1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Merge branch 'feature/hadrons' of https://github.com/paboyle/Grid into feature/hadrons

This commit is contained in:
Lanny91 2017-01-23 15:24:47 +00:00
commit c291ef77b5
43 changed files with 1891 additions and 431 deletions

1
.gitignore vendored
View File

@ -9,6 +9,7 @@
################
*~
*#
*.sublime-*
# Precompiled Headers #
#######################

View File

@ -113,6 +113,36 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Called " #A " "<< (t1-t0)/ncall<<" us"<<std::endl;\
std::cout<<GridLogMessage << "******************"<<std::endl;
#define BENCH_ZDW(A,in,out) \
zDw.CayleyZeroCounters(); \
zDw. A (in,out); \
FGrid->Barrier(); \
t0=usecond(); \
for(int i=0;i<ncall;i++){ \
zDw. A (in,out); \
} \
t1=usecond(); \
FGrid->Barrier(); \
zDw.CayleyReport(); \
std::cout<<GridLogMessage << "Called ZDw " #A " "<< (t1-t0)/ncall<<" us"<<std::endl;\
std::cout<<GridLogMessage << "******************"<<std::endl;
#define BENCH_DW_SSC(A,in,out) \
Dw.CayleyZeroCounters(); \
Dw. A (in,out); \
FGrid->Barrier(); \
t0=usecond(); \
for(int i=0;i<ncall;i++){ \
__SSC_START ; \
Dw. A (in,out); \
__SSC_STOP ; \
} \
t1=usecond(); \
FGrid->Barrier(); \
Dw.CayleyReport(); \
std::cout<<GridLogMessage << "Called " #A " "<< (t1-t0)/ncall<<" us"<<std::endl;\
std::cout<<GridLogMessage << "******************"<<std::endl;
#define BENCH_DW_MEO(A,in,out) \
Dw.CayleyZeroCounters(); \
Dw. A (in,out,0); \
@ -148,9 +178,15 @@ int main (int argc, char ** argv)
LatticeFermion sref(sFGrid);
LatticeFermion result(sFGrid);
std::cout<<GridLogMessage << "Constructing Vec5D Dw "<<std::endl;
DomainWallFermionVec5dR Dw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,mass,M5);
RealD b=1.5;// Scale factor b+c=2, b-c=1
RealD c=0.5;
std::vector<ComplexD> gamma(Ls,std::complex<double>(1.0,0.0));
ZMobiusFermionVec5dR zDw(Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,mass,M5,gamma,b,c);
std::cout<<GridLogMessage << "Calling Dhop "<<std::endl;
FGrid->Barrier();
@ -173,10 +209,13 @@ int main (int argc, char ** argv)
BENCH_DW_MEO(Dhop ,src,result);
BENCH_DW_MEO(DhopEO ,src_o,r_e);
BENCH_DW(Meooe ,src_o,r_e);
BENCH_DW_SSC(Meooe ,src_o,r_e);
BENCH_DW(Mooee ,src_o,r_o);
BENCH_DW(MooeeInv,src_o,r_o);
BENCH_ZDW(Mooee ,src_o,r_o);
BENCH_ZDW(MooeeInv,src_o,r_o);
}
Grid_finalize();

View File

@ -99,6 +99,13 @@ case ${ac_MKL} in
AC_DEFINE([USE_MKL], [1], [Define to 1 if you use the Intel MKL]);;
esac
############### HDF5
AC_ARG_WITH([hdf5],
[AS_HELP_STRING([--with-hdf5=prefix],
[try this for a non-standard install prefix of the HDF5 library])],
[AM_CXXFLAGS="-I$with_hdf5/include $AM_CXXFLAGS"]
[AM_LDFLAGS="-L$with_hdf5/lib $AM_LDFLAGS"])
############### first-touch
AC_ARG_ENABLE([numa],
[AC_HELP_STRING([--enable-numa=yes|no|prefix], [enable first touch numa opt])],
@ -145,6 +152,12 @@ AC_SEARCH_LIBS([fftw_execute], [fftw3],
[AC_DEFINE([HAVE_FFTW], [1], [Define to 1 if you have the `FFTW' library])]
[have_fftw=true])
AC_SEARCH_LIBS([H5Fopen], [hdf5_cpp],
[AC_DEFINE([HAVE_HDF5], [1], [Define to 1 if you have the `HDF5' library])]
[have_hdf5=true]
[LIBS="${LIBS} -lhdf5"], [], [-lhdf5])
AM_CONDITIONAL(BUILD_HDF5, [ test "${have_hdf5}X" == "trueX" ])
CXXFLAGS=$CXXFLAGS_CPY
LDFLAGS=$LDFLAGS_CPY
@ -410,6 +423,7 @@ RNG choice : ${ac_RNG}
GMP : `if test "x$have_gmp" = xtrue; then echo yes; else echo no; fi`
LAPACK : ${ac_LAPACK}
FFTW : `if test "x$have_fftw" = xtrue; then echo yes; else echo no; fi`
HDF5 : `if test "x$have_hdf5" = xtrue; then echo yes; else echo no; fi`
build DOXYGEN documentation : `if test "$DX_FLAG_doc" = '1'; then echo yes; else echo no; fi`
----- BUILD FLAGS -------------------------------------
CXXFLAGS:

View File

@ -42,7 +42,6 @@ using namespace Hadrons;
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
Application::Application(void)
: env_(Environment::getInstance())
{
LOG(Message) << "Modules available:" << std::endl;
auto list = ModuleFactory::getInstance().getBuilderList();
@ -74,11 +73,17 @@ Application::Application(const std::string parameterFileName)
parameterFileName_ = parameterFileName;
}
// environment shortcut ////////////////////////////////////////////////////////
Environment & Application::env(void) const
{
return Environment::getInstance();
}
// access //////////////////////////////////////////////////////////////////////
void Application::setPar(const Application::GlobalPar &par)
{
par_ = par;
env_.setSeed(strToVec<int>(par_.seed));
env().setSeed(strToVec<int>(par_.seed));
}
const Application::GlobalPar & Application::getPar(void)
@ -89,7 +94,7 @@ const Application::GlobalPar & Application::getPar(void)
// execute /////////////////////////////////////////////////////////////////////
void Application::run(void)
{
if (!parameterFileName_.empty() and (env_.getNModule() == 0))
if (!parameterFileName_.empty() and (env().getNModule() == 0))
{
parseParameterFile(parameterFileName_);
}
@ -124,7 +129,7 @@ void Application::parseParameterFile(const std::string parameterFileName)
do
{
read(reader, "id", id);
env_.createModule(id.name, id.type, reader);
env().createModule(id.name, id.type, reader);
} while (reader.nextElement("module"));
pop(reader);
pop(reader);
@ -134,7 +139,7 @@ void Application::saveParameterFile(const std::string parameterFileName)
{
XmlWriter writer(parameterFileName);
ObjectId id;
const unsigned int nMod = env_.getNModule();
const unsigned int nMod = env().getNModule();
LOG(Message) << "Saving application to '" << parameterFileName << "'..." << std::endl;
write(writer, "parameters", getPar());
@ -142,10 +147,10 @@ void Application::saveParameterFile(const std::string parameterFileName)
for (unsigned int i = 0; i < nMod; ++i)
{
push(writer, "module");
id.name = env_.getModuleName(i);
id.type = env_.getModule(i)->getRegisteredName();
id.name = env().getModuleName(i);
id.type = env().getModule(i)->getRegisteredName();
write(writer, "id", id);
env_.getModule(i)->saveParameters(writer, "options");
env().getModule(i)->saveParameters(writer, "options");
pop(writer);
}
pop(writer);
@ -164,10 +169,10 @@ auto memPeak = [this](const std::vector<unsigned int> &program)\
\
msg = HadronsLogMessage.isActive();\
HadronsLogMessage.Active(false);\
env_.dryRun(true);\
memPeak = env_.executeProgram(program);\
env_.dryRun(false);\
env_.freeAll();\
env().dryRun(true);\
memPeak = env().executeProgram(program);\
env().dryRun(false);\
env().freeAll();\
HadronsLogMessage.Active(true);\
\
return memPeak;\
@ -179,7 +184,7 @@ void Application::schedule(void)
// build module dependency graph
LOG(Message) << "Building module graph..." << std::endl;
auto graph = env_.makeModuleGraph();
auto graph = env().makeModuleGraph();
auto con = graph.getConnectedComponents();
// constrained topological sort using a genetic algorithm
@ -256,7 +261,7 @@ void Application::saveSchedule(const std::string filename)
<< std::endl;
for (auto address: program_)
{
program.push_back(env_.getModuleName(address));
program.push_back(env().getModuleName(address));
}
write(writer, "schedule", program);
}
@ -274,7 +279,7 @@ void Application::loadSchedule(const std::string filename)
program_.clear();
for (auto &name: program)
{
program_.push_back(env_.getModuleAddress(name));
program_.push_back(env().getModuleAddress(name));
}
scheduled_ = true;
memPeak_ = memPeak(program_);
@ -291,7 +296,7 @@ void Application::printSchedule(void)
for (unsigned int i = 0; i < program_.size(); ++i)
{
LOG(Message) << std::setw(4) << i + 1 << ": "
<< env_.getModuleName(program_[i]) << std::endl;
<< env().getModuleName(program_[i]) << std::endl;
}
}
@ -304,9 +309,9 @@ void Application::configLoop(void)
{
LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t
<< " " << BIG_SEP << std::endl;
env_.setTrajectory(t);
env_.executeProgram(program_);
env().setTrajectory(t);
env().executeProgram(program_);
}
LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl;
env_.freeAll();
env().freeAll();
}

View File

@ -98,11 +98,13 @@ public:
void printSchedule(void);
// loop on configurations
void configLoop(void);
private:
// environment shortcut
Environment & env(void) const;
private:
long unsigned int locVol_;
std::string parameterFileName_{""};
GlobalPar par_;
Environment &env_;
std::vector<unsigned int> program_;
Environment::Size memPeak_;
bool scheduled_{false};
@ -115,14 +117,14 @@ private:
template <typename M>
void Application::createModule(const std::string name)
{
env_.createModule<M>(name);
env().createModule<M>(name);
}
template <typename M>
void Application::createModule(const std::string name,
const typename M::Par &par)
{
env_.createModule<M>(name, par);
env().createModule<M>(name, par);
}
END_HADRONS_NAMESPACE

View File

@ -41,8 +41,9 @@ using namespace Hadrons;
// constructor /////////////////////////////////////////////////////////////////
Environment::Environment(void)
{
nd_ = GridDefaultLatt().size();
grid4d_.reset(SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultLatt(), GridDefaultSimd(nd_, vComplex::Nsimd()),
GridDefaultMpi()));
gridRb4d_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_.get()));
auto loc = getGrid()->LocalDimensions();
@ -126,6 +127,11 @@ GridRedBlackCartesian * Environment::getRbGrid(const unsigned int Ls) const
}
}
unsigned int Environment::getNd(void) const
{
return nd_;
}
// random number generator /////////////////////////////////////////////////////
void Environment::setSeed(const std::vector<int> &seed)
{

