mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-19 08:17:05 +01:00
Merge branch 'feature/hadrons' into feature/qed-fvol
# Conflicts: # Makefile.am # configure.ac # lib/qcd/action/gauge/Photon.h
This commit is contained in:
70
lib/FFT.h
70
lib/FFT.h
@ -29,8 +29,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef _GRID_FFT_H_
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
#include <Grid/fftw/fftw3.h>
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
@ -122,7 +126,8 @@ namespace Grid {
|
||||
|
||||
double Flops(void) {return flops;}
|
||||
double MFlops(void) {return flops/usec;}
|
||||
|
||||
double USec(void) {return (double)usec;}
|
||||
|
||||
FFT ( GridCartesian * grid ) :
|
||||
vgrid(grid),
|
||||
Nd(grid->_ndimension),
|
||||
@ -226,28 +231,41 @@ namespace Grid {
|
||||
std::vector<int> lcoor(Nd), gcoor(Nd);
|
||||
result = source;
|
||||
for(int p=0;p<processors[dim];p++) {
|
||||
for(int idx=0;idx<sgrid->lSites();idx++) {
|
||||
sgrid->LocalIndexToLocalCoor(idx,lcoor);
|
||||
PARALLEL_REGION
|
||||
{
|
||||
std::vector<int> cbuf(Nd);
|
||||
sobj s;
|
||||
peekLocalSite(s,result,lcoor);
|
||||
lcoor[dim]+=p*L;
|
||||
pokeLocalSite(s,pgbuf,lcoor);
|
||||
|
||||
PARALLEL_FOR_LOOP_INTERN
|
||||
for(int idx=0;idx<sgrid->lSites();idx++) {
|
||||
sgrid->LocalIndexToLocalCoor(idx,cbuf);
|
||||
peekLocalSite(s,result,cbuf);
|
||||
cbuf[dim]+=p*L;
|
||||
pokeLocalSite(s,pgbuf,cbuf);
|
||||
}
|
||||
}
|
||||
if (p != processors[dim] - 1)
|
||||
{
|
||||
result = Cshift(result,dim,L);
|
||||
}
|
||||
result = Cshift(result,dim,L);
|
||||
}
|
||||
|
||||
// Loop over orthog coords
|
||||
int NN=pencil_g.lSites();
|
||||
GridStopWatch timer;
|
||||
timer.Start();
|
||||
//PARALLEL_FOR_LOOP
|
||||
for(int idx=0;idx<NN;idx++) {
|
||||
pencil_g.LocalIndexToLocalCoor(idx,lcoor);
|
||||
PARALLEL_REGION
|
||||
{
|
||||
std::vector<int> cbuf(Nd);
|
||||
|
||||
if ( lcoor[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx];
|
||||
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx];
|
||||
FFTW<scalar>::fftw_execute_dft(p,in,out);
|
||||
PARALLEL_FOR_LOOP_INTERN
|
||||
for(int idx=0;idx<NN;idx++) {
|
||||
pencil_g.LocalIndexToLocalCoor(idx, cbuf);
|
||||
if ( cbuf[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
|
||||
FFTW_scalar *in = (FFTW_scalar *)&pgbuf._odata[idx];
|
||||
FFTW_scalar *out= (FFTW_scalar *)&pgbuf._odata[idx];
|
||||
FFTW<scalar>::fftw_execute_dft(p,in,out);
|
||||
}
|
||||
}
|
||||
}
|
||||
timer.Stop();
|
||||
@ -261,15 +279,21 @@ namespace Grid {
|
||||
|
||||
// writing out result
|
||||
int pc = processor_coor[dim];
|
||||
for(int idx=0;idx<sgrid->lSites();idx++) {
|
||||
sgrid->LocalIndexToLocalCoor(idx,lcoor);
|
||||
gcoor = lcoor;
|
||||
PARALLEL_REGION
|
||||
{
|
||||
std::vector<int> clbuf(Nd), cgbuf(Nd);
|
||||
sobj s;
|
||||
gcoor[dim] = lcoor[dim]+L*pc;
|
||||
peekLocalSite(s,pgbuf,gcoor);
|
||||
s = s * div;
|
||||
pokeLocalSite(s,result,lcoor);
|
||||
|
||||
PARALLEL_FOR_LOOP_INTERN
|
||||
for(int idx=0;idx<sgrid->lSites();idx++) {
|
||||
sgrid->LocalIndexToLocalCoor(idx,clbuf);
|
||||
cgbuf = clbuf;
|
||||
cgbuf[dim] = clbuf[dim]+L*pc;
|
||||
peekLocalSite(s,pgbuf,cgbuf);
|
||||
pokeLocalSite(s,result,clbuf);
|
||||
}
|
||||
}
|
||||
result = result*div;
|
||||
|
||||
// destroying plan
|
||||
FFTW<scalar>::fftw_destroy_plan(p);
|
||||
|
1
lib/Hadrons
Symbolic link
1
lib/Hadrons
Symbolic link
@ -0,0 +1 @@
|
||||
../extras/Hadrons
|
@ -369,7 +369,7 @@ void Grid_init(int *argc,char ***argv)
|
||||
|
||||
void Grid_finalize(void)
|
||||
{
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3)
|
||||
#if defined (GRID_COMMS_MPI) || defined (GRID_COMMS_MPI3)
|
||||
MPI_Finalize();
|
||||
Grid_unquiesce_nodes();
|
||||
#endif
|
||||
|
@ -93,7 +93,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
|
||||
////////////////////////////////////////////////////////////
|
||||
void Grid_quiesce_nodes(void) {
|
||||
int me = 0;
|
||||
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3)
|
||||
#if defined(GRID_COMMS_MPI) || defined(GRID_COMMS_MPI3) || defined(GRID_COMMS_MPI3L)
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
||||
#endif
|
||||
#ifdef GRID_COMMS_SHMEM
|
||||
|
@ -110,8 +110,8 @@ public:
|
||||
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
|
||||
|
||||
if ( log.active ) {
|
||||
stream << log.background()<< log.topName << log.background()<< " : ";
|
||||
stream << log.colour() <<std::setw(14) << std::left << log.name << log.background() << " : ";
|
||||
stream << log.background()<< std::setw(10) << std::left << log.topName << log.background()<< " : ";
|
||||
stream << log.colour() << std::setw(14) << std::left << log.name << log.background() << " : ";
|
||||
if ( log.timestamp ) {
|
||||
StopWatch.Stop();
|
||||
GridTime now = StopWatch.Elapsed();
|
||||
|
@ -38,14 +38,21 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#ifdef GRID_OMP
|
||||
#include <omp.h>
|
||||
#ifdef GRID_NUMA
|
||||
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for schedule(static)")
|
||||
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for schedule(static)")
|
||||
#define PARALLEL_FOR_LOOP_INTERN _Pragma("omp for schedule(static)")
|
||||
#else
|
||||
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for schedule(runtime)")
|
||||
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for schedule(runtime)")
|
||||
#define PARALLEL_FOR_LOOP_INTERN _Pragma("omp for schedule(runtime)")
|
||||
#endif
|
||||
#define PARALLEL_NESTED_LOOP2 _Pragma("omp parallel for collapse(2)")
|
||||
#define PARALLEL_REGION _Pragma("omp parallel")
|
||||
#define PARALLEL_CRITICAL _Pragma("omp critical")
|
||||
#else
|
||||
#define PARALLEL_FOR_LOOP
|
||||
#define PARALLEL_FOR_LOOP
|
||||
#define PARALLEL_FOR_LOOP_INTERN
|
||||
#define PARALLEL_NESTED_LOOP2
|
||||
#define PARALLEL_REGION
|
||||
#define PARALLEL_CRITICAL
|
||||
#endif
|
||||
|
||||
namespace Grid {
|
||||
|
@ -282,7 +282,7 @@ PARALLEL_FOR_LOOP
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in._odata[SE->_offset];
|
||||
} else {
|
||||
nbr = Stencil.comm_buf[SE->_offset];
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
res = res + A[point]._odata[ss]*nbr;
|
||||
}
|
||||
|
@ -154,7 +154,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
|
||||
<< LinalgTimer.Elapsed();
|
||||
std::cout << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 1000.0);
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -1080,10 +1080,10 @@ say con = 2
|
||||
**/
|
||||
|
||||
template<class T>
|
||||
static void Lock(DenseMatrix<T> &H, ///Hess mtx
|
||||
DenseMatrix<T> &Q, ///Lock Transform
|
||||
T val, ///value to be locked
|
||||
int con, ///number already locked
|
||||
static void Lock(DenseMatrix<T> &H, // Hess mtx
|
||||
DenseMatrix<T> &Q, // Lock Transform
|
||||
T val, // value to be locked
|
||||
int con, // number already locked
|
||||
RealD small,
|
||||
int dfg,
|
||||
bool herm)
|
||||
|
@ -39,6 +39,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#include <semaphore.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <limits.h>
|
||||
|
||||
typedef sem_t *Grid_semaphore;
|
||||
|
||||
#define SEM_INIT(S) S = sem_open(sem_name,0,0600,0); assert ( S != SEM_FAILED );
|
||||
|
@ -97,7 +97,7 @@ void CartesianCommunicator::Barrier(void){}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
|
||||
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor) { return 0;}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ assert(0);}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor){ coor = _processor_coor ;}
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
{
|
||||
source =0;
|
||||
|
412
lib/fftw/fftw3.h
412
lib/fftw/fftw3.h
@ -1,412 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||||
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||||
*
|
||||
* The following statement of license applies *only* to this header file,
|
||||
* and *not* to the other files distributed with FFTW or derived therefrom:
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
||||
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/***************************** NOTE TO USERS *********************************
|
||||
*
|
||||
* THIS IS A HEADER FILE, NOT A MANUAL
|
||||
*
|
||||
* If you want to know how to use FFTW, please read the manual,
|
||||
* online at http://www.fftw.org/doc/ and also included with FFTW.
|
||||
* For a quick start, see the manual's tutorial section.
|
||||
*
|
||||
* (Reading header files to learn how to use a library is a habit
|
||||
* stemming from code lacking a proper manual. Arguably, it's a
|
||||
* *bad* habit in most cases, because header files can contain
|
||||
* interfaces that are not part of the public, stable API.)
