1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-15 06:17:05 +01:00

Merge branch 'develop' of https://github.com/paboyle/Grid into develop

This commit is contained in:
Peter Boyle
2020-04-23 04:35:42 -04:00
307 changed files with 4394 additions and 31968 deletions

View File

@ -35,17 +35,22 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/approx/Zolotarev.h>
#include <Grid/algorithms/approx/Chebyshev.h>
#include <Grid/algorithms/approx/JacobiPolynomial.h>
#include <Grid/algorithms/approx/Remez.h>
#include <Grid/algorithms/approx/MultiShiftFunction.h>
#include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
#include <Grid/algorithms/approx/ZMobius.h>
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h>
#include <Grid/algorithms/iterative/BiCGSTAB.h>
#include <Grid/algorithms/iterative/ConjugateResidual.h>
#include <Grid/algorithms/iterative/NormalEquations.h>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/MinimalResidual.h>

View File

@ -1,3 +1,14 @@
// blockZaxpy in bockPromote - 3s, 5%
// noncoalesced linalg in Preconditionoer ~ 3s 5%
// Lancos tuning or replace 10-20s ~ 25%, open ended
// setup tuning 5s ~ 8%
// -- e.g. ordermin, orderstep tunables.
// MdagM path without norm in LinOp code. few seconds
// Mdir calc blocking kernels
// Fuse kernels in blockMaskedInnerProduct
// preallocate Vectors in Cayley 5D ~ few percent few seconds
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -34,15 +45,36 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class vobj,class CComplex>
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> fine_inner_msk(fine);
// Multiply could be fused with innerProduct
// Single block sum kernel could do both masks.
fine_inner = localInnerProduct(fineX,fineY);
mult(fine_inner_msk, fine_inner,FineMask);
blockSum(CoarseInner,fine_inner_msk);
}
class Geometry {
// int dimension;
public:
int npoint;
std::vector<int> directions ;
std::vector<int> displacements;
Geometry(int _d) {
int base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
@ -52,10 +84,10 @@ public:
directions.resize(npoint);
displacements.resize(npoint);
for(int d=0;d<_d;d++){
directions[2*d ] = d+base;
directions[2*d+1] = d+base;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
}
directions [2*_d]=0;
displacements[2*_d]=0;
@ -63,7 +95,7 @@ public:
//// report back
std::cout<<GridLogMessage<<"directions :";
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
std::cout <<std::endl;
std::cout<<std::endl;
std::cout<<GridLogMessage<<"displacements :";
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
std::cout<<std::endl;
@ -115,10 +147,10 @@ public:
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
std::cout << GridLogMessage <<" Gramm-Schmidt pass 2"<<std::endl;
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 2"<<std::endl; // Really have to do twice? Yuck
// blockOrthogonalise(InnerProd,subspace);
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
// CheckOrthogonal();
}
@ -128,7 +160,7 @@ public:
for(int i=0;i<nbasis;i++){
blockProject(iProj,subspace[i],subspace);
eProj=Zero();
thread_for(ss, CoarseGrid->oSites(),{
accelerator_for(ss, CoarseGrid->oSites(),1,{
eProj[ss](i)=CComplex(1.0);
});
eProj=eProj - iProj;
@ -146,61 +178,9 @@ public:
void CreateSubspaceRandom(GridParallelRNG &RNG){
for(int i=0;i<nbasis;i++){
random(RNG,subspace[i]);
std::cout<<GridLogMessage<<" norm subspace["<<i<<"] "<<norm2(subspace[i])<<std::endl;
}
Orthogonalise();
}
/*
virtual void CreateSubspaceLanczos(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
{
// Run a Lanczos with sloppy convergence
const int Nstop = nn;
const int Nk = nn+20;
const int Np = nn+20;
const int Nm = Nk+Np;
const int MaxIt= 10000;
RealD resid = 1.0e-3;
Chebyshev<FineField> Cheb(0.5,64.0,21);
ImplicitlyRestartedLanczos<FineField> IRL(hermop,Cheb,Nstop,Nk,Nm,resid,MaxIt);
// IRL.lock = 1;
FineField noise(FineGrid); gaussian(RNG,noise);
FineField tmp(FineGrid);
std::vector<RealD> eval(Nm);
std::vector<FineField> evec(Nm,FineGrid);
int Nconv;
IRL.calc(eval,evec,
noise,
Nconv);
// pull back nn vectors
for(int b=0;b<nn;b++){
subspace[b] = evec[b];
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
hermop.Op(subspace[b],tmp);
std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(tmp)<<std::endl;
noise = tmp - sqrt(eval[b])*subspace[b] ;
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
noise = tmp + eval[b]*subspace[b] ;
std::cout<<GridLogMessage << " lambda_"<<b<<" = "<< eval[b] <<" ; [ M - Lambda ]_"<<b<<" vec_"<<b<<" = " <<norm2(noise)<<std::endl;
}
Orthogonalise();
for(int b=0;b<nn;b++){
std::cout << GridLogMessage <<"subspace["<<b<<"] = "<<norm2(subspace[b])<<std::endl;
}
}
*/
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;
@ -232,54 +212,316 @@ public:
subspace[b] = noise;
}
Orthogonalise();
}
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
#if 1
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
Chebyshev<FineField> Cheb(0.1,64.0,900);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
const int Nsimd = CComplex::Nsimd();
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
#endif
#if 0
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
FineField combined(FineGrid);
for(int b=0;b<nn;b++){
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
Cheb(hermop,noise,Mn);
int b =0;
#define FILTERb(llo,hhi,oorder) \
{ \
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
Cheb(hermop,noise,Mn); \
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
subspace[b] = Mn; \
hermop.Op(Mn,tmp); \
std::cout<<GridLogMessage << oorder<< " Cheb filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
b++; \
}
scale = std::pow(norm2(Mn),-0.5);
Mn=Mn*scale;
subspace[b] = Mn;
// JacobiPolynomial<FineField> Cheb(0.002,60.0,1500,-0.5,3.5); \
hermop.Op(Mn,noise); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(noise)<<std::endl;
}
Orthogonalise();
RealD alpha=-0.8;
RealD beta =-0.8;
#define FILTER(llo,hhi,oorder) \
{ \
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
/* JacobiPolynomial<FineField> Cheb(0.0,60.0,oorder,alpha,beta);*/\
Cheb(hermop,noise,Mn); \
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
subspace[b] = Mn; \
hermop.Op(Mn,tmp); \
std::cout<<GridLogMessage << oorder<< "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
b++; \
}
#define FILTERc(llo,hhi,oorder) \
{ \
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
Cheb(hermop,noise,combined); \
}
double node = 0.000;
FILTERb(lo,hi,orderfilter);// 0
// FILTERc(node,hi,51);// 0
noise = Mn;
int base = 0;
int mult = 100;
FILTER(node,hi,base+1*mult);
FILTER(node,hi,base+2*mult);
FILTER(node,hi,base+3*mult);
FILTER(node,hi,base+4*mult);
FILTER(node,hi,base+5*mult);
FILTER(node,hi,base+6*mult);
FILTER(node,hi,base+7*mult);
FILTER(node,hi,base+8*mult);
FILTER(node,hi,base+9*mult);
FILTER(node,hi,base+10*mult);
FILTER(node,hi,base+11*mult);
FILTER(node,hi,base+12*mult);
FILTER(node,hi,base+13*mult);
FILTER(node,hi,base+14*mult);
FILTER(node,hi,base+15*mult);
assert(b==nn);
}
#endif
#if 0
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
FineField combined(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
Chebyshev<FineField> JacobiPoly(0.005,60.,1500);
// JacobiPolynomial<FineField> JacobiPoly(0.002,60.0,1500,-0.5,3.5);
//JacobiPolynomial<FineField> JacobiPoly(0.03,60.0,500,-0.5,3.5);
// JacobiPolynomial<FineField> JacobiPoly(0.00,60.0,1000,-0.5,3.5);
JacobiPoly(hermop,noise,Mn);
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
// subspace[b] = tmp; b++;
// }
}
#define FILTER(lambda) \
{ \
hermop.HermOp(subspace[0],tmp); \
tmp = tmp - lambda *subspace[0]; \
scale = std::pow(norm2(tmp),-0.5); \
tmp=tmp*scale; \
subspace[b] = tmp; \
hermop.Op(subspace[b],tmp); \
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
b++; \
}
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
// subspace[b] = tmp; b++;
// }
FILTER(2.0e-5);
FILTER(2.0e-4);
FILTER(4.0e-4);
FILTER(8.0e-4);
FILTER(8.0e-4);
FILTER(2.0e-3);
FILTER(3.0e-3);
FILTER(4.0e-3);
FILTER(5.0e-3);
FILTER(6.0e-3);
FILTER(2.5e-3);
FILTER(3.5e-3);
FILTER(4.5e-3);
FILTER(5.5e-3);
FILTER(6.5e-3);
// FILTER(6.0e-5);//6
// FILTER(7.0e-5);//8
// FILTER(8.0e-5);//9
// FILTER(9.0e-5);//3
/*
// FILTER(1.0e-4);//10
FILTER(2.0e-4);//11
// FILTER(3.0e-4);//12
// FILTER(4.0e-4);//13
FILTER(5.0e-4);//14
FILTER(6.0e-3);//4
FILTER(7.0e-4);//1
FILTER(8.0e-4);//7
FILTER(9.0e-4);//15
FILTER(1.0e-3);//2
FILTER(2.0e-3);//2
FILTER(3.0e-3);//2
FILTER(4.0e-3);//2
FILTER(5.0e-3);//2
FILTER(6.0e-3);//2
FILTER(7.0e-3);//2
FILTER(8.0e-3);//2
FILTER(1.0e-2);//2
*/
std::cout << GridLogMessage <<"Jacobi filtering done" <<std::endl;
assert(b==nn);
}
#endif
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<CComplex > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
@ -293,7 +535,6 @@ public:
CartesianStencil<siteVector,siteVector,int> Stencil;
std::vector<CoarseMatrix> A;
///////////////////////
// Interface
@ -305,33 +546,71 @@ public:
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
RealD Nin = norm2(in);
// RealD Nin = norm2(in);
