mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	PartialFraction Hw with Zolo and Tanh approx converged under CG and passed EO breakdown
and hermiticity tests.
This commit is contained in:
		@@ -62,6 +62,8 @@
 | 
			
		||||
// Partial fraction
 | 
			
		||||
//////////////////////
 | 
			
		||||
#include <qcd/action/fermion/PartialFractionFermion5D.h>
 | 
			
		||||
#include <qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
 | 
			
		||||
#include <qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    // Chroma interface defining FermionAction
 | 
			
		||||
 
 | 
			
		||||
@@ -9,6 +9,16 @@ namespace Grid {
 | 
			
		||||
    }
 | 
			
		||||
    void ContinuedFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
 | 
			
		||||
    {
 | 
			
		||||
      // How to check Ls matches??
 | 
			
		||||
      //      std::cout << Ls << " Ls"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->n  << " - n"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->da << " -da "<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->db << " -db"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->dn << " -dn"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->dd << " -dd"<<std::endl;
 | 
			
		||||
 | 
			
		||||
      assert(zdata->db==Ls);// Beta has Ls coeffs
 | 
			
		||||
 | 
			
		||||
      R=(1+this->mass)/(1-this->mass);
 | 
			
		||||
 | 
			
		||||
      Beta.resize(Ls);
 | 
			
		||||
@@ -29,7 +39,7 @@ namespace Grid {
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      ZoloHiInv =1.0/zolo_hi;
 | 
			
		||||
      double dw_diag = (4.0-M5)*ZoloHiInv;
 | 
			
		||||
      dw_diag = (4.0-M5)*ZoloHiInv;
 | 
			
		||||
    
 | 
			
		||||
      See.resize(Ls);
 | 
			
		||||
      Aee.resize(Ls);
 | 
			
		||||
@@ -105,8 +115,6 @@ namespace Grid {
 | 
			
		||||
    }
 | 
			
		||||
    void   ContinuedFractionFermion5D::Mooee       (const LatticeFermion &psi, LatticeFermion &chi)
 | 
			
		||||
    {
 | 
			
		||||
      double dw_diag = (4.0-M5)*ZoloHiInv;
 | 
			
		||||
    
 | 
			
		||||
      int sign=1;
 | 
			
		||||
      for(int s=0;s<Ls;s++){
 | 
			
		||||
	if ( s==0 ) {
 | 
			
		||||
 
 | 
			
		||||
@@ -37,9 +37,8 @@ namespace Grid {
 | 
			
		||||
      void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
 | 
			
		||||
      void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);;
 | 
			
		||||
 | 
			
		||||
      Approx::zolotarev_data *zdata;
 | 
			
		||||
 | 
			
		||||
      // Cont frac
 | 
			
		||||
      RealD dw_diag;
 | 
			
		||||
      RealD mass;
 | 
			
		||||
      RealD R;
 | 
			
		||||
      RealD ZoloHiInv;
 | 
			
		||||
 
 | 
			
		||||
@@ -29,13 +29,14 @@ namespace Grid {
 | 
			
		||||
      {
 | 
			
		||||
	RealD eps = 1.0;
 | 
			
		||||
 | 
			
		||||
	Approx::zolotarev_data *zdata = Approx::grid_higham(eps,this->Ls);// eps is ignored for higham
 | 
			
		||||
	Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
 | 
			
		||||
	assert(zdata->n==this->Ls);
 | 
			
		||||
	
 | 
			
		||||
	std::cout << "DomainWallFermion with Ls="<<Ls<<std::endl;
 | 
			
		||||
	// Call base setter
 | 
			
		||||
	this->CayleyFermion5D::SetCoefficientsTanh(zdata,1.0,0.0);
 | 
			
		||||
 
 | 
			
		||||
 | 
			
		||||
	Approx::zolotarev_free(zdata);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
 
 | 
			
		||||
@@ -31,11 +31,13 @@ namespace Grid {
 | 
			
		||||
	RealD eps = 1.0;
 | 
			
		||||
 | 
			
		||||
	std::cout << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Tanh approx"<<std::endl;
 | 
			