View File

@ -106,6 +106,7 @@ public:
void createGrid(const unsigned int Ls);
GridCartesian * getGrid(const unsigned int Ls = 1) const;
GridRedBlackCartesian * getRbGrid(const unsigned int Ls = 1) const;
unsigned int getNd(void) const;
// random number generator
void setSeed(const std::vector<int> &seed);
GridParallelRNG * get4dRng(void) const;
@ -200,6 +201,7 @@ private:
std::map<unsigned int, GridPt> grid5d_;
GridRbPt gridRb4d_;
std::map<unsigned int, GridRbPt> gridRb5d_;
unsigned int nd_;
// random number generator
RngPt rng4d_;
// module and related maps

View File

@ -166,7 +166,7 @@ void GeneticScheduler<T>::initPopulation(void)
{
auto p = graph_.topoSort(gen_);
population_.emplace(func_(p), p);
population_.insert(std::make_pair(func_(p), p));
}
}
@ -180,8 +180,8 @@ void GeneticScheduler<T>::doCrossover(void)
crossover(c1, c2, p1, p2);
PARALLEL_CRITICAL
{
population_.emplace(func_(c1), c1);
population_.emplace(func_(c2), c2);
population_.insert(std::make_pair(func_(c1), c1));
population_.insert(std::make_pair(func_(c2), c2));
}
}
@ -200,7 +200,7 @@ void GeneticScheduler<T>::doMutation(void)
mutation(m, it->second);
PARALLEL_CRITICAL
{
population_.emplace(func_(m), m);
population_.insert(std::make_pair(func_(m), m));
}
}
}

View File

@ -147,7 +147,7 @@ void TSeqGamma<FImpl>::execute(void)
g = makeGammaProd(par().gamma);
p = strToVec<Real>(par().mom);
ph = zero;
for(unsigned int mu = 0; mu < Nd; mu++)
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + p[mu]*coor;

65
lib/AlignedAllocator.cc Normal file
View File

@ -0,0 +1,65 @@
#include <Grid/Grid.h>
namespace Grid {
int PointerCache::victim;
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
void *PointerCache::Insert(void *ptr,size_t bytes) {
if (bytes < 4096 ) return NULL;
#ifdef _OPENMP
assert(omp_in_parallel()==0);
#endif
void * ret = NULL;
int v = -1;
for(int e=0;e<Ncache;e++) {
if ( Entries[e].valid==0 ) {
v=e;
break;
}
}
if ( v==-1 ) {
v=victim;
victim = (victim+1)%Ncache;
}
if ( Entries[v].valid ) {
ret = Entries[v].address;
Entries[v].valid = 0;
Entries[v].address = NULL;
Entries[v].bytes = 0;
}
Entries[v].address=ptr;
Entries[v].bytes =bytes;
Entries[v].valid =1;
return ret;
}
void *PointerCache::Lookup(size_t bytes) {
if (bytes < 4096 ) return NULL;
#ifdef _OPENMP
assert(omp_in_parallel()==0);
#endif
for(int e=0;e<Ncache;e++){
if ( Entries[e].valid && ( Entries[e].bytes == bytes ) ) {
Entries[e].valid = 0;
return Entries[e].address;
}
}
return NULL;
}
}

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -42,9 +42,32 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
class PointerCache {
private:
static const int Ncache=8;
static int victim;
typedef struct {
void *address;
size_t bytes;
int valid;
} PointerCacheEntry;
static PointerCacheEntry Entries[Ncache];
public:
static void *Insert(void *ptr,size_t bytes) ;
static void *Lookup(size_t bytes) ;
};
////////////////////////////////////////////////////////////////////
// A lattice of something, but assume the something is SIMDized.
////////////////////////////////////////////////////////////////////
template<typename _Tp>
class alignedAllocator {
public:
@ -66,27 +89,27 @@ public:
pointer allocate(size_type __n, const void* _p= 0)
{
size_type bytes = __n*sizeof(_Tp);
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
#ifdef HAVE_MM_MALLOC_H
_Tp * ptr = (_Tp *) _mm_malloc(__n*sizeof(_Tp),128);
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,128);
#else
_Tp * ptr = (_Tp *) memalign(128,__n*sizeof(_Tp));
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(128,bytes);
#endif
_Tp tmp;
#ifdef GRID_NUMA
#pragma omp parallel for schedule(static)
for(int i=0;i<__n;i++){
ptr[i]=tmp;
}
#endif
return ptr;
}
void deallocate(pointer __p, size_type) {
void deallocate(pointer __p, size_type __n) {
size_type bytes = __n * sizeof(_Tp);
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
#ifdef HAVE_MM_MALLOC_H
_mm_free((void *)__p);
if ( __freeme ) _mm_free((void *)__freeme);
#else
free((void *)__p);
if ( __freeme ) free((void *)__freeme);
#endif
}
void construct(pointer __p, const _Tp& __val) { };

View File

@ -59,13 +59,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
///////////////////
// Grid headers
///////////////////
#include <Grid/serialisation/Serialisation.h>
#include "Config.h"
#include <Grid/Timer.h>
#include <Grid/PerfCount.h>
#include <Grid/Log.h>
#include <Grid/AlignedAllocator.h>
#include <Grid/Simd.h>
#include <Grid/serialisation/Serialisation.h>
#include <Grid/Threads.h>
#include <Grid/Lexicographic.h>
#include <Grid/Init.h>

View File

@ -1,4 +1,5 @@
extra_sources=
extra_headers=
if BUILD_COMMS_MPI
extra_sources+=communicator/Communicator_mpi.cc
extra_sources+=communicator/Communicator_base.cc
@ -24,6 +25,12 @@ if BUILD_COMMS_NONE
extra_sources+=communicator/Communicator_base.cc
endif
if BUILD_HDF5
extra_sources+=serialisation/Hdf5IO.cc
extra_headers+=serialisation/Hdf5IO.h
extra_headers+=serialisation/Hdf5Type.h
endif
#
# Libraries
#
@ -32,6 +39,9 @@ include Eigen.inc
lib_LIBRARIES = libGrid.a
libGrid_a_SOURCES = $(CCFILES) $(extra_sources)
CCFILES += $(extra_sources)
HFILES += $(extra_headers)
libGrid_a_SOURCES = $(CCFILES)
libGrid_adir = $(pkgincludedir)
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) Config.h

View File

@ -205,12 +205,13 @@ public:
void Stop(void) {
count=0;
cycles=0;
size_t ign;
#ifdef __linux__
if ( fd!= -1) {
::ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
::ioctl(cyclefd, PERF_EVENT_IOC_DISABLE, 0);
::read(fd, &count, sizeof(long long));
::read(cyclefd, &cycles, sizeof(long long));
ign=::read(fd, &count, sizeof(long long));
ign=::read(cyclefd, &cycles, sizeof(long long));
}
elapsed = cyclecount() - begin;
#else

View File

@ -113,7 +113,7 @@ Gather_plane_simple_table (std::vector<std::pair<int,int> >& table,const Lattice
{
PARALLEL_FOR_LOOP
for(int i=0;i<table.size();i++){
buffer[off+table[i].first]=compress(rhs._odata[so+table[i].second]);
vstream(buffer[off+table[i].first],compress(rhs._odata[so+table[i].second]));
}
}

View File

@ -386,7 +386,7 @@ void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
@ -428,7 +428,7 @@ void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, in
}
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);

View File

@ -29,6 +29,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Eigen/Dense>
#include <Grid.h>
@ -48,18 +49,18 @@ namespace QCD {
FourDimGrid,
FourDimRedBlackGrid,_M5,p),
mass(_mass)
{ }
{
}
template<class Impl>
void CayleyFermion5D<Impl>::Dminus(const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
FermionField tmp(psi._grid);
this->DW(psi,tmp,DaggerNo);
this->DW(psi,this->tmp(),DaggerNo);
for(int s=0;s<Ls;s++){
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],tmp,s,s);// chi = (1-c[s] D_W) psi
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],this->tmp(),s,s);// chi = (1-c[s] D_W) psi
}
}
@ -87,8 +88,8 @@ template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls : " << MooeeInvCalls << std::endl;
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
// Flops = 9*12*Ls*vol/2
RealD mflops = 9.0*12*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
// Flops = MADD * Ls *Ls *4dvol * spin/colour/complex
RealD mflops = 2.0*24*this->Ls*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
}
@ -110,12 +111,11 @@ template<class Impl>
void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
FermionField tmp(psi._grid);
this->DW(psi,tmp,DaggerYes);
this->DW(psi,this->tmp(),DaggerYes);
for(int s=0;s<Ls;s++){
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],tmp,s,s);// chi = (1-c[s] D_W) psi
axpby_ssp(chi,Coeff_t(1.0),psi,-cs[s],this->tmp(),s,s);// chi = (1-c[s] D_W) psi
}
}
template<class Impl>
@ -138,6 +138,7 @@ void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &D
lower[0] =-mass*lower[0];
M5D(psi,psi,Din,lower,diag,upper);
}
// FIXME Redunant with the above routine; check this and eliminate
template<class Impl> void CayleyFermion5D<Impl>::Meo5D (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
@ -259,36 +260,33 @@ template<class Impl>
void CayleyFermion5D<Impl>::Meooe (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
FermionField tmp(psi._grid);
Meooe5D(psi,tmp);
Meooe5D(psi,this->tmp());
if ( psi.checkerboard == Odd ) {
this->DhopEO(tmp,chi,DaggerNo);
this->DhopEO(this->tmp(),chi,DaggerNo);
} else {
this->DhopOE(tmp,chi,DaggerNo);
this->DhopOE(this->tmp(),chi,DaggerNo);
}
}
template<class Impl>
void CayleyFermion5D<Impl>::MeooeDag (const FermionField &psi, FermionField &chi)
{
FermionField tmp(psi._grid);
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
this->DhopEO(psi,tmp,DaggerYes);
this->DhopEO(psi,this->tmp(),DaggerYes);
} else {
this->DhopOE(psi,tmp,DaggerYes);
this->DhopOE(psi,this->tmp(),DaggerYes);
}
MeooeDag5D(tmp,chi);
MeooeDag5D(this->tmp(),chi);
}
template<class Impl>
void CayleyFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
FermionField tmp(psi._grid);
Meo5D(psi,tmp);
Meo5D(psi,this->tmp());
// Apply 4d dslash fragment
this->DhopDir(tmp,chi,dir,disp);
this->DhopDir(this->tmp(),chi,dir,disp);
}
// force terms; five routines; default to Dhop on diagonal
template<class Impl>
@ -459,9 +457,91 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
for(int j=0;j<Ls-1;j++) delta_d *= cee[j]/bee[j];
dee[Ls-1] += delta_d;
}
int inv=1;
this->MooeeInternalCompute(0,inv,MatpInv,MatmInv);
this->MooeeInternalCompute(1,inv,MatpInvDag,MatmInvDag);
}
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternalCompute(int dag, int inv,
Vector<iSinglet<Simd> > & Matp,
Vector<iSinglet<Simd> > & Matm)
{
int Ls=this->Ls;
GridBase *grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0];
if ( LLs == Ls ) return; // Not vectorised in 5th direction
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = bee[s];
Pminus(s,s)= bee[s];
}
for(int s=0;s<Ls-1;s++){
Pminus(s,s+1) = -cee[s];
}
for(int s=0;s<Ls-1;s++){
Pplus(s+1,s) = -cee[s+1];
}
Pplus (0,Ls-1) = mass*cee[0];
Pminus(Ls-1,0) = mass*cee[Ls-1];
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
if ( inv ) {
PplusMat =Pplus.inverse();
PminusMat=Pminus.inverse();
} else {
PplusMat =Pplus;
PminusMat=Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd=Simd::Nsimd();
Matp.resize(Ls*LLs);
Matm.resize(Ls*LLs);
for(int s2=0;s2<Ls;s2++){
for(int s1=0;s1<LLs;s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type *)&Vp;
scalar_type *sm = (scalar_type *)&Vm;
for(int l=0;l<Nsimd;l++){
if ( switcheroo<Coeff_t>::iscomplex() ) {
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
} else {
// if real
scalar_type tmp;
tmp = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(tmp.real(),tmp.real());
tmp = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(tmp.real(),tmp.real());
}
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
}
FermOpTemplateInstantiate(CayleyFermion5D);
GparityFermOpTemplateInstantiate(CayleyFermion5D);