SimpleCompressor<siteVector> compressor;
double comms_usec = -usecond();
Stencil.HaloExchange(in,compressor);
comms_usec += usecond();
auto in_v = in.View();
auto out_v = out.View();
thread_for(ss,Grid()->oSites(),{
siteVector res = Zero();
siteVector nbr;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
GridStopWatch ArithmeticTimer;
int osites=Grid()->oSites();
// double flops = osites*Nsimd*nbasis*nbasis*8.0*geom.npoint;
// double bytes = osites*nbasis*nbasis*geom.npoint*sizeof(CComplex);
double usecs =-usecond();
// assert(geom.npoint==9);
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
int lane=SIMTlane(Nsimd);
for(int point=0;point<geom.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local&&SE->_permute) {
permute(nbr,in_v[SE->_offset],ptype);
} else if(SE->_is_local) {
nbr = in_v[SE->_offset];
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
} else {
nbr = Stencil.CommBuf()[SE->_offset];
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
}
synchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
auto A_point = A[point].View();
res = res + A_point[ss]*nbr;
}
vstream(out_v[ss],res);
coalescedWrite(out_v[ss](b),res,lane);
});
usecs +=usecond();
double nrm_usec=-usecond();
RealD Nout= norm2(out);
nrm_usec+=usecond();
/*
std::cout << GridLogMessage << "\tNorm " << nrm_usec << " us" <<std::endl;
std::cout << GridLogMessage << "\tHalo " << comms_usec << " us" <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << usecs << " us" <<std::endl;
std::cout << GridLogMessage << "\t mflop/s " << flops/usecs<<std::endl;
std::cout << GridLogMessage << "\t MB/s " << bytes/usecs<<std::endl;
*/
return Nout;
};
@ -349,25 +628,54 @@ public:
return norm2(out);
}
};
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
void MdirComms(const CoarseVector &in)
{
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
auto point = [dir, disp](){
if(dir == 0 and disp == 0)
return 8;
else
return (4 * dir + 1 - disp) / 2;
}();
}
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
{
conformable(_grid,in.Grid());
conformable(_grid,out.Grid());
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
Aview *Aview_p = & AcceleratorViewContainer[0];
auto out_v = out.View();
auto in_v = in.View();
thread_for(ss,Grid()->oSites(),{
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
int lane=SIMTlane(Nsimd);
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
}
synchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res,lane);
});
#if 0
accelerator_for(ss,Grid()->oSites(),1,{
siteVector res = Zero();
siteVector nbr;
int ptype;
@ -382,16 +690,65 @@ public:
} else {
nbr = Stencil.CommBuf()[SE->_offset];
}
synchronise();
auto A_point = A[point].View();
res = res + A_point[ss]*nbr;
res = res + Aview_p[point][ss]*nbr;
vstream(out_v[ss],res);
out_v[ss]=res;
});
#endif
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
this->MdirComms(in);
int ndir=geom.npoint-1;
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
assert(0);
}
for(int p=0;p<ndir;p++){
MdirCalc(in,out[p],p);
}
};
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
this->MdirComms(in);
int ndim = in.Grid()->Nd();
//////////////
// 4D action like wilson
// 0+ => 0
// 0- => 1
// 1+ => 2
// 1- => 3
// etc..
//////////////
// 5D action like DWF
// 1+ => 0
// 1- => 1
// 2+ => 2
// 2- => 3
// etc..
auto point = [dir, disp, ndim](){
if(dir == 0 and disp == 0)
return 8;
else if ( ndim==4 ) {
return (4 * dir + 1 - disp) / 2;
} else {
return (4 * (dir-1) + 1 - disp) / 2;
}
}();
MdirCalc(in,out,point);
};
void Mdiag(const CoarseVector &in, CoarseVector &out){
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
void Mdiag(const CoarseVector &in, CoarseVector &out)
{
int point=geom.npoint-1;
MdirCalc(in, out, point); // No comms
};
@ -401,25 +758,44 @@ public:
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid)
A(geom.npoint,&CoarseGrid)
{
};
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace){
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type;
FineField iblock(FineGrid); // contributions from within this block
FineField oblock(FineGrid); // contributions from outwith this block
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
FineComplexField imask(FineGrid); // contributions from within this block
FineComplexField omask(FineGrid); // contributions from outwith this block
FineComplexField evenmask(FineGrid);
FineComplexField oddmask(FineGrid);
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=Zero();
FineField Mphi(FineGrid);
FineField Mphie(FineGrid);
FineField Mphio(FineGrid);
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
Lattice<iScalar<vInteger> > coor(FineGrid);
Lattice<iScalar<vInteger> > coor (FineGrid);
Lattice<iScalar<vInteger> > bcoor(FineGrid);
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
CoarseVector iProj(Grid());
CoarseVector oProj(Grid());
CoarseVector SelfProj(Grid());
CoarseComplexField iZProj(Grid());
CoarseComplexField oZProj(Grid());
CoarseScalar InnerProd(Grid());
// Orthogonalise the subblocks over the basis
@ -428,69 +804,117 @@ public:
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++){
for(int p=0;p<geom.npoint;p++)
{
int dir = geom.directions[p];
int disp = geom.displacements[p];
A[p]=Zero();
if( geom.displacements[p]==0){
self_stencil=p;
}
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
///////////////////////////////////////////////////////
// Work out even and odd block checkerboarding for fast diagonal term
///////////////////////////////////////////////////////
if ( disp==1 ) {
bcb = bcb + div(coor,block);
}
if ( disp==0 ) {
masks[p]= Zero();
} else if ( disp==1 ) {
masks[p] = where(mod(coor,block)==(block-1),one,zero);
} else if ( disp==-1 ) {
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
}
}
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
oddmask = one-evenmask;
assert(self_stencil!=-1);
for(int i=0;i<nbasis;i++){
phi=Subspace.subspace[i];
std::cout<<GridLogMessage<<"("<<i<<").."<<std::endl;
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
for(int p=0;p<geom.npoint;p++){
Mphi = Mphi_p[p];
int dir = geom.directions[p];
int disp = geom.displacements[p];
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
if ( (disp==-1) || (!hermitian ) ) {
LatticeCoordinate(coor,dir);
if ( disp==0 ){
linop.OpDiag(phi,Mphi);
}
else {
linop.OpDir(phi,Mphi,dir,disp);
}
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
if ( disp==0 ) {
iblock = Mphi;
oblock = Zero();
} else if ( disp==1 ) {
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
} else if ( disp==-1 ) {
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
} else {
assert(0);
}
Subspace.ProjectToSubspace(iProj,iblock);
Subspace.ProjectToSubspace(oProj,oblock);
// blockProject(iProj,iblock,Subspace.subspace);
// blockProject(oProj,oblock,Subspace.subspace);
auto iProj_v = iProj.View() ;
auto oProj_v = oProj.View() ;
auto A_p = A[p].View();
auto A_self = A[self_stencil].View();
thread_for(ss, Grid()->oSites(),{
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
omask = masks[p];
imask = one-omask;
for(int j=0;j<nbasis;j++){
if( disp!= 0 ) {
A_p[ss](j,i) = oProj_v[ss](j);
}
A_self[ss](j,i) = A_self[ss](j,i) + iProj_v[ss](j);
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
auto iZProj_v = iZProj.View() ;
auto oZProj_v = oZProj.View() ;
auto A_p = A[p].View();
auto A_self = A[self_stencil].View();
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
// if( disp!= 0 ) { accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });}
// accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_self[ss](j,i),A_self(ss)(j,i)+iZProj_v(ss)); });
}
}
}
///////////////////////////////////////////
// Faster alternate self coupling.. use hermiticity to save 2x
///////////////////////////////////////////
{
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
{
auto tmp_ = tmp.View();
auto evenmask_ = evenmask.View();
auto oddmask_ = oddmask.View();
auto Mphie_ = Mphie.View();
auto Mphio_ = Mphio.View();
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
});
}
blockProject(SelfProj,tmp,Subspace.subspace);
auto SelfProj_ = SelfProj.View();
auto A_self = A[self_stencil].View();
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
for(int j=0;j<nbasis;j++){
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
}
});
}
}
if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
// AssertHermitian();
// ForceDiagonal();
}
#if 0
///////////////////////////
@ -513,17 +937,26 @@ public:
std::cout<<GridLogMessage<< iProj <<std::endl;
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
#endif
// ForceHermitian();
// AssertHermitian();
// ForceDiagonal();
}
void ForceHermitian(void) {
for(int d=0;d<4;d++){
int dd=d+1;
A[2*d] = adj(Cshift(A[2*d+1],dd,1));
CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
if(disp==-1) {
// Find the opposite link
for(int pp=0;pp<geom.npoint;pp++){
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
A[pp] = adj(Cshift(A[p],dir,1));
}
}
}
}
// A[8] = 0.5*(A[8] + adj(A[8]));
}
void AssertHermitian(void) {
CoarseMatrix AA (Grid());