		||||
	Approx::zolotarev_data *zdata = Approx::grid_higham(eps,this->Ls);// eps is ignored for higham
 | 
			
		||||
	Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
 | 
			
		||||
	assert(zdata->n==this->Ls);
 | 
			
		||||
	
 | 
			
		||||
	// Call base setter
 | 
			
		||||
	this->CayleyFermion5D::SetCoefficientsTanh(zdata,b,c);
 | 
			
		||||
 | 
			
		||||
	Approx::zolotarev_free(zdata);
 | 
			
		||||
 
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -31,7 +31,7 @@ namespace Grid {
 | 
			
		||||
      {
 | 
			
		||||
	RealD eps = lo/hi;
 | 
			
		||||
 | 
			
		||||
	Approx::zolotarev_data *zdata = Approx::grid_zolotarev(eps,this->Ls,0);// eps is ignored for higham
 | 
			
		||||
	Approx::zolotarev_data *zdata = Approx::zolotarev(eps,this->Ls,0);
 | 
			
		||||
	assert(zdata->n==this->Ls);
 | 
			
		||||
 | 
			
		||||
	std::cout << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
 | 
			
		||||
@@ -39,6 +39,7 @@ namespace Grid {
 | 
			
		||||
	// Call base setter
 | 
			
		||||
	this->CayleyFermion5D::SetCoefficientsZolotarev(hi,zdata,b,c);
 | 
			
		||||
 
 | 
			
		||||
	Approx::zolotarev_free(zdata);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
 
 | 
			
		||||
@@ -30,8 +30,9 @@ namespace Grid {
 | 
			
		||||
	{
 | 
			
		||||
	  assert((Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
	  int nrational=Ls-1;// Even rational order
 | 
			
		||||
	  zdata = Approx::grid_higham(1.0,nrational);// eps is ignored for higham
 | 
			
		||||
	  Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
 | 
			
		||||
	  SetCoefficientsTanh(zdata,scale);
 | 
			
		||||
	  Approx::zolotarev_free(zdata);
 | 
			
		||||
	}
 | 
			
		||||
    };
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
@@ -30,12 +30,12 @@ namespace Grid {
 | 
			
		||||
	{
 | 
			
		||||
	  assert((Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
 | 
			
		||||
	  int nrational=Ls-1;// Even rational order
 | 
			
		||||
	  int nrational=Ls;// Odd rational order
 | 
			
		||||
	  RealD eps = lo/hi;
 | 
			
		||||
 | 
			
		||||
	  Approx::zolotarev_data *zdata = Approx::grid_zolotarev(eps,nrational,0);
 | 
			
		||||
 | 
			
		||||
	  Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
 | 
			
		||||
	  SetCoefficientsZolotarev(hi,zdata);
 | 
			
		||||
	  Approx::zolotarev_free(zdata);
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
    };
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,40 @@
 | 
			
		||||
#ifndef OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
 | 
			
		||||
#define OVERLAP_WILSON_PARTFRAC_TANH_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  namespace QCD {
 | 
			
		||||
 | 
			
		||||
    class OverlapWilsonPartialFractionTanhFermion : public PartialFractionFermion5D
 | 
			
		||||
    {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      virtual void   Instantiatable(void){};
 | 
			
		||||
      // Constructors
 | 
			
		||||
    OverlapWilsonPartialFractionTanhFermion(LatticeGaugeField &_Umu,
 | 
			
		||||
					    GridCartesian         &FiveDimGrid,
 | 
			
		||||
					    GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
					    GridCartesian         &FourDimGrid,
 | 
			
		||||
					    GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
					    RealD _mass,RealD _M5,
 | 
			
		||||
					    RealD scale) :
 | 
			
		||||
      
 | 
			
		||||
      // b+c=scale, b-c = 0 <=> b =c = scale/2
 | 
			
		||||
      PartialFractionFermion5D(_Umu,
 | 
			
		||||
			       FiveDimGrid,
 | 
			
		||||
			       FiveDimRedBlackGrid,
 | 
			
		||||
			       FourDimGrid,
 | 
			
		||||
			       FourDimRedBlackGrid,_mass,_M5)
 | 
			
		||||
	{
 | 
			
		||||
	  assert((Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
	  int nrational=Ls-1;// Even rational order
 | 
			