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef FFTW3_H
|
||||
#define FFTW3_H
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif /* __cplusplus */
|
||||
|
||||
/* If <complex.h> is included, use the C99 complex type. Otherwise
|
||||
define a type bit-compatible with C99 complex */
|
||||
#if !defined(FFTW_NO_Complex) && defined(_Complex_I) && defined(complex) && defined(I)
|
||||
# define FFTW_DEFINE_COMPLEX(R, C) typedef R _Complex C
|
||||
#else
|
||||
# define FFTW_DEFINE_COMPLEX(R, C) typedef R C[2]
|
||||
#endif
|
||||
|
||||
#define FFTW_CONCAT(prefix, name) prefix ## name
|
||||
#define FFTW_MANGLE_DOUBLE(name) FFTW_CONCAT(fftw_, name)
|
||||
#define FFTW_MANGLE_FLOAT(name) FFTW_CONCAT(fftwf_, name)
|
||||
#define FFTW_MANGLE_LONG_DOUBLE(name) FFTW_CONCAT(fftwl_, name)
|
||||
#define FFTW_MANGLE_QUAD(name) FFTW_CONCAT(fftwq_, name)
|
||||
|
||||
/* IMPORTANT: for Windows compilers, you should add a line
|
||||
#define FFTW_DLL
|
||||
here and in kernel/ifftw.h if you are compiling/using FFTW as a
|
||||
DLL, in order to do the proper importing/exporting, or
|
||||
alternatively compile with -DFFTW_DLL or the equivalent
|
||||
command-line flag. This is not necessary under MinGW/Cygwin, where
|
||||
libtool does the imports/exports automatically. */
|
||||
#if defined(FFTW_DLL) && (defined(_WIN32) || defined(__WIN32__))
|
||||
/* annoying Windows syntax for shared-library declarations */
|
||||
# if defined(COMPILING_FFTW) /* defined in api.h when compiling FFTW */
|
||||
# define FFTW_EXTERN extern __declspec(dllexport)
|
||||
# else /* user is calling FFTW; import symbol */
|
||||
# define FFTW_EXTERN extern __declspec(dllimport)
|
||||
# endif
|
||||
#else
|
||||
# define FFTW_EXTERN extern
|
||||
#endif
|
||||
|
||||
enum fftw_r2r_kind_do_not_use_me {
|
||||
FFTW_R2HC=0, FFTW_HC2R=1, FFTW_DHT=2,
|
||||
FFTW_REDFT00=3, FFTW_REDFT01=4, FFTW_REDFT10=5, FFTW_REDFT11=6,
|
||||
FFTW_RODFT00=7, FFTW_RODFT01=8, FFTW_RODFT10=9, FFTW_RODFT11=10
|
||||
};
|
||||
|
||||
struct fftw_iodim_do_not_use_me {
|
||||
int n; /* dimension size */
|
||||
int is; /* input stride */
|
||||
int os; /* output stride */
|
||||
};
|
||||
|
||||
#include <stddef.h> /* for ptrdiff_t */
|
||||
struct fftw_iodim64_do_not_use_me {
|
||||
ptrdiff_t n; /* dimension size */
|
||||
ptrdiff_t is; /* input stride */
|
||||
ptrdiff_t os; /* output stride */
|
||||
};
|
||||
|
||||
typedef void (*fftw_write_char_func_do_not_use_me)(char c, void *);
|
||||
typedef int (*fftw_read_char_func_do_not_use_me)(void *);
|
||||
|
||||
/*
|
||||
huge second-order macro that defines prototypes for all API
|
||||
functions. We expand this macro for each supported precision
|
||||
|
||||
X: name-mangling macro
|
||||
R: real data type
|
||||
C: complex data type
|
||||
*/
|
||||
|
||||
#define FFTW_DEFINE_API(X, R, C) \
|
||||
\
|
||||
FFTW_DEFINE_COMPLEX(R, C); \
|
||||
\
|
||||
typedef struct X(plan_s) *X(plan); \
|
||||
\
|
||||
typedef struct fftw_iodim_do_not_use_me X(iodim); \
|
||||
typedef struct fftw_iodim64_do_not_use_me X(iodim64); \
|
||||
\
|
||||
typedef enum fftw_r2r_kind_do_not_use_me X(r2r_kind); \
|
||||
\
|
||||
typedef fftw_write_char_func_do_not_use_me X(write_char_func); \
|
||||
typedef fftw_read_char_func_do_not_use_me X(read_char_func); \
|
||||
\
|
||||
FFTW_EXTERN void X(execute)(const X(plan) p); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_dft)(int rank, const int *n, \
|
||||
C *in, C *out, int sign, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_dft_1d)(int n, C *in, C *out, int sign, \
|
||||
unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_dft_2d)(int n0, int n1, \
|
||||
C *in, C *out, int sign, unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_dft_3d)(int n0, int n1, int n2, \
|
||||
C *in, C *out, int sign, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_many_dft)(int rank, const int *n, \
|
||||
int howmany, \
|
||||
C *in, const int *inembed, \
|
||||
int istride, int idist, \
|
||||
C *out, const int *onembed, \
|
||||
int ostride, int odist, \
|
||||
int sign, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru_dft)(int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
C *in, C *out, \
|
||||
int sign, unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_guru_split_dft)(int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
R *ri, R *ii, R *ro, R *io, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_dft)(int rank, \
|
||||
const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
C *in, C *out, \
|
||||
int sign, unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_split_dft)(int rank, \
|
||||
const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
R *ri, R *ii, R *ro, R *io, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN void X(execute_dft)(const X(plan) p, C *in, C *out); \
|
||||
FFTW_EXTERN void X(execute_split_dft)(const X(plan) p, R *ri, R *ii, \
|
||||
R *ro, R *io); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_many_dft_r2c)(int rank, const int *n, \
|
||||
int howmany, \
|
||||
R *in, const int *inembed, \
|
||||
int istride, int idist, \
|
||||
C *out, const int *onembed, \
|
||||
int ostride, int odist, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_dft_r2c)(int rank, const int *n, \
|
||||
R *in, C *out, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_dft_r2c_1d)(int n,R *in,C *out,unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_dft_r2c_2d)(int n0, int n1, \
|
||||
R *in, C *out, unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_dft_r2c_3d)(int n0, int n1, \
|
||||
int n2, \
|
||||
R *in, C *out, unsigned flags); \
|
||||
\
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_many_dft_c2r)(int rank, const int *n, \
|
||||
int howmany, \
|
||||
C *in, const int *inembed, \
|
||||
int istride, int idist, \
|
||||
R *out, const int *onembed, \
|
||||
int ostride, int odist, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_dft_c2r)(int rank, const int *n, \
|
||||
C *in, R *out, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_dft_c2r_1d)(int n,C *in,R *out,unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_dft_c2r_2d)(int n0, int n1, \
|
||||
C *in, R *out, unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_dft_c2r_3d)(int n0, int n1, \
|
||||
int n2, \
|
||||
C *in, R *out, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru_dft_r2c)(int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
R *in, C *out, \
|
||||
unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_guru_dft_c2r)(int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
C *in, R *out, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru_split_dft_r2c)( \
|
||||
int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
R *in, R *ro, R *io, \
|
||||
unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_guru_split_dft_c2r)( \
|
||||
int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
R *ri, R *ii, R *out, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_dft_r2c)(int rank, \
|
||||
const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
R *in, C *out, \
|
||||
unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_dft_c2r)(int rank, \
|
||||
const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
C *in, R *out, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_split_dft_r2c)( \
|
||||
int rank, const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
R *in, R *ro, R *io, \
|
||||
unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_split_dft_c2r)( \
|
||||
int rank, const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
R *ri, R *ii, R *out, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN void X(execute_dft_r2c)(const X(plan) p, R *in, C *out); \
|
||||
FFTW_EXTERN void X(execute_dft_c2r)(const X(plan) p, C *in, R *out); \
|
||||
\
|
||||
FFTW_EXTERN void X(execute_split_dft_r2c)(const X(plan) p, \
|
||||
R *in, R *ro, R *io); \
|
||||
FFTW_EXTERN void X(execute_split_dft_c2r)(const X(plan) p, \
|
||||
R *ri, R *ii, R *out); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_many_r2r)(int rank, const int *n, \
|
||||
int howmany, \
|
||||
R *in, const int *inembed, \
|
||||
int istride, int idist, \
|
||||
R *out, const int *onembed, \
|
||||
int ostride, int odist, \
|
||||
const X(r2r_kind) *kind, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_r2r)(int rank, const int *n, R *in, R *out, \
|
||||
const X(r2r_kind) *kind, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_r2r_1d)(int n, R *in, R *out, \
|
||||
X(r2r_kind) kind, unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_r2r_2d)(int n0, int n1, R *in, R *out, \
|
||||
X(r2r_kind) kind0, X(r2r_kind) kind1, \
|
||||
unsigned flags); \
|
||||
FFTW_EXTERN X(plan) X(plan_r2r_3d)(int n0, int n1, int n2, \
|
||||
R *in, R *out, X(r2r_kind) kind0, \
|
||||
X(r2r_kind) kind1, X(r2r_kind) kind2, \
|
||||
unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru_r2r)(int rank, const X(iodim) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim) *howmany_dims, \
|
||||
R *in, R *out, \
|
||||
const X(r2r_kind) *kind, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN X(plan) X(plan_guru64_r2r)(int rank, const X(iodim64) *dims, \
|
||||
int howmany_rank, \
|
||||
const X(iodim64) *howmany_dims, \
|
||||
R *in, R *out, \
|
||||
const X(r2r_kind) *kind, unsigned flags); \
|
||||
\
|
||||
FFTW_EXTERN void X(execute_r2r)(const X(plan) p, R *in, R *out); \
|
||||
\
|
||||
FFTW_EXTERN void X(destroy_plan)(X(plan) p); \
|
||||
FFTW_EXTERN void X(forget_wisdom)(void); \
|
||||
FFTW_EXTERN void X(cleanup)(void); \
|
||||
\
|
||||
FFTW_EXTERN void X(set_timelimit)(double t); \
|
||||
\
|
||||
FFTW_EXTERN void X(plan_with_nthreads)(int nthreads); \
|
||||
FFTW_EXTERN int X(init_threads)(void); \
|
||||
FFTW_EXTERN void X(cleanup_threads)(void); \
|
||||
\
|
||||
FFTW_EXTERN int X(export_wisdom_to_filename)(const char *filename); \
|
||||
FFTW_EXTERN void X(export_wisdom_to_file)(FILE *output_file); \
|
||||
FFTW_EXTERN char *X(export_wisdom_to_string)(void); \
|
||||
FFTW_EXTERN void X(export_wisdom)(X(write_char_func) write_char, \
|
||||
void *data); \
|
||||
FFTW_EXTERN int X(import_system_wisdom)(void); \
|
||||
FFTW_EXTERN int X(import_wisdom_from_filename)(const char *filename); \
|
||||
FFTW_EXTERN int X(import_wisdom_from_file)(FILE *input_file); \
|
||||
FFTW_EXTERN int X(import_wisdom_from_string)(const char *input_string); \
|
||||
FFTW_EXTERN int X(import_wisdom)(X(read_char_func) read_char, void *data); \
|
||||
\
|
||||
FFTW_EXTERN void X(fprint_plan)(const X(plan) p, FILE *output_file); \
|
||||
FFTW_EXTERN void X(print_plan)(const X(plan) p); \
|
||||
FFTW_EXTERN char *X(sprint_plan)(const X(plan) p); \
|
||||
\
|
||||
FFTW_EXTERN void *X(malloc)(size_t n); \
|
||||
FFTW_EXTERN R *X(alloc_real)(size_t n); \
|
||||
FFTW_EXTERN C *X(alloc_complex)(size_t n); \
|
||||
FFTW_EXTERN void X(free)(void *p); \
|
||||
\
|
||||
FFTW_EXTERN void X(flops)(const X(plan) p, \
|
||||
double *add, double *mul, double *fmas); \
|
||||
FFTW_EXTERN double X(estimate_cost)(const X(plan) p); \
|
||||
FFTW_EXTERN double X(cost)(const X(plan) p); \
|
||||
\
|
||||
FFTW_EXTERN int X(alignment_of)(R *p); \
|
||||
FFTW_EXTERN const char X(version)[]; \
|
||||
FFTW_EXTERN const char X(cc)[]; \
|
||||
FFTW_EXTERN const char X(codelet_optim)[];
|
||||
|
||||
|
||||
/* end of FFTW_DEFINE_API macro */
|
||||
|
||||
FFTW_DEFINE_API(FFTW_MANGLE_DOUBLE, double, fftw_complex)
|
||||
FFTW_DEFINE_API(FFTW_MANGLE_FLOAT, float, fftwf_complex)
|
||||
FFTW_DEFINE_API(FFTW_MANGLE_LONG_DOUBLE, long double, fftwl_complex)
|
||||
|
||||
/* __float128 (quad precision) is a gcc extension on i386, x86_64, and ia64
|
||||
for gcc >= 4.6 (compiled in FFTW with --enable-quad-precision) */
|
||||
#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) \
|
||||
&& !(defined(__ICC) || defined(__INTEL_COMPILER)) \
|
||||
&& (defined(__i386__) || defined(__x86_64__) || defined(__ia64__))
|
||||
# if !defined(FFTW_NO_Complex) && defined(_Complex_I) && defined(complex) && defined(I)
|
||||
/* note: __float128 is a typedef, which is not supported with the _Complex
|
||||
keyword in gcc, so instead we use this ugly __attribute__ version.