View File

@ -47,6 +47,7 @@ public:
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
virtual void OpDirAll (const Field &in, std::vector<Field> &out) = 0; // Abstract base
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
@ -83,6 +84,9 @@ public:
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
@ -93,8 +97,7 @@ public:
_Mat.MdagM(in,out,n1,n2);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
_Mat.MdagM(in,out);
}
};
@ -116,6 +119,9 @@ public:
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
@ -154,6 +160,9 @@ public:
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
@ -162,7 +171,6 @@ public:
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.M(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
@ -183,6 +191,9 @@ public:
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
_Mat.MdirAll(in,out);
};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
@ -234,6 +245,9 @@ public:
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
@ -320,9 +334,135 @@ public:
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Field>
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
{
public:
virtual RealD Mpc (const Field& in, Field& out) = 0;
virtual RealD MpcDag (const Field& in, Field& out) = 0;
virtual void MpcDagMpc(const Field& in, Field& out, RealD& ni, RealD& no) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
ni = Mpc(in,tmp);
no = MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
assert(0);
}
virtual void HermOp(const Field& in, Field& out) {
assert(0);
}
void Op(const Field& in, Field& out) {
Mpc(in, out);
}
void AdjOp(const Field& in, Field& out) {
MpcDag(in, out);
}
// Support for coarsening to a multigrid
void OpDiag(const Field& in, Field& out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir(const Field& in, Field& out, int dir, int disp) {
assert(0);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
{
public:
Matrix& _Mat;
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
virtual RealD Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
_Mat.Mooee(in, out);
return axpy_norm(out, -1.0, tmp, out);
}
virtual RealD MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeDag(in, out);
return axpy_norm(out, -1.0, tmp, out);
}
};
template<class Matrix,class Field>
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix &_Mat;
public:
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
virtual RealD Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.Meooe(in, out);
_Mat.MooeeInv(out, tmp);
_Mat.Meooe(tmp, out);
_Mat.MooeeInv(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
virtual RealD MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInvDag(in, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix& _Mat;
public:
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
virtual RealD Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in, out);
_Mat.Meooe(out, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
virtual RealD MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, out);
_Mat.MooeeInvDag(out, tmp);
_Mat.MeooeDag(tmp, out);
_Mat.MooeeInvDag(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;

View File

@ -45,8 +45,13 @@ public:
ni=M(in,tmp);
no=Mdag(tmp,out);
}
virtual void MdagM(const Field &in, Field &out) {
RealD ni, no;
MdagM(in,out,ni,no);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
@ -56,12 +61,12 @@ template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrix
public:
virtual GridBase *RedBlackGrid(void)=0;
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 1; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;

View File

@ -94,6 +94,24 @@ public:
Coeffs.assign(0.,order);
Coeffs[order-1] = 1.;
};
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
// Similar kick effect below the threshold as Lanczos filter approach
void InitLowPass(RealD _lo,RealD _hi,int _order)
{
lo=_lo;
hi=_hi;
order=_order;
if(order < 2) exit(-1);
Coeffs.resize(order);
for(int j=0;j<order;j++){
RealD k=(order-1.0);
RealD s=std::cos( j*M_PI*(k+0.5)/order );
Coeffs[j] = s * 2.0/order;
}
};
void Init(RealD _lo,RealD _hi,int _order, RealD (* func)(RealD))
{
@ -234,20 +252,20 @@ public:
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
T1=y*xscale+in*mscale;
axpby(T1,xscale,mscale,y,in);
// sum = .5 c[0] T0 + c[1] T1
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
// out = ()*T0 + Coeffs[1]*T1;
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y);
y=xscale*y+mscale*(*Tn);
*Tnp=2.0*y-(*Tnm);
out=out+Coeffs[n]* (*Tnp);
// y=xscale*y+mscale*(*Tn);
// *Tnp=2.0*y-(*Tnm);
// out=out+Coeffs[n]* (*Tnp);
axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
axpy(out,Coeffs[n],*Tnp,out);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;