View File

@ -33,6 +33,31 @@ namespace Grid {
namespace QCD {
template<typename T> struct switcheroo {
static inline int iscomplex() { return 0; }
template<class vec>
static inline vec mult(vec a, vec b) {
return real_mult(a,b);
}
};
template<> struct switcheroo<ComplexD> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
}
};
template<> struct switcheroo<ComplexF> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
}
};
template<class Impl>
class CayleyFermion5D : public WilsonFermion5D<Impl>
{
@ -75,7 +100,19 @@ namespace Grid {
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
void MooeeInternal(const FermionField &in, FermionField &out,int dag,int inv);
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd> > & Matp, Vector<iSinglet<Simd> > & Matm);
void MooeeInternalAsm(const FermionField &in, FermionField &out,
int LLs, int site,
Vector<iSinglet<Simd> > &Matp,
Vector<iSinglet<Simd> > &Matm);
void MooeeInternalZAsm(const FermionField &in, FermionField &out,
int LLs, int site,
Vector<iSinglet<Simd> > &Matp,
Vector<iSinglet<Simd> > &Matm);
virtual void Instantiatable(void)=0;
@ -112,6 +149,12 @@ namespace Grid {
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
// Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv;
Vector<iSinglet<Simd> > MatmInv;
Vector<iSinglet<Simd> > MatpInvDag;
Vector<iSinglet<Simd> > MatmInvDag;
// Constructors
CayleyFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -29,13 +29,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Eigen/Dense>
#include <Grid.h>
namespace Grid {
namespace QCD {
/*
namespace QCD { /*
* Dense matrix versions of routines
*/
template<class Impl>
@ -126,7 +125,6 @@ PARALLEL_FOR_LOOP
for(int v=0;v<LLs;v++){
vprefetch(psi[ss+v+LLs]);
// vprefetch(phi[ss+v+LLs]);
int vp= (v==LLs-1) ? 0 : v+1;
int vm= (v==0 ) ? LLs-1 : v-1;
@ -145,9 +143,6 @@ PARALLEL_FOR_LOOP
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
// if ( ss==0) std::cout << " hp_00 " <<hp_00<<std::endl;
// if ( ss==0) std::cout << " hm_00 " <<hm_00<<std::endl;
if ( vp<=v ) {
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
@ -165,42 +160,20 @@ PARALLEL_FOR_LOOP
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
/*
if ( ss==0) std::cout << " dphi_00 " <<d[v]()()() * phi[ss+v]()(0)(0) <<std::endl;
if ( ss==0) std::cout << " dphi_10 " <<d[v]()()() * phi[ss+v]()(1)(0) <<std::endl;
if ( ss==0) std::cout << " dphi_20 " <<d[v]()()() * phi[ss+v]()(2)(0) <<std::endl;
if ( ss==0) std::cout << " dphi_30 " <<d[v]()()() * phi[ss+v]()(3)(0) <<std::endl;
*/
Simd p_00 = d[v]()()() * phi[ss+v]()(0)(0) + l[v]()()()*hm_00;
Simd p_01 = d[v]()()() * phi[ss+v]()(0)(1) + l[v]()()()*hm_01;
Simd p_02 = d[v]()()() * phi[ss+v]()(0)(2) + l[v]()()()*hm_02;
Simd p_10 = d[v]()()() * phi[ss+v]()(1)(0) + l[v]()()()*hm_10;
Simd p_11 = d[v]()()() * phi[ss+v]()(1)(1) + l[v]()()()*hm_11;
Simd p_12 = d[v]()()() * phi[ss+v]()(1)(2) + l[v]()()()*hm_12;
Simd p_20 = d[v]()()() * phi[ss+v]()(2)(0) + u[v]()()()*hp_00;
Simd p_21 = d[v]()()() * phi[ss+v]()(2)(1) + u[v]()()()*hp_01;
Simd p_22 = d[v]()()() * phi[ss+v]()(2)(2) + u[v]()()()*hp_02;
Simd p_30 = d[v]()()() * phi[ss+v]()(3)(0) + u[v]()()()*hp_10;
Simd p_31 = d[v]()()() * phi[ss+v]()(3)(1) + u[v]()()()*hp_11;
Simd p_32 = d[v]()()() * phi[ss+v]()(3)(2) + u[v]()()()*hp_12;
// Can force these to real arithmetic and save 2x.
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_12);
// if ( ss==0){
/*
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(0)(0) << " bad "<<p_00<<" diff "<<chi[ss+v]()(0)(0)-p_00<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(0)(1) << " bad "<<p_01<<" diff "<<chi[ss+v]()(0)(1)-p_01<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(0)(2) << " bad "<<p_02<<" diff "<<chi[ss+v]()(0)(2)-p_02<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(1)(0) << " bad "<<p_10<<" diff "<<chi[ss+v]()(1)(0)-p_10<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(1)(1) << " bad "<<p_11<<" diff "<<chi[ss+v]()(1)(1)-p_11<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(1)(2) << " bad "<<p_12<<" diff "<<chi[ss+v]()(1)(2)-p_12<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(2)(0) << " bad "<<p_20<<" diff "<<chi[ss+v]()(2)(0)-p_20<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(2)(1) << " bad "<<p_21<<" diff "<<chi[ss+v]()(2)(1)-p_21<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(2)(2) << " bad "<<p_22<<" diff "<<chi[ss+v]()(2)(2)-p_22<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(3)(0) << " bad "<<p_30<<" diff "<<chi[ss+v]()(3)(0)-p_30<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(3)(1) << " bad "<<p_31<<" diff "<<chi[ss+v]()(3)(1)-p_31<<std::endl;
std::cout << ss<<" "<< v<< " good "<< chi[ss+v]()(3)(2) << " bad "<<p_32<<" diff "<<chi[ss+v]()(3)(2)-p_32<<std::endl;
}
*/
vstream(chi[ss+v]()(0)(0),p_00);
vstream(chi[ss+v]()(0)(1),p_01);
vstream(chi[ss+v]()(0)(2),p_02);
@ -261,7 +234,7 @@ void CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi,
M5Dtime-=usecond();
PARALLEL_FOR_LOOP
for(int ss=0;ss<grid->oSites();ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
@ -287,9 +260,504 @@ PARALLEL_FOR_LOOP
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0;v<LLs;v++){
vprefetch(psi[ss+v+LLs]);
int vp= (v==LLs-1) ? 0 : v+1;
int vm= (v==0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if ( vp<=v ) {
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if ( vm>=v ) {
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(),hp_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(),hm_12);
vstream(chi[ss+v]()(0)(0),p_00);
vstream(chi[ss+v]()(0)(1),p_01);
vstream(chi[ss+v]()(0)(2),p_02);
vstream(chi[ss+v]()(1)(0),p_10);
vstream(chi[ss+v]()(1)(1),p_11);
vstream(chi[ss+v]()(1)(2),p_12);
vstream(chi[ss+v]()(2)(0),p_20);
vstream(chi[ss+v]()(2)(1),p_21);
vstream(chi[ss+v]()(2)(2),p_22);
vstream(chi[ss+v]()(3)(0),p_30);
vstream(chi[ss+v]()(3)(1),p_31);
vstream(chi[ss+v]()(3)(2),p_32);
}
#endif
}
M5Dtime+=usecond();
}
#ifdef AVX512
#include <simd/Intel512common.h>
#include <simd/Intel512avx.h>
#include <simd/Intel512single.h>
#endif
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi, FermionField &chi,
int LLs, int site,
Vector<iSinglet<Simd> > &Matp,
Vector<iSinglet<Simd> > &Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0;s1<LLs;s1++){
for(int s2=0;s2<LLs;s2++){
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
int s=s2+l*LLs;
int lex=s2+LLs*site;
if ( s2==0 && l==0) {
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vbroadcast(BcastP()(sp )(co),psi[lex]()(sp)(co),l);
}}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vbroadcast(BcastM()(sp )(co),psi[lex]()(sp+2)(co),l);
}}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
SiteChiP()(sp)(co)=real_madd(Matp[LLs*s+s1]()()(),BcastP()(sp)(co),SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co)=real_madd(Matm[LLs*s+s1]()()(),BcastM()(sp)(co),SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1+LLs*site;
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr=LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0;s1<LLs;s1++){
for(int s2=0;s2<LLs;s2++){
int lex=s2+LLs*site;
uint64_t a0 = (uint64_t)&Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t)&Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t)&psi[lex];
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
if ( (s2+l)==0 ) {
asm (
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM (0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM (0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM (0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM (0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM (0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM (0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM (0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM (0,%1,BCAST7,Chi_21)
VMULMEM (0,%1,BCAST8,Chi_22)
VMULMEM (0,%1,BCAST9,Chi_30)
VMULMEM (0,%1,BCAST10,Chi_31)
VMULMEM (0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm (
VBCASTCDUP(0,%2,BCAST0) VMADDMEM (0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM (0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM (0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM (0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM (0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM (0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM (0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM (0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM (0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM (0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM (0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM (0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0+incr;