|
||||
However, we can't simply pass the __attribute__ version to
|
||||
FFTW_DEFINE_API because the __attribute__ confuses gcc in pointer
|
||||
types. Hence redefining FFTW_DEFINE_COMPLEX. Ugh. */
|
||||
# undef FFTW_DEFINE_COMPLEX
|
||||
# define FFTW_DEFINE_COMPLEX(R, C) typedef _Complex float __attribute__((mode(TC))) C
|
||||
# endif
|
||||
FFTW_DEFINE_API(FFTW_MANGLE_QUAD, __float128, fftwq_complex)
|
||||
#endif
|
||||
|
||||
#define FFTW_FORWARD (-1)
|
||||
#define FFTW_BACKWARD (+1)
|
||||
|
||||
#define FFTW_NO_TIMELIMIT (-1.0)
|
||||
|
||||
/* documented flags */
|
||||
#define FFTW_MEASURE (0U)
|
||||
#define FFTW_DESTROY_INPUT (1U << 0)
|
||||
#define FFTW_UNALIGNED (1U << 1)
|
||||
#define FFTW_CONSERVE_MEMORY (1U << 2)
|
||||
#define FFTW_EXHAUSTIVE (1U << 3) /* NO_EXHAUSTIVE is default */
|
||||
#define FFTW_PRESERVE_INPUT (1U << 4) /* cancels FFTW_DESTROY_INPUT */
|
||||
#define FFTW_PATIENT (1U << 5) /* IMPATIENT is default */
|
||||
#define FFTW_ESTIMATE (1U << 6)
|
||||
#define FFTW_WISDOM_ONLY (1U << 21)
|
||||
|
||||
/* undocumented beyond-guru flags */
|
||||
#define FFTW_ESTIMATE_PATIENT (1U << 7)
|
||||
#define FFTW_BELIEVE_PCOST (1U << 8)
|
||||
#define FFTW_NO_DFT_R2HC (1U << 9)
|
||||
#define FFTW_NO_NONTHREADED (1U << 10)
|
||||
#define FFTW_NO_BUFFERING (1U << 11)
|
||||
#define FFTW_NO_INDIRECT_OP (1U << 12)
|
||||
#define FFTW_ALLOW_LARGE_GENERIC (1U << 13) /* NO_LARGE_GENERIC is default */
|
||||
#define FFTW_NO_RANK_SPLITS (1U << 14)
|
||||
#define FFTW_NO_VRANK_SPLITS (1U << 15)
|
||||
#define FFTW_NO_VRECURSE (1U << 16)
|
||||
#define FFTW_NO_SIMD (1U << 17)
|
||||
#define FFTW_NO_SLOW (1U << 18)
|
||||
#define FFTW_NO_FIXED_RADIX_LARGE_N (1U << 19)
|
||||
#define FFTW_ALLOW_PRUNING (1U << 20)
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif /* __cplusplus */
|
||||
|
||||
#endif /* FFTW3_H */
|
@ -57,7 +57,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
////////////////////////////////////////////
|
||||
// Gauge Actions
|
||||
////////////////////////////////////////////
|
||||
#include <Grid/qcd/action/gauge/Photon.h>
|
||||
#include <Grid/qcd/action/gauge/WilsonGaugeAction.h>
|
||||
#include <Grid/qcd/action/gauge/PlaqPlusRectangleAction.h>
|
||||
|
||||
@ -196,6 +195,7 @@ typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
|
||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
|
||||
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
|
||||
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
|
||||
|
||||
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
|
||||
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
|
||||
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
|
||||
@ -204,6 +204,20 @@ typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
|
||||
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
|
||||
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
|
||||
|
||||
// Ls vectorised
|
||||
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
|
||||
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
|
||||
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
|
||||
|
||||
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
|
||||
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
|
||||
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
|
||||
|
||||
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
|
||||
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
|
||||
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
|
||||
|
||||
|
||||
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
|
||||
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
|
||||
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
|
||||
@ -255,6 +269,7 @@ typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
|
||||
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
|
||||
|
||||
|
||||
|
||||
}}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
|
||||
|
@ -62,6 +62,50 @@ void CayleyFermion5D<Impl>::Dminus(const FermionField &psi, FermionField &chi)
|
||||
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],tmp,s,s);// chi = (1-c[s] D_W) psi
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
|
||||
{
|
||||
this->Report();
|
||||
std::vector<int> latt = GridDefaultLatt();
|
||||
RealD volume = this->Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
||||
RealD NP = this->_FourDimGrid->_Nprocessors;
|
||||
if ( M5Dcalls > 0 ) {
|
||||
std::cout << GridLogMessage << "#### M5D calls report " << std::endl;
|
||||
std::cout << GridLogMessage << "CayleyFermion5D Number of M5D Calls : " << M5Dcalls << std::endl;
|
||||
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << M5Dtime / M5Dcalls << " us" << std::endl;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
RealD mflops = 6.0*12*volume*M5Dcalls/M5Dtime/2; // 2 for red black counting
|
||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
||||
}
|
||||
|
||||
if ( MooeeInvCalls > 0 ) {
|
||||
|
||||
std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
|
||||
std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls : " << MooeeInvCalls << std::endl;
|
||||
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
|
||||
|
||||
// Flops = 9*12*Ls*vol/2
|
||||
RealD mflops = 9.0*12*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
|
||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
|
||||
{
|
||||
this->ZeroCounters();
|
||||
M5Dflops=0;
|
||||
M5Dcalls=0;
|
||||
M5Dtime=0;
|
||||
MooeeInvFlops=0;
|
||||
MooeeInvCalls=0;
|
||||
MooeeInvTime=0;
|
||||
}
|
||||
|
||||
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi)
|
||||
{
|
||||
|
@ -120,6 +120,18 @@ namespace Grid {
|
||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
|
||||
|
||||
|
||||
|
||||
void CayleyReport(void);
|
||||
void CayleyZeroCounters(void);
|
||||
|
||||
double M5Dflops;
|
||||
double M5Dcalls;
|
||||
double M5Dtime;
|
||||
|
||||
double MooeeInvFlops;
|
||||
double MooeeInvCalls;
|
||||
double MooeeInvTime;
|
||||
|
||||
protected:
|
||||
void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||
|
@ -51,6 +51,9 @@ void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
|
||||
GridBase *grid=psi._grid;
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard=psi.checkerboard;
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
|
||||
for(int s=0;s<Ls;s++){
|
||||
@ -76,6 +79,7 @@ PARALLEL_FOR_LOOP
|
||||
}
|
||||
}
|
||||
}
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -91,6 +95,9 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
|
||||
assert(phi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard=psi.checkerboard;
|
||||
|
||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
|
||||
auto tmp = psi._odata[0];
|
||||
@ -116,6 +123,7 @@ PARALLEL_FOR_LOOP
|
||||
}
|
||||
}
|
||||
}
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -126,10 +134,14 @@ void CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi, FermionField &
|
||||
|
||||
chi.checkerboard=psi.checkerboard;
|
||||
|
||||
MooeeInvCalls++;
|
||||
MooeeInvTime-=usecond();
|
||||
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
|
||||
auto tmp = psi._odata[0];
|
||||
|
||||
// flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls = 12*Ls * (9) = 108*Ls flops
|
||||
// Apply (L^{\prime})^{-1}
|
||||
chi[ss]=psi[ss]; // chi[0]=psi[0]
|
||||
for(int s=1;s<Ls;s++){
|
||||
@ -155,6 +167,9 @@ PARALLEL_FOR_LOOP
|
||||
chi[ss+s] = chi[ss+s] - uee[s]*tmp;
|
||||
}
|
||||
}
|
||||
|
||||
MooeeInvTime+=usecond();
|
||||
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -166,6 +181,8 @@ void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &
|
||||
assert(psi.checkerboard == psi.checkerboard);
|
||||
chi.checkerboard=psi.checkerboard;
|
||||
|
||||
MooeeInvCalls++;
|
||||
MooeeInvTime-=usecond();
|
||||
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<grid->oSites();ss+=Ls){ // adds Ls
|
||||
@ -197,6 +214,9 @@ PARALLEL_FOR_LOOP
|
||||
chi[ss+s] = chi[ss+s] - lee[s]*tmp;
|
||||
}
|
||||
}
|
||||
|
||||
MooeeInvTime+=usecond();
|
||||
|
||||
}
|
||||
|
||||
#ifdef CAYLEY_DPERP_CACHE
|
||||
|
@ -60,7 +60,7 @@ void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
|
||||
GridBase *grid=psi._grid;
|
||||
int Ls = this->Ls;
|
||||
int LLs = grid->_rdimensions[0];
|
||||
int nsimd= Simd::Nsimd();
|
||||
const int nsimd= Simd::Nsimd();
|
||||
|
||||
Vector<iSinglet<Simd> > u(LLs);
|
||||
Vector<iSinglet<Simd> > l(LLs);
|
||||
@ -86,35 +86,138 @@ void CayleyFermion5D<Impl>::M5D(const FermionField &psi,
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
|
||||
assert(Nc==3);
|
||||
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
|
||||
#if 0
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
|
||||
alignas(64) SiteHalfSpinor hp;
|
||||
alignas(64) SiteHalfSpinor hm;
|
||||
alignas(64) SiteSpinor fp;
|
||||
alignas(64) SiteSpinor fm;
|
||||
for(int v=0;v<LLs;v++){
|
||||
|
||||
for(int v=0;v<LLs;v++){
|
||||
int vp=(v+1)%LLs;