View File

@ -0,0 +1,129 @@
#ifndef GRID_JACOBIPOLYNOMIAL_H
#define GRID_JACOBIPOLYNOMIAL_H
#include <Grid/algorithms/LinearOperator.h>
NAMESPACE_BEGIN(Grid);
template<class Field>
class JacobiPolynomial : public OperatorFunction<Field> {
private:
using OperatorFunction<Field>::operator();
int order;
RealD hi;
RealD lo;
RealD alpha;
RealD beta;
public:
void csv(std::ostream &out){
csv(out,lo,hi);
}
void csv(std::ostream &out,RealD llo,RealD hhi){
RealD diff = hhi-llo;
RealD delta = diff*1.0e-5;
for (RealD x=llo-delta; x<=hhi; x+=delta) {
RealD f = approx(x);
out<< x<<" "<<f <<std::endl;
}
return;
}
JacobiPolynomial(){};
JacobiPolynomial(RealD _lo,RealD _hi,int _order,RealD _alpha, RealD _beta)
{
lo=_lo;
hi=_hi;
alpha=_alpha;
beta=_beta;
order=_order;
};
RealD approx(RealD x) // Convenience for plotting the approximation
{
RealD Tn;
RealD Tnm;
RealD Tnp;
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
RealD T0=1.0;
RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
Tn =T1;
Tnm=T0;
for(int n=2;n<=order;n++){
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
Tnm=Tn;
Tn =Tnp;
}
return Tnp;
};
// Implement the required interface
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
GridBase *grid=in.Grid();
int vol=grid->gSites();
Field T0(grid);
Field T1(grid);
Field T2(grid);
Field y(grid);
Field *Tnm = &T0;
Field *Tn = &T1;
Field *Tnp = &T2;
// RealD T0=1.0;
T0=in;
// RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
// = x * 2/(hi-lo) - (hi+lo)/(hi-lo)
Linop.HermOp(T0,y);
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
Linop.HermOp(T0,y);
y=y*xscale+in*mscale;
// RealD T1=(alpha-beta)*0.5+(alpha+beta+2.0)*0.5*y;
RealD halfAmB = (alpha-beta)*0.5;
RealD halfApBp2= (alpha+beta+2.0)*0.5;
T1 = halfAmB * in + halfApBp2*y;
for(int n=2;n<=order;n++){
Linop.HermOp(*Tn,y);
y=xscale*y+mscale*(*Tn);
RealD cnp = 2.0*n*(n+alpha+beta)*(2.0*n-2.0+alpha+beta);
RealD cny = (2.0*n-2.0+alpha+beta)*(2.0*n-1.0+alpha+beta)*(2.0*n+alpha+beta);
RealD cn1 = (2.0*n+alpha+beta-1.0)*(alpha*alpha-beta*beta);
RealD cnm = - 2.0*(n+alpha-1.0)*(n+beta-1.0)*(2.0*n+alpha+beta);
// Tnp= ( cny * y *Tn + cn1 * Tn + cnm * Tnm )/ cnp;
cny=cny/cnp;
cn1=cn1/cnp;
cn1=cn1/cnp;
cnm=cnm/cnp;
*Tnp=cny*y + cn1 *(*Tn) + cnm * (*Tnm);
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
out=*Tnp;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,473 @@
#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<iostream>
#include<iomanip>
#include<cassert>
#include<Grid/algorithms/approx/RemezGeneral.h>
// Constructor
AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision,
bigfloat (*f)(bigfloat x, void *data), void *data): f(f),
data(data),
prec(precision),
apstrt(lower), apend(upper), apwidt(upper - lower),
n(0), d(0), pow_n(0), pow_d(0)
{
bigfloat::setDefaultPrecision(prec);
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
}
//Determine the properties of the numerator and denominator polynomials
void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){
pow_n = num_degree;
pow_d = den_degree;
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
num_type = num_type_in;
den_type = den_type_in;
num_pows.resize(pow_n+1);
den_pows.resize(pow_d+1);
int n_in = 0;
bool odd = num_type == PolyType::Full || num_type == PolyType::Odd;
bool even = num_type == PolyType::Full || num_type == PolyType::Even;
for(int i=0;i<=pow_n;i++){
num_pows[i] = -1;
if(i % 2 == 0 && even) num_pows[i] = n_in++;
if(i % 2 == 1 && odd) num_pows[i] = n_in++;
}
std::cout << n_in << " terms in numerator" << std::endl;
--n_in; //power is 1 less than the number of terms, eg pow=1 a x^1 + b x^0
int d_in = 0;
odd = den_type == PolyType::Full || den_type == PolyType::Odd;
even = den_type == PolyType::Full || den_type == PolyType::Even;
for(int i=0;i<=pow_d;i++){
den_pows[i] = -1;
if(i % 2 == 0 && even) den_pows[i] = d_in++;
if(i % 2 == 1 && odd) den_pows[i] = d_in++;
}
std::cout << d_in << " terms in denominator" << std::endl;
--d_in;
n = n_in;
d = d_in;
}
//Setup algorithm
void AlgRemezGeneral::reinitializeAlgorithm(){
spread = 1.0e37;
iter = 0;
neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1
param.resize(neq);
yy.resize(neq+1);
//Initialize linear equation temporaries
A.resize(neq*neq);
B.resize(neq);
IPS.resize(neq);
//Initialize maximum and minimum errors
xx.resize(neq+2);
mm.resize(neq+1);
initialGuess();
//Initialize search steps
step.resize(neq+1);
stpini();
}
double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,
const PolyType num_type_in, const PolyType den_type_in,
const double _tolerance, const int report_freq){
//Setup the properties of the polynomial
setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in);
//Setup the algorithm
reinitializeAlgorithm();
bigfloat tolerance = _tolerance;
//Iterate until convergance
while (spread > tolerance) {
if (iter++ % report_freq==0)
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;
equations();
if (delta < tolerance) {
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
assert(0);
};
assert( delta>= tolerance );
search();
}
int sign;
double error = (double)getErr(mm[0],&sign);
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
// Return the maximum error in the approximation
return error;
}
// Initial values of maximal and minimal errors
void AlgRemezGeneral::initialGuess(){
// Supply initial guesses for solution points
long ncheb = neq; // Degree of Chebyshev error estimate
// Find ncheb+1 extrema of Chebyshev polynomial
bigfloat a = ncheb;
bigfloat r;
mm[0] = apstrt;
for (long i = 1; i < ncheb; i++) {
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
//r *= sqrt_bf(r);
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
mm[i] = apstrt + r * apwidt;
}
mm[ncheb] = apend;
a = 2.0 * ncheb;
for (long i = 0; i <= ncheb; i++) {
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
//r *= sqrt_bf(r); // Squeeze to low end of interval
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
xx[i] = apstrt + r * apwidt;
}
}
// Initialise step sizes
void AlgRemezGeneral::stpini(){
xx[neq+1] = apend;
delta = 0.25;
step[0] = xx[0] - apstrt;
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
step[neq] = step[neq-1];
}
// Search for error maxima and minima
void AlgRemezGeneral::search(){
bigfloat a, q, xm, ym, xn, yn, xx1;
int emsign, ensign, steps;
int meq = neq + 1;
bigfloat eclose = 1.0e30;
bigfloat farther = 0l;
bigfloat xx0 = apstrt;
for (int i = 0; i < meq; i++) {
steps = 0;
xx1 = xx[i]; // Next zero
if (i == meq-1) xx1 = apend;
xm = mm[i];
ym = getErr(xm,&emsign);
q = step[i];
xn = xm + q;
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
} else {
yn = getErr(xn,&ensign);
if (yn < ym) {
q = -q;
xn = xm;
yn = ym;
ensign = emsign;
}
}
while(yn >= ym) { // March until error becomes smaller.
if (++steps > 10)
break;
ym = yn;
xm = xn;
emsign = ensign;
a = xm + q;
if (a == xm || a <= xx0 || a >= xx1)
break;// Must not skip over the zeros either side.
xn = a;
yn = getErr(xn,&ensign);
}
mm[i] = xm; // Position of maximum
yy[i] = ym; // Value of maximum
if (eclose > ym) eclose = ym;
if (farther < ym) farther = ym;
xx0 = xx1; // Walk to next zero.
} // end of search loop
q = (farther - eclose); // Decrease step size if error spread increased
if (eclose != 0.0) q /= eclose; // Relative error spread
if (q >= spread)
delta *= 0.5; // Spread is increasing; decrease step size
spread = q;
for (int i = 0; i < neq; i++) {
q = yy[i+1];
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
else q = 0.0625;
if (q > (bigfloat)0.25) q = 0.25;
q *= mm[i+1] - mm[i];
step[i] = q * delta;
}
step[neq] = step[neq-1];
for (int i = 0; i < neq; i++) { // Insert new locations for the zeros.
xm = xx[i] - step[i];
if (xm <= apstrt)
continue;
if (xm >= apend)
continue;
if (xm <= mm[i])
xm = (bigfloat)0.5 * (mm[i] + xx[i]);
if (xm >= mm[i+1])
xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
xx[i] = xm;
}
}
// Solve the equations
void AlgRemezGeneral::equations(){
bigfloat x, y, z;
bigfloat *aa;
for (int i = 0; i < neq; i++) { // set up the equations for solution by simq()
int ip = neq * i; // offset to 1st element of this row of matrix
x = xx[i]; // the guess for this row
y = func(x); // right-hand-side vector
z = (bigfloat)1l;
aa = A.data()+ip;
int t = 0;
for (int j = 0; j <= pow_n; j++) {
if(num_pows[j] != -1){ *aa++ = z; t++; }
z *= x;
}
assert(t == n+1);
z = (bigfloat)1l;
t = 0;
for (int j = 0; j < pow_d; j++) {
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
z *= x;
}
assert(t == d);
B[i] = y * z; // Right hand side vector
}
// Solve the simultaneous linear equations.
if (simq()){
std::cout<<"simq failed\n";
exit(0);
}
}
// Evaluate the rational form P(x)/Q(x) using coefficients
// from the solution vector param
bigfloat AlgRemezGeneral::approx(const bigfloat x) const{
// Work backwards toward the constant term.
int c = n;
bigfloat yn = param[c--]; // Highest order numerator coefficient
for (int i = pow_n-1; i >= 0; i--) yn = x * yn + (num_pows[i] != -1 ? param[c--] : bigfloat(0l));
c = n+d;
bigfloat yd = 1l; //Highest degree coefficient is 1.0
for (int i = pow_d-1; i >= 0; i--) yd = x * yd + (den_pows[i] != -1 ? param[c--] : bigfloat(0l));
return(yn/yd);
}
// Compute size and sign of the approximation error at x
bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{
bigfloat f = func(x);
bigfloat e = approx(x) - f;
if (f != 0) e /= f;
if (e < (bigfloat)0.0) {
*sign = -1;
e = -e;
}
else *sign = 1;
return(e);
}
// Solve the system AX=B
int AlgRemezGeneral::simq(){
int ip, ipj, ipk, ipn;
int idxpiv;
int kp, kp1, kpk, kpn;
int nip, nkp;
bigfloat em, q, rownrm, big, size, pivot, sum;
bigfloat *aa;
bigfloat *X = param.data();
int n = neq;
int nm1 = n - 1;
// Initialize IPS and X
int ij = 0;
for (int i = 0; i < n; i++) {
IPS[i] = i;
rownrm = 0.0;
for(int j = 0; j < n; j++) {
q = abs_bf(A[ij]);
if(rownrm < q) rownrm = q;
++ij;
}
if (rownrm == (bigfloat)0l) {
std::cout<<"simq rownrm=0\n";
return(1);
}
X[i] = (bigfloat)1.0 / rownrm;
}
for (int k = 0; k < nm1; k++) {
big = 0.0;
idxpiv = 0;
for (int i = k; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
size = abs_bf(A[ipk]) * X[ip];
if (size > big) {
big = size;
idxpiv = i;
}
}
if (big == (bigfloat)0l) {
std::cout<<"simq big=0\n";
return(2);
}
if (idxpiv != k) {
int j = IPS[k];
IPS[k] = IPS[idxpiv];
IPS[idxpiv] = j;
}
kp = IPS[k];
kpk = n*kp + k;
pivot = A[kpk];
kp1 = k+1;
for (int i = kp1; i < n; i++) {
ip = IPS[i];
ipk = n*ip + k;
em = -A[ipk] / pivot;
A[ipk] = -em;
nip = n*ip;
nkp = n*kp;
aa = A.data()+nkp+kp1;
for (int j = kp1; j < n; j++) {
ipj = nip + j;
A[ipj] = A[ipj] + em * *aa++;
}
}
}
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
if (A[kpn] == (bigfloat)0l) {
std::cout<<"simq A[kpn]=0\n";
return(3);
}
ip = IPS[0];
X[0] = B[ip];
for (int i = 1; i < n; i++) {
ip = IPS[i];
ipj = n * ip;
sum = 0.0;
for (int j = 0; j < i; j++) {
sum += A[ipj] * X[j];
++ipj;
}
X[i] = B[ip] - sum;
}
ipn = n * IPS[n-1] + n - 1;
X[n-1] = X[n-1] / A[ipn];
for (int iback = 1; iback < n; iback++) {
//i goes (n-1),...,1
int i = nm1 - iback;
ip = IPS[i];
nip = n*ip;
sum = 0.0;
aa = A.data()+nip+i+1;
for (int j= i + 1; j < n; j++)
sum += *aa++ * X[j];
X[i] = (X[i] - sum) / A[nip+i];
}
return(0);
}
void AlgRemezGeneral::csv(std::ostream & os) const{
os << "Numerator" << std::endl;
for(int i=0;i<=pow_n;i++){
os << getCoeffNum(i) << "*x^" << i;
if(i!=pow_n) os << " + ";
}
os << std::endl;
os << "Denominator" << std::endl;
for(int i=0;i<=pow_d;i++){
os << getCoeffDen(i) << "*x^" << i;
if(i!=pow_d) os << " + ";
}
os << std::endl;
//For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc
int sign;
os << "Errors at maxima: coordinate, error, (sign)" << std::endl;
for(int i=0;i<neq+1;i++){
os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl;
}
os << "Scan over range:" << std::endl;
int npt = 60;
bigfloat dlt = (apend - apstrt)/bigfloat(npt-1);
for (bigfloat x=apstrt; x<=apend; x = x + dlt) {
double f = evaluateFunc(x);
double r = evaluateApprox(x);
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
}
return;
}

