
//X = (Mdag M)^-1 V^dag phi
|
||||
//Y = (Mdag)^-1 V^dag phi
|
||||
NumOp.Mdag(Phi,Y); // Y= Vdag phi
|
||||
X=Zero();
|
||||
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
|
||||
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
|
||||
|
||||
// phi^dag V (Mdag M)^-1 dV^dag phi
|
||||
NumOp.MDeriv(force , X, Phi, DaggerYes ); dSdU=force;
|
||||
|
||||
// phi^dag dV (Mdag M)^-1 V^dag phi
|
||||
NumOp.MDeriv(force , Phi, X ,DaggerNo ); dSdU=dSdU+force;
|
||||
|
||||
// - phi^dag V (Mdag M)^-1 Mdag dM (Mdag M)^-1 V^dag phi
|
||||
// - phi^dag V (Mdag M)^-1 dMdag M (Mdag M)^-1 V^dag phi
|
||||
DenOp.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU-force;
|
||||
DenOp.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU-force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -97,7 +97,19 @@ public:
|
||||
tmp = Zero();
|
||||
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
|
||||
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
|
||||
|
||||
#define FILTER
|
||||
#ifdef FILTER
|
||||
Integer OrthogDir=0;
|
||||
Integer plane=0;
|
||||
if ( getenv("DIR") ) OrthogDir = atoi(getenv("DIR"));
|
||||
if ( getenv("COOR") ) plane = atoi(getenv("COOR"));
|
||||
std::cout << " *** PseudoFermion FILTER DIR " <<OrthogDir << " plane "<<plane<<std::endl;
|
||||
Lattice<iScalar<vInteger> > coor(NumOp.FermionGrid());
|
||||
LatticeCoordinate(coor,OrthogDir);
|
||||
tmp = Zero();
|
||||
Phi = where(coor==plane,Phi,tmp);
|
||||
#endif
|
||||
|
||||
Phi=Phi*scale;
|
||||
|
||||
};
|
||||
@ -165,6 +177,25 @@ public:
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
||||
#ifdef FILTER
|
||||
std::cout <<" In force "<<std::endl;
|
||||
force = dSdU;
|
||||
int mu=0;
|
||||
std::cout << " FORCE mu " <<mu<<" L2 "<< norm2(force)<< " Linf " << maxLocalNorm2(force)<<std::endl;
|
||||
int plane=0;
|
||||
if ( getenv("COOR") ) plane = atoi(getenv("COOR"));
|
||||
Lattice<iScalar<vInteger> > coor(NumOp.GaugeGrid());
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
int L = NumOp.GaugeGrid()->FullDimensions()[mu];
|
||||
for (Integer p=0;p<L;p++) {
|
||||
force = Zero();
|
||||
force = where(coor==p,dSdU,force);
|
||||
std::cout << " FORCE mu " <<mu<<" PF plane "<<plane<<" T= " <<p<<" L2 "<< norm2(force)<< " Linf " << maxLocalNorm2(force)<<std::endl;
|
||||
}
|
||||
exit(0);
|
||||
#endif
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
|
197
Grid/qcd/action/pseudofermion/TwoFlavourRatio4DPseudoFermion.h
Normal file
197
Grid/qcd/action/pseudofermion/TwoFlavourRatio4DPseudoFermion.h
Normal file
@ -0,0 +1,197 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class Impl>
|
||||
class TwoFlavourRatio4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
private:
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
|
||||
FermionField phi4; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
TwoFlavourRatio4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS
|
||||
) : NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
ActionSolver(AS),
|
||||
phi4(_NumOp.GaugeGrid())
|
||||
{};
|
||||
|
||||
virtual std::string action_name(){return "TwoFlavourRatio4DPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta4(NumOp.GaugeGrid());
|
||||
FermionField eta5(NumOp.FermionGrid());
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
FermionField phi5(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta4);
|
||||
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
|
||||
|
||||
DenOp.M(eta5,phi5); // M eta
|
||||
NumOp.Mdag(phi5,tmp); // Vdag M eta
|
||||
phi5 = Zero();
|
||||
ActionSolver(MdagMOp,tmp,phi5); // (VdagV)^-1 M eta = V^-1 Vdag^-1 Vdag M eta = V^-1 M eta
|
||||
phi5=phi5*scale;
|
||||
|
||||
// Project to 4d
|
||||
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField Y4(NumOp.GaugeGrid());
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField phi5(NumOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
|
||||
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
|
||||
NumOp.M(phi5,Y); // Y= V phi
|
||||
DenOp.Mdag(Y,X); // X= Mdag V phi
|
||||
Y=Zero();
|
||||
ActionSolver(MdagMOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
|
||||
|
||||
NumOp.ExportFourDimPseudoFermion(Y,Y4);