		||||
	  Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
 | 
			
		||||
	  SetCoefficientsTanh(zdata,scale);
 | 
			
		||||
	  Approx::zolotarev_free(zdata);
 | 
			
		||||
	}
 | 
			
		||||
    };
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -0,0 +1,44 @@
 | 
			
		||||
#ifndef OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
 | 
			
		||||
#define OVERLAP_WILSON_PARTFRAC_ZOLOTAREV_FERMION_H
 | 
			
		||||
 | 
			
		||||
#include <Grid.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  namespace QCD {
 | 
			
		||||
 | 
			
		||||
    class OverlapWilsonPartialFractionZolotarevFermion : public PartialFractionFermion5D
 | 
			
		||||
    {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      virtual void   Instantiatable(void){};
 | 
			
		||||
      // Constructors
 | 
			
		||||
    OverlapWilsonPartialFractionZolotarevFermion(LatticeGaugeField &_Umu,
 | 
			
		||||
					  GridCartesian         &FiveDimGrid,
 | 
			
		||||
					  GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
					  GridCartesian         &FourDimGrid,
 | 
			
		||||
					  GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
					  RealD _mass,RealD _M5,
 | 
			
		||||
					  RealD lo,RealD hi):
 | 
			
		||||
      
 | 
			
		||||
      // b+c=scale, b-c = 0 <=> b =c = scale/2
 | 
			
		||||
      PartialFractionFermion5D(_Umu,
 | 
			
		||||
			       FiveDimGrid,
 | 
			
		||||
			       FiveDimRedBlackGrid,
 | 
			
		||||
			       FourDimGrid,
 | 
			
		||||
			       FourDimRedBlackGrid,_mass,_M5)
 | 
			
		||||
	{
 | 
			
		||||
	  assert((Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
 | 
			
		||||
	  int nrational=Ls;// Odd rational order
 | 
			
		||||
	  RealD eps = lo/hi;
 | 
			
		||||
 | 
			
		||||
	  Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
 | 
			
		||||
	  SetCoefficientsZolotarev(hi,zdata);
 | 
			
		||||
	  Approx::zolotarev_free(zdata);
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
    };
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1 +1,310 @@
 | 
			
		||||
#include <Grid.h>
 | 
			
		||||
namespace Grid {
 | 
			
		||||
  namespace QCD {
 | 
			
		||||
 | 
			
		||||
    void   PartialFractionFermion5D::Meooe_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
 | 
			
		||||
    {
 | 
			
		||||
      // this does both dag and undag but is trivial; make a common helper routing
 | 
			
		||||
      int sign = dag ? (-1) : 1;
 | 
			
		||||
 | 
			
		||||
      if ( psi.checkerboard == Odd ) {
 | 
			
		||||
	DhopEO(psi,chi,DaggerNo);
 | 
			
		||||
      } else {
 | 
			
		||||
	DhopOE(psi,chi,DaggerNo);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      int nblock=(Ls-1)/2;
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	int s = 2*b;
 | 
			
		||||
	ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s); 
 | 
			
		||||
	ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1); 
 | 
			
		||||
      }
 | 
			
		||||
      ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void   PartialFractionFermion5D::Mooee_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
 | 
			
		||||
    {
 | 
			
		||||
      // again dag and undag are trivially related
 | 
			
		||||
      int sign = dag ? (-1) : 1;
 | 
			
		||||
      
 | 
			
		||||
      int nblock=(Ls-1)/2;
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	
 | 
			
		||||
	int s = 2*b;
 | 
			
		||||
	RealD pp = p[nblock-1-b];
 | 
			
		||||
	RealD qq = q[nblock-1-b];
 | 
			
		||||
	
 | 
			
		||||
	// Do each 2x2 block aligned at s and multiplies Dw site diagonal by G5 so Hw
 | 
			
		||||
	ag5xpby_ssp(chi,-dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s  ,s+1); 
 | 
			
		||||
	ag5xpby_ssp(chi, dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s+1,s);
 | 
			