|
||||
int vm=(v+LLs-1)%LLs;
|
||||
|
||||
int vp=(v+1)%LLs;
|
||||
int vm=(v+LLs-1)%LLs;
|
||||
spProj5m(hp,psi[ss+vp]);
|
||||
spProj5p(hm,psi[ss+vm]);
|
||||
|
||||
spProj5m(hp,psi[ss+vp]);
|
||||
spProj5p(hm,psi[ss+vm]);
|
||||
|
||||
if ( vp<=v ) rotate(hp,hp,1);
|
||||
if ( vm>=v ) rotate(hm,hm,nsimd-1);
|
||||
if ( vp<=v ) rotate(hp,hp,1);
|
||||
if ( vm>=v ) rotate(hm,hm,nsimd-1);
|
||||
|
||||
hp=0.5*hp;
|
||||
hm=0.5*hm;
|
||||
|
||||
hp=hp*0.5;
|
||||
hm=hm*0.5;
|
||||
spRecon5m(fp,hp);
|
||||
spRecon5p(fm,hm);
|
||||
spRecon5m(fp,hp);
|
||||
spRecon5p(fm,hm);
|
||||
|
||||
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
||||
chi[ss+v] = d[v]*phi[ss+v];
|
||||
chi[ss+v] = chi[ss+v] +u[v]*fp;
|
||||
chi[ss+v] = chi[ss+v] +l[v]*fm;
|
||||
|
||||
}
|
||||
}
|
||||
#else
|
||||
for(int v=0;v<LLs;v++){
|
||||
|
||||
vprefetch(psi[ss+v+LLs]);
|
||||
// vprefetch(phi[ss+v+LLs]);
|
||||
|
||||
int vp= (v==LLs-1) ? 0 : v+1;
|
||||
int vm= (v==0 ) ? LLs-1 : v-1;
|
||||
|
||||
Simd hp_00 = psi[ss+vp]()(2)(0);
|
||||
Simd hp_01 = psi[ss+vp]()(2)(1);
|
||||
Simd hp_02 = psi[ss+vp]()(2)(2);
|
||||
Simd hp_10 = psi[ss+vp]()(3)(0);
|
||||
Simd hp_11 = psi[ss+vp]()(3)(1);
|
||||
Simd hp_12 = psi[ss+vp]()(3)(2);
|
||||
|
||||
Simd hm_00 = psi[ss+vm]()(0)(0);
|
||||
Simd hm_01 = psi[ss+vm]()(0)(1);
|
||||
Simd hm_02 = psi[ss+vm]()(0)(2);
|
||||
Simd hm_10 = psi[ss+vm]()(1)(0);
|
||||
Simd hm_11 = psi[ss+vm]()(1)(1);
|
||||
Simd hm_12 = psi[ss+vm]()(1)(2);
|
||||
|
||||
// if ( ss==0) std::cout << " hp_00 " <<hp_00<<std::endl;
|
||||
// if ( ss==0) std::cout << " hm_00 " <<hm_00<<std::endl;
|
||||
|
||||
if ( vp<=v ) {
|
||||
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
|
||||
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
|
||||
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
|
||||
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
|
||||
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
|
||||
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
|
||||
}
|
||||
if ( vm>=v ) {
|
||||
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
|
||||
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
|
||||
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
|
||||
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
|
||||
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
|
||||
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
|
||||
}
|
||||
|
||||
/*
|
||||
if ( ss==0) std::cout << " dphi_00 " <<d[v]()()() * phi[ss+v]()(0)(0) <<std::endl;
|
||||
if ( ss==0) std::cout << " dphi_10 " <<d[v]()()() * phi[ss+v]()(1)(0) <<std::endl;
|
||||
if ( ss==0) std::cout << " dphi_20 " <<d[v]()()() * phi[ss+v]()(2)(0) <<std::endl;
|
||||
if ( ss==0) std::cout << " dphi_30 " <<d[v]()()() * phi[ss+v]()(3)(0) <<std::endl;
|
||||
*/
|
||||
Simd p_00 = d[v]()()() * phi[ss+v]()(0)(0) + l[v]()()()*hm_00;
|
||||
Simd p_01 = d[v]()()() * phi[ss+v]()(0)(1) + l[v]()()()*hm_01;
|
||||
Simd p_02 = d[v]()()() * phi[ss+v]()(0)(2) + l[v]()()()*hm_02;
|
||||
Simd p_10 = d[v]()()() * phi[ss+v]()(1)(0) + l[v]()()()*hm_10;
|
||||
Simd p_11 = d[v]()()() * phi[ss+v]()(1)(1) + l[v]()()()*hm_11;
|
||||
Simd p_12 = d[v]()()() * phi[ss+v]()(1)(2) + l[v]()()()*hm_12;
|
||||
Simd p_20 = d[v]()()() * phi[ss+v]()(2)(0) + u[v]()()()*hp_00;
|
||||
Simd p_21 = d[v]()()() * phi[ss+v]()(2)(1) + u[v]()()()*hp_01;
|
||||
Simd p_22 = d[v]()()() * phi[ss+v]()(2)(2) + u[v]()()()*hp_02;
|
||||
Simd p_30 = d[v]()()() * phi[ss+v]()(3)(0) + u[v]()()()*hp_10;
|
||||
Simd p_31 = d[v]()()() * phi[ss+v]()(3)(1) + u[v]()()()*hp_11;
|
||||
Simd p_32 = d[v]()()() * phi[ss+v]()(3)(2) + u[v]()()()*hp_12;
|
||||
|
||||
|
||||
// if ( ss==0){
|
||||
/*
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(0)(0) << " bad "<<p_00<<" diff "<<chi[ss+v]()(0)(0)-p_00<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(0)(1) << " bad "<<p_01<<" diff "<<chi[ss+v]()(0)(1)-p_01<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(0)(2) << " bad "<<p_02<<" diff "<<chi[ss+v]()(0)(2)-p_02<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(1)(0) << " bad "<<p_10<<" diff "<<chi[ss+v]()(1)(0)-p_10<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(1)(1) << " bad "<<p_11<<" diff "<<chi[ss+v]()(1)(1)-p_11<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(1)(2) << " bad "<<p_12<<" diff "<<chi[ss+v]()(1)(2)-p_12<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(2)(0) << " bad "<<p_20<<" diff "<<chi[ss+v]()(2)(0)-p_20<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(2)(1) << " bad "<<p_21<<" diff "<<chi[ss+v]()(2)(1)-p_21<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(2)(2) << " bad "<<p_22<<" diff "<<chi[ss+v]()(2)(2)-p_22<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(3)(0) << " bad "<<p_30<<" diff "<<chi[ss+v]()(3)(0)-p_30<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(3)(1) << " bad "<<p_31<<" diff "<<chi[ss+v]()(3)(1)-p_31<<std::endl;
|
||||
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(3)(2) << " bad "<<p_32<<" diff "<<chi[ss+v]()(3)(2)-p_32<<std::endl;
|
||||
}
|
||||
*/
|
||||
vstream(chi[ss+v]()(0)(0),p_00);
|
||||
vstream(chi[ss+v]()(0)(1),p_01);
|
||||
vstream(chi[ss+v]()(0)(2),p_02);
|
||||
vstream(chi[ss+v]()(1)(0),p_10);
|
||||
vstream(chi[ss+v]()(1)(1),p_11);
|
||||
vstream(chi[ss+v]()(1)(2),p_12);
|
||||
vstream(chi[ss+v]()(2)(0),p_20);
|
||||
vstream(chi[ss+v]()(2)(1),p_21);
|
||||
vstream(chi[ss+v]()(2)(2),p_22);
|
||||
vstream(chi[ss+v]()(3)(0),p_30);
|
||||
vstream(chi[ss+v]()(3)(1),p_31);
|
||||
vstream(chi[ss+v]()(3)(2),p_32);
|
||||
|
||||
}
|
||||
#endif
|
||||
}
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
@ -154,6 +257,8 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
|
||||
d_p[ss] = diag[s];
|
||||
}}
|
||||
|
||||
M5Dcalls++;
|
||||
M5Dtime-=usecond();
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
|
||||
|
||||
@ -183,8 +288,8 @@ PARALLEL_FOR_LOOP
|
||||
|
||||
}
|
||||
}
|
||||
M5Dtime+=usecond();
|
||||
}
|
||||
|
||||
template<class Impl>
|
||||
void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv)
|
||||
{
|
||||
@ -250,13 +355,11 @@ void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField
|
||||
}
|
||||
}
|
||||
|
||||
MooeeInvCalls++;
|
||||
MooeeInvTime-=usecond();
|
||||
// Dynamic allocate on stack to get per thread without serialised heap acces
|
||||
PARALLEL_FOR_LOOP
|
||||
for(auto site=0;site<vol;site++){
|
||||
|
||||
// SiteHalfSpinor *SitePplus =(SiteHalfSpinor *) alloca(LLs*sizeof(SiteHalfSpinor));
|
||||
// SiteHalfSpinor *SitePminus=(SiteHalfSpinor *) alloca(LLs*sizeof(SiteHalfSpinor));
|
||||
// SiteSpinor *SiteChi =(SiteSpinor *) alloca(LLs*sizeof(SiteSpinor));
|
||||
#pragma omp parallel
|
||||
{
|
||||
|
||||
Vector<SiteHalfSpinor> SitePplus(LLs);
|
||||
Vector<SiteHalfSpinor> SitePminus(LLs);
|
||||
@ -267,6 +370,9 @@ PARALLEL_FOR_LOOP
|
||||
SiteHalfSpinor BcastP;
|
||||
SiteHalfSpinor BcastM;
|
||||
|
||||
#pragma omp for
|
||||
for(auto site=0;site<vol;site++){
|
||||
|
||||
for(int s=0;s<LLs;s++){
|
||||
int lex = s+LLs*site;
|
||||
spProj5p(SitePplus[s] ,psi[lex]);
|
||||
@ -294,6 +400,8 @@ PARALLEL_FOR_LOOP
|
||||
chi[lex] = SiteChi[s]*0.5;
|
||||
}
|
||||
}
|
||||
}
|
||||
MooeeInvTime+=usecond();
|
||||
}
|
||||
|
||||
INSTANTIATE_DPERP(DomainWallVec5dImplD);
|
||||
|
@ -48,8 +48,10 @@ namespace QCD {
|
||||
// typedef typename XXX GaugeField;
|
||||
// typedef typename XXX GaugeActField;
|
||||
// typedef typename XXX FermionField;
|
||||
// typedef typename XXX PropagatorField;
|
||||
// typedef typename XXX DoubledGaugeField;
|
||||
// typedef typename XXX SiteSpinor;
|
||||
// typedef typename XXX SitePropagator;
|
||||
// typedef typename XXX SiteHalfSpinor;
|
||||
// typedef typename XXX Compressor;
|
||||
//
|
||||
@ -95,13 +97,15 @@ namespace QCD {
|
||||
|
||||
#define INHERIT_FIMPL_TYPES(Impl)\
|
||||
typedef typename Impl::FermionField FermionField; \
|
||||
typedef typename Impl::PropagatorField PropagatorField; \
|
||||
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
|
||||
typedef typename Impl::SiteSpinor SiteSpinor; \
|
||||
typedef typename Impl::SitePropagator SitePropagator; \
|
||||
typedef typename Impl::SiteHalfSpinor SiteHalfSpinor; \
|
||||
typedef typename Impl::Compressor Compressor; \
|
||||
typedef typename Impl::StencilImpl StencilImpl; \
|
||||
typedef typename Impl::ImplParams ImplParams; \
|
||||
typedef typename Impl::Coeff_t Coeff_t;
|
||||
typedef typename Impl::ImplParams ImplParams; \
|
||||
typedef typename Impl::Coeff_t Coeff_t; \
|
||||
|
||||
#define INHERIT_IMPL_TYPES(Base) \
|
||||
INHERIT_GIMPL_TYPES(Base) \
|
||||
@ -127,14 +131,17 @@ namespace QCD {
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
|
||||
@ -216,14 +223,17 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
|
||||
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Nrepresentation>, Ns> >;
|
||||
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>;
|