|
||||
|
||||
RealD action = norm2(Y4);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
|
||||
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField phi(NumOp.FermionGrid());
|
||||
FermionField Vphi(NumOp.FermionGrid());
|
||||
FermionField MinvVphi(NumOp.FermionGrid());
|
||||
FermionField tmp4(NumOp.GaugeGrid());
|
||||
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
|
||||
|
||||
GaugeField force(NumOp.GaugeGrid());
|
||||
|
||||
//Y=V phi
|
||||
//X = (Mdag V phi
|
||||
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
|
||||
NumOp.ImportFourDimPseudoFermion(phi4,phi);
|
||||
NumOp.M(phi,Vphi); // V phi
|
||||
DenOp.Mdag(Vphi,X); // X= Mdag V phi
|
||||
Y=Zero();
|
||||
DerivativeSolver(MdagMOp,X,MinvVphi);// M^-1 V phi
|
||||
|
||||
// Projects onto the physical space and back
|
||||
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
|
||||
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
|
||||
|
||||
X=Zero();
|
||||
DerivativeSolver(MdagMOp,Y,X);// X = (MdagM)^-1 proj M^-1 V phi
|
||||
DenOp.M(X,MdagInvMinvVphi);
|
||||
|
||||
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
|
||||
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
|
||||
|
||||
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
|
||||
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
|
||||
|
||||
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
|
||||
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
203
Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
Normal file
203
Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
Normal file
@ -0,0 +1,203 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////////
|
||||
// Two flavour ratio
|
||||
///////////////////////////////////////
|
||||
template<class Impl>
|
||||
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||
public:
|
||||
INHERIT_IMPL_TYPES(Impl);
|
||||
|
||||
private:
|
||||
typedef FermionOperator<Impl> FermOp;
|
||||
FermionOperator<Impl> & NumOp;// the basic operator
|
||||
FermionOperator<Impl> & DenOp;// the basic operator
|
||||
|
||||
OperatorFunction<FermionField> &DerivativeSolver;
|
||||
OperatorFunction<FermionField> &DerivativeDagSolver;
|
||||
OperatorFunction<FermionField> &ActionSolver;
|
||||
OperatorFunction<FermionField> &HeatbathSolver;
|
||||
|
||||
FermionField phi4; // the pseudo fermion field for this trajectory
|
||||
|
||||
public:
|
||||
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & AS ) :
|
||||
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
|
||||
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||
FermionOperator<Impl> &_DenOp,
|
||||
OperatorFunction<FermionField> & DS,
|
||||
OperatorFunction<FermionField> & DDS,
|
||||
OperatorFunction<FermionField> & AS,
|
||||
OperatorFunction<FermionField> & HS
|
||||
) : NumOp(_NumOp),
|
||||
DenOp(_DenOp),
|
||||
DerivativeSolver(DS),
|
||||
DerivativeDagSolver(DDS),
|
||||
ActionSolver(AS),
|
||||
HeatbathSolver(HS),
|
||||
phi4(_NumOp.GaugeGrid())
|
||||
{};
|
||||
|
||||
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
|
||||
|
||||
virtual std::string LogParameters(){
|
||||
std::stringstream sstream;
|
||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||
return sstream.str();
|
||||
}
|
||||
|
||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||
|
||||
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
|
||||
//
|
||||
// NumOp == V
|
||||
// DenOp == M
|
||||
//
|
||||
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
|
||||
//
|
||||
// P(eta) = e^{- eta^dag eta}
|
||||
//
|
||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||
//
|
||||
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||
//
|
||||
RealD scale = std::sqrt(0.5);
|
||||
|
||||
FermionField eta4(NumOp.GaugeGrid());
|
||||
FermionField eta5(NumOp.FermionGrid());
|
||||
FermionField tmp(NumOp.FermionGrid());
|
||||
FermionField phi5(NumOp.FermionGrid());
|
||||
|
||||
gaussian(pRNG,eta4);
|
||||
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
|
||||
|
||||
DenOp.M(eta5,tmp); // M eta
|
||||
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
|
||||
phi5=phi5*scale;
|
||||
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