		||||
	axpby_ssp  (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      {
 | 
			
		||||
	RealD R=(1+mass)/(1-mass);
 | 
			
		||||
	//R g5 psi[Ls-1] + p[0] H
 | 
			
		||||
	ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale*dw_diag/amax,psi,Ls-1,Ls-1);
 | 
			
		||||
	
 | 
			
		||||
	for(int b=0;b<nblock;b++){
 | 
			
		||||
	  int s = 2*b+1;
 | 
			
		||||
	  RealD pp = p[nblock-1-b];
 | 
			
		||||
	  axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void   PartialFractionFermion5D::MooeeInv_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
 | 
			
		||||
    {
 | 
			
		||||
      int sign = dag ? (-1) : 1;
 | 
			
		||||
 | 
			
		||||
      LatticeFermion tmp(psi._grid);
 | 
			
		||||
      
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      //Linv
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      int nblock=(Ls-1)/2;
 | 
			
		||||
 | 
			
		||||
      axpy(chi,0.0,psi,psi); // Identity piece
 | 
			
		||||
      
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	int s = 2*b;
 | 
			
		||||
	RealD pp = p[nblock-1-b];
 | 
			
		||||
	RealD qq = q[nblock-1-b];
 | 
			
		||||
	RealD coeff1=sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
 | 
			
		||||
	RealD coeff2=sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
 | 
			
		||||
	axpby_ssp  (chi,1.0,chi,coeff1,psi,Ls-1,s);
 | 
			
		||||
	axpbg5y_ssp(chi,1.0,chi,coeff2,psi,Ls-1,s+1);
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      //Dinv (note D isn't really diagonal -- just diagonal enough that we can still invert)
 | 
			
		||||
      // Compute Seeinv (coeff of gamma5)
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      RealD R=(1+mass)/(1-mass);
 | 
			
		||||
      RealD Seeinv = R + p[nblock]*dw_diag/amax;
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	Seeinv += p[nblock-1-b]*dw_diag/amax / ( dw_diag*dw_diag/amax/amax + q[nblock-1-b]);
 | 
			
		||||
      }    
 | 
			
		||||
      Seeinv = 1.0/Seeinv;
 | 
			
		||||
      
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	int s = 2*b;
 | 
			
		||||
	RealD pp = p[nblock-1-b];
 | 
			
		||||
	RealD qq = q[nblock-1-b];
 | 
			
		||||
	RealD coeff1=dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
 | 
			
		||||
	RealD coeff2=amax*sqrt(qq) / ( dw_diag*dw_diag + amax*amax* qq);
 | 
			
		||||
	ag5xpby_ssp  (tmp,-coeff1,chi,coeff2,chi,s,s+1);
 | 
			
		||||
	ag5xpby_ssp  (tmp, coeff1,chi,coeff2,chi,s+1,s);
 | 
			
		||||
      }
 | 
			
		||||
      ag5xpby_ssp  (tmp, Seeinv,chi,0.0,chi,Ls-1,Ls-1);
 | 
			
		||||
      
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      // Uinv
 | 
			
		||||
      ///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	int s = 2*b;
 | 
			
		||||
	RealD pp = p[nblock-1-b];
 | 
			
		||||
	RealD qq = q[nblock-1-b];
 | 
			
		||||
	RealD coeff1=-sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
 | 
			
		||||
	RealD coeff2=-sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
 | 
			
		||||
	axpby_ssp  (chi,1.0/scale,tmp,coeff1/scale,tmp,s,Ls-1);
 | 
			
		||||
	axpbg5y_ssp(chi,1.0/scale,tmp,coeff2/scale,tmp,s+1,Ls-1);
 | 
			
		||||
      }
 | 
			
		||||
      axpby_ssp  (chi, 1.0/scale,tmp,0.0,tmp,Ls-1,Ls-1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void   PartialFractionFermion5D::M_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
 | 
			