||||
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
|
||||
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
|
||||
// Make the doubled gauge field a *scalar*
|
||||
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
|
||||
@ -315,14 +325,17 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
|
||||
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
|
||||
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Nrepresentation>, Ns>, Ngp >;
|
||||
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
|
||||
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
|
||||
|
||||
typedef iImplSpinor<Simd> SiteSpinor;
|
||||
typedef iImplPropagator<Simd> SitePropagator;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SitePropagator> PropagatorField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
|
||||
|
@ -194,6 +194,11 @@ void WilsonFermion5D<Impl>::Report(void)
|
||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
||||
|
||||
RealD Fullmflops = 1344*volume*DhopCalls/(DhopComputeTime+DhopCommTime)/2; // 2 for red black counting
|
||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
|
||||
|
||||
|
||||
}
|
||||
|
||||
if ( DerivCalls > 0 ) {
|
||||
@ -209,12 +214,15 @@ void WilsonFermion5D<Impl>::Report(void)
|
||||
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
|
||||
}
|
||||
|
||||
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
|
||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NP << std::endl; }
|
||||
|
||||
if (DerivCalls > 0 || DhopCalls > 0){
|
||||
std::cout << GridLogMessage << "WilsonFermion5D Stencil"<<std::endl; Stencil.Report();
|
||||
std::cout << GridLogMessage << "WilsonFermion5D Stencil" <<std::endl; Stencil.Report();
|
||||
std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl; StencilEven.Report();
|
||||
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd"<<std::endl; StencilOdd.Report();
|
||||
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -61,14 +61,8 @@ public:
|
||||
switch(Opt) {
|
||||
#ifdef AVX512
|
||||
case OptInlineAsm:
|
||||
for (int site = 0; site < Ns; site++) {
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
WilsonKernels<Impl>::DiracOptAsmDhopSite(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
|
||||
sF++;
|
||||
}
|
||||
sU++;
|
||||
}
|
||||
break;
|
||||
WilsonKernels<Impl>::DiracOptAsmDhopSite(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
|
||||
break;
|
||||
#endif
|
||||
case OptHandUnroll:
|
||||
for (int site = 0; site < Ns; site++) {
|
||||
@ -115,13 +109,7 @@ public:
|
||||
switch(Opt) {
|
||||
#ifdef AVX512
|
||||
case OptInlineAsm:
|
||||
for (int site = 0; site < Ns; site++) {
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
WilsonKernels<Impl>::DiracOptAsmDhopSiteDag(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
|
||||
sF++;
|
||||
}
|
||||
sU++;
|
||||
}
|
||||
WilsonKernels<Impl>::DiracOptAsmDhopSiteDag(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
|
||||
break;
|
||||
#endif
|
||||
case OptHandUnroll:
|
||||
|
@ -10,6 +10,7 @@
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -53,24 +54,26 @@ WilsonKernels<Impl >::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,
|
||||
}
|
||||
|
||||
#if defined(AVX512)
|
||||
|
||||
#include <simd/Intel512wilson.h>
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// If we are AVX512 specialise the single precision routine
|
||||
///////////////////////////////////////////////////////////
|
||||
|
||||
#include <simd/Intel512wilson.h>
|
||||
|
||||
#include <simd/Intel512single.h>
|
||||
|
||||
static Vector<vComplexF> signs;
|
||||
|
||||
int setupSigns(void ){
|
||||
Vector<vComplexF> bother(2);
|
||||
static Vector<vComplexF> signsF;
|
||||
|
||||
template<typename vtype>
|
||||
int setupSigns(Vector<vtype>& signs ){
|
||||
Vector<vtype> bother(2);
|
||||
signs = bother;
|
||||
vrsign(signs[0]);
|
||||
visign(signs[1]);
|
||||
return 1;
|
||||
}
|
||||
static int signInit = setupSigns();
|
||||
|
||||
static int signInitF = setupSigns(signsF);
|
||||
|
||||
#define label(A) ilabel(A)
|
||||
#define ilabel(A) ".globl\n" #A ":\n"
|
||||
@ -78,6 +81,8 @@ static Vector<vComplexF> signs;
|
||||
#define MAYBEPERM(A,perm) if (perm) { A ; }
|
||||
#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN(ptr,pf)
|
||||
#define FX(A) WILSONASM_ ##A
|
||||
#define COMPLEX_TYPE vComplexF
|
||||
#define signs signsF
|
||||
|
||||
#undef KERNEL_DAG
|
||||
template<> void
|
||||
@ -98,8 +103,8 @@ WilsonKernels<WilsonImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder
|
||||
#undef FX
|
||||
#define FX(A) DWFASM_ ## A
|
||||
#define MAYBEPERM(A,B)
|
||||
#define VMOVIDUP(A,B,C) VBCASTIDUPf(A,B,C)
|
||||
#define VMOVRDUP(A,B,C) VBCASTRDUPf(A,B,C)
|
||||
//#define VMOVIDUP(A,B,C) VBCASTIDUPf(A,B,C)
|
||||
//#define VMOVRDUP(A,B,C) VBCASTRDUPf(A,B,C)
|
||||
#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN_LS(ptr,pf)
|
||||
|
||||
#undef KERNEL_DAG
|
||||
@ -113,8 +118,71 @@ template<> void
|
||||
WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
|
||||
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
|
||||
#undef COMPLEX_TYPE
|
||||
#undef signs
|
||||
#undef VMOVRDUP
|
||||
#undef MAYBEPERM
|
||||
#undef MULT_2SPIN
|
||||
#undef FX
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// If we are AVX512 specialise the double precision routine
|
||||
///////////////////////////////////////////////////////////
|
||||
|
||||
#include <simd/Intel512double.h>
|
||||
|
||||
static Vector<vComplexD> signsD;
|
||||
#define signs signsD
|
||||
static int signInitD = setupSigns(signsD);
|
||||
|
||||
#define MAYBEPERM(A,perm) if (perm) { A ; }
|
||||
#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN(ptr,pf)
|
||||
#define FX(A) WILSONASM_ ##A
|
||||
#define COMPLEX_TYPE vComplexD
|
||||
|
||||
#undef KERNEL_DAG
|
||||
template<> void
|
||||
WilsonKernels<WilsonImplD>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
|
||||
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
|
||||
|
||||
#define KERNEL_DAG
|
||||
template<> void
|
||||
WilsonKernels<WilsonImplD>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
|
||||
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
|
||||
|
||||
#endif
|
||||
#undef VMOVIDUP
|
||||
#undef VMOVRDUP
|
||||
#undef MAYBEPERM
|
||||
#undef MULT_2SPIN
|
||||
#undef FX
|
||||
#define FX(A) DWFASM_ ## A
|
||||
#define MAYBEPERM(A,B)
|
||||
//#define VMOVIDUP(A,B,C) VBCASTIDUPd(A,B,C)
|
||||
//#define VMOVRDUP(A,B,C) VBCASTRDUPd(A,B,C)
|
||||
#define MULT_2SPIN(ptr,pf) MULT_ADDSUB_2SPIN_LS(ptr,pf)
|
||||
|
||||
#undef KERNEL_DAG
|
||||
template<> void
|
||||
WilsonKernels<DomainWallVec5dImplD>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
|
||||
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
|
||||
|
||||
#define KERNEL_DAG
|
||||
template<> void
|
||||
WilsonKernels<DomainWallVec5dImplD>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
|
||||
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
|
||||
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
|
||||
|
||||
#undef COMPLEX_TYPE
|
||||
#undef signs
|
||||
#undef VMOVRDUP
|
||||
#undef MAYBEPERM
|
||||
#undef MULT_2SPIN
|
||||
#undef FX
|
||||
|
||||
#endif //AVX512
|
||||
|
||||
#define INSTANTIATE_ASM(A)\
|
||||
template void WilsonKernels<A>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,\
|
||||
|
@ -5,7 +5,9 @@
|
||||
const uint64_t plocal =(uint64_t) & in._odata[0];
|
||||
|
||||
// vComplexF isigns[2] = { signs[0], signs[1] };
|
||||
vComplexF *isigns = &signs[0];
|
||||
//COMPLEX_TYPE is vComplexF of vComplexD depending
|
||||
//on the chosen precision
|
||||
COMPLEX_TYPE *isigns = &signs[0];
|
||||
|
||||
MASK_REGS;
|
||||
int nmax=U._grid->oSites();
|
||||
|
@ -116,7 +116,7 @@ class NerscHmcRunnerTemplate {
|
||||
NoSmearing<Gimpl> SmearingPolicy;
|
||||
typedef MinimumNorm2<GaugeField, NoSmearing<Gimpl>, RepresentationsPolicy >
|
||||
IntegratorType; // change here to change the algorithm
|
||||
IntegratorParameters MDpar(20, 1.0);
|
||||
IntegratorParameters MDpar(40, 1.0);
|
||||
IntegratorType MDynamics(UGrid, MDpar, TheAction, SmearingPolicy);
|
||||
|
||||
// Checkpoint strategy
|
||||
|
@ -67,9 +67,8 @@ namespace Grid {
|
||||
return os;
|
||||
}
|
||||
|
||||
class Serializable {};
|
||||
|
||||
// static polymorphism implemented using CRTP idiom
|
||||
class Serializable;
|
||||
|
||||
// Static abstract writer
|
||||
template <typename T>
|
||||
@ -122,6 +121,27 @@ namespace Grid {
|
||||
T *upcast;
|
||||
};
|
||||
|
||||
// serializable base class
|
||||
class Serializable
|
||||
{
|
||||
public:
|
||||
template <typename T>
|
||||
static inline void write(Writer<T> &WR,const std::string &s,
|
||||
const Serializable &obj)
|
||||
{}
|
||||
|
||||
template <typename T>
|
||||
static inline void read(Reader<T> &RD,const std::string &s,
|
||||
Serializable &obj)
|
||||
{}
|
||||
|
||||
friend inline std::ostream & operator<<(std::ostream &os,