View File

@ -0,0 +1,170 @@
/*
C.Kelly Jan 2020 based on implementation by M. Clark May 2005
AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial
It includes optional restriction to odd/even polynomials for the numerator and/or denominator
*/
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
#define INCLUDED_ALG_REMEZ_GENERAL_H
#include <stddef.h>
#include <Grid/GridStd.h>
#ifdef HAVE_LIBGMP
#include "bigfloat.h"
#else
#include "bigfloat_double.h"
#endif
class AlgRemezGeneral{
public:
enum PolyType { Even, Odd, Full };
private:
// In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
bigfloat (*f)(bigfloat x, void *data);
void *data;
// The approximation parameters
std::vector<bigfloat> param;
bigfloat norm;
// The number of non-zero terms in the numerator and denominator
int n, d;
// The numerator and denominator degree (i.e. the largest power)
int pow_n, pow_d;
// Specify if the numerator and/or denominator are odd/even polynomials
PolyType num_type;
PolyType den_type;
std::vector<int> num_pows; //contains the mapping, with -1 if not present
std::vector<int> den_pows;
// The bounds of the approximation
bigfloat apstrt, apwidt, apend;
// Variables used to calculate the approximation
int nd1, iter;
std::vector<bigfloat> xx;
std::vector<bigfloat> mm;
std::vector<bigfloat> step;
bigfloat delta, spread;
// Variables used in search
std::vector<bigfloat> yy;
// Variables used in solving linear equations
std::vector<bigfloat> A;
std::vector<bigfloat> B;
std::vector<int> IPS;
// The number of equations we must solve at each iteration (n+d+1)
int neq;
// The precision of the GNU MP library
long prec;
// Initialize member variables associated with the polynomial's properties
void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
// Initial values of maximal and minmal errors
void initialGuess();
// Initialise step sizes
void stpini();
// Initialize the algorithm
void reinitializeAlgorithm();
// Solve the equations
void equations();
// Search for error maxima and minima
void search();
// Calculate function required for the approximation
inline bigfloat func(bigfloat x) const{
return f(x, data);
}
// Compute size and sign of the approximation error at x
bigfloat getErr(bigfloat x, int *sign) const;
// Solve the system AX=B where X = param
int simq();
// Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
bigfloat approx(bigfloat x) const;
public:
AlgRemezGeneral(double lower, double upper, long prec,
bigfloat (*f)(bigfloat x, void *data), void *data);
inline int getDegree(void) const{
assert(n==d);
return n;
}
// Reset the bounds of the approximation
inline void setBounds(double lower, double upper) {
apstrt = lower;
apend = upper;
apwidt = apend - apstrt;
}
// Get the bounds of the approximation
inline void getBounds(double &lower, double &upper) const{
lower=(double)apstrt;
upper=(double)apend;
}
// Run the algorithm to generate the rational approximation
double generateApprox(int num_degree, int den_degree,
PolyType num_type, PolyType den_type,
const double tolerance = 1e-15, const int report_freq = 1000);
inline double generateApprox(int num_degree, int den_degree,
const double tolerance = 1e-15, const int report_freq = 1000){
return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
}
// Evaluate the rational form P(x)/Q(x) using coefficients from the
// solution vector param
inline double evaluateApprox(double x) const{
return (double)approx((bigfloat)x);
}
// Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
inline double evaluateInverseApprox(double x) const{
return 1.0/(double)approx((bigfloat)x);
}
// Calculate function required for the approximation
inline double evaluateFunc(double x) const{
return (double)func((bigfloat)x);
}
// Calculate inverse function required for the approximation
inline double evaluateInverseFunc(double x) const{
return 1.0/(double)func((bigfloat)x);
}
// Dump csv of function, approx and error
void csv(std::ostream &os = std::cout) const;
// Get the coefficient of the term x^i in the numerator
inline double getCoeffNum(const int i) const{
return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
}
// Get the coefficient of the term x^i in the denominator
inline double getCoeffDen(const int i) const{
if(i == pow_d) return 1.0;
else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);
}
};
#endif

