diff --git a/Grid/algorithms/Algorithms.h b/Grid/algorithms/Algorithms.h index 7f27784b..ff3da17d 100644 --- a/Grid/algorithms/Algorithms.h +++ b/Grid/algorithms/Algorithms.h @@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB); #include #include #include +#include #include #include #include diff --git a/Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h b/Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h new file mode 100644 index 00000000..93f5c677 --- /dev/null +++ b/Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h @@ -0,0 +1,213 @@ +/************************************************************************************* + + Grid physics library, www.github.com/paboyle/Grid + + Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h + + Copyright (C) 2015 + + Author: Raoul Hodgson + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License along + with this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + + See the full license in the file "LICENSE" in the top level distribution directory +*************************************************************************************/ +/* END LEGAL */ +#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H +#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H + +NAMESPACE_BEGIN(Grid); + +//Mixed precision restarted defect correction CG +template::value == 2, int>::type = 0, + typename std::enable_if< getPrecision::value == 1, int>::type = 0> +class MixedPrecisionConjugateGradientBatched : public LinearFunction { +public: + using LinearFunction::operator(); + RealD Tolerance; + RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed + Integer MaxInnerIterations; + Integer MaxOuterIterations; + Integer MaxPatchupIterations; + GridBase* SinglePrecGrid; //Grid for single-precision fields + RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance + LinearOperatorBase &Linop_f; + LinearOperatorBase &Linop_d; + + //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess + LinearFunction *guesser; + bool updateResidual; + + MixedPrecisionConjugateGradientBatched(RealD tol, + Integer maxinnerit, + Integer maxouterit, + Integer maxpatchit, + GridBase* _sp_grid, + LinearOperatorBase &_Linop_f, + LinearOperatorBase &_Linop_d, + bool _updateResidual=true) : + Linop_f(_Linop_f), Linop_d(_Linop_d), + Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid), + OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { }; + + void useGuesser(LinearFunction &g){ + guesser = &g; + } + + void operator() (const FieldD &src_d_in, FieldD &sol_d){ + std::vector srcs_d_in{src_d_in}; + std::vector sols_d{sol_d}; + + (*this)(srcs_d_in,sols_d); + + sol_d = sols_d[0]; + } + + void operator() (const std::vector &src_d_in, std::vector &sol_d){ + assert(src_d_in.size() == sol_d.size()); + int NBatch = src_d_in.size(); + + std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl; + + Integer TotalOuterIterations = 0; //Number of restarts + std::vector TotalInnerIterations(NBatch,0); //Number of inner CG iterations + std::vector TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step + + GridStopWatch TotalTimer; + TotalTimer.Start(); + + GridStopWatch InnerCGtimer; + GridStopWatch PrecChangeTimer; + + int cb = src_d_in[0].Checkerboard(); + + std::vector src_norm; + std::vector norm; + std::vector stop; + + GridBase* DoublePrecGrid = src_d_in[0].Grid(); + FieldD tmp_d(DoublePrecGrid); + tmp_d.Checkerboard() = cb; + + FieldD tmp2_d(DoublePrecGrid); + tmp2_d.Checkerboard() = cb; + + std::vector src_d; + std::vector src_f; + std::vector sol_f; + + for (int i=0; i CG_f(inner_tol, MaxInnerIterations); + CG_f.ErrorOnNoConverge = false; + + Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count + + for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ + std::cout << GridLogMessage << std::endl; + std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl; + + bool allConverged = true; + + for (int i=0; i OuterLoopNormMult * stop[i]) { + allConverged = false; + } + } + if (allConverged) break; + + if (updateResidual) { + RealD normMax = *std::max_element(std::begin(norm), std::end(norm)); + RealD stopMax = *std::max_element(std::begin(stop), std::end(stop)); + while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ?? + CG_f.Tolerance = inner_tol; + } + + //Optionally improve inner solver guess (eg using known eigenvectors) + if(guesser != NULL) { + (*guesser)(src_f, sol_f); + } + + for (int i=0; i CG_d(Tolerance, MaxPatchupIterations); + CG_d(Linop_d, src_d_in[i], sol_d[i]); + TotalFinalStepIterations[i] += CG_d.IterationsToComplete; + } + + TotalTimer.Stop(); + + std::cout << GridLogMessage << std::endl; + for (int i=0; i > &coarseData, blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed); } } +template +inline void batchBlockProject(std::vector>> &coarseData, + const std::vector> &fineData, + const VLattice &Basis) +{ + int NBatch = fineData.size(); + assert(coarseData.size() == NBatch); + GridBase * fine = fineData[0].Grid(); + GridBase * coarse= coarseData[0].Grid(); + + Lattice> ip(coarse); + std::vector> fineDataCopy = fineData; + + autoView(ip_, ip, AcceleratorWrite); + for(int v=0;v + accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), { + convertType(coarseData_[sc](v),ip_[sc]); + }); + + // improve numerical stability of projection + // |fine> = |fine> - |basis> + ip=-ip; + blockZAXPY(fineDataCopy[k],ip,Basis[v],fineDataCopy[k]); + } + } +} template inline void blockZAXPY(Lattice &fineZ, @@ -590,6 +619,26 @@ inline void blockPromote(const Lattice > &coarseData, } #endif +template +inline void batchBlockPromote(const std::vector>> &coarseData, + std::vector> &fineData, + const VLattice &Basis) +{ + int NBatch = coarseData.size(); + assert(fineData.size() == NBatch); + + GridBase * fine = fineData[0].Grid(); + GridBase * coarse = coarseData[0].Grid(); + for (int k=0; k> ip = PeekIndex<0>(coarseData[k],i); + blockZAXPY(fineData[k],ip,Basis[i],fineData[k]); + } + } +} + // Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars. // Simd layouts need not match since we use peek/poke Local template