|
||||
const Serializable &obj)
|
||||
{
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
// Generic writer interface
|
||||
template <typename T>
|
||||
inline void push(Writer<T> &w, const std::string &s)
|
||||
|
@ -167,7 +167,7 @@ namespace Optimization {
|
||||
}
|
||||
//Integer
|
||||
inline __m256i operator()(__m256i a, __m256i b){
|
||||
#if defined (AVX1) || defined (AVXFMA4)
|
||||
#if defined (AVX1) || defined (AVXFMA) || defined (AVXFMA4)
|
||||
__m128i a0,a1;
|
||||
__m128i b0,b1;
|
||||
a0 = _mm256_extractf128_si256(a,0);
|
||||
@ -195,7 +195,7 @@ namespace Optimization {
|
||||
}
|
||||
//Integer
|
||||
inline __m256i operator()(__m256i a, __m256i b){
|
||||
#if defined (AVX1) || defined (AVXFMA4)
|
||||
#if defined (AVX1) || defined (AVXFMA) || defined (AVXFMA4)
|
||||
__m128i a0,a1;
|
||||
__m128i b0,b1;
|
||||
a0 = _mm256_extractf128_si256(a,0);
|
||||
@ -216,7 +216,7 @@ namespace Optimization {
|
||||
struct MultComplex{
|
||||
// Complex float
|
||||
inline __m256 operator()(__m256 a, __m256 b){
|
||||
#if defined (AVX1)
|
||||
#if defined (AVX1)
|
||||
__m256 ymm0,ymm1,ymm2;
|
||||
ymm0 = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
|
||||
ymm0 = _mm256_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br
|
||||
@ -233,7 +233,7 @@ namespace Optimization {
|
||||
a_imag = _mm256_mul_ps( a_imag,tmp ); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br
|
||||
return _mm256_maddsub_ps( a_real, b, a_imag ); // Ar Br , Ar Bi +- Ai Bi = ArBr-AiBi , ArBi+AiBr
|
||||
#endif
|
||||
#if defined (AVX2)
|
||||
#if defined (AVX2) || defined (AVXFMA)
|
||||
__m256 a_real = _mm256_moveldup_ps( a ); // Ar Ar
|
||||
__m256 a_imag = _mm256_movehdup_ps( a ); // Ai Ai
|
||||
a_imag = _mm256_mul_ps( a_imag, _mm256_shuffle_ps( b,b, _MM_SELECT_FOUR_FOUR(2,3,0,1) )); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br
|
||||
@ -264,7 +264,7 @@ namespace Optimization {
|
||||
IF IMM0[3] = 0
|
||||
THEN DEST[255:192]=SRC2[191:128] ELSE DEST[255:192]=SRC2[255:192] FI; // Ox5 r<->i ; 0xC unchanged
|
||||
*/
|
||||
#if defined (AVX1)
|
||||
#if defined (AVX1)
|
||||
__m256d ymm0,ymm1,ymm2;
|
||||
ymm0 = _mm256_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00
|
||||
ymm0 = _mm256_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br
|
||||
@ -279,7 +279,7 @@ namespace Optimization {
|
||||
a_imag = _mm256_mul_pd( a_imag, _mm256_permute_pd( b, 0x5 ) ); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br
|
||||
return _mm256_maddsub_pd( a_real, b, a_imag ); // Ar Br , Ar Bi +- Ai Bi = ArBr-AiBi , ArBi+AiBr
|
||||
#endif
|
||||
#if defined (AVX2)
|
||||
#if defined (AVX2) || defined (AVXFMA)
|
||||
__m256d a_real = _mm256_movedup_pd( a ); // Ar Ar
|
||||
__m256d a_imag = _mm256_shuffle_pd(a,a,0xF);//aiai
|
||||
a_imag = _mm256_mul_pd( a_imag, _mm256_permute_pd( b, 0x5 ) ); // (Ai, Ai) * (Bi, Br) = Ai Bi, Ai Br
|
||||
@ -320,7 +320,7 @@ namespace Optimization {
|
||||
#if defined (AVXFMA4)
|
||||
a= _mm256_macc_ps(b,c,a);
|
||||
#endif
|
||||
#if defined (AVX2)
|
||||
#if defined (AVX2) || defined (AVXFMA)
|
||||
a= _mm256_fmadd_ps( b, c, a);
|
||||
#endif
|
||||
}
|
||||
@ -332,7 +332,7 @@ namespace Optimization {
|
||||
#if defined (AVXFMA4)
|
||||
a= _mm256_macc_pd(b,c,a);
|
||||
#endif
|
||||
#if defined (AVX2)
|
||||
#if defined (AVX2) || defined (AVXFMA)
|
||||
a= _mm256_fmadd_pd( b, c, a);
|
||||
#endif
|
||||
}
|
||||
@ -347,7 +347,7 @@ namespace Optimization {
|
||||
}
|
||||
// Integer
|
||||
inline __m256i operator()(__m256i a, __m256i b){
|
||||
#if defined (AVX1)
|
||||
#if defined (AVX1) || defined (AVXFMA)
|
||||
__m128i a0,a1;
|
||||
__m128i b0,b1;
|
||||
a0 = _mm256_extractf128_si256(a,0);
|
||||
|
@ -27,15 +27,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//----------------------------------------------------------------------
|
||||
/*! @file Grid_knc.h
|
||||
@brief Optimization libraries for AVX512 instructions set for KNC
|
||||
|
||||
Using intrinsics
|
||||
*/
|
||||
// Time-stamp: <2015-06-09 14:27:28 neo>
|
||||
//----------------------------------------------------------------------
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
|
||||
@ -95,13 +86,13 @@ namespace Optimization {
|
||||
struct Vstream{
|
||||
//Float
|
||||
inline void operator()(float * a, __m512 b){
|
||||
//_mm512_stream_ps(a,b);
|
||||
_mm512_store_ps(a,b);
|
||||
_mm512_stream_ps(a,b);
|
||||
// _mm512_store_ps(a,b);
|
||||
}
|
||||
//Double
|
||||
inline void operator()(double * a, __m512d b){
|
||||
//_mm512_stream_pd(a,b);
|
||||
_mm512_store_pd(a,b);
|
||||
_mm512_stream_pd(a,b);
|
||||
// _mm512_store_pd(a,b);
|
||||
}
|
||||
|
||||
};
|
||||
@ -382,7 +373,6 @@ namespace Optimization {
|
||||
// Some Template specialization
|
||||
|
||||
// Hack for CLANG until mm512_reduce_add_ps etc... are implemented in GCC and Clang releases
|
||||
|
||||
#ifndef __INTEL_COMPILER
|
||||
#warning "Slow reduction due to incomplete reduce intrinsics"
|
||||
//Complex float Reduce
|
||||
|
@ -6,8 +6,7 @@
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -27,133 +26,352 @@ Author: neo <cossu@post.kek.jp>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
static_assert(GEN_SIMD_WIDTH % 16u == 0, "SIMD vector size is not an integer multiple of 16 bytes");
|
||||
|
||||
//#define VECTOR_LOOPS
|
||||
|
||||
// playing with compiler pragmas
|
||||
#ifdef VECTOR_LOOPS
|
||||
#ifdef __clang__
|
||||
#define VECTOR_FOR(i, w, inc)\
|
||||
_Pragma("clang loop unroll(full) vectorize(enable) interleave(enable) vectorize_width(w)")\
|
||||
for (unsigned int i = 0; i < w; i += inc)
|
||||
#elif defined __INTEL_COMPILER
|
||||
#define VECTOR_FOR(i, w, inc)\
|
||||
_Pragma("simd vectorlength(w*8)")\
|
||||
for (unsigned int i = 0; i < w; i += inc)
|
||||
#else
|
||||
#define VECTOR_FOR(i, w, inc)\
|
||||
for (unsigned int i = 0; i < w; i += inc)
|
||||
#endif
|
||||
#else
|
||||
#define VECTOR_FOR(i, w, inc)\
|
||||
for (unsigned int i = 0; i < w; i += inc)
|
||||
#endif
|
||||
|
||||
namespace Grid {
|
||||
namespace Optimization {
|
||||
|
||||
template<class vtype>
|
||||
union uconv {
|
||||
float f;
|
||||
vtype v;
|
||||
// type traits giving the number of elements for each vector type
|
||||
template <typename T> struct W;
|
||||
template <> struct W<double> {
|
||||
constexpr static unsigned int c = GEN_SIMD_WIDTH/16u;
|
||||
constexpr static unsigned int r = GEN_SIMD_WIDTH/8u;
|
||||
};
|
||||
|
||||
union u128f {
|
||||
float v;
|
||||
float f[4];
|
||||
};
|
||||
union u128d {
|
||||
double v;
|
||||
double f[2];
|
||||
template <> struct W<float> {
|
||||
constexpr static unsigned int c = GEN_SIMD_WIDTH/8u;
|
||||
constexpr static unsigned int r = GEN_SIMD_WIDTH/4u;
|
||||
};
|
||||
|
||||
// SIMD vector types
|
||||
template <typename T>
|
||||
struct vec {
|
||||
alignas(GEN_SIMD_WIDTH) T v[W<T>::r];
|
||||
};
|
||||
|
||||
typedef vec<float> vecf;
|
||||
typedef vec<double> vecd;
|
||||
|
||||
struct Vsplat{
|
||||
//Complex float
|
||||
inline u128f operator()(float a, float b){
|
||||
u128f out;
|
||||
out.f[0] = a;
|
||||
out.f[1] = b;
|
||||
out.f[2] = a;
|
||||
out.f[3] = b;
|
||||
// Complex
|
||||
template <typename T>
|
||||
inline vec<T> operator()(T a, T b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::r, 2)
|
||||
{
|
||||
out.v[i] = a;
|
||||
out.v[i+1] = b;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
// Real float
|
||||
inline u128f operator()(float a){
|
||||
u128f out;
|
||||
out.f[0] = a;
|
||||
out.f[1] = a;
|
||||
out.f[2] = a;
|
||||
out.f[3] = a;
|
||||
|
||||
// Real
|
||||
template <typename T>
|
||||
inline vec<T> operator()(T a){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::r, 1)
|
||||
{
|
||||
out.v[i] = a;
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
//Complex double
|
||||
inline u128d operator()(double a, double b){
|
||||
u128d out;
|
||||
out.f[0] = a;
|
||||
out.f[1] = b;
|
||||
return out;
|
||||
}
|
||||
//Real double
|
||||
inline u128d operator()(double a){
|
||||
u128d out;
|
||||
out.f[0] = a;
|
||||
out.f[1] = a;
|
||||
return out;
|
||||
}
|
||||
//Integer
|
||||
|
||||
// Integer
|
||||
inline int operator()(Integer a){
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
struct Vstore{
|
||||
//Float
|
||||
inline void operator()(u128f a, float* F){
|
||||
memcpy(F,a.f,4*sizeof(float));
|
||||
}
|
||||
//Double
|
||||
inline void operator()(u128d a, double* D){
|
||||
memcpy(D,a.f,2*sizeof(double));
|
||||
// Real
|
||||
template <typename T>
|
||||
inline void operator()(vec<T> a, T *D){
|
||||
*((vec<T> *)D) = a;
|
||||
}
|
||||
//Integer
|
||||
inline void operator()(int a, Integer* I){
|
||||
I[0] = a;
|
||||
inline void operator()(int a, Integer *I){
|
||||
*I = a;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct Vstream{
|
||||
//Float
|
||||
inline void operator()(float * a, u128f b){
|
||||
memcpy(a,b.f,4*sizeof(float));
|
||||
// Real
|
||||
