1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-13 01:05:36 +00:00

Current version gets 250 - 320 GF/s on Volta on the target 12^4 volume.

This commit is contained in:
Peter Boyle 2018-07-05 07:10:25 -04:00
parent b1265ae867
commit c0e8bc9da9

View File

@ -31,17 +31,16 @@ directory
NAMESPACE_BEGIN(Grid);
//////////////////////////////////////////////////////////////
// Gpu implementation; thread loop is implicit
// Gpu implementation; thread loop is implicit ; move to header
//////////////////////////////////////////////////////////////
__host__ __device__ inline void synchronise(void)
accelerator_inline void synchronise(void)
{
#ifdef __CUDA_ARCH__
__syncthreads();
#endif
return;
}
__host__ __device__ inline int get_my_lanes(int Nsimd)
accelerator_inline int get_my_lanes(int Nsimd)
{
#ifdef __CUDA_ARCH__
return 1;
@ -49,7 +48,7 @@ __host__ __device__ inline int get_my_lanes(int Nsimd)
return Nsimd;
#endif
}
__host__ __device__ inline int get_my_lane_offset(int Nsimd)
accelerator_inline int get_my_lane_offset(int Nsimd)
{
#ifdef __CUDA_ARCH__
return ( (threadIdx.x) % Nsimd);
@ -58,74 +57,18 @@ __host__ __device__ inline int get_my_lane_offset(int Nsimd)
#endif
}
////////////////////////////////////////////////////////////////////////
// Extract/Insert a single lane; do this locally in this file.
// Don't need a global version really.
////////////////////////////////////////////////////////////////////////
template<class vobj> accelerator_inline
typename vobj::scalar_object extractLaneGpu(int lane, const vobj & __restrict__ vec)
{
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
constexpr int words=sizeof(vobj)/sizeof(vector_type);
constexpr int Nsimd=vector_type::Nsimd();
scalar_object extracted;
scalar_type * __restrict__ sp = (scalar_type *)&extracted; // Type pun
scalar_type * __restrict__ vp = (scalar_type *)&vec;
for(int w=0;w<words;w++){
sp[w]=vp[w*Nsimd+lane];
}
return extracted;
}
template<class vobj> accelerator_inline
void insertLaneFloat2(int lane, vobj & __restrict__ vec,const typename vobj::scalar_object & __restrict__ extracted)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
constexpr int words=sizeof(vobj)/sizeof(vector_type);
constexpr int Nsimd=vector_type::Nsimd();
float2 * __restrict__ sp = (float2 *)&extracted;
float2 * __restrict__ vp = (float2 *)&vec;
for(int w=0;w<words;w++){
vp[w*Nsimd+lane]=sp[w];
}
}
template<class vobj> accelerator_inline
typename vobj::scalar_object extractLaneFloat2(int lane, const vobj & __restrict__ vec)
{
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
constexpr int words=sizeof(vobj)/sizeof(vector_type);
constexpr int Nsimd=vector_type::Nsimd();
scalar_object extracted;
float2 * __restrict__ sp = (float2 *)&extracted; // Type pun
float2 * __restrict__ vp = (float2 *)&vec;
for(int w=0;w<words;w++){
sp[w]=vp[w*Nsimd+lane];
}
return extracted;
}
#define GPU_COALESCED_STENCIL_LEG_PROJ(Dir,spProj) \
synchronise(); \
if (SE->_is_local) { \
int mask = Nsimd >> (ptype + 1); \
int plane= lane; \
if (SE->_permute) plane = (lane ^ mask); \
auto in_l = extractLaneGpu(plane,in[SE->_offset]); \
int plane= SE->_permute ? (lane ^ mask) : lane; \
auto in_l = extractLane(plane,in[SE->_offset]); \
spProj(chi,in_l); \
} else { \
chi = extractLaneGpu(lane,buf[SE->_offset]); \
}
chi = extractLane(lane,buf[SE->_offset]); \
} \
synchronise();
template <class Impl>
accelerator void WilsonKernels<Impl>::GpuDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U,
@ -146,54 +89,54 @@ accelerator void WilsonKernels<Impl>::GpuDhopSiteDag(StencilView &st, DoubledGau
StencilEntry *SE;
int ptype;
#ifndef __CUDA_ARCH__
for(int lane = lane_offset;lane<lane_offset+lanes;lane++){
for(int mu=0;mu<2*Nd;mu++) {
#else
int lane = lane_offset; {
#endif
SE = st.GetEntry(ptype, Xp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Xp,spProjXp);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Xp);
spReconXp(result, Uchi);
SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Yp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Yp,spProjYp);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Yp);
accumReconYp(result, Uchi);
switch(mu){
case Xp:
GPU_COALESCED_STENCIL_LEG_PROJ(Xp,spProjXp); break;
case Yp:
GPU_COALESCED_STENCIL_LEG_PROJ(Yp,spProjYp); break;
case Zp:
GPU_COALESCED_STENCIL_LEG_PROJ(Zp,spProjZp); break;
case Tp:
GPU_COALESCED_STENCIL_LEG_PROJ(Tp,spProjTp); break;
case Xm:
GPU_COALESCED_STENCIL_LEG_PROJ(Xm,spProjXm); break;
case Ym:
GPU_COALESCED_STENCIL_LEG_PROJ(Ym,spProjYm); break;
case Zm:
GPU_COALESCED_STENCIL_LEG_PROJ(Zm,spProjZm); break;
case Tm:
default:
GPU_COALESCED_STENCIL_LEG_PROJ(Tm,spProjTm); break;
}
