1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-08-05 14:07:12 +01:00

EigenIO writing rationalised. All indices (trivial or not) written

This commit is contained in:
2019-02-19 16:12:55 +00:00
parent 63c97db414
commit c14547ddbe
2 changed files with 92 additions and 142 deletions

View File

@@ -96,7 +96,6 @@ namespace Grid {
template <typename T> struct Traits<T, typename std::enable_if<is_scalar<T>::value, void>::type> {
using scalar_type = T; // Type of the underlying scalar
using scalar_real = typename RealType<scalar_type>::type; // real type underlying scalar_type
static constexpr unsigned int depth = 0; // How many levels of Grid Tensor there are (TensorLevel)
static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used)
static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1
static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions)
@@ -123,8 +122,7 @@ namespace Grid {
template <typename T> struct Traits<iScalar<T>> {
using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type;
static constexpr unsigned int depth = 1 + Traits<T>::depth;
static constexpr unsigned int rank = 0 + Traits<T>::rank;
static constexpr unsigned int rank = 1 + Traits<T>::rank;
static constexpr unsigned int rank_non_trivial = 0 + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = 1 * Traits<T>::count;
static constexpr std::size_t scalar_size = Traits<T>::scalar_size;
@@ -137,7 +135,6 @@ namespace Grid {
template <typename T, int N> struct Traits<iVector<T, N>> {
using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type;
static constexpr unsigned int depth = 1 + Traits<T>::depth;
static constexpr unsigned int rank = 1 + Traits<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = N * Traits<T>::count;
@@ -152,7 +149,6 @@ namespace Grid {
template <typename T, int N> struct Traits<iMatrix<T, N>> {
using scalar_type = typename Traits<T>::scalar_type;
using scalar_real = typename RealType<scalar_type>::type;
static constexpr unsigned int depth = 1 + Traits<T>::depth;
static constexpr unsigned int rank = 2 + Traits<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + Traits<T>::rank_non_trivial;
static constexpr unsigned int count = N * N * Traits<T>::count;
@@ -377,10 +373,7 @@ namespace Grid {
template <typename U, int N>
void write(const std::string &s, const iMatrix<U, N> &output);
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
write(const std::string &s, const ETensor &output);
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
write(const std::string &s, const ETensor &output);
void scientificFormat(const bool set);
@@ -502,128 +495,64 @@ namespace Grid {
{
upcast->writeDefault(s, tensorToVec(output));
}
// Eigen::Tensors of arithmetic/complex base type
template <typename T>
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
const typename ETensor::Index NumElements{output.size()};
assert( NumElements > 0 );
if( NumElements == 1 )
upcast->writeDefault(s, * output.data());
else {
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
unsigned int TrivialDimCount{0};
std::vector<size_t> NonTrivialDims;
NonTrivialDims.reserve(output.NumDimensions); // Make sure we only do one malloc
for(auto i = 0; i < output.NumDimensions; i++ ) {
auto dim = output.dimension(i);
if( dim <= 1 ) {
TrivialDimCount++;
assert( dim == 1 ); // Not expecting dimension to be <= 0
} else {
size_t s = static_cast<size_t>(dim);
assert( s == dim ); // check we didn't lose anything in the conversion
NonTrivialDims.push_back(s);
}
}
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
assert( output.NumDimensions > TrivialDimCount );
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
using Scalar = typename ETensor::Scalar;
const Scalar * pWriteBuffer;
Scalar * pCopyBuffer = nullptr;
if( !CopyData )
pWriteBuffer = output.data();
else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
pCopyBuffer = static_cast<Scalar *>(malloc(sizeof(Scalar) * NumElements));
pWriteBuffer = pCopyBuffer;
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
pCopyBuffer[n] = output( MyIndex );
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
}
}
upcast->template writeMultiDim<typename ETensor::Scalar>(s, NonTrivialDims, pWriteBuffer, NumElements);
if( pCopyBuffer ) free( pCopyBuffer );
}
}
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
template <typename T>
template <typename ETensor/*, typename U, int N*/>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
const typename ETensor::Index NumElements{output.size()};
using Index = typename ETensor::Index;
using Container = typename ETensor::Scalar; // NB: could be same as Scalar
using Traits = EigenIO::Traits<Container>;
using Scalar = typename Traits::scalar_type; // type of the underlying scalar
constexpr unsigned int TensorRank{ETensor::NumIndices};
constexpr unsigned int ContainerRank{Traits::rank}; // Only non-zero for containers