View File

@ -0,0 +1,183 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.cc
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/algorithms/approx/ZMobius.h>
#include <Grid/algorithms/approx/RemezGeneral.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the tanh approximation
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
int Ls = w.size();
ComplexD fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return ((fxp - fmp)/(fxp + fmp)).real();
}
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
int Ls = w.size();
double fxp = 1., fmp = 1.;
for(int i=0;i<Ls;i++){
fxp = fxp * ( w[i] + x );
fmp = fmp * ( w[i] - x );
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the tanh approximation in a form suitable for the Remez
bigfloat epsilonMobius(bigfloat x, void* data){
const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
bigfloat fxp(1.0);
bigfloat fmp(1.0);
for(int i=0;i<omega.size();i++){
fxp = fxp * ( bigfloat(omega[i]) + x);
fmp = fmp * ( bigfloat(omega[i]) - x);
}
return (fxp - fmp)/(fxp + fmp);
}
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound){
assert(omega_in.size() == Ls_in);
omega_out.resize(Ls_out);
//Use the Remez algorithm to generate the appropriate rational polynomial
//For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)
AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);
remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
remez.csv(std::cout);
//The rational approximation has the form [ f(x) - f(-x) ] / [ f(x) + f(-x) ] where f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
//cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7 pg 102
//omega_i are therefore the negative of the complex roots of f(x)
//We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
// \rho(\lambda) = det( A - \lambda I ) where I is the unit matrix
//The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n is the companion matrix
// A = | 0 1 0 0 0 .... 0 |
// | 0 0 1 0 0 .... 0 |
// | : : : : : : |
// | 0 0 0 0 0 1
// | -a0 -a1 -a2 ... ... -an|
//Note the Remez defines the largest power to have unit coefficient
std::vector<RealD> coeffs(Ls_out+1);
for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
std::vector<std::complex<RealD> > roots(Ls_out);
//Form the companion matrix
Eigen::MatrixXd compn(Ls_out,Ls_out);
for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
compn(Ls_out - 1, 0) = -coeffs[0];
for(int j=1;j<Ls_out;j++){
for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
compn(Ls_out - 1, j) = -coeffs[j];
}
//Eigensolve
Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
const auto & ev = slv.eigenvalues();
for(int i=0;i<Ls_out;i++)
omega_out[i] = -ev(i);
//Sort ascending (smallest at start of vector!)
std::sort(omega_out.begin(), omega_out.end(),
[&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
//McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
std::vector<ComplexD> omega_tmp = omega_out;
int s_low=0, s_high=Ls_out-1, ss=0;
for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
int s_to;
if(ss % 2 == 0){
s_to = s_low++;
}else{
s_to = s_high--;
}
omega_out[s_to] = omega_tmp[s_from];
++ss;
}
std::cout << "Resulting omega_i:" << std::endl;
for(int i=0;i<Ls_out;i++)
std::cout << omega_out[i] << std::endl;
std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
int npt = 60;
double dlt = lambda_bound/double(npt-1);
for (int i =0; i<npt; i++){
double x = i*dlt;
double r = remez.evaluateApprox(x);
double p = epsilonMobius(x, omega_out);
double e = epsilonMobius(x, omega_in);
std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
}
}
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
}
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound){
computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
}
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
}
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);

View File

@ -0,0 +1,57 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/ZMobius.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ZMOBIUS_APPROX_H
#define GRID_ZMOBIUS_APPROX_H
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
NAMESPACE_BEGIN(Approx);
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
const std::vector<RealD> &omega_in, const int Ls_in,
const RealD lambda_bound);
//mobius_param = b+c with b-c=1
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
const RealD mobius_param_out, const int Ls_out,
const RealD mobius_param_in, const int Ls_in,
const RealD lambda_bound);
//Assumes mobius_param_out == mobius_param_in
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
NAMESPACE_END(Approx);
NAMESPACE_END(Grid);
#endif

View File

@ -25,6 +25,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef INCLUDED_BIGFLOAT_DOUBLE_H
#define INCLUDED_BIGFLOAT_DOUBLE_H
#include <math.h>
typedef double mfloat;
@ -186,4 +190,6 @@ public:
// friend bigfloat& random(void);
};
#endif

View File

@ -0,0 +1,222 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: juettner <juettner@soton.ac.uk>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_H
#define GRID_BICGSTAB_H
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template <class Field>
class BiCGSTAB : public OperatorFunction<Field>
{
public:
using OperatorFunction<Field>::operator();
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :
Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)
{
psi.Checkerboard() = src.Checkerboard();
conformable(psi, src);
RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
RealD a(0), bo(0), b(0), ssq(0);
Field p(src);
Field r(src);
Field rhat(src);
Field v(src);
Field s(src);
Field t(src);
Field h(src);
v = Zero();
p = Zero();
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.Op(psi, v);
b = norm2(v);
r = src - v;
rhat = r;
a = norm2(r);
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if(a <= rsq){ return; }
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
GridStopWatch LinearCombTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++)
{
rho_prev = rho;
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Crho = innerProduct(rhat,r);
InnerTimer.Stop();
rho = Crho.real();
beta = (rho / rho_prev) * (alpha / omega);
LinearCombTimer.Start();
bo = beta * omega;
auto p_v = p.View();
auto r_v = r.View();
auto v_v = v.View();
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
});
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(p,v);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Calpha = innerProduct(rhat,v);
InnerTimer.Stop();
alpha = rho / Calpha.real();
LinearCombTimer.Start();
auto h_v = h.View();
auto psi_v = psi.View();
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
});
auto s_v = s.View();
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
});
LinearCombTimer.Stop();
LinalgTimer.Stop();
MatrixTimer.Start();
Linop.Op(s,t);
MatrixTimer.Stop();
LinalgTimer.Start();
InnerTimer.Start();
ComplexD Comega = innerProduct(t,s);
InnerTimer.Stop();
omega = Comega.real() / norm2(t);
LinearCombTimer.Start();
auto t_v = t.View();
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
});
LinearCombTimer.Stop();
cp = norm2(r);
LinalgTimer.Stop();
std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition
if(cp <= rsq)
{
SolverTimer.Stop();
Linop.Op(psi, v);
p = v - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown " << std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
if(ErrorOnNoConverge){ assert(0); }
IterationsToComplete = k;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -0,0 +1,158 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
Author: David Murphy <djmurphy@mit.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BICGSTAB_MIXED_PREC_H
#define GRID_BICGSTAB_MIXED_PREC_H
NAMESPACE_BEGIN(Grid);
// Mixed precision restarted defect correction BiCGSTAB
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
{
public:
RealD Tolerance;
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
Integer MaxInnerIterations;
Integer MaxOuterIterations;
GridBase* SinglePrecGrid; // Grid for single-precision fields
RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
Integer TotalInnerIterations; //Number of inner CG iterations
Integer TotalOuterIterations; //Number of restarts
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
LinearFunction<FieldF> *guesser;
MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,
LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :
Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),
MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
void useGuesser(LinearFunction<FieldF>& g){
guesser = &g;
}
void operator() (const FieldD& src_d_in, FieldD& sol_d)
{
TotalInnerIterations = 0;
GridStopWatch TotalTimer;
TotalTimer.Start();
int cb = src_d_in.Checkerboard();
sol_d.Checkerboard() = cb;
RealD src_norm = norm2(src_d_in);
RealD stop = src_norm * Tolerance*Tolerance;
GridBase* DoublePrecGrid = src_d_in.Grid();
FieldD tmp_d(DoublePrecGrid);
tmp_d.Checkerboard() = cb;
FieldD tmp2_d(DoublePrecGrid);
tmp2_d.Checkerboard() = cb;
FieldD src_d(DoublePrecGrid);
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
RealD inner_tol = InnerTolerance;
FieldF src_f(SinglePrecGrid);
src_f.Checkerboard() = cb;
FieldF sol_f(SinglePrecGrid);
sol_f.Checkerboard() = cb;
BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
CG_f.ErrorOnNoConverge = false;
GridStopWatch InnerCGtimer;
GridStopWatch PrecChangeTimer;
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
{
// Compute double precision rsd and also new RHS vector.
Linop_d.Op(sol_d, tmp_d);
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
if(norm < OuterLoopNormMult * stop){
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
break;
}
while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start();
precisionChange(src_f, src_d);
PrecChangeTimer.Stop();
sol_f = Zero();
//Optionally improve inner solver guess (eg using known eigenvectors)
if(guesser != NULL){ (*guesser)(src_f, sol_f); }
//Inner CG
CG_f.Tolerance = inner_tol;
InnerCGtimer.Start();
CG_f(Linop_f, src_f, sol_f);
InnerCGtimer.Stop();
TotalInnerIterations += CG_f.IterationsToComplete;
//Convert sol back to double and add to double prec solution
PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f);
PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d);
}
//Final trial CG
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
CG_d(Linop_d, src_d_in, sol_d);
TotalFinalStepIterations = CG_d.IterationsToComplete;
TotalTimer.Stop();
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
}
};
NAMESPACE_END(Grid);
#endif