SE = st.GetEntry(ptype, Zp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Zp,spProjZp);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Zp);
accumReconZp(result, Uchi);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,mu);
SE = st.GetEntry(ptype, Tp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Tp,spProjTp);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Tp);
accumReconTp(result, Uchi);
switch(mu){
case Xp:
spReconXp(result, Uchi); break;
case Yp:
accumReconYp(result, Uchi); break;
case Zp:
accumReconZp(result, Uchi); break;
case Tp:
accumReconTp(result, Uchi); break;
case Xm:
accumReconXm(result, Uchi); break;
case Ym:
accumReconYm(result, Uchi); break;
case Zm:
accumReconZm(result, Uchi); break;
case Tm:
default:
accumReconTm(result, Uchi); break;
}
}
insertLaneFloat2 (lane,out[sF],result);
SE = st.GetEntry(ptype, Xm, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Xm,spProjXm);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Xm);
accumReconXm(result, Uchi);
SE = st.GetEntry(ptype, Ym, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Ym,spProjYm);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Ym);
accumReconYm(result, Uchi);
SE = st.GetEntry(ptype, Zm, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Zm,spProjZm);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Zm);
accumReconZm(result, Uchi);
SE = st.GetEntry(ptype, Tm, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Tm,spProjTm);
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Tm);
accumReconTm(result, Uchi);
synchronise();
insertLane (lane,out[sF],result);
}
}
@ -216,100 +159,55 @@ accelerator void WilsonKernels<Impl>::GpuDhopSite(StencilView &st, DoubledGaugeF
StencilEntry *SE;
int ptype;
#ifndef __CUDA_ARCH__
for(int lane = lane_offset;lane<lane_offset+lanes;lane++){
#if 0
int mu=0;
SE = st.GetEntry(ptype, mu, sF);
#else
int lane = lane_offset; {
#endif
SE = st.GetEntry(ptype, Xp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Xp,spProjXm);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Xp);
spReconXm(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Yp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Yp,spProjYm);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Yp);
accumReconYm(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Zp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Zp,spProjZm);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Zp);
accumReconZm(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Tp, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Tp,spProjTm);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Tp);
accumReconTm(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Xm, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Xm,spProjXp);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Xm);
accumReconXp(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Ym, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Ym,spProjYp);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Ym);
accumReconYp(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Zm, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Zm,spProjZp);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Zm);
accumReconZp(result, Uchi);
mu++; SE = st.GetEntry(ptype, mu, sF);
SE = st.GetEntry(ptype, Tm, sF);
GPU_COALESCED_STENCIL_LEG_PROJ(Tm,spProjTp);
{ auto U_l = extractLaneFloat2(lane,U[sU](mu)); Uchi() = U_l * chi();}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,Tm);
accumReconTp(result, Uchi);
#else
for(int mu=0;mu<2*Nd;mu++) {
SE = st.GetEntry(ptype, mu, sF);
switch(mu){
case Xp:
GPU_COALESCED_STENCIL_LEG_PROJ(Xp,spProjXm); break;
case Yp:
GPU_COALESCED_STENCIL_LEG_PROJ(Yp,spProjYm); break;
case Zp:
GPU_COALESCED_STENCIL_LEG_PROJ(Zp,spProjZm); break;
case Tp:
GPU_COALESCED_STENCIL_LEG_PROJ(Tp,spProjTm); break;
case Xm:
GPU_COALESCED_STENCIL_LEG_PROJ(Xm,spProjXp); break;
case Ym:
GPU_COALESCED_STENCIL_LEG_PROJ(Ym,spProjYp); break;
case Zm:
GPU_COALESCED_STENCIL_LEG_PROJ(Zm,spProjZp); break;
case Tm:
default:
GPU_COALESCED_STENCIL_LEG_PROJ(Tm,spProjTp); break;
synchronise();
insertLane (lane,out[sF],result);
}
Impl::multLinkGpu(lane,Uchi,U[sU],chi,mu);
switch(mu){
case Xp:
spReconXm(result, Uchi); break;
case Yp:
accumReconYm(result, Uchi); break;
case Zp:
accumReconZm(result, Uchi); break;
case Tp:
accumReconTm(result, Uchi); break;
case Xm:
accumReconXp(result, Uchi); break;
case Ym:
accumReconYp(result, Uchi); break;
case Zm:
accumReconZp(result, Uchi); break;
case Tm:
default:
accumReconTp(result, Uchi); break;
}
}
#endif
insertLaneFloat2 (lane,out[sF],result);
}
};
// Template specialise Gparity to empty for now