a1 = a1+incr;
a2 = a2+sizeof(Simd::scalar_type);
}}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
// Z-mobius version
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi, FermionField &chi,
int LLs, int site, Vector<iSinglet<Simd> > &Matp, Vector<iSinglet<Simd> > &Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0;s1<LLs;s1++){
for(int s2=0;s2<LLs;s2++){
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
int s=s2+l*LLs;
int lex=s2+LLs*site;
if ( s2==0 && l==0) {
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vbroadcast(BcastP()(sp )(co),psi[lex]()(sp)(co),l);
}}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vbroadcast(BcastM()(sp )(co),psi[lex]()(sp+2)(co),l);
}}
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
SiteChiP()(sp)(co)=SiteChiP()(sp)(co)+ Matp[LLs*s+s1]()()()*BcastP()(sp)(co);
SiteChiM()(sp)(co)=SiteChiM()(sp)(co)+ Matm[LLs*s+s1]()()()*BcastM()(sp)(co);
}}
}}
{
int lex = s1+LLs*site;
for(int sp=0;sp<2;sp++){
for(int co=0;co<Nc;co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %zmm0
#define Chi_01 %zmm1
#define Chi_02 %zmm2
#define Chi_10 %zmm3
#define Chi_11 %zmm4
#define Chi_12 %zmm5
#define Chi_20 %zmm6
#define Chi_21 %zmm7
#define Chi_22 %zmm8
#define Chi_30 %zmm9
#define Chi_31 %zmm10
#define Chi_32 %zmm11
#define pChi_00 %%zmm0
#define pChi_01 %%zmm1
#define pChi_02 %%zmm2
#define pChi_10 %%zmm3
#define pChi_11 %%zmm4
#define pChi_12 %%zmm5
#define pChi_20 %%zmm6
#define pChi_21 %%zmm7
#define pChi_22 %%zmm8
#define pChi_30 %%zmm9
#define pChi_31 %%zmm10
#define pChi_32 %%zmm11
#define BCAST_00 %zmm12
#define SHUF_00 %zmm13
#define BCAST_01 %zmm14
#define SHUF_01 %zmm15
#define BCAST_02 %zmm16
#define SHUF_02 %zmm17
#define BCAST_10 %zmm18
#define SHUF_10 %zmm19
#define BCAST_11 %zmm20
#define SHUF_11 %zmm21
#define BCAST_12 %zmm22
#define SHUF_12 %zmm23
#define Mp %zmm24
#define Mps %zmm25
#define Mm %zmm26
#define Mms %zmm27
#define N 8
int incr=LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0;s1<LLs;s1++){
for(int s2=0;s2<LLs;s2++){
int lex=s2+LLs*site;
uint64_t a0 = (uint64_t)&Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t)&Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t)&psi[lex];
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
if ( (s2+l)==0 ) {
LOAD64(%r8,a0);
LOAD64(%r9,a1);
LOAD64(%r10,a2);
asm (
VLOAD(0,%r8,Mp)// i r
VLOAD(0,%r9,Mm)
VSHUF(Mp,Mps) // r i
VSHUF(Mm,Mms)
VPREFETCH1(12,%r10) VPREFETCH1(13,%r10)
VPREFETCH1(14,%r10) VPREFETCH1(15,%r10)
VMULIDUP(0*N,%r10,Mps,Chi_00)
VMULIDUP(1*N,%r10,Mps,Chi_01)
VMULIDUP(2*N,%r10,Mps,Chi_02)
VMULIDUP(3*N,%r10,Mps,Chi_10)
VMULIDUP(4*N,%r10,Mps,Chi_11)
VMULIDUP(5*N,%r10,Mps,Chi_12)
VMULIDUP(6*N ,%r10,Mms,Chi_20)
VMULIDUP(7*N ,%r10,Mms,Chi_21)
VMULIDUP(8*N ,%r10,Mms,Chi_22)
VMULIDUP(9*N ,%r10,Mms,Chi_30)
VMULIDUP(10*N,%r10,Mms,Chi_31)
VMULIDUP(11*N,%r10,Mms,Chi_32)
VMADDSUBRDUP(0*N,%r10,Mp,Chi_00)
VMADDSUBRDUP(1*N,%r10,Mp,Chi_01)
VMADDSUBRDUP(2*N,%r10,Mp,Chi_02)
VMADDSUBRDUP(3*N,%r10,Mp,Chi_10)
VMADDSUBRDUP(4*N,%r10,Mp,Chi_11)
VMADDSUBRDUP(5*N,%r10,Mp,Chi_12)
VMADDSUBRDUP(6*N ,%r10,Mm,Chi_20)
VMADDSUBRDUP(7*N ,%r10,Mm,Chi_21)
VMADDSUBRDUP(8*N ,%r10,Mm,Chi_22)
VMADDSUBRDUP(9*N ,%r10,Mm,Chi_30)
VMADDSUBRDUP(10*N,%r10,Mm,Chi_31)
VMADDSUBRDUP(11*N,%r10,Mm,Chi_32)
);
} else {
LOAD64(%r8,a0);
LOAD64(%r9,a1);
LOAD64(%r10,a2);
asm (
VLOAD(0,%r8,Mp)
VSHUF(Mp,Mps)
VLOAD(0,%r9,Mm)
VSHUF(Mm,Mms)
VMADDSUBIDUP(0*N,%r10,Mps,Chi_00) // Mri * Pii +- Cir
VMADDSUBIDUP(1*N,%r10,Mps,Chi_01)
VMADDSUBIDUP(2*N,%r10,Mps,Chi_02)
VMADDSUBIDUP(3*N,%r10,Mps,Chi_10)
VMADDSUBIDUP(4*N,%r10,Mps,Chi_11)
VMADDSUBIDUP(5*N,%r10,Mps,Chi_12)
VMADDSUBIDUP(6 *N,%r10,Mms,Chi_20)
VMADDSUBIDUP(7 *N,%r10,Mms,Chi_21)
VMADDSUBIDUP(8 *N,%r10,Mms,Chi_22)
VMADDSUBIDUP(9 *N,%r10,Mms,Chi_30)
VMADDSUBIDUP(10*N,%r10,Mms,Chi_31)
VMADDSUBIDUP(11*N,%r10,Mms,Chi_32)
VMADDSUBRDUP(0*N,%r10,Mp,Chi_00) // Cir = Mir * Prr +- ( Mri * Pii +- Cir)
VMADDSUBRDUP(1*N,%r10,Mp,Chi_01) // Ci = MiPr + Ci + MrPi ; Cr = MrPr - ( MiPi - Cr)
VMADDSUBRDUP(2*N,%r10,Mp,Chi_02)
VMADDSUBRDUP(3*N,%r10,Mp,Chi_10)
VMADDSUBRDUP(4*N,%r10,Mp,Chi_11)
VMADDSUBRDUP(5*N,%r10,Mp,Chi_12)
VMADDSUBRDUP(6 *N,%r10,Mm,Chi_20)
VMADDSUBRDUP(7 *N,%r10,Mm,Chi_21)
VMADDSUBRDUP(8 *N,%r10,Mm,Chi_22)
VMADDSUBRDUP(9 *N,%r10,Mm,Chi_30)
VMADDSUBRDUP(10*N,%r10,Mm,Chi_31)
VMADDSUBRDUP(11*N,%r10,Mm,Chi_32)
);
}
a0 = a0+incr;
a1 = a1+incr;
a2 = a2+sizeof(Simd::scalar_type);
}}
{
int lexa = s1+LLs*site;
/*
SiteSpinor tmp;
asm (
VSTORE(0,%0,pChi_00) VSTORE(1 ,%0,pChi_01) VSTORE(2 ,%0,pChi_02)
VSTORE(3,%0,pChi_10) VSTORE(4 ,%0,pChi_11) VSTORE(5 ,%0,pChi_12)
VSTORE(6,%0,pChi_20) VSTORE(7 ,%0,pChi_21) VSTORE(8 ,%0,pChi_22)
VSTORE(9,%0,pChi_30) VSTORE(10,%0,pChi_31) VSTORE(11,%0,pChi_32)
: : "r" ((uint64_t)&tmp) : "memory" );
*/
asm (
VSTORE(0,%0,pChi_00) VSTORE(1 ,%0,pChi_01) VSTORE(2 ,%0,pChi_02)
VSTORE(3,%0,pChi_10) VSTORE(4 ,%0,pChi_11) VSTORE(5 ,%0,pChi_12)
VSTORE(6,%0,pChi_20) VSTORE(7 ,%0,pChi_21) VSTORE(8 ,%0,pChi_22)
VSTORE(9,%0,pChi_30) VSTORE(10,%0,pChi_31) VSTORE(11,%0,pChi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
// if ( 1 || (site==0) ) {
// std::cout<<site << " s1 "<<s1<<"\n\t"<<tmp << "\n't" << chi[lexa] <<"\n\t"<<tmp-chi[lexa]<<std::endl;
// }
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv)
{
@ -299,106 +767,39 @@ void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField
chi.checkerboard=psi.checkerboard;
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
Vector<iSinglet<Simd> > Matp;
Vector<iSinglet<Simd> > Matm;
Vector<iSinglet<Simd> > *_Matp;
Vector<iSinglet<Simd> > *_Matm;
for(int s=0;s<Ls;s++){
Pplus(s,s) = bee[s];
Pminus(s,s)= bee[s];
// MooeeInternalCompute(dag,inv,Matp,Matm);
if ( inv && dag ) {
_Matp = &MatpInvDag;
_Matm = &MatmInvDag;
}
for(int s=0;s<Ls-1;s++){
Pminus(s,s+1) = -cee[s];
}
for(int s=0;s<Ls-1;s++){
Pplus(s+1,s) = -cee[s+1];
}
Pplus (0,Ls-1) = mass*cee[0];
Pminus(Ls-1,0) = mass*cee[Ls-1];
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
if ( inv ) {
PplusMat =Pplus.inverse();
PminusMat=Pminus.inverse();
} else {
PplusMat =Pplus;
PminusMat=Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd=Simd::Nsimd();
Vector<iSinglet<Simd> > Matp(Ls*LLs);
Vector<iSinglet<Simd> > Matm(Ls*LLs);
for(int s2=0;s2<Ls;s2++){
for(int s1=0;s1<LLs;s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type *)&Vp;
scalar_type *sm = (scalar_type *)&Vm;
for(int l=0;l<Nsimd;l++){
sp[l] = PplusMat (l*istride+s1*ostride ,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
if ( inv && (!dag) ) {
_Matp = &MatpInv;
_Matm = &MatmInv;
}
if ( !inv ) {
MooeeInternalCompute(dag,inv,Matp,Matm);
_Matp = &Matp;
_Matm = &Matm;
}
assert(_Matp->size()==Ls*LLs);
MooeeInvCalls++;
MooeeInvTime-=usecond();
// Dynamic allocate on stack to get per thread without serialised heap acces
#pragma omp parallel
{
Vector<SiteHalfSpinor> SitePplus(LLs);
Vector<SiteHalfSpinor> SitePminus(LLs);
Vector<SiteHalfSpinor> SiteChiP(LLs);
Vector<SiteHalfSpinor> SiteChiM(LLs);
Vector<SiteSpinor> SiteChi(LLs);
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
#pragma omp for
if ( switcheroo<Coeff_t>::iscomplex() ) {
PARALLEL_FOR_LOOP
for(auto site=0;site<vol;site++){
for(int s=0;s<LLs;s++){
int lex = s+LLs*site;
spProj5p(SitePplus[s] ,psi[lex]);
spProj5m(SitePminus[s],psi[lex]);
SiteChiP[s]=zero;
SiteChiM[s]=zero;
}
int s=0;
for(int l=0; l<Simd::Nsimd();l++){ // simd lane
for(int s2=0;s2<LLs;s2++){ // Column loop of right hand side
vbroadcast(BcastP,SitePplus [s2],l);
vbroadcast(BcastM,SitePminus[s2],l);
for(int s1=0;s1<LLs;s1++){ // Column loop of reduction variables
SiteChiP[s1]=SiteChiP[s1]+Matp[LLs*s+s1]*BcastP;
SiteChiM[s1]=SiteChiM[s1]+Matm[LLs*s+s1]*BcastM;
}
s++;
}}
for(int s=0;s<LLs;s++){
int lex = s+LLs*site;
spRecon5p(SiteChi[s],SiteChiP[s]);
accumRecon5m(SiteChi[s],SiteChiM[s]);
chi[lex] = SiteChi[s]*0.5;
MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
}
} else {
PARALLEL_FOR_LOOP
for(auto site=0;site<vol;site++){
MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
}
}
MooeeInvTime+=usecond();
@ -414,4 +815,5 @@ template void CayleyFermion5D<DomainWallVec5dImplD>::MooeeInternal(const Fermion
template void CayleyFermion5D<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
}}