View File

@ -52,6 +52,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer PrintInterval; //GridLogMessages or Iterative
RealD TrueResidual;
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
@ -306,7 +307,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
Linop.HermOp(X, AD);
AD = AD-B;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl;
TrueResidual = std::sqrt(norm2(AD)/norm2(B));
std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
@ -442,7 +444,8 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
TrueResidual = std::sqrt(norm2(AP)/norm2(Src));
std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
@ -653,7 +656,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl;
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
@ -668,7 +671,8 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl;
TrueResidual = std::sqrt(normv(AD)/normv(B));
std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;

View File

@ -49,6 +49,7 @@ public:
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
RealD TrueResidual;
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
@ -71,7 +72,6 @@ public:
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.HermOpAndNorm(psi, mmp, d, b);
@ -82,6 +82,14 @@ public:
cp = a;
ssq = norm2(src);
// Handle trivial case of zero src
if (ssq == 0.){
psi = Zero();
IterationsToComplete = 1;
TrueResidual = 0.;
return;
}
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
@ -93,6 +101,7 @@ public:
// Check if guess is really REALLY good :)
if (cp <= rsq) {
TrueResidual = std::sqrt(a/ssq);
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
IterationsToComplete = 0;
return;
@ -142,7 +151,7 @@ public:
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition
if (cp <= rsq) {
@ -154,26 +163,33 @@ public:
RealD resnorm = std::sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << std::sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
<< "\tComputed residual " << std::sqrt(cp / ssq)
<< "\tTrue residual " << true_residual
<< "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
TrueResidual = true_residual;
return;
}
}
// Failed. Calculate true residual before giving up
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
TrueResidual = sqrt(norm2(p)/ssq);
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
if (ErrorOnNoConverge) assert(0);

View File

@ -46,15 +46,19 @@ public:
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
MaxIterations(maxit),
shifts(_shifts)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
@ -125,6 +129,17 @@ public:
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
@ -270,6 +285,7 @@ public:
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
@ -299,7 +315,8 @@ public:
axpy(r,-alpha[s],src,tmp);
RealD rn = norm2(r);
RealD cn = norm2(src);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
}
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;

View File

@ -43,6 +43,11 @@ NAMESPACE_BEGIN(Grid);
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
@ -54,16 +59,15 @@ void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, i
{
typedef decltype(basis[0].View()) View;
auto tmp_v = basis[0].View();
std::vector<View> basis_v(basis.size(),tmp_v);
Vector<View> basis_v(basis.size(),tmp_v);
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].View();
}
#if 0
std::vector < vobj , commAllocator<vobj> > Bt(thread_max() * Nm); // Thread private
thread_region
{
vobj* B = Bt.data() + Nm * thread_num();
@ -81,24 +85,89 @@ void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, i
}
});
}
#else
int nrot = j1-j0;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
// printf("BasisRotate %d %d nrot %d siteBlock %d\n",j0,j1,nrot,siteBlock);
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of Eigen matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
for(int k=0;k<Nm;++k){
for(int j=0;j<Nm;++j){
Qt_p[j*Nm+k]=Qt(j,k);
}
}
// Block the loop to keep storage footprint down
vobj zz=Zero();
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
auto z=coalescedRead(zz);
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
#endif
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View()) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
auto result_v=result.View();
thread_for(ss, grid->oSites(),{
vobj B = Zero();
Vector<View> basis_v(basis.size(),result_v);
for(int k=0;k<basis.size();k++){
basis_v[k] = basis[k].View();
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
auto basis_k = basis[k].View();
B +=Qt(j,k) * basis_k[ss];
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
}
result_v[ss] = B;
coalescedWrite(result_v[ss], B);
});
}
@ -282,7 +351,7 @@ public:
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
int _MinRestart=0, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(Tester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
@ -298,7 +367,7 @@ public:
RealD _eresid, // resid in lmdue deficit
int _MaxIter, // Max iterations
RealD _betastp=0.0, // if beta(k) < betastp: converged
int _MinRestart=1, int _orth_period = 1,
int _MinRestart=0, int _orth_period = 1,
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
SimpleTester(HermOp), _PolyOp(PolyOp), _HermOp(HermOp), _Tester(SimpleTester),
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
@ -347,7 +416,7 @@ until convergence
GridBase *grid = src.Grid();
assert(grid == evec[0].Grid());
GridLogIRL.TimingMode(1);
// GridLogIRL.TimingMode(1);
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
@ -372,14 +441,17 @@ until convergence
{
auto src_n = src;
auto tmp = src;
std::cout << GridLogIRL << " IRL source norm " << norm2(src) << std::endl;
const int _MAX_ITER_IRL_MEVAPP_ = 50;
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
normalise(src_n);
_HermOp(src_n,tmp);
// std::cout << GridLogMessage<< tmp<<std::endl; exit(0);
// std::cout << GridLogIRL << " _HermOp " << norm2(tmp) << std::endl;
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
if (fabs(evalMaxApprox/na - 1.0) < 0.0001)
i=_MAX_ITER_IRL_MEVAPP_;
evalMaxApprox = na;
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
@ -577,11 +649,11 @@ until convergence
/* Saad PP. 195
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For k = 1,2,...,m Do:
3. wk:=Avkβkv_{k1}
4. αk:=(wk,vk) //
5. wk:=wkαkvk // wk orthog vk
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
7. vk+1 := wk/βk+1
3. wk:=Avk - b_k v_{k-1}
4. ak:=(wk,vk) //
5. wk:=wk-akvk // wk orthog vk
6. bk+1 := ||wk||_2. If b_k+1 = 0 then Stop
7. vk+1 := wk/b_k+1
8. EndDo
*/
void step(std::vector<RealD>& lmd,
@ -589,6 +661,7 @@ until convergence
std::vector<Field>& evec,
Field& w,int Nm,int k)
{
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
const RealD tiny = 1.0e-20;
assert( k< Nm );
@ -600,20 +673,20 @@ until convergence
if(k>0) w -= lme[k-1] * evec[k-1];
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
ComplexD zalph = innerProduct(evec_k,w);
RealD alph = real(zalph);
w = w - alph * evec_k;// 5. wk:=wkαkvk
w = w - alph * evec_k;
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
// 7. vk+1 := wk/βk+1
RealD beta = normalise(w);
lmd[k] = alph;
lme[k] = beta;
if (k>0 && k % orth_period == 0) {
if ( (k>0) && ( (k % orth_period) == 0 )) {
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
orthogonalize(w,evec,k); // orthonormalise
std::cout<<GridLogIRL << "Orthogonalised " <<std::endl;
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
}
if(k < Nm-1) evec[k+1] = w;
@ -621,6 +694,8 @@ until convergence
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
if ( beta < tiny )
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
}
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,

View File

@ -33,26 +33,78 @@ NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form an NE solver calling a Herm solver
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class NormalEquations : public OperatorFunction<Field>{
template<class Field> class NormalEquations {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver) {};
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
Field src(in.Grid());
Field tmp(in.Grid());
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Matrix.Mdag(in,src);
_HermitianSolver(src,out); // Mdag M out = Mdag in
_Guess(src,out);
_HermitianSolver(MdagMOp,src,out); // Mdag M out = Mdag in
}
};
template<class Field> class HPDSolver {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
HPDSolver(LinearOperatorBase<Field> &Matrix,
OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
_Guess(in,out);
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
template<class Field> class MdagMSolver {
private:
SparseMatrixBase<Field> & _Matrix;
OperatorFunction<Field> & _HermitianSolver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
MdagMSolver(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _HermitianSolver(HermitianSolver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
MdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(_Matrix);
_Guess(in,out);
_HermitianSolver(MdagMOp,in,out); // Mdag M out = Mdag in
}
};

View File

@ -30,12 +30,12 @@ template<class Field> class PowerMethod
RealD vden = norm2(src_n);
RealD na = vnum/vden;
if ( (fabs(evalMaxApprox/na - 1.0) < 0.01) || (i==_MAX_ITER_EST_-1) ) {
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
return evalMaxApprox;
}
evalMaxApprox = na;
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
src_n = tmp;
}
assert(0);