		||||
    {
 | 
			
		||||
      LatticeFermion D(psi._grid);
 | 
			
		||||
  
 | 
			
		||||
      int sign = dag ? (-1) : 1;
 | 
			
		||||
 | 
			
		||||
      // For partial frac Hw case (b5=c5=1) chroma quirkily computes
 | 
			
		||||
      //
 | 
			
		||||
      // Conventions for partfrac appear to be a mess.
 | 
			
		||||
      // Tony's Nara lectures have
 | 
			
		||||
      //
 | 
			
		||||
      // BlockDiag(  H/p_i  1             | 1       )    
 | 
			
		||||
      //          (  1      p_i H / q_i^2 | 0       )  
 | 
			
		||||
      //           ---------------------------------
 | 
			
		||||
      //           ( -1      0                | R  +p0 H  )
 | 
			
		||||
      //
 | 
			
		||||
      //Chroma     ( -2H    2sqrt(q_i)    |   0         )
 | 
			
		||||
      //           (2 sqrt(q_i)   2H      |  2 sqrt(p_i) )
 | 
			
		||||
      //           ---------------------------------
 | 
			
		||||
      //           ( 0     -2 sqrt(p_i)   |  2 R gamma_5 + p0 2H
 | 
			
		||||
      //
 | 
			
		||||
      // Edwards/Joo/Kennedy/Wenger
 | 
			
		||||
      //
 | 
			
		||||
      // Here, the "beta's" selected by chroma to scale the unphysical bulk constraint fields
 | 
			
		||||
      // incorporate the approx scale factor. This is obtained by propagating the
 | 
			
		||||
      // scale on "H" out to the off diagonal elements as follows:
 | 
			
		||||
      //
 | 
			
		||||
      // BlockDiag(  H/p_i  1             | 1       ) 
 | 
			
		||||
      //          (  1      p_i H / q_i^2 | 0       )  
 | 
			
		||||
      //           ---------------------------------
 | 
			
		||||
      //          ( -1      0                | R  + p_0 H  )
 | 
			
		||||
      //
 | 
			
		||||
      // becomes:
 | 
			
		||||
      // BlockDiag(  H/ sp_i  1               | 1             ) 
 | 
			
		||||
      //          (  1      sp_i H / s^2q_i^2 | 0             )  
 | 
			
		||||
      //           ---------------------------------
 | 
			
		||||
      //           ( -1      0                | R + p_0/s H   )
 | 
			
		||||
      //
 | 
			
		||||
      //
 | 
			
		||||
      // This is implemented in Chroma by
 | 
			
		||||
      //           p0' = p0/approxMax
 | 
			
		||||
      //           p_i' = p_i*approxMax
 | 
			
		||||
      //           q_i' = q_i*approxMax*approxMax
 | 
			
		||||
      //
 | 
			
		||||
      // After the equivalence transform is applied the matrix becomes
 | 
			
		||||
      // 
 | 
			
		||||
      //Chroma     ( -2H    sqrt(q'_i)    |   0         )
 | 
			
		||||
      //           (sqrt(q'_i)   2H       |   sqrt(p'_i) )
 | 
			
		||||
      //           ---------------------------------
 | 
			
		||||
      //           ( 0     -sqrt(p'_i)    |  2 R gamma_5 + p'0 2H
 | 
			
		||||
      //
 | 
			
		||||
      //     =     ( -2H    sqrt(q_i)amax    |   0              )
 | 
			
		||||
      //           (sqrt(q_i)amax   2H       |   sqrt(p_i*amax) )
 | 
			
		||||
      //           ---------------------------------
 | 
			
		||||
      //           ( 0     -sqrt(p_i)*amax   |  2 R gamma_5 + p0/amax 2H
 | 
			
		||||
      //
 | 
			
		||||
 | 
			
		||||
      DW(psi,D,DaggerNo); 
 | 
			
		||||
 | 
			
		||||
      int nblock=(Ls-1)/2;
 | 
			
		||||
      for(int b=0;b<nblock;b++){
 | 
			
		||||
	
 | 
			
		||||
	int s = 2*b;
 | 
			
		||||
	double pp = p[nblock-1-b];
 | 
			
		||||
	double qq = q[nblock-1-b];
 | 
			
		||||
	
 | 
			
		||||
	// Do each 2x2 block aligned at s and
 | 
			
		||||
	ag5xpby_ssp(chi,-1.0*scale,D,amax*sqrt(qq)*scale,psi, s  ,s+1); // Multiplies Dw by G5 so Hw
 | 
			