View File

@ -48,6 +48,8 @@ namespace Grid {
FermionOperator(const ImplParams &p= ImplParams()) : Impl(p) {};
virtual FermionField &tmp(void) = 0;
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };

View File

@ -61,7 +61,9 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
LebesgueEvenOdd(_cbgrid),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd(&Hgrid) {
UmuOdd(&Hgrid),
_tmp(&Hgrid)
{
// Allocate the required comms buffer
ImportGauge(_Umu);
}

View File

@ -58,6 +58,9 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent

View File

@ -60,7 +60,8 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
UmuEven(_FourDimRedBlackGrid),
UmuOdd (_FourDimRedBlackGrid),
Lebesgue(_FourDimGrid),
LebesgueEvenOdd(_FourDimRedBlackGrid)
LebesgueEvenOdd(_FourDimRedBlackGrid),
_tmp(&FiveDimRedBlackGrid)
{
if (Impl::LsVectorised) {

View File

@ -74,6 +74,9 @@ namespace QCD {
typedef WilsonKernels<Impl> Kernels;
PmuStat stat;
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
void Report(void);
void ZeroCounters(void);
double DhopCalls;

View File

@ -32,6 +32,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <type_traits>
namespace Grid {
// Vector IO utilities ///////////////////////////////////////////////////////
// helper function to read space-separated values
template <typename T>
std::vector<T> strToVec(const std::string s)
@ -67,6 +68,77 @@ namespace Grid {
return os;
}
// Vector element trait //////////////////////////////////////////////////////
template <typename T>
struct element
{
typedef T type;
static constexpr bool is_number = false;
};
template <typename T>
struct element<std::vector<T>>
{
typedef typename element<T>::type type;
static constexpr bool is_number = std::is_arithmetic<T>::value
or is_complex<T>::value
or element<T>::is_number;
};
// Vector flatening utility class ////////////////////////////////////////////
// Class to flatten a multidimensional std::vector
template <typename V>
class Flatten
{
public:
typedef typename element<V>::type Element;
public:
explicit Flatten(const V &vector);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
private:
void accumulate(const Element &e);
template <typename W>
void accumulate(const W &v);
void accumulateDim(const Element &e);
template <typename W>
void accumulateDim(const W &v);
private:
const V &vector_;
std::vector<Element> flatVector_;
std::vector<size_t> dim_;
};
// Class to reconstruct a multidimensional std::vector
template <typename V>
class Reconstruct
{
public:
typedef typename element<V>::type Element;
public:
Reconstruct(const std::vector<Element> &flatVector,
const std::vector<size_t> &dim);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
private:
void fill(std::vector<Element> &v);
template <typename W>
void fill(W &v);
void resize(std::vector<Element> &v, const unsigned int dim);
template <typename W>
void resize(W &v, const unsigned int dim);
private:
V vector_;
const std::vector<Element> &flatVector_;
std::vector<size_t> dim_;
size_t ind_{0};
unsigned int dimInd_{0};
};
// Abstract writer/reader classes ////////////////////////////////////////////
// static polymorphism implemented using CRTP idiom
class Serializable;
@ -83,12 +155,7 @@ namespace Grid {
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
write(const std::string& s, const U &output);
template <typename U>
typename std::enable_if<std::is_enum<U>::value, void>::type
write(const std::string& s, const U &output);
template <typename U>
typename std::enable_if<
!(std::is_base_of<Serializable, U>::value or std::is_enum<U>::value),
void>::type
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
write(const std::string& s, const U &output);
private:
T *upcast;
@ -107,12 +174,7 @@ namespace Grid {
typename std::enable_if<std::is_base_of<Serializable, U>::value, void>::type
read(const std::string& s, U &output);
template <typename U>
typename std::enable_if<std::is_enum<U>::value, void>::type
read(const std::string& s, U &output);
template <typename U>
typename std::enable_if<
!(std::is_base_of<Serializable, U>::value or std::is_enum<U>::value),
void>::type
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
read(const std::string& s, U &output);
protected:
template <typename U>
@ -142,7 +204,128 @@ namespace Grid {
}
};
// Generic writer interface
// Flatten class template implementation /////////////////////////////////////
template <typename V>
void Flatten<V>::accumulate(const Element &e)
{
flatVector_.push_back(e);
}
template <typename V>
template <typename W>
void Flatten<V>::accumulate(const W &v)
{
for (auto &e: v)
{
accumulate(e);
}
}
template <typename V>
void Flatten<V>::accumulateDim(const Element &e) {};
template <typename V>
template <typename W>
void Flatten<V>::accumulateDim(const W &v)
{
dim_.push_back(v.size());
accumulateDim(v[0]);
}
template <typename V>
Flatten<V>::Flatten(const V &vector)
: vector_(vector)
{
accumulate(vector_);
accumulateDim(vector_);
}
template <typename V>
const V & Flatten<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Flatten<V>::Element> &
Flatten<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Flatten<V>::getDim(void)
{
return dim_;
}
// Reconstruct class template implementation /////////////////////////////////
template <typename V>
void Reconstruct<V>::fill(std::vector<Element> &v)
{
for (auto &e: v)
{
e = flatVector_[ind_++];
}
}
template <typename V>
template <typename W>
void Reconstruct<V>::fill(W &v)
{
for (auto &e: v)
{
fill(e);
}
}
template <typename V>
void Reconstruct<V>::resize(std::vector<Element> &v, const unsigned int dim)
{
v.resize(dim_[dim]);
}
template <typename V>
template <typename W>
void Reconstruct<V>::resize(W &v, const unsigned int dim)
{
v.resize(dim_[dim]);
for (auto &e: v)
{
resize(e, dim + 1);
}
}
template <typename V>
Reconstruct<V>::Reconstruct(const std::vector<Element> &flatVector,
const std::vector<size_t> &dim)
: flatVector_(flatVector)
, dim_(dim)
{
resize(vector_, 0);
fill(vector_);
}
template <typename V>
const V & Reconstruct<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Reconstruct<V>::Element> &
Reconstruct<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Reconstruct<V>::getDim(void)
{
return dim_;
}
// Generic writer interface //////////////////////////////////////////////////
template <typename T>
inline void push(Writer<T> &w, const std::string &s)
{
@ -221,23 +404,13 @@ namespace Grid {
template <typename T>
template <typename U>
typename std::enable_if<std::is_enum<U>::value, void>::type
Writer<T>::write(const std::string &s, const U &output)
{
EnumIO<U>::write(*this, s, output);
}
template <typename T>
template <typename U>
typename std::enable_if<
!(std::is_base_of<Serializable, U>::value or std::is_enum<U>::value),
void>::type
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
Writer<T>::write(const std::string &s, const U &output)
{
upcast->writeDefault(s, output);
}
// Reader template implementation ////////////////////////////////////////////
// Reader template implementation
template <typename T>
Reader<T>::Reader(void)
{
@ -266,17 +439,7 @@ namespace Grid {
template <typename T>
template <typename U>
typename std::enable_if<std::is_enum<U>::value, void>::type
Reader<T>::read(const std::string &s, U &output)
{
EnumIO<U>::read(*this, s, output);
}
template <typename T>
template <typename U>
typename std::enable_if<
!(std::is_base_of<Serializable, U>::value or std::is_enum<U>::value),
void>::type
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
Reader<T>::read(const std::string &s, U &output)
{
upcast->readDefault(s, output);
@ -300,7 +463,6 @@ namespace Grid {
abort();
}
}
}
#endif

103
lib/serialisation/Hdf5IO.cc Normal file
View File

@ -0,0 +1,103 @@
#include <Grid.h>
using namespace Grid;
#ifndef H5_NO_NAMESPACE
using namespace H5NS;
#endif
// Writer implementation ///////////////////////////////////////////////////////
Hdf5Writer::Hdf5Writer(const std::string &fileName)
: fileName_(fileName)
, file_(fileName.c_str(), H5F_ACC_TRUNC)
{
group_ = file_.openGroup("/");
writeSingleAttribute(dataSetThres_, HDF5_GRID_GUARD "dataset_threshold",
Hdf5Type<unsigned int>::type());
}
void Hdf5Writer::push(const std::string &s)
{
group_ = group_.createGroup(s);
path_.push_back(s);
}
void Hdf5Writer::pop(void)
{
path_.pop_back();
if (path_.empty())
{
group_ = file_.openGroup("/");
}
else
{
auto binOp = [](const std::string &a, const std::string &b)->std::string
{
return a + "/" + b;
};
group_ = group_.openGroup(std::accumulate(path_.begin(), path_.end(),
std::string(""), binOp));
}
}
template <>
void Hdf5Writer::writeDefault(const std::string &s, const std::string &x)
{
StrType strType(PredType::C_S1, x.size());
writeSingleAttribute(*(x.data()), s, strType);
}
void Hdf5Writer::writeDefault(const std::string &s, const char *x)
{
std::string sx(x);
writeDefault(s, sx);
}
// Reader implementation ///////////////////////////////////////////////////////
Hdf5Reader::Hdf5Reader(const std::string &fileName)
: fileName_(fileName)
, file_(fileName.c_str(), H5F_ACC_RDONLY)
{
group_ = file_.openGroup("/");
readSingleAttribute(dataSetThres_, HDF5_GRID_GUARD "dataset_threshold",
Hdf5Type<unsigned int>::type());
}
void Hdf5Reader::push(const std::string &s)
{
group_ = group_.openGroup(s);
path_.push_back(s);
}
void Hdf5Reader::pop(void)
{
path_.pop_back();
if (path_.empty())
{
group_ = file_.openGroup("/");
}
else
{
auto binOp = [](const std::string &a, const std::string &b)->std::string
{
return a + "/" + b;
};
group_ = group_.openGroup(std::accumulate(path_.begin(), path_.end(),
std::string(""), binOp));
}
}
template <>
void Hdf5Reader::readDefault(const std::string &s, std::string &x)
{
Attribute attribute;
attribute = group_.openAttribute(s);
StrType strType = attribute.getStrType();
x.resize(strType.getSize());
attribute.read(strType, &(x[0]));
}