template <typename T>
|
||||
inline void operator()(T * a, vec<T> b){
|
||||
*((vec<T> *)a) = b;
|
||||
}
|
||||
//Double
|
||||
inline void operator()(double * a, u128d b){
|
||||
memcpy(a,b.f,2*sizeof(double));
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
struct Vset{
|
||||
// Complex float
|
||||
inline u128f operator()(Grid::ComplexF *a){
|
||||
u128f out;
|
||||
out.f[0] = a[0].real();
|
||||
out.f[1] = a[0].imag();
|
||||
out.f[2] = a[1].real();
|
||||
out.f[3] = a[1].imag();
|
||||
// Complex
|
||||
template <typename T>
|
||||
inline vec<T> operator()(std::complex<T> *a){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::c, 1)
|
||||
{
|
||||
out.v[2*i] = a[i].real();
|
||||
out.v[2*i+1] = a[i].imag();
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
// Complex double
|
||||
inline u128d operator()(Grid::ComplexD *a){
|
||||
u128d out;
|
||||
out.f[0] = a[0].real();
|
||||
out.f[1] = a[0].imag();
|
||||
return out;
|
||||
}
|
||||
// Real float
|
||||
inline u128f operator()(float *a){
|
||||
u128f out;
|
||||
out.f[0] = a[0];
|
||||
out.f[1] = a[1];
|
||||
out.f[2] = a[2];
|
||||
out.f[3] = a[3];
|
||||
return out;
|
||||
}
|
||||
// Real double
|
||||
inline u128d operator()(double *a){
|
||||
u128d out;
|
||||
out.f[0] = a[0];
|
||||
out.f[1] = a[1];
|
||||
|
||||
// Real
|
||||
template <typename T>
|
||||
inline vec<T> operator()(T *a){
|
||||
vec<T> out;
|
||||
|
||||
out = *((vec<T> *)a);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// Integer
|
||||
inline int operator()(Integer *a){
|
||||
return a[0];
|
||||
return *a;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Arithmetic operations
|
||||
/////////////////////////////////////////////////////
|
||||
struct Sum{
|
||||
// Complex/Real
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::r, 1)
|
||||
{
|
||||
out.v[i] = a.v[i] + b.v[i];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
//I nteger
|
||||
inline int operator()(int a, int b){
|
||||
return a + b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Sub{
|
||||
// Complex/Real
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::r, 1)
|
||||
{
|
||||
out.v[i] = a.v[i] - b.v[i];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
//Integer
|
||||
inline int operator()(int a, int b){
|
||||
return a-b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Mult{
|
||||
// Real
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::r, 1)
|
||||
{
|
||||
out.v[i] = a.v[i]*b.v[i];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// Integer
|
||||
inline int operator()(int a, int b){
|
||||
return a*b;
|
||||
}
|
||||
};
|
||||
|
||||
#define cmul(a, b, c, i)\
|
||||
c[i] = a[i]*b[i] - a[i+1]*b[i+1];\
|
||||
c[i+1] = a[i]*b[i+1] + a[i+1]*b[i];
|
||||
|
||||
struct MultComplex{
|
||||
// Complex
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::c, 1)
|
||||
{
|
||||
cmul(a.v, b.v, out.v, 2*i);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#undef cmul
|
||||
|
||||
struct Div{
|
||||
// Real
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::r, 1)
|
||||
{
|
||||
out.v[i] = a.v[i]/b.v[i];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#define conj(a, b, i)\
|
||||
b[i] = a[i];\
|
||||
b[i+1] = -a[i+1];
|
||||
|
||||
struct Conj{
|
||||
// Complex
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::c, 1)
|
||||
{
|
||||
conj(a.v, out.v, 2*i);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#undef conj
|
||||
|
||||
#define timesmi(a, b, i)\
|
||||
b[i] = a[i+1];\
|
||||
b[i+1] = -a[i];
|
||||
|
||||
struct TimesMinusI{
|
||||
// Complex
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::c, 1)
|
||||
{
|
||||
timesmi(a.v, out.v, 2*i);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#undef timesmi
|
||||
|
||||
#define timesi(a, b, i)\
|
||||
b[i] = -a[i+1];\
|
||||
b[i+1] = a[i];
|
||||
|
||||
struct TimesI{
|
||||
// Complex
|
||||
template <typename T>
|
||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
||||
vec<T> out;
|
||||
|
||||
VECTOR_FOR(i, W<T>::c, 1)
|
||||
{
|
||||
timesi(a.v, out.v, 2*i);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#undef timesi
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Some Template specialization
|
||||
#define perm(a, b, n, w)\
|
||||
unsigned int _mask = w >> (n + 1);\
|
||||
VECTOR_FOR(i, w, 1)\
|
||||
{\
|
||||
b[i] = a[i^_mask];\
|
||||
}
|
||||
|
||||
#define DECL_PERMUTE_N(n)\
|
||||
template <typename T>\
|
||||
static inline vec<T> Permute##n(vec<T> in) {\
|
||||
vec<T> out;\
|
||||
perm(in.v, out.v, n, W<T>::r);\
|
||||
return out;\
|
||||
}
|
||||
|
||||
struct Permute{
|
||||
DECL_PERMUTE_N(0);
|
||||
DECL_PERMUTE_N(1);
|
||||
DECL_PERMUTE_N(2);
|
||||
DECL_PERMUTE_N(3);
|
||||
};
|
||||
|
||||
#undef perm
|
||||
#undef DECL_PERMUTE_N
|
||||
|
||||
#define rot(a, b, n, w)\
|
||||
VECTOR_FOR(i, w, 1)\
|
||||
{\
|
||||
b[i] = a[(i + n)%w];\
|
||||
}
|
||||
|
||||
struct Rotate{
|
||||
template <typename T>
|
||||
static inline vec<T> rotate(vec<T> in, int n){
|
||||
vec<T> out;
|
||||
|
||||
rot(in.v, out.v, n, W<T>::r);
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
#undef rot
|
||||
|
||||
#define acc(v, a, off, step, n)\
|
||||
for (unsigned int i = off; i < n; i += step)\
|
||||
{\
|
||||
a += v[i];\
|
||||
}
|
||||
|
||||
template <typename Out_type, typename In_type>
|
||||
struct Reduce{
|
||||
//Need templated class to overload output type
|
||||
@ -164,316 +382,67 @@ namespace Optimization {
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Arithmetic operations
|
||||
/////////////////////////////////////////////////////
|
||||
struct Sum{
|
||||
//Complex/Real float
|
||||
inline u128f operator()(u128f a, u128f b){
|
||||
u128f out;
|
||||
out.f[0] = a.f[0] + b.f[0];
|
||||
out.f[1] = a.f[1] + b.f[1];
|
||||
out.f[2] = a.f[2] + b.f[2];
|
||||
out.f[3] = a.f[3] + b.f[3];
|
||||
return out;
|
||||
}
|
||||
//Complex/Real double
|
||||
inline u128d operator()(u128d a, u128d b){
|
||||
u128d out;
|
||||
out.f[0] = a.f[0] + b.f[0];
|
||||
out.f[1] = a.f[1] + b.f[1];
|
||||
return out;
|
||||
}
|
||||
//Integer
|
||||
inline int operator()(int a, int b){
|
||||
return a + b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Sub{
|
||||
//Complex/Real float
|
||||
inline u128f operator()(u128f a, u128f b){
|
||||
u128f out;
|
||||
out.f[0] = a.f[0] - b.f[0];
|
||||
out.f[1] = a.f[1] - b.f[1];
|
||||
out.f[2] = a.f[2] - b.f[2];
|
||||
out.f[3] = a.f[3] - b.f[3];
|
||||
return out;
|
||||
}
|
||||
//Complex/Real double
|
||||
inline u128d operator()(u128d a, u128d b){
|
||||
u128d out;
|
||||
out.f[0] = a.f[0] - b.f[0];
|
||||
out.f[1] = a.f[1] - b.f[1];
|
||||
return out;
|
||||
}
|
||||
//Integer
|
||||
inline int operator()(int a, int b){
|
||||
return a-b;
|
||||
}
|
||||
};
|
||||
|
||||
struct MultComplex{
|
||||
// Complex float
|
||||
inline u128f operator()(u128f a, u128f b){
|
||||
u128f out;
|
||||
out.f[0] = a.f[0]*b.f[0] - a.f[1]*b.f[1];
|
||||
out.f[1] = a.f[0]*b.f[1] + a.f[1]*b.f[0];
|
||||
out.f[2] = a.f[2]*b.f[2] - a.f[3]*b.f[3];
|
||||
out.f[3] = a.f[2]*b.f[3] + a.f[3]*b.f[2];
|
||||
return out;
|
||||
}
|
||||
// Complex double
|
||||
inline u128d operator()(u128d a, u128d b){
|
||||
u128d out;
|
||||
out.f[0] = a.f[0]*b.f[0] - a.f[1]*b.f[1];
|
||||
out.f[1] = a.f[0]*b.f[1] + a.f[1]*b.f[0];
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
struct Mult{
|
||||
//CK: Appear unneeded
|
||||
// inline float mac(float a, float b,double c){
|
||||
// return 0;
|
||||
// }
|
||||
// inline double mac(double a, double b,double c){
|
||||
// return 0;
|
||||
// }
|
||||
|
||||
// Real float
|
||||
inline u128f operator()(u128f a, u128f b){
|
||||
u128f out;
|
||||
out.f[0] = a.f[0]*b.f[0];
|
||||
out.f[1] = a.f[1]*b.f[1];
|
||||
out.f[2] = a.f[2]*b.f[2];
|
||||
out.f[3] = a.f[3]*b.f[3];
|
||||
return out;
|
||||
}
|
||||
// Real double
|
||||
inline u128d operator()(u128d a, u128d b){
|
||||
u128d out;
|
||||
out.f[0] = a.f[0]*b.f[0];
|
||||
out.f[1] = a.f[1]*b.f[1];
|
||||
return out;
|
||||
}
|
||||
// Integer
|
||||
inline int operator()(int a, int b){
|
||||
return a*b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Conj{
|
||||
// Complex single
|
||||
inline u128f operator()(u128f in){
|
||||
u128f out;
|
||||
out.f[0] = in.f[0];
|
||||
out.f[1] = -in.f[1];
|
||||
out.f[2] = in.f[2];
|
||||
out.f[3] = -in.f[3];
|
||||
return out;
|
||||
}
|
||||
// Complex double
|
||||
inline u128d operator()(u128d in){
|
||||
u128d out;
|
||||
out.f[0] = in.f[0];
|
||||
out.f[1] = -in.f[1];
|
||||
return out;
|
||||
}
|
||||
// do not define for integer input
|
||||
};
|
||||
|
||||
struct TimesMinusI{
|
||||
//Complex single
|
||||
inline u128f operator()(u128f in, u128f ret){ //note ret is ignored
|
||||
u128f out;
|
||||
out.f[0] = in.f[1];
|
||||
out.f[1] = -in.f[0];
|
||||
out.f[2] = in.f[3];
|
||||
out.f[3] = -in.f[2];
|
||||
return out;
|
||||
}
|
||||
//Complex double
|
||||
