1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00

Async memcpy's and cleanup

This commit is contained in:
Dennis Bollweg 2024-02-01 17:55:35 -05:00
parent 79a6ed32d8
commit b8b9dc952d
2 changed files with 92 additions and 59 deletions

View File

@ -4,9 +4,8 @@
#include <cub/cub.cuh> #include <cub/cub.cuh>
#define gpucub cub #define gpucub cub
#define gpuMalloc cudaMalloc #define gpuMalloc cudaMalloc
#define gpuMemcpy cudaMemcpy #define gpuMemcpyDtoHAsync cudaMemcpyDtoHAsync
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost #define gpuMemcpyHtoDAsync cudaMemcpyHtoDAsync
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice
#define gpuError_t cudaError_t #define gpuError_t cudaError_t
#define gpuSuccess cudaSuccess #define gpuSuccess cudaSuccess
@ -15,13 +14,11 @@
#include <hipcub/hipcub.hpp> #include <hipcub/hipcub.hpp>
#define gpucub hipcub #define gpucub hipcub
#define gpuMalloc hipMalloc #define gpuMalloc hipMalloc
#define gpuMemcpy hipMemcpy #define gpuMemcpyDtoHAsync hipMemcpyDtoHAsync
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost #define gpuMemcpyHtoDAsync hipMemcpyHtoDAsync
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice
#define gpuError_t hipError_t #define gpuError_t hipError_t
#define gpuSuccess hipSuccess #define gpuSuccess hipSuccess
// extern hipStream_t computeStream;
#endif #endif
@ -49,78 +46,101 @@ template<class vobj> inline void sliceSumGpu(const Lattice<vobj> &Data,std::vect
int e2= grid->_slice_block [orthogdim]; int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim]; int stride=grid->_slice_stride[orthogdim];
int ostride=grid->_ostride[orthogdim]; int ostride=grid->_ostride[orthogdim];
size_t subvol_size = e1*e2;
Vector<vobj> lvSum(rd); Vector<vobj> lvSum(rd);
Vector<sobj> lsSum(ld,Zero()); Vector<sobj> lsSum(ld,Zero());
commVector<vobj> reduction_buffer(rd*e1*e2); commVector<vobj> reduction_buffer(rd*e1*e2);
ExtractBuffer<sobj> extracted(Nsimd); ExtractBuffer<sobj> extracted(Nsimd);
result.resize(fd); result.resize(fd);
for(int r=0;r<rd;r++){ for(int r=0;r<rd;r++){
lvSum[r]=Zero(); lvSum[r]=Zero();
} }
vobj identity;
zeroit(identity); vobj vobj_zero; //Need to provide initial value for reduction operation
zeroit(vobj_zero);
autoView( Data_v, Data, AcceleratorRead); autoView( Data_v, Data, AcceleratorRead);
auto rb_p = &reduction_buffer[0];
auto rb_p = &reduction_buffer[0];
void *helperArray = NULL; void *helperArray = NULL;
vobj *d_out; vobj *d_out;
size_t temp_storage_bytes = 0; size_t temp_storage_bytes = 0;
size_t size = e1*e2;
std::vector<int> offsets(rd+1,0);
for (int i = 0; i < offsets.size(); i++) {
offsets[i] = i*size;
}
int* d_offsets; int* d_offsets;
gpuError_t gpuErr = gpuMalloc(&d_out,rd*sizeof(vobj)); std::vector<int> offsets(rd+1,0);
if (gpuErr != gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc(1) Error: " << gpuErr <<std::endl; for (int i = 0; i < offsets.size(); i++) {
} offsets[i] = i*subvol_size;
gpuErr = gpuMalloc(&d_offsets,sizeof(int)*(rd+1));
if (gpuErr != gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc(2) Error: " << gpuErr <<std::endl;
}
gpuErr = gpuMemcpy(d_offsets,&offsets[0],sizeof(int)*(rd+1),gpuMemcpyHostToDevice);
if (gpuErr != gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy(1) Error: " << gpuErr <<std::endl;
}
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), identity, computeStream);
if (gpuErr!=gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during cub::DeviceReduce::Sum(1)! Error: " << gpuErr <<std::endl;
} }
//Allocate memory for output and offset arrays on device
gpuError_t gpuErr = gpuMalloc(&d_out,rd*sizeof(vobj));
if (gpuErr != gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (d_out)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
gpuErr = gpuMalloc(&d_offsets,sizeof(int)*(rd+1));
if (gpuErr != gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (d_offsets)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
//copy offsets to device
gpuErr = gpuMemcpyHtoDAsync(d_offsets,&offsets[0],sizeof(int)*(rd+1),computeStream);
if (gpuErr != gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy (d_offsets)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
//determine helperArray size
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), vobj_zero, computeStream);
if (gpuErr!=gpuSuccess) {
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
}
//allocate memory for helperArray
gpuErr = gpuMalloc(&helperArray,temp_storage_bytes); gpuErr = gpuMalloc(&helperArray,temp_storage_bytes);
if (gpuErr!=gpuSuccess) { if (gpuErr!=gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc Error: " << gpuErr <<std::endl; std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (helperArray)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
} }
//prepare buffer for reduction //prepare buffer for reduction
accelerator_for2dNB( s,e1*e2, r,rd, grid->Nsimd(),{ //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream) //use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
//use 2d accelerator_for to avoid launch latencies found when looping over rd //use 2d accelerator_for to avoid launch latencies found when serially looping over rd
accelerator_for2dNB( s,subvol_size, r,rd, grid->Nsimd(),{
int n = s / e2; int n = s / e2;
int b = s % e2; int b = s % e2;
int so=r*ostride; // base offset for start of plane int so=r*ostride; // base offset for start of plane
int ss= so+n*stride+b; int ss= so+n*stride+b;
coalescedWrite(rb_p[r*e1*e2+s], coalescedRead(Data_v[ss])); coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
}); });
//issue reductions in computeStream //issue segmented reductions in computeStream
gpuErr =gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), identity, computeStream); gpuErr = gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), vobj_zero, computeStream);
if (gpuErr!=gpuSuccess) { if (gpuErr!=gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during cub::DeviceReduce::Sum(2)! Error: " << gpuErr <<std::endl; std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
} }
//sync before copy gpuErr = gpuMemcpyDtoHAsync(&lvSum[0],d_out,rd*sizeof(vobj),computeStream);
accelerator_barrier();
gpuErr = gpuMemcpy(&lvSum[0],d_out,rd*sizeof(vobj),gpuMemcpyDeviceToHost);
if (gpuErr!=gpuSuccess) { if (gpuErr!=gpuSuccess) {
std::cout << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy(2) Error: " << gpuErr <<std::endl; std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy (d_out)! Error: " << gpuErr <<std::endl;
exit(EXIT_FAILURE);
} }
//sync after copy
accelerator_barrier();
// Sum across simd lanes in the plane, breaking out orthog dir. // Sum across simd lanes in the plane, breaking out orthog dir.
Coordinate icoor(Nd); Coordinate icoor(Nd);