constexpr unsigned int TotalRank{TensorRank + ContainerRank};
const Index NumElements{output.size()};
assert( NumElements > 0 );
if( NumElements == 1 )
upcast->writeDefault(s, tensorToVec(* output.data()));
else {
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
unsigned int TrivialDimCount{0};
std::vector<size_t> NonTrivialDims;
NonTrivialDims.reserve(output.NumDimensions + EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial); // Make sure we only do one malloc
for(auto i = 0; i < output.NumDimensions; i++ ) {
auto dim = output.dimension(i);
if( dim <= 1 ) {
TrivialDimCount++;
assert( dim == 1 ); // Not expecting dimension to be <= 0
} else {
size_t s = static_cast<size_t>(dim);
assert( s == dim ); // check we didn't lose anything in the conversion
NonTrivialDims.push_back(s);
}
}
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
assert( output.NumDimensions > TrivialDimCount );
// Now add the extra dimensions, based on object zero
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* output.data());
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
const std::vector<size_t> & ExtraDims{f.getDim()};
assert(ExtraDims.size() == EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial);
size_t ExtraCount{1};
for( auto i : ExtraDims ) {
assert( i > 0 );
ExtraCount *= i;
NonTrivialDims.push_back(i);
}
assert(EigenIO::Traits<typename ETensor::Scalar>::count == ExtraCount);
assert(EigenIO::Traits<typename ETensor::Scalar>::size == sizeof( typename ETensor::Scalar ));
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
using Scalar = typename ETensor::Scalar::scalar_type;
const Scalar * pWriteBuffer;
Scalar * pCopyBuffer = nullptr;
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
if( !CopyData )
pWriteBuffer = output.data()->begin();
else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
pWriteBuffer = pCopyBuffer;
Scalar * pCopy = pCopyBuffer;
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
// Copy the grid tensor
for( const Scalar &Source : output( MyIndex ) )
* pCopy ++ = Source;
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
}
}
upcast->template writeMultiDim<Scalar>(s, NonTrivialDims, pWriteBuffer, TotalNumElements);
if( pCopyBuffer ) free( pCopyBuffer );
// Get the dimensionality of the tensor
std::vector<std::size_t> TotalDims(TotalRank);
for(auto i = 0; i < TensorRank; i++ ) {
auto dim = output.dimension(i);
TotalDims[i] = static_cast<size_t>(dim);
assert( TotalDims[i] == dim ); // check we didn't lose anything in the conversion
}
for(auto i = 0; i < ContainerRank; i++ )
TotalDims[TensorRank + i] = Traits::Dimension(i);
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{NumElements > 1 && ETensor::Layout != Eigen::StorageOptions::RowMajor};
const Scalar * pWriteBuffer;
Scalar * pCopyBuffer = nullptr;
const Index TotalNumElements = NumElements * Traits::count;
if( !CopyData ) {
if constexpr ( ContainerRank == 0 )
pWriteBuffer = output.data();
else
pWriteBuffer = output.data()->begin();
} else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
pWriteBuffer = pCopyBuffer;
Scalar * pCopy = pCopyBuffer;
std::array<Index, TensorRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
for( auto n = 0; n < NumElements; n++ ) {
if constexpr ( ContainerRank == 0 )
* pCopy ++ = output( MyIndex );
else {
for( const Scalar &Source : output( MyIndex ) )
* pCopy ++ = Source;
}
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
}
}
upcast->template writeMultiDim<Scalar>(s, TotalDims, pWriteBuffer, TotalNumElements);
if( pCopyBuffer ) free( pCopyBuffer );
}
template <typename T>
@@ -875,21 +804,21 @@ namespace Grid {
return os;
}
template <typename T>
static inline typename std::enable_if<!std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
CompareMember(const T &lhs, const T &rhs) {
template <typename T1, typename T2>
static inline typename std::enable_if<!EigenIO::is_tensor<T1>::value || !EigenIO::is_tensor<T2>::value, bool>::type
CompareMember(const T1 &lhs, const T2 &rhs) {
return lhs == rhs;
}
template <typename T>
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
CompareMember(const T &lhs, const T &rhs) {
template <typename T1, typename T2>
static inline typename std::enable_if<EigenIO::is_tensor<T1>::value && EigenIO::is_tensor<T2>::value, bool>::type
CompareMember(const T1 &lhs, const T2 &rhs) {
// First check whether dimensions match (Eigen tensor library will assert if they don't match)
bool bReturnValue = true;
for( auto i = 0 ; bReturnValue && i < T::NumIndices ; i++ )
bool bReturnValue = (T1::NumIndices == T2::NumIndices);
for( auto i = 0 ; bReturnValue && i < T1::NumIndices ; i++ )
bReturnValue = ( lhs.dimension(i)) == rhs.dimension(i);
if( bReturnValue ) {
Eigen::Tensor<bool, 0, T::Options> bResult = (lhs == rhs).all();
Eigen::Tensor<bool, 0, T1::Options> bResult = (lhs == rhs).all();
bReturnValue = bResult(0);
}
return bReturnValue;