inline u128d operator()(u128d in, u128d ret){
|
||||
u128d out;
|
||||
out.f[0] = in.f[1];
|
||||
out.f[1] = -in.f[0];
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
struct TimesI{
|
||||
//Complex single
|
||||
inline u128f operator()(u128f in, u128f ret){ //note ret is ignored
|
||||
u128f out;
|
||||
out.f[0] = -in.f[1];
|
||||
out.f[1] = in.f[0];
|
||||
out.f[2] = -in.f[3];
|
||||
out.f[3] = in.f[2];
|
||||
return out;
|
||||
}
|
||||
//Complex double
|
||||
inline u128d operator()(u128d in, u128d ret){
|
||||
u128d out;
|
||||
out.f[0] = -in.f[1];
|
||||
out.f[1] = in.f[0];
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Some Template specialization
|
||||
struct Permute{
|
||||
//We just have to mirror the permutes of Grid_sse4.h
|
||||
static inline u128f Permute0(u128f in){ //AB CD -> CD AB
|
||||
u128f out;
|
||||
out.f[0] = in.f[2];
|
||||
out.f[1] = in.f[3];
|
||||
out.f[2] = in.f[0];
|
||||
out.f[3] = in.f[1];
|
||||
return out;
|
||||
};
|
||||
static inline u128f Permute1(u128f in){ //AB CD -> BA DC
|
||||
u128f out;
|
||||
out.f[0] = in.f[1];
|
||||
out.f[1] = in.f[0];
|
||||
out.f[2] = in.f[3];
|
||||
out.f[3] = in.f[2];
|
||||
return out;
|
||||
};
|
||||
static inline u128f Permute2(u128f in){
|
||||
return in;
|
||||
};
|
||||
static inline u128f Permute3(u128f in){
|
||||
return in;
|
||||
};
|
||||
|
||||
static inline u128d Permute0(u128d in){ //AB -> BA
|
||||
u128d out;
|
||||
out.f[0] = in.f[1];
|
||||
out.f[1] = in.f[0];
|
||||
return out;
|
||||
};
|
||||
static inline u128d Permute1(u128d in){
|
||||
return in;
|
||||
};
|
||||
static inline u128d Permute2(u128d in){
|
||||
return in;
|
||||
};
|
||||
static inline u128d Permute3(u128d in){
|
||||
return in;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
template < typename vtype >
|
||||
void permute(vtype &a, vtype b, int perm) {
|
||||
};
|
||||
|
||||
struct Rotate{
|
||||
|
||||
static inline u128f rotate(u128f in,int n){
|
||||
u128f out;
|
||||
switch(n){
|
||||
case 0:
|
||||
out.f[0] = in.f[0];
|
||||
out.f[1] = in.f[1];
|
||||
out.f[2] = in.f[2];
|
||||
out.f[3] = in.f[3];
|
||||
break;
|
||||
case 1:
|
||||
out.f[0] = in.f[1];
|
||||
out.f[1] = in.f[2];
|
||||
out.f[2] = in.f[3];
|
||||
out.f[3] = in.f[0];
|
||||
break;
|
||||
case 2:
|
||||
out.f[0] = in.f[2];
|
||||
out.f[1] = in.f[3];
|
||||
out.f[2] = in.f[0];
|
||||
out.f[3] = in.f[1];
|
||||
break;
|
||||
case 3:
|
||||
out.f[0] = in.f[3];
|
||||
out.f[1] = in.f[0];
|
||||
out.f[2] = in.f[1];
|
||||
out.f[3] = in.f[2];
|
||||
break;
|
||||
default: assert(0);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
static inline u128d rotate(u128d in,int n){
|
||||
u128d out;
|
||||
switch(n){
|
||||
case 0:
|
||||
out.f[0] = in.f[0];
|
||||
out.f[1] = in.f[1];
|
||||
break;
|
||||
case 1:
|
||||
out.f[0] = in.f[1];
|
||||
out.f[1] = in.f[0];
|
||||
break;
|
||||
default: assert(0);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
//Complex float Reduce
|
||||
template<>
|
||||
inline Grid::ComplexF Reduce<Grid::ComplexF, u128f>::operator()(u128f in){ //2 complex
|
||||
return Grid::ComplexF(in.f[0] + in.f[2], in.f[1] + in.f[3]);
|
||||
template <>
|
||||
inline Grid::ComplexF Reduce<Grid::ComplexF, vecf>::operator()(vecf in){
|
||||
float a = 0.f, b = 0.f;
|
||||
|
||||
acc(in.v, a, 0, 2, W<float>::r);
|
||||
acc(in.v, b, 1, 2, W<float>::r);
|
||||
|
||||
return Grid::ComplexF(a, b);
|
||||
}
|
||||
|
||||
//Real float Reduce
|
||||
template<>
|
||||
inline Grid::RealF Reduce<Grid::RealF, u128f>::operator()(u128f in){ //4 floats
|
||||
return in.f[0] + in.f[1] + in.f[2] + in.f[3];
|
||||
inline Grid::RealF Reduce<Grid::RealF, vecf>::operator()(vecf in){
|
||||
float a = 0.;
|
||||
|
||||
acc(in.v, a, 0, 1, W<float>::r);
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
//Complex double Reduce
|
||||
template<>
|
||||
inline Grid::ComplexD Reduce<Grid::ComplexD, u128d>::operator()(u128d in){ //1 complex
|
||||
return Grid::ComplexD(in.f[0],in.f[1]);
|
||||
inline Grid::ComplexD Reduce<Grid::ComplexD, vecd>::operator()(vecd in){
|
||||
double a = 0., b = 0.;
|
||||
|
||||
acc(in.v, a, 0, 2, W<double>::r);
|
||||
acc(in.v, b, 1, 2, W<double>::r);
|
||||
|
||||
return Grid::ComplexD(a, b);
|
||||
}
|
||||
|
||||
//Real double Reduce
|
||||
template<>
|
||||
inline Grid::RealD Reduce<Grid::RealD, u128d>::operator()(u128d in){ //2 doubles
|
||||
return in.f[0] + in.f[1];
|
||||
inline Grid::RealD Reduce<Grid::RealD, vecd>::operator()(vecd in){
|
||||
double a = 0.f;
|
||||
|
||||
acc(in.v, a, 0, 1, W<double>::r);
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
//Integer Reduce
|
||||
template<>
|
||||
inline Integer Reduce<Integer, int>::operator()(int in){
|
||||
// FIXME unimplemented
|
||||
printf("Reduce : Missing integer implementation -> FIX\n");
|
||||
assert(0);
|
||||
return in;
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Here assign types
|
||||
|
||||
typedef Optimization::u128f SIMD_Ftype; // Single precision type
|
||||
typedef Optimization::u128d SIMD_Dtype; // Double precision type
|
||||
typedef Optimization::vecf SIMD_Ftype; // Single precision type
|
||||
typedef Optimization::vecd SIMD_Dtype; // Double precision type
|
||||
typedef int SIMD_Itype; // Integer type
|
||||
|
||||
// prefetch utilities
|
||||
inline void v_prefetch0(int size, const char *ptr){};
|
||||
inline void prefetch_HINT_T0(const char *ptr){};
|
||||
|
||||
|
||||
|
||||
// Gpermute function
|
||||
template < typename VectorSIMD >
|
||||
inline void Gpermute(VectorSIMD &y,const VectorSIMD &b, int perm ) {
|
||||
Optimization::permute(y.v,b.v,perm);
|
||||
}
|
||||
|
||||
|
||||
// Function name aliases
|
||||
typedef Optimization::Vsplat VsplatSIMD;
|
||||
typedef Optimization::Vstore VstoreSIMD;
|
||||
@ -481,16 +450,13 @@ namespace Optimization {
|
||||
typedef Optimization::Vstream VstreamSIMD;
|
||||
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
|
||||
|
||||
|
||||
|
||||
|
||||
// Arithmetic operations
|
||||
typedef Optimization::Sum SumSIMD;
|
||||
typedef Optimization::Sub SubSIMD;
|
||||
typedef Optimization::Div DivSIMD;
|
||||
typedef Optimization::Mult MultSIMD;
|
||||
typedef Optimization::MultComplex MultComplexSIMD;
|
||||
typedef Optimization::Conj ConjSIMD;
|
||||
typedef Optimization::TimesMinusI TimesMinusISIMD;
|
||||
typedef Optimization::TimesI TimesISIMD;
|
||||
|
||||
}
|
||||
|
@ -26,14 +26,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
//----------------------------------------------------------------------
|
||||
/*! @file Grid_knc.h
|
||||
@brief Optimization libraries for AVX512 instructions set for KNC
|
||||
|
||||
Using intrinsics
|
||||
*/
|
||||
// Time-stamp: <2015-06-09 14:27:28 neo>
|
||||
//----------------------------------------------------------------------
|
||||
|
||||
#include <immintrin.h>
|
||||
#include <zmmintrin.h>
|
||||
|
@ -244,7 +244,22 @@ namespace Optimization {
|
||||
return a*b;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct Div{
|
||||
// Real double
|
||||
inline vector4double operator()(vector4double a, vector4double b){
|
||||
return vec_swdiv(a, b);
|
||||
}
|
||||
|
||||
// Real float
|
||||
FLOAT_WRAP_2(operator(), inline)
|
||||
|
||||
// Integer
|
||||
inline int operator()(int a, int b){
|
||||
return a/b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Conj{
|
||||
// Complex double
|
||||
inline vector4double operator()(vector4double v){
|
||||
@ -413,6 +428,7 @@ template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
|
||||
typedef Optimization::Sum SumSIMD;
|
||||
typedef Optimization::Sub SubSIMD;
|
||||
typedef Optimization::Mult MultSIMD;
|
||||
typedef Optimization::Div DivSIMD;
|
||||
typedef Optimization::MultComplex MultComplexSIMD;
|
||||
typedef Optimization::Conj ConjSIMD;
|
||||
typedef Optimization::TimesMinusI TimesMinusISIMD;
|
||||
|
@ -38,13 +38,13 @@ directory
|
||||
#ifndef GRID_VECTOR_TYPES
|
||||
#define GRID_VECTOR_TYPES
|
||||
|
||||
#ifdef GENERIC_VEC
|
||||
#ifdef GEN
|
||||
#include "Grid_generic.h"
|
||||
#endif
|
||||
#ifdef SSE4
|
||||
#include "Grid_sse4.h"
|
||||
#endif
|
||||
#if defined(AVX1) || defined(AVX2) || defined(AVXFMA4)
|
||||
#if defined(AVX1) || defined (AVXFMA) || defined(AVX2) || defined(AVXFMA4)
|
||||
#include "Grid_avx.h"
|
||||
#endif
|
||||
#if defined AVX512
|
||||
@ -130,7 +130,7 @@ class Grid_simd {
|
||||
|
||||
Vector_type v;
|
||||
|
||||
static inline int Nsimd(void) {
|
||||
static inline constexpr int Nsimd(void) {
|
||||
return sizeof(Vector_type) / sizeof(Scalar_type);
|
||||
}
|
||||
|
||||
|
@ -65,7 +65,7 @@ void LebesgueOrder::CartesianBlocking(void)
|
||||
{
|
||||
_LebesgueReorder.resize(0);
|
||||
|
||||
std::cout << GridLogDebug << " CartesianBlocking ";
|
||||
// std::cout << GridLogDebug << " CartesianBlocking ";
|
||||
// for(int d=0;d<Block.size();d++) std::cout <<Block[d]<<" ";
|
||||
// std::cout<<std::endl;
|
||||
|
||||
|
Reference in New Issue
Block a user