		||||
	ag5xpby_ssp(chi, 1.0*scale,D,amax*sqrt(qq)*scale,psi, s+1,s);
 | 
			
		||||
	
 | 
			
		||||
	// Pick up last column
 | 
			
		||||
	axpby_ssp  (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
 | 
			
		||||
      }
 | 
			
		||||
	
 | 
			
		||||
      {
 | 
			
		||||
	double R=(1+this->mass)/(1-this->mass);
 | 
			
		||||
	//R g5 psi[Ls] + p[0] H
 | 
			
		||||
	ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
 | 
			
		||||
	
 | 
			
		||||
	for(int b=0;b<nblock;b++){
 | 
			
		||||
	  int s = 2*b+1;
 | 
			
		||||
	  double pp = p[nblock-1-b];
 | 
			
		||||
	  axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    RealD  PartialFractionFermion5D::M    (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      M_internal(in,out,DaggerNo);
 | 
			
		||||
      return norm2(out);
 | 
			
		||||
    }
 | 
			
		||||
    RealD  PartialFractionFermion5D::Mdag (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      M_internal(in,out,DaggerYes);
 | 
			
		||||
      return norm2(out);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void PartialFractionFermion5D::Meooe       (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      Meooe_internal(in,out,DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
    void PartialFractionFermion5D::MeooeDag    (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      Meooe_internal(in,out,DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
    void PartialFractionFermion5D::Mooee       (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      Mooee_internal(in,out,DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
    void PartialFractionFermion5D::MooeeDag    (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      Mooee_internal(in,out,DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void PartialFractionFermion5D::MooeeInv    (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      MooeeInv_internal(in,out,DaggerNo);
 | 
			
		||||
    }
 | 
			
		||||
    void PartialFractionFermion5D::MooeeInvDag (const LatticeFermion &in, LatticeFermion &out)
 | 
			
		||||
    {
 | 
			
		||||
      MooeeInv_internal(in,out,DaggerYes);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void  PartialFractionFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
 | 
			
		||||
      SetCoefficientsZolotarev(1.0/scale,zdata);
 | 
			
		||||
    }
 | 
			
		||||
    void  PartialFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
 | 
			
		||||
 | 
			
		||||
      // check on degree matching
 | 
			
		||||
      //      std::cout << Ls << " Ls"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->n  << " - n"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->da << " -da "<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->db << " -db"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->dn << " -dn"<<std::endl;
 | 
			
		||||
      //      std::cout << zdata->dd << " -dd"<<std::endl;
 | 
			
		||||
      assert(Ls == (2*zdata->da -1) );
 | 
			
		||||
 | 
			
		||||
      // Part frac
 | 
			
		||||
      //      RealD R;
 | 
			
		||||
      R=(1+mass)/(1-mass);
 | 
			
		||||
      dw_diag = (4.0-M5);
 | 
			
		||||
 | 
			
		||||
      //      std::vector<RealD> p; 
 | 
			
		||||
      //      std::vector<RealD> q;
 | 
			
		||||
      p.resize(zdata->da);
 | 
			
		||||
      q.resize(zdata->dd);
 | 
			
		||||
	
 | 
			
		||||
      for(int n=0;n<zdata->da;n++){
 | 
			
		||||
	p[n] = zdata -> alpha[n];
 | 
			
		||||
      }
 | 
			
		||||
      for(int n=0;n<zdata->dd;n++){
 | 
			
		||||
	q[n] = -zdata -> ap[n];
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      scale= part_frac_chroma_convention ? 2.0 : 1.0; // Chroma conventions annoy me
 | 
			
		||||
 | 
			
		||||
      amax=zolo_hi;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
      // Constructors
 | 
			
		||||
    PartialFractionFermion5D::PartialFractionFermion5D(LatticeGaugeField &_Umu,
 | 
			