242
lib/serialisation/Hdf5IO.h Normal file
View File

@ -0,0 +1,242 @@
#ifndef GRID_SERIALISATION_HDF5_H
#define GRID_SERIALISATION_HDF5_H
#include <stack>
#include <string>
#include <vector>
#include <H5Cpp.h>
#include "Hdf5Type.h"
#ifndef H5_NO_NAMESPACE
#define H5NS H5
#endif
// default thresold above which datasets are used instead of attributes
#ifndef HDF5_DEF_DATASET_THRES
#define HDF5_DEF_DATASET_THRES 6u
#endif
// name guard for Grid metadata
#define HDF5_GRID_GUARD "_Grid_"
namespace Grid
{
class Hdf5Writer: public Writer<Hdf5Writer>
{
public:
Hdf5Writer(const std::string &fileName);
virtual ~Hdf5Writer(void) = default;
void push(const std::string &s);
void pop(void);
void writeDefault(const std::string &s, const char *x);
template <typename U>
void writeDefault(const std::string &s, const U &x);
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
writeDefault(const std::string &s, const std::vector<U> &x);
private:
template <typename U>
void writeSingleAttribute(const U &x, const std::string &name,
const H5NS::DataType &type);
private:
std::string fileName_;
std::vector<std::string> path_;
H5NS::H5File file_;
H5NS::Group group_;
unsigned int dataSetThres_{HDF5_DEF_DATASET_THRES};
};
class Hdf5Reader: public Reader<Hdf5Reader>
{
public:
Hdf5Reader(const std::string &fileName);
virtual ~Hdf5Reader(void) = default;
void push(const std::string &s);
void pop(void);
template <typename U>
void readDefault(const std::string &s, U &output);
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
readDefault(const std::string &s, std::vector<U> &x);
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
readDefault(const std::string &s, std::vector<U> &x);
private:
template <typename U>
void readSingleAttribute(U &x, const std::string &name,
const H5NS::DataType &type);
private:
std::string fileName_;
std::vector<std::string> path_;
H5NS::H5File file_;
H5NS::Group group_;
unsigned int dataSetThres_;
};
// Writer template implementation ////////////////////////////////////////////
template <typename U>
void Hdf5Writer::writeSingleAttribute(const U &x, const std::string &name,
const H5NS::DataType &type)
{
H5NS::Attribute attribute;
hsize_t attrDim = 1;
H5NS::DataSpace attrSpace(1, &attrDim);
attribute = group_.createAttribute(name, type, attrSpace);
attribute.write(type, &x);
}
template <typename U>
void Hdf5Writer::writeDefault(const std::string &s, const U &x)
{
writeSingleAttribute(x, s, Hdf5Type<U>::type());
}
template <>
void Hdf5Writer::writeDefault(const std::string &s, const std::string &x);
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x)
{
// alias to element type
typedef typename element<std::vector<U>>::type Element;
// flatten the vector and getting dimensions
Flatten<std::vector<U>> flat(x);
std::vector<hsize_t> dim;
const auto &flatx = flat.getFlatVector();
for (auto &d: flat.getDim())
{
dim.push_back(d);
}
// write to file
H5NS::DataSpace dataSpace(dim.size(), dim.data());
if (flatx.size() > dataSetThres_)
{
H5NS::DataSet dataSet;
dataSet = group_.createDataSet(s, Hdf5Type<Element>::type(), dataSpace);
dataSet.write(flatx.data(), Hdf5Type<Element>::type());
}
else
{
H5NS::Attribute attribute;
attribute = group_.createAttribute(s, Hdf5Type<Element>::type(), dataSpace);
attribute.write(Hdf5Type<Element>::type(), flatx.data());
}
}
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
Hdf5Writer::writeDefault(const std::string &s, const std::vector<U> &x)
{
push(s);
writeSingleAttribute(x.size(), HDF5_GRID_GUARD "vector_size",
Hdf5Type<uint64_t>::type());
for (hsize_t i = 0; i < x.size(); ++i)
{
write(s + "_" + std::to_string(i), x[i]);
}
pop();
}
// Reader template implementation ////////////////////////////////////////////
template <typename U>
void Hdf5Reader::readSingleAttribute(U &x, const std::string &name,
const H5NS::DataType &type)
{
H5NS::Attribute attribute;
attribute = group_.openAttribute(name);
attribute.read(type, &x);
}
template <typename U>
void Hdf5Reader::readDefault(const std::string &s, U &output)
{
readSingleAttribute(output, s, Hdf5Type<U>::type());
}
template <>
void Hdf5Reader::readDefault(const std::string &s, std::string &x);
template <typename U>
typename std::enable_if<element<std::vector<U>>::is_number, void>::type
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
{
// alias to element type
typedef typename element<std::vector<U>>::type Element;
// read the dimensions
H5NS::DataSpace dataSpace;
std::vector<hsize_t> hdim;
std::vector<size_t> dim;
hsize_t size = 1;
if (group_.attrExists(s))
{
dataSpace = group_.openAttribute(s).getSpace();
}
else
{
dataSpace = group_.openDataSet(s).getSpace();
}
hdim.resize(dataSpace.getSimpleExtentNdims());
dataSpace.getSimpleExtentDims(hdim.data());
for (auto &d: hdim)
{
dim.push_back(d);
size *= d;
}
// read the flat vector
std::vector<Element> buf(size);
if (size > dataSetThres_)
{
H5NS::DataSet dataSet;
dataSet = group_.openDataSet(s);
dataSet.read(buf.data(), Hdf5Type<Element>::type());
}
else
{
H5NS::Attribute attribute;
attribute = group_.openAttribute(s);
attribute.read(Hdf5Type<Element>::type(), buf.data());
}
// reconstruct the multidimensional vector
Reconstruct<std::vector<U>> r(buf, dim);
x = r.getVector();
}
template <typename U>
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
Hdf5Reader::readDefault(const std::string &s, std::vector<U> &x)
{
uint64_t size;
push(s);
readSingleAttribute(size, HDF5_GRID_GUARD "vector_size",
Hdf5Type<uint64_t>::type());
x.resize(size);
for (hsize_t i = 0; i < x.size(); ++i)
{
read(s + "_" + std::to_string(i), x[i]);
}
pop();
}
}
#endif

View File

@ -0,0 +1,77 @@
#ifndef GRID_SERIALISATION_HDF5_TYPE_H
#define GRID_SERIALISATION_HDF5_TYPE_H
#include <H5Cpp.h>
#include <complex>
#include <memory>
#ifndef H5_NO_NAMESPACE
#define H5NS H5
#endif
#define HDF5_NATIVE_TYPE(predType, cType)\
template <>\
class Hdf5Type<cType>\
{\
public:\
static inline const H5NS::DataType & type(void)\
{\
return H5NS::PredType::predType;\
}\
static constexpr bool isNative = true;\
};
#define DEFINE_HDF5_NATIVE_TYPES \
HDF5_NATIVE_TYPE(NATIVE_B8, bool);\
HDF5_NATIVE_TYPE(NATIVE_CHAR, char);\
HDF5_NATIVE_TYPE(NATIVE_SCHAR, signed char);\
HDF5_NATIVE_TYPE(NATIVE_UCHAR, unsigned char);\
HDF5_NATIVE_TYPE(NATIVE_SHORT, short);\
HDF5_NATIVE_TYPE(NATIVE_USHORT, unsigned short);\
HDF5_NATIVE_TYPE(NATIVE_INT, int);\
HDF5_NATIVE_TYPE(NATIVE_UINT, unsigned int);\
HDF5_NATIVE_TYPE(NATIVE_LONG, long);\
HDF5_NATIVE_TYPE(NATIVE_ULONG, unsigned long);\
HDF5_NATIVE_TYPE(NATIVE_LLONG, long long);\
HDF5_NATIVE_TYPE(NATIVE_ULLONG, unsigned long long);\
HDF5_NATIVE_TYPE(NATIVE_FLOAT, float);\
HDF5_NATIVE_TYPE(NATIVE_DOUBLE, double);\
HDF5_NATIVE_TYPE(NATIVE_LDOUBLE, long double);
namespace Grid
{
template <typename T> class Hdf5Type
{
public:
static constexpr bool isNative = false;
};
DEFINE_HDF5_NATIVE_TYPES;
template <typename R>
class Hdf5Type<std::complex<R>>
{
public:
static inline const H5NS::DataType & type(void)
{
if (typePtr_ == nullptr)
{
typePtr_.reset(new H5NS::CompType(sizeof(std::complex<R>)));
typePtr_->insertMember("re", 0, Hdf5Type<R>::type());
typePtr_->insertMember("im", sizeof(R), Hdf5Type<R>::type());
}
return *typePtr_;
}
static constexpr bool isNative = false;
private:
static std::unique_ptr<H5NS::CompType> typePtr_;
};
template <typename R>
std::unique_ptr<H5NS::CompType> Hdf5Type<std::complex<R>>::typePtr_ = nullptr;
}
#undef HDF5_NATIVE_TYPE
#endif /* GRID_SERIALISATION_HDF5_TYPE_H */

View File

@ -109,40 +109,36 @@ THE SOFTWARE.
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define GRID_MACRO_MEMBER(A,B) A B;
#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and (lhs. B == rhs. B));
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" "#B <<" = "<< obj. B <<" ; " <<std::endl;
#define GRID_MACRO_READ_MEMBER(A,B) Grid::read(RD,#B,obj. B);
#define GRID_MACRO_WRITE_MEMBER(A,B) Grid::write(WR,#B,obj. B);
#define GRID_SERIALIZABLE_CLASS_MEMBERS(cname,...) \
\
\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_MEMBER,__VA_ARGS__)) \
\
\
template <typename T>\
static inline void write(Writer<T> &WR,const std::string &s, const cname &obj){ \
#define GRID_SERIALIZABLE_CLASS_MEMBERS(cname,...)\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_MEMBER,__VA_ARGS__))\
template <typename T>\
static inline void write(Writer<T> &WR,const std::string &s, const cname &obj){ \
push(WR,s);\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_WRITE_MEMBER,__VA_ARGS__)) \
pop(WR);\
} \
\
\
template <typename T>\
static inline void read(Reader<T> &RD,const std::string &s, cname &obj){ \
}\
template <typename T>\
static inline void read(Reader<T> &RD,const std::string &s, cname &obj){ \
push(RD,s);\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_READ_MEMBER,__VA_ARGS__)) \
pop(RD);\
} \
\
\
friend inline std::ostream & operator << (std::ostream &os, const cname &obj ) { \
}\
friend inline std::ostream & operator << (std::ostream &os, const cname &obj ) { \
os<<"class "<<#cname<<" {"<<std::endl;\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_OS_WRITE_MEMBER,__VA_ARGS__)) \
os<<"}"; \
return os;\
};
}\
friend inline bool operator==(const cname &lhs, const cname &rhs) {\
bool result = true;\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_COMP_MEMBER,__VA_ARGS__))\
return result;\
}
#define GRID_ENUM_TYPE(obj) std::remove_reference<decltype(obj)>::type
#define GRID_MACRO_ENUMVAL(A,B) A = B,
@ -150,44 +146,52 @@ THE SOFTWARE.
#define GRID_MACRO_ENUMTEST(A,B) else if (buf == #A) {obj = GRID_ENUM_TYPE(obj)::A;}
#define GRID_MACRO_ENUMCASEIO(A,B) case GRID_ENUM_TYPE(obj)::A: os << #A; break;
namespace Grid {
template <typename U>
class EnumIO {};
}
#define GRID_SERIALIZABLE_ENUM(name,undefname,...)\
enum class name {\
class name: public Grid::Serializable\
{\
public:\
enum EnumType\
{\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_ENUMVAL,__VA_ARGS__))\
undefname = -1\
};\
\
template<>\
class EnumIO<name> {\
public:\
public:\
name(void): value_(undefname) {};\
name(EnumType value): value_(value) {};\
template <typename T>\
static inline void write(Writer<T> &WR,const std::string &s, const name &obj){ \
switch (obj) {\
static inline void write(Grid::Writer<T> &WR,const std::string &s, const name &obj)\
{\
switch (obj.value_)\
{\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_ENUMCASE,__VA_ARGS__))\
default: Grid::write(WR,s,#undefname); break;\
}\
}\
\
template <typename T>\
static inline void read(Reader<T> &RD,const std::string &s, name &obj){ \
static inline void read(Grid::Reader<T> &RD,const std::string &s, name &obj)\
{\
std::string buf;\
Grid::read(RD, s, buf);\
if (buf == #undefname) {obj = name::undefname;}\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_ENUMTEST,__VA_ARGS__))\
else {obj = name::undefname;}\
}\
};\
\
inline std::ostream & operator << (std::ostream &os, const name &obj ) { \
inline operator EnumType(void) const\
{\
return value_;\
}\
inline friend std::ostream & operator<<(std::ostream &os, const name &obj)\
{\
switch (obj) {\
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_ENUMCASEIO,__VA_ARGS__))\
default: os << #undefname; break;\
}\
return os;\
};
}\
private:\
EnumType value_;\
};
#endif