|
||||
// Project to 4d
|
||||
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
|
||||
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual RealD S(const GaugeField &U) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField Y4(NumOp.GaugeGrid());
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField phi5(NumOp.FermionGrid());
|
||||
|
||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
|
||||
|
||||
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
|
||||
NumOp.M(phi5,X); // X= V phi
|
||||
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
|
||||
NumOp.ExportFourDimPseudoFermion(Y,Y4);
|
||||
|
||||
RealD action = norm2(Y4);
|
||||
|
||||
return action;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
|
||||
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||
|
||||
NumOp.ImportGauge(U);
|
||||
DenOp.ImportGauge(U);
|
||||
|
||||
FermionField X(NumOp.FermionGrid());
|
||||
FermionField Y(NumOp.FermionGrid());
|
||||
FermionField phi(NumOp.FermionGrid());
|
||||
FermionField Vphi(NumOp.FermionGrid());
|
||||
FermionField MinvVphi(NumOp.FermionGrid());
|
||||
FermionField tmp4(NumOp.GaugeGrid());
|
||||
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
|
||||
|
||||
GaugeField force(NumOp.GaugeGrid());
|
||||
|
||||
//Y=V phi
|
||||
//X = (Mdag V phi
|
||||
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
|
||||
NumOp.ImportFourDimPseudoFermion(phi4,phi);
|
||||
NumOp.M(phi,Vphi); // V phi
|
||||
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
|
||||
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
|
||||
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
|
||||
|
||||
// Projects onto the physical space and back
|
||||
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
|
||||
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
|
||||
|
||||
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
|
||||
// X = proj M^-dag V phi
|
||||
// Need an adjoint solve
|
||||
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
|
||||
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
|
||||
|
||||
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
|
||||
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
|
||||
|
||||
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
|
||||
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
|
||||
|
||||
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
|
||||
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
|
||||
|
||||
dSdU *= -1.0;
|
||||
//dSdU = - Ta(dSdU);
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -34,6 +34,7 @@ directory
|
||||
* @brief Classes for Hybrid Monte Carlo update
|
||||
*
|
||||
* @author Guido Cossu
|
||||
* @author Peter Boyle
|
||||
*/
|
||||
//--------------------------------------------------------------------
|
||||
#pragma once
|
||||
@ -115,22 +116,17 @@ private:
|
||||
|
||||
random(sRNG, rn_test);
|
||||
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "exp(-dH) = " << prob
|
||||
<< " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
|
||||
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||
|
||||
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
||||
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
return true;
|
||||
} else { // rejected
|
||||
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
|
||||
std::cout << GridLogHMC
|
||||
<< "--------------------------------------------------\n";
|
||||
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -139,18 +135,63 @@ private:
|
||||
// Evolution
|
||||
/////////////////////////////////////////////////////////
|
||||
RealD evolve_hmc_step(Field &U) {
|
||||
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
|
||||
|
||||
RealD H0 = TheIntegrator.S(U); // initial state action
|
||||
GridBase *Grid = U.Grid();
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Mainly for DDHMC perform a random translation of U modulo volume
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Random shifting gauge field by [";
|
||||
for(int d=0;d<Grid->Nd();d++) {
|
||||
|
||||
int L = Grid->GlobalDimensions()[d];
|
||||
|
||||
RealD rn_uniform; random(sRNG, rn_uniform);