		||||
						       GridCartesian         &FiveDimGrid,
 | 
			
		||||
						       GridRedBlackCartesian &FiveDimRedBlackGrid,
 | 
			
		||||
						       GridCartesian         &FourDimGrid,
 | 
			
		||||
						       GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
						       RealD _mass,RealD M5) :
 | 
			
		||||
      WilsonFermion5D(_Umu,
 | 
			
		||||
		      FiveDimGrid, FiveDimRedBlackGrid,
 | 
			
		||||
		      FourDimGrid, FourDimRedBlackGrid,M5),
 | 
			
		||||
      mass(_mass)
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
      assert((Ls&0x1)==1); // Odd Ls required
 | 
			
		||||
      int nrational=Ls-1;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);
 | 
			
		||||
 | 
			
		||||
      // NB: chroma uses a cast to "float" for the zolotarev range(!?).
 | 
			
		||||
      // this creates a real difference in the operator which I do not like but we can replicate here
 | 
			
		||||
      // to demonstrate compatibility
 | 
			
		||||
      //      RealD eps = (zolo_lo / zolo_hi);
 | 
			
		||||
      //      zdata = bfm_zolotarev(eps,nrational,0);
 | 
			
		||||
      
 | 
			
		||||
      SetCoefficientsTanh(zdata,1.0);
 | 
			
		||||
 | 
			
		||||
      Approx::zolotarev_free(zdata);
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
 }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -9,6 +9,13 @@ namespace Grid {
 | 
			
		||||
    {
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
      const int part_frac_chroma_convention=1;
 | 
			
		||||
 | 
			
		||||
      void   Meooe_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
 | 
			
		||||
      void   Mooee_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
 | 
			
		||||
      void   MooeeInv_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
 | 
			
		||||
      void   M_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
 | 
			
		||||
 | 
			
		||||
      // override multiply
 | 
			
		||||
      virtual RealD  M    (const LatticeFermion &in, LatticeFermion &out);
 | 
			
		||||
      virtual RealD  Mdag (const LatticeFermion &in, LatticeFermion &out);
 | 
			
		||||
@@ -21,16 +28,7 @@ namespace Grid {
 | 
			
		||||
      virtual void   MooeeInv    (const LatticeFermion &in, LatticeFermion &out);
 | 
			
		||||
      virtual void   MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
 | 
			
		||||
      virtual void PartialFractionCoefficients(void);
 | 
			
		||||
 | 
			
		||||
      Approx::zolotarev_data *zdata;
 | 
			
		||||
 | 
			
		||||
      // Part frac
 | 
			
		||||
      double R;
 | 
			
		||||
      std::vector<double> p; 
 | 
			
		||||
      std::vector<double> q;
 | 
			
		||||
      virtual void   Instantiatable(void) =0; // ensure no make-eee
 | 
			
		||||
 | 
			
		||||
      // Constructors
 | 
			
		||||
      PartialFractionFermion5D(LatticeGaugeField &_Umu,
 | 
			
		||||
@@ -40,6 +38,20 @@ namespace Grid {
 | 
			
		||||
				    GridRedBlackCartesian &FourDimRedBlackGrid,
 | 
			
		||||
				    RealD _mass,RealD M5);
 | 
			
		||||
 | 
			
		||||
    protected:
 | 
			
		||||
 | 
			
		||||
      virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale);
 | 
			
		||||
      virtual void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata);
 | 
			
		||||
 | 
			
		||||
      // Part frac
 | 
			
		||||
      RealD mass;
 | 
			
		||||
      RealD dw_diag;
 | 
			
		||||
      RealD R;
 | 
			
		||||
      RealD amax;
 | 
			
		||||
      RealD scale;
 | 
			
		||||
      std::vector<double> p; 
 | 
			
		||||
      std::vector<double> q;
 | 
			
		||||
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -1,5 +1,5 @@
 | 
			
		||||
#ifndef  GRID_QCD_DWF_H
 | 
			
		||||
#define  GRID_QCD_DWF_H
 | 
			
		||||
#ifndef  GRID_QCD_WILSON_FERMION_5D_H
 | 
			
		||||
#define  GRID_QCD_WILSON_FERMION_5D_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user