View File

@ -36,6 +36,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include "BinaryIO.h"
#include "TextIO.h"
#include "XmlIO.h"
#ifdef HAVE_HDF5
#include "Hdf5IO.h"
#endif
//////////////////////////////////////////
// Todo:
//////////////////////////////////////////

View File

@ -213,6 +213,29 @@ namespace Optimization {
}
};
struct MultRealPart{
inline __m256 operator()(__m256 a, __m256 b){
__m256 ymm0;
ymm0 = _mm256_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
return _mm256_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br
}
inline __m256d operator()(__m256d a, __m256d b){
__m256d ymm0;
ymm0 = _mm256_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00
return _mm256_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br
}
};
struct MaddRealPart{
inline __m256 operator()(__m256 a, __m256 b, __m256 c){
__m256 ymm0 = _mm256_moveldup_ps(a); // ymm0 <- ar ar,
return _mm256_add_ps(_mm256_mul_ps( ymm0, b),c);
}
inline __m256d operator()(__m256d a, __m256d b, __m256d c){
__m256d ymm0 = _mm256_shuffle_pd( a, a, 0x0 );
return _mm256_add_pd(_mm256_mul_pd( ymm0, b),c);
}
};
struct MultComplex{
// Complex float
inline __m256 operator()(__m256 a, __m256 b){
@ -628,6 +651,8 @@ namespace Optimization {
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;

View File

@ -189,6 +189,29 @@ namespace Optimization {
// 2mul,4 mac +add+sub = 8 flop type insns
// 3shuf + 2 (+shuf) = 5/6 simd perm and 1/2 the load.
struct MultRealPart{
inline __m512 operator()(__m512 a, __m512 b){
__m512 ymm0;
ymm0 = _mm512_moveldup_ps(a); // ymm0 <- ar ar,
return _mm512_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br
}
inline __m512d operator()(__m512d a, __m512d b){
__m512d ymm0;
ymm0 = _mm512_shuffle_pd(a,a,0x00); // ymm0 <- ar ar, ar,ar b'00,00
return _mm512_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br
}
};
struct MaddRealPart{
inline __m512 operator()(__m512 a, __m512 b, __m512 c){
__m512 ymm0 = _mm512_moveldup_ps(a); // ymm0 <- ar ar,
return _mm512_fmadd_ps( ymm0, b, c);
}
inline __m512d operator()(__m512d a, __m512d b, __m512d c){
__m512d ymm0 = _mm512_shuffle_pd( a, a, 0x00 );
return _mm512_fmadd_pd( ymm0, b, c);
}
};
struct MultComplex{
// Complex float
inline __m512 operator()(__m512 a, __m512 b){
@ -501,6 +524,8 @@ namespace Optimization {
typedef Optimization::Mult MultSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;

View File

@ -225,6 +225,21 @@ namespace Optimization {
c[i] = a[i]*b[i] - a[i+1]*b[i+1];\
c[i+1] = a[i]*b[i+1] + a[i+1]*b[i];
struct MultRealPart{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
out.v[2*i] = a[2*i]*b[2*i];
out.v[2*i+1] = a[2*i]*b[2*i+1];
}
return out;
};
};
struct MultComplex{
// Complex
template <typename T>
@ -456,6 +471,7 @@ namespace Optimization {
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;

View File

@ -220,6 +220,14 @@ namespace Optimization {
}
};
struct MultRealPart{
// Complex double
inline vector4double operator()(vector4double a, vector4double b){
// return vec_xmul(b, a);
return vec_xmul(a, b);
}
FLOAT_WRAP_2(operator(), inline)
};
struct MultComplex{
// Complex double
inline vector4double operator()(vector4double a, vector4double b){
@ -430,6 +438,7 @@ typedef Optimization::Sub SubSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;

View File

@ -177,6 +177,29 @@ namespace Optimization {
}
};
struct MultRealPart{
inline __m128 operator()(__m128 a, __m128 b){
__m128 ymm0;
ymm0 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
return _mm_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br
}
inline __m128d operator()(__m128d a, __m128d b){
__m128d ymm0;
ymm0 = _mm_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00
return _mm_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br
}
};
struct MaddRealPart{
inline __m128 operator()(__m128 a, __m128 b, __m128 c){
__m128 ymm0 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
return _mm_add_ps(_mm_mul_ps( ymm0, b),c);
}
inline __m128d operator()(__m128d a, __m128d b, __m128d c){
__m128d ymm0 = _mm_shuffle_pd( a, a, 0x0 );
return _mm_add_pd(_mm_mul_pd( ymm0, b),c);
}
};
struct MultComplex{
// Complex float
inline __m128 operator()(__m128 a, __m128 b){
@ -325,8 +348,10 @@ namespace Optimization {
}
}
#ifndef _mm_alignr_epi64
#define _mm_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16)
#define _mm_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16)
#endif
template<int n> static inline __m128 tRotate(__m128 in){ return (__m128)_mm_alignr_epi32((__m128i)in,(__m128i)in,n); };
template<int n> static inline __m128d tRotate(__m128d in){ return (__m128d)_mm_alignr_epi64((__m128i)in,(__m128i)in,n); };
@ -415,6 +440,8 @@ namespace Optimization {
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;

View File

@ -101,6 +101,11 @@ template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integr
// general forms to allow for vsplat syntax
// need explicit declaration of types when used since
// clang cannot automatically determine the output type sometimes
template <class Out, class Input1, class Input2, class Input3, class Operation>
Out trinary(Input1 src_1, Input2 src_2, Input3 src_3, Operation op) {
return op(src_1, src_2, src_3);
}
template <class Out, class Input1, class Input2, class Operation>
Out binary(Input1 src_1, Input2 src_2, Operation op) {
return op(src_1, src_2);
@ -178,6 +183,7 @@ class Grid_simd {
const Grid_simd *__restrict__ r) {
*y = (*l) * (*r);
}
friend inline void sub(Grid_simd *__restrict__ y,
const Grid_simd *__restrict__ l,
const Grid_simd *__restrict__ r) {
@ -188,7 +194,6 @@ class Grid_simd {
const Grid_simd *__restrict__ r) {
*y = (*l) + (*r);
}
friend inline void mac(Grid_simd *__restrict__ y,
const Scalar_type *__restrict__ a,
const Grid_simd *__restrict__ x) {
@ -260,7 +265,7 @@ class Grid_simd {
}
////////////////////////////
// opreator scalar * simd
// operator scalar * simd
////////////////////////////
friend inline Grid_simd operator*(const Scalar_type &a, Grid_simd b) {
Grid_simd va;
@ -433,6 +438,11 @@ inline void vbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
vsplat(ret,typepun[lane]);
}
template <class S, class V, IfComplex<S> =0>
inline void rbroadcast(Grid_simd<S,V> &ret,const Grid_simd<S,V> &src,int lane){
S* typepun =(S*) &src;
ret.v = unary<V>(real(typepun[lane]), VsplatSIMD());
}
///////////////////////
// Splat
@ -449,6 +459,10 @@ template <class S, class V>
inline void vsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), imag(c));
}
template <class S, class V>
inline void rsplat(Grid_simd<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), real(c));
}
// if real fill with a, if complex fill with a in the real part (first function
// above)
@ -550,6 +564,21 @@ inline Grid_simd<S, V> operator-(Grid_simd<S, V> a, Grid_simd<S, V> b) {
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_mult(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, MultRealPartSIMD());
return ret;
};
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> real_madd(Grid_simd<S, V> a, Grid_simd<S, V> b, Grid_simd<S,V> c) {
Grid_simd<S, V> ret;
ret.v = trinary<V>(a.v, b.v, c.v, MaddRealPartSIMD());
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> operator*(Grid_simd<S, V> a, Grid_simd<S, V> b) {

View File

@ -99,6 +99,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define VBCASTIDUPd(OFF,A,DEST) "vbroadcastsd (" #OFF "*16+8)(" #A ")," #DEST ";\n"
#define VBCASTRDUPf(OFF,PTR,DEST) "vbroadcastss (" #OFF "*8 +0)(" #PTR "), " #DEST ";\n"
#define VBCASTIDUPf(OFF,PTR,DEST) "vbroadcastss (" #OFF "*8 +4)(" #PTR "), " #DEST ";\n"
#define VBCASTCDUPf(OFF,A,DEST) "vbroadcastsd (" #OFF "*64 )(" #A ")," #DEST ";\n"
#define VBCASTZDUPf(OFF,A,DEST) "vbroadcastf32x4 (" #OFF "*64 )(" #A ")," #DEST ";\n"
#define VBCASTCDUP(OFF,A,DEST) VBCASTCDUPf(OFF,A,DEST)
#define VBCASTZDUP(OFF,A,DEST) VBCASTZDUPf(OFF,A,DEST)
#define VMADDSUBf(A,B,accum) "vfmaddsub231ps " #A "," #B "," #accum ";\n"
#define VMADDSUBd(A,B,accum) "vfmaddsub231pd " #A "," #B "," #accum ";\n"
@ -106,11 +110,15 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define VMADDSUBMEMd(O,P,B,accum) "vfmaddsub231pd " #O"*64("#P "),"#B "," #accum ";\n"
#define VMADDRDUPf(O,P,B,accum) "vfmadd231ps (" #O"*8+0)("#P "){1to16},"#B "," #accum ";\n"
#define VMADDIDUPf(O,P,B,accum) "vfmadd231ps (" #O"*8+4)("#P "){1to16},"#B "," #accum ";\n"
#define VMADDSUBRDUPf(O,P,B,accum) "vfmaddsub231ps (" #O"*8+0)("#P "){1to16},"#B "," #accum ";\n"
#define VMADDSUBIDUPf(O,P,B,accum) "vfmaddsub231ps (" #O"*8+4)("#P "){1to16},"#B "," #accum ";\n"
#define VMULRDUPf(O,P,B,accum) "vmulps (" #O"*8+0)("#P "){1to16},"#B "," #accum ";\n"
#define VMULIDUPf(O,P,B,accum) "vmulps (" #O"*8+4)("#P "){1to16},"#B "," #accum ";\n"
#define VMADDRDUPd(O,P,B,accum) "vfmadd231pd (" #O"*16+0)("#P "){1to8},"#B "," #accum ";\n"
#define VMADDIDUPd(O,P,B,accum) "vfmadd231pd (" #O"*16+8)("#P "){1to8},"#B "," #accum ";\n"
#define VMADDSUBRDUPd(O,P,B,accum) "vfmaddsub231pd (" #O"*16+0)("#P "){1to8},"#B "," #accum ";\n"
#define VMADDSUBIDUPd(O,P,B,accum) "vfmaddsub231pd (" #O"*16+8)("#P "){1to8},"#B "," #accum ";\n"
#define VMULRDUPd(O,P,B,accum) "vmulpd (" #O"*16+0)("#P "){1to8},"#B "," #accum ";\n"