|
||||
|
||||
int shift = (int) (rn_uniform*L);
|
||||
|
||||
std::cout << shift;
|
||||
if(d<Grid->Nd()-1) std::cout <<",";
|
||||
else std::cout <<"]\n";
|
||||
|
||||
U = Cshift(U,d,shift);
|
||||
}
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// set U and initialize P and phi's
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
|
||||
TheIntegrator.refresh(U, sRNG, pRNG);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// initial state action
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Compute initial action";
|
||||
RealD H0 = TheIntegrator.S(U);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
std::streamsize current_precision = std::cout.precision();
|
||||
std::cout.precision(15);
|
||||
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
|
||||
TheIntegrator.integrate(U);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
RealD H1 = TheIntegrator.S(U); // updated state action
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// updated state action
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Compute final action";
|
||||
RealD H1 = TheIntegrator.S(U);
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
if(0){
|
||||
@ -163,17 +204,19 @@ private:
|
||||
}
|
||||
///////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
std::cout.precision(15);
|
||||
<<<<<<< HEAD
|
||||
std::cout << GridLogHMC << "Total H after trajectory = " << H1
|
||||
<< " dH = " << H1 - H0 << "\n";
|
||||
=======
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
std::cout << GridLogMessage << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
|
||||
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||
>>>>>>> bd181b94819600174e91b331e24f71598b3e7bb9
|
||||
std::cout.precision(current_precision);
|
||||
|
||||
return (H1 - H0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
public:
|
||||
/////////////////////////////////////////
|
||||
@ -195,8 +238,15 @@ public:
|
||||
|
||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
|
||||
|
||||
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
|
||||
<<<<<<< HEAD
|
||||
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
|
||||
=======
|
||||
|
||||
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
|
||||
|
||||
>>>>>>> bd181b94819600174e91b331e24f71598b3e7bb9
|
||||
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
|
||||
}
|
||||
@ -216,8 +266,6 @@ public:
|
||||
if (accept)
|
||||
Ucur = Ucopy;
|
||||
|
||||
|
||||
|
||||
double t1=usecond();
|
||||
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||
|
||||
|
@ -33,7 +33,6 @@ directory
|
||||
#define INTEGRATOR_INCLUDED
|
||||
|
||||
#include <memory>
|
||||
#include "MomentumFilter.h"
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -133,17 +132,22 @@ protected:
|
||||
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
|
||||
|
||||
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
|
||||
auto name = as[level].actions.at(a)->action_name();
|
||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||
double end_force = usecond();
|
||||
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
Real max_force_abs = std::sqrt(maxLocalNorm2(force));
|
||||
Real max_impulse_abs = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
Real force_max = std::sqrt(maxLocalNorm2(force));
|
||||
Real impulse_max = max_force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << force_abs*ep <<" "<<name<<std::endl;
|
||||
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << force_max*ep <<" "<<name<<std::endl;
|
||||
|
||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << " Max force: " << max_force_abs << " Time step: " << ep << " Impulse average: " << impulse_abs << " Max impulse: " << max_impulse_abs << std::endl;
|
||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||
double end_full = usecond();
|
||||
double time_full = (end_full - start_full) / 1e3;
|
||||
|
@ -182,7 +182,7 @@ namespace ConjugateBC {
|
||||
GridBase *grid = Link.Grid();
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
Lattice<iScalar<vInteger> > coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
Lattice<gauge> tmp(grid);
|
||||
|
Reference in New Issue
Block a user