View File

@ -29,29 +29,42 @@ int main (int argc, char ** argv) {
sliceSumGpu(test_data,reduction_result,0); sliceSumGpu(test_data,reduction_result,0);
} }
int trace_id = traceStart("sliceSum benchmark");
for (int i = 0; i < Nd; i++) { for (int i = 0; i < Nd; i++) {
RealD t=-usecond();
sliceSum(test_data,reduction_reference,i);
t+=usecond();
std::cout << " sliceSum took "<<t<<" usecs"<<std::endl;
RealD tgpu=-usecond();
tracePush("sliceSumGpu");
sliceSumGpu(test_data,reduction_result,i);
tracePop("sliceSumGpu");
tgpu+=usecond();
std::cout <<" sliceSumGpu took "<<tgpu<<" usecs"<<std::endl;
for(int t=0;t<reduction_reference.size();t++){ RealD t=-usecond();
auto diff = reduction_reference[t]-reduction_result[t];
// std::cout << "Difference = " << diff <<std::endl;
assert(abs(TensorRemove(diff)) < 1e-8 ); tracePush("sliceSum");
} sliceSum(test_data,reduction_reference,i);
tracePop("sliceSum");
t+=usecond();
std::cout << GridLogMessage << " sliceSum took "<<t<<" usecs"<<std::endl;
RealD tgpu=-usecond();
tracePush("sliceSumGpu");
sliceSumGpu(test_data,reduction_result,i);
tracePop("sliceSumGpu");
tgpu+=usecond();
std::cout << GridLogMessage <<" sliceSumGpu took "<<tgpu<<" usecs"<<std::endl;
for(int t=0;t<reduction_reference.size();t++) {
auto diff = reduction_reference[t]-reduction_result[t];
assert(abs(TensorRemove(diff)) < 1e-8 );
}
} }
traceStop(trace_id);
Grid_finalize(); Grid_finalize();
return 0; return 0;
} }