View File

@ -87,7 +87,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
VACCTIMESMINUSI1d(A,ACC,tmp) \
VACCTIMESMINUSI2d(A,ACC,tmp)
#define LOAD64i(A,ptr) __asm__ ( "movq %0, %" #A : : "r"(ptr) : #A );
#define LOAD64a(A,ptr) "movq %0, %" #A : : "r"(ptr) : #A
#define LOAD64i(A,ptr) __asm__ ( LOAD64a(A,ptr));
#define LOAD64(A,ptr) LOAD64i(A,ptr)
#define VMOVf(A,DEST) "vmovaps " #A ", " #DEST ";\n"
@ -108,8 +109,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
//"vprefetche0 "#O"*64("#A");\n" "vprefetche1 ("#O"+12)*64("#A");\n"
// "clevict0 "#O"*64("#A");\n"
#define VLOADf(OFF,PTR,DEST) "vmovaps " #OFF "*64(" #PTR "), " #DEST ";\n"
#define VLOADd(OFF,PTR,DEST) "vmovapd " #OFF "*64(" #PTR "), " #DEST ";\n"
#define VLOADf(OFF,PTR,DEST) "vmovups " #OFF "*64(" #PTR "), " #DEST ";\n"
#define VLOADd(OFF,PTR,DEST) "vmovupd " #OFF "*64(" #PTR "), " #DEST ";\n"
#define VADDf(A,B,DEST) "vaddps " #A "," #B "," #DEST ";\n"
#define VADDd(A,B,DEST) "vaddpd " #A "," #B "," #DEST ";\n"
@ -143,8 +144,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define VSTOREf(OFF,PTR,SRC) "vmovntps " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#define VSTOREd(OFF,PTR,SRC) "vmovntpd " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#else
#define VSTOREf(OFF,PTR,SRC) "vmovaps " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#define VSTOREd(OFF,PTR,SRC) "vmovapd " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#define VSTOREf(OFF,PTR,SRC) "vmovups " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#define VSTOREd(OFF,PTR,SRC) "vmovupd " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#endif
// Swaps Re/Im ; could unify this with IMCI

View File

@ -144,10 +144,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define VMADDSUBMEM(O,P,B,accum) VMADDSUBMEMd(O,P,B,accum)
#define VMADDMEM(O,P,B,accum) VMADDMEMd(O,P,B,accum)
#define VMULMEM(O,P,B,accum) VMULMEMd(O,P,B,accum)
#undef VMADDRDUP
#undef VMADDSUBRDUP
#undef VMADDSUBIDUP
#undef VMULRDUP
#undef VMULIDUP
#define VMADDRDUP(O,P,B,accum) VMADDRDUPd(O,P,B,accum)
#define VMADDSUBRDUP(O,P,B,accum) VMADDSUBRDUPd(O,P,B,accum)
#define VMADDSUBIDUP(O,P,B,accum) VMADDSUBIDUPd(O,P,B,accum)
#define VMULRDUP(O,P,B,accum) VMULRDUPd(O,P,B,accum)

View File

@ -144,10 +144,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define VMADDMEM(O,P,B,accum) VMADDMEMf(O,P,B,accum)
#define VMULMEM(O,P,B,accum) VMULMEMf(O,P,B,accum)
#undef VMADDRDUP
#undef VMADDSUBRDUP
#undef VMADDSUBIDUP
#undef VMULRDUP
#undef VMULIDUP
#define VMADDRDUP(O,P,B,accum) VMADDRDUPf(O,P,B,accum)
#define VMADDSUBRDUP(O,P,B,accum) VMADDSUBRDUPf(O,P,B,accum)
#define VMADDSUBIDUP(O,P,B,accum) VMADDSUBIDUPf(O,P,B,accum)
#define VMULRDUP(O,P,B,accum) VMULRDUPf(O,P,B,accum)

View File

@ -4,9 +4,8 @@ home=`pwd`
# library Make.inc
cd $home/lib
HFILES=`find . -type f -name '*.h' -not -path '*/Old/*' -not -path '*/Eigen/*'`
HFILES="$HFILES"
CCFILES=`find . -type f -name '*.cc' -not -name '*ommunicator*.cc'`
HFILES=`find . -type f -name '*.h' -not -name '*Hdf5*' -not -path '*/Old/*' -not -path '*/Eigen/*'`
CCFILES=`find . -type f -name '*.cc' -not -name '*Communicator*.cc' -not -name '*Hdf5*'`
echo HFILES=$HFILES > Make.inc
echo >> Make.inc
echo CCFILES=$CCFILES >> Make.inc

View File

@ -28,13 +28,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
namespace Grid {
using namespace Grid;
GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3);
class myclass: Serializable {
public:
GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3);
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
myenum, e,
std::vector<myenum>, ve,
@ -44,11 +43,14 @@ namespace Grid {
bool , b,
std::vector<double>, array,
std::vector<std::vector<double>>, twodimarray,
std::vector<std::vector<std::vector<Complex>>>, cmplx3darray
);
myclass() {}
myclass(int i)
: array(4,5.1), twodimarray(3,std::vector<double>(2,1.23456)), ve(2, myenum::blue)
: array(4,5.1)
, twodimarray(3,std::vector<double>(5, 1.23456))
, cmplx3darray(3,std::vector<std::vector<Complex>>(5, std::vector<Complex>(7, Complex(1.2, 3.4))))
, ve(2, myenum::blue)
{
e=myenum::red;
x=i;
@ -56,11 +58,7 @@ namespace Grid {
b=true;
name="bother said pooh";
}
};
}
using namespace Grid;
};
int16_t i16 = 1;
uint16_t u16 = 2;
@ -72,12 +70,34 @@ float f = M_PI;
double d = 2*M_PI;
bool b = false;
template <typename W, typename R, typename O>
void ioTest(const std::string &filename, const O &object, const std::string &name)
{
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
write(writer, "testobject", object);
}
R reader(filename);
O buf;
bool good;
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
std::cout << std::endl;
if (!good) exit(EXIT_FAILURE);
}
int main(int argc,char **argv)
{
{
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml");
// test basic type writing
std::cout << "-- basic writing to 'bother.xml'..." << std::endl;
push(WR,"BasicTypes");
write(WR,std::string("i16"),i16);
write(WR,"u16",u16);
@ -92,66 +112,68 @@ int main(int argc,char **argv)
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::vector<myclass> vec;
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj);
WR.write("obj2", obj);
std::cout << obj << std::endl;
std::vector<myclass> vec;
vec.push_back(myclass(1234));
vec.push_back(myclass(5678));
vec.push_back(myclass(3838));
write(WR, "objvec", vec);
};
std::cout << "-- serialisable class writing to std::cout:" << std::endl;
std::cout << obj << std::endl;
std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
// read tests
myclass copy1, copy2, copy3;
std::vector<myclass> veccopy1, veccopy2, veccopy3;
std::cout << "\n==== IO self-consistency tests" << std::endl;
//// XML
{
XmlReader RD("bother.xml");
read(RD,"obj",copy1);
read(RD,"objvec", veccopy1);
std::cout << "Loaded (XML) -----------------" << std::endl;
std::cout << copy1 << std::endl << veccopy1 << std::endl;
}
ioTest<XmlWriter, XmlReader>("iotest.xml", obj, "XML (object) ");
ioTest<XmlWriter, XmlReader>("iotest.xml", vec, "XML (vector of objects)");
//// binary
{
BinaryWriter BWR("bother.bin");
write(BWR,"discard",copy1 );
write(BWR,"discard",veccopy1 );
}
{
BinaryReader BRD("bother.bin");
read (BRD,"discard",copy2 );
read (BRD,"discard",veccopy2 );
std::cout << "Loaded (bin) -----------------" << std::endl;
std::cout << copy2 << std::endl << veccopy2 << std::endl;
}
ioTest<BinaryWriter, BinaryReader>("iotest.bin", obj, "binary (object) ");
ioTest<BinaryWriter, BinaryReader>("iotest.bin", vec, "binary (vector of objects)");
//// text
{
TextWriter TWR("bother.txt");
write(TWR,"discard",copy1 );
write(TWR,"discard",veccopy1 );
}
{
TextReader TRD("bother.txt");
read (TRD,"discard",copy3 );
read (TRD,"discard",veccopy3 );
std::cout << "Loaded (txt) -----------------" << std::endl;
std::cout << copy3 << std::endl << veccopy3 << std::endl;
}
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
//// HDF5
#ifdef HAVE_HDF5
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
#endif
std::vector<int> iv = strToVec<int>("1 2 2 4");
std::vector<std::string> sv = strToVec<std::string>("bli bla blu");
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d;
for (auto &e: iv)
vec3d dv, buf;
double d = 0.;
dv.resize(4);
for (auto &v1: dv)
{
std::cout << e << " ";
}
std::cout << std::endl;
for (auto &e: sv)
v1.resize(3);
for (auto &v2: v1)
{
std::cout << e << " ";
v2.resize(5);
for (auto &x: v2)
{
x = d++;
}
std::cout << std::endl;
}
}
std::cout << "original 3D vector:" << std::endl;
std::cout << dv << std::endl;
Flatten<vec3d> flatdv(dv);
std::cout << "\ndimensions:" << std::endl;
std::cout << flatdv.getDim() << std::endl;
std::cout << "\nflattened vector:" << std::endl;
std::cout << flatdv.getFlatVector() << std::endl;
Reconstruct<vec3d> rec(flatdv.getFlatVector(), flatdv.getDim());
std::cout << "\nreconstructed vector:" << std::endl;
std::cout << flatdv.getVector() << std::endl;
}