View File

@ -38,10 +38,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
///////////////////////////////////////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(Grid);
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
template<class Field>
class PrecGeneralisedConjugateResidual : public OperatorFunction<Field> {
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
public:
using OperatorFunction<Field>::operator();
RealD Tolerance;
Integer MaxIterations;
@ -49,23 +50,29 @@ public:
int mmax;
int nstep;
int steps;
int level;
GridStopWatch PrecTimer;
GridStopWatch MatTimer;
GridStopWatch LinalgTimer;
LinearFunction<Field> &Preconditioner;
LinearFunction<Field> &Preconditioner;
LinearOperatorBase<Field> &Linop;
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
void Level(int lv) { level=lv; };
PrecGeneralisedConjugateResidual(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
Tolerance(tol),
MaxIterations(maxit),
Linop(_Linop),
Preconditioner(Prec),
mmax(_mmax),
nstep(_nstep)
{
level=1;
verbose=1;
};
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
void operator() (const Field &src, Field &psi){
psi=Zero();
RealD cp, ssq,rsq;
@ -84,9 +91,9 @@ public:
steps=0;
for(int k=0;k<MaxIterations;k++){
cp=GCRnStep(Linop,src,psi,rsq);
cp=GCRnStep(src,psi,rsq);
std::cout<<GridLogMessage<<"VPGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
if(cp<rsq) {
@ -95,24 +102,26 @@ public:
Linop.HermOp(psi,r);
axpy(r,-1.0,src,r);
RealD tr = norm2(r);
std::cout<<GridLogMessage<<"PrecGeneralisedConjugateResidual: Converged on iteration " <<steps
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
<< " computed residual "<<sqrt(cp/ssq)
<< " true residual " <<sqrt(tr/ssq)
<< " target " <<Tolerance <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
std::cout<<GridLogMessage<<"VPGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
/*
GCRLogLevel<<"PGCR Time elapsed: Precon "<< PrecTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Matrix "<< MatTimer.Elapsed() <<std::endl;
GCRLogLevel<<"PGCR Time elapsed: Linalg "<< LinalgTimer.Elapsed() <<std::endl;
*/
return;
}
}
std::cout<<GridLogMessage<<"Variable Preconditioned GCR did not converge"<<std::endl;
assert(0);
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
// assert(0);
}
RealD GCRnStep(LinearOperatorBase<Field> &Linop,const Field &src, Field &psi,RealD rsq){
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
RealD cp;
RealD a, b;
@ -134,9 +143,7 @@ public:
std::vector<Field> p(mmax,grid);
std::vector<RealD> qq(mmax);
std::cout<<GridLogIterative<< " ************** "<< std::endl;
std::cout<<GridLogIterative<< " GCRnStep("<<nstep<<")"<<std::endl;
std::cout<<GridLogIterative<< " ************** "<< std::endl;
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
//////////////////////////////////
// initial guess x0 is taken as nonzero.
@ -150,35 +157,15 @@ public:
LinalgTimer.Start();
r=src-Az;
LinalgTimer.Stop();
std::cout<<GridLogIterative<< " GCRnStep true residual r = src - A psi "<<norm2(r) <<std::endl;
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
/////////////////////
// p = Prec(r)
/////////////////////
std::cout<<GridLogIterative<< " GCRnStep apply preconditioner z= M^-1 r "<< std::endl;
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
PrecTimer.Start();
Preconditioner(r,z);
PrecTimer.Stop();
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
std::cout<<GridLogIterative<< " GCRnStep called Preconditioner z "<< norm2(z) <<std::endl;
// MatTimer.Start();
// Linop.HermOp(z,tmp);
// MatTimer.Stop();
// LinalgTimer.Start();
// ttmp=tmp;
// tmp=tmp-r;
// LinalgTimer.Stop();
/*
std::cout<<GridLogMessage<<r<<std::endl;
std::cout<<GridLogMessage<<z<<std::endl;
std::cout<<GridLogMessage<<ttmp<<std::endl;
std::cout<<GridLogMessage<<tmp<<std::endl;
*/
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
@ -190,7 +177,6 @@ public:
p[0]= z;
q[0]= Az;
qq[0]= zAAz;
std::cout<<GridLogIterative<< " GCRnStep p0=z, q0 = A p0 " <<std::endl;
cp =norm2(r);
LinalgTimer.Stop();
@ -212,20 +198,16 @@ public:
cp = axpy_norm(r,-a,q[peri_k],r);
LinalgTimer.Stop();
std::cout<<GridLogMessage<< " VPGCR_step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
if((k==nstep-1)||(cp<rsq)){
return cp;
}
std::cout<<GridLogIterative<< " GCRnStep apply preconditioner z= M^-1 r "<< std::endl;
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
PrecTimer.Start();
Preconditioner(r,z);// solve Az = r
PrecTimer.Stop();
std::cout<<GridLogIterative<< " --------------------------------------- "<< std::endl;
std::cout<<GridLogIterative<< " GCRnStep called Preconditioner z "<< norm2(z) <<std::endl;
MatTimer.Start();
Linop.HermOpAndNorm(z,Az,zAz,zAAz);

View File

@ -405,6 +405,70 @@ namespace Grid {
}
};
template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
}
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
}
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, right preconditioned by Mee^inv
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
@ -482,5 +546,76 @@ namespace Grid {
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>
{
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
const bool _solnAsInitGuess = false)
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd , src_o, src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
}
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
{
GridBase* grid = _Matrix.RedBlackGrid();
GridBase* fgrid = _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o, tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
};
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
};
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
{
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
}
};
}
#endif

View File

@ -6,6 +6,12 @@ NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
#ifdef GRID_NVCC
#define SMALL_LIMIT (0)
#else
#define SMALL_LIMIT (4096)
#endif
#ifdef POINTER_CACHE
int PointerCache::victim;
@ -13,7 +19,7 @@ PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
void *PointerCache::Insert(void *ptr,size_t bytes) {
if (bytes < 4096 ) return ptr;
if (bytes < SMALL_LIMIT ) return ptr;
#ifdef GRID_OMP
assert(omp_in_parallel()==0);
@ -50,7 +56,7 @@ void *PointerCache::Insert(void *ptr,size_t bytes) {
void *PointerCache::Lookup(size_t bytes) {
if (bytes < 4096 ) return NULL;
if (bytes < SMALL_LIMIT ) return NULL;
#ifdef GRID_OMP
assert(omp_in_parallel()==0);

View File

@ -49,8 +49,13 @@ NAMESPACE_BEGIN(Grid);
#ifdef POINTER_CACHE
class PointerCache {
private:
/*Pinning pages is costly*/
/*Could maintain separate large and small allocation caches*/
#ifdef GRID_NVCC
static const int Ncache=128;
#else
static const int Ncache=8;
#endif
static int victim;
typedef struct {
@ -63,7 +68,6 @@ private:
public:
static void *Insert(void *ptr,size_t bytes) ;
static void *Lookup(size_t bytes) ;
@ -170,13 +174,14 @@ public:
// Unified (managed) memory
////////////////////////////////////
if ( ptr == (_Tp *) NULL ) {
// printf(" alignedAllocater cache miss %ld bytes ",bytes); BACKTRACEFP(stdout);
auto err = cudaMallocManaged((void **)&ptr,bytes);
if( err != cudaSuccess ) {
ptr = (_Tp *) NULL;
std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
assert(0);
}
}
}
assert( ptr != (_Tp *)NULL);
#else
//////////////////////////////////////////////////////////////////////////////////////////

View File

@ -47,20 +47,19 @@ public:
// Give Lattice access
template<class object> friend class Lattice;
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) {};
GridBase(const Coordinate & processor_grid) : CartesianCommunicator(processor_grid) { LocallyPeriodic=0;};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent,
int &split_rank)
: CartesianCommunicator(processor_grid,parent,split_rank) {};
: CartesianCommunicator(processor_grid,parent,split_rank) {LocallyPeriodic=0;};
GridBase(const Coordinate & processor_grid,
const CartesianCommunicator &parent)
: CartesianCommunicator(processor_grid,parent,dummy) {};
: CartesianCommunicator(processor_grid,parent,dummy) {LocallyPeriodic=0;};
virtual ~GridBase() = default;
// Physics Grid information.
Coordinate _simd_layout;// Which dimensions get relayed out over simd lanes.
Coordinate _fdimensions;// (full) Global dimensions of array prior to cb removal
@ -80,7 +79,8 @@ public:
Coordinate _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
Coordinate _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
bool _isCheckerBoarded;
bool _isCheckerBoarded;
int LocallyPeriodic;
public:

View File

@ -173,6 +173,7 @@ public:
///////////////////////////////////////////////////
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef vobj vector_object;
private:

View File

@ -37,19 +37,18 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
GridBase *grid = l.Grid();
int Nsimd = grid->iSites();
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
vector_type vI;
auto l_v = l.View();
for(int o=0;o<grid->oSites();o++){
thread_for( o, grid->oSites(), {
vector_type vI;
Coordinate gcoor;
ExtractBuffer<scalar_type> mergebuf(Nsimd);
for(int i=0;i<grid->iSites();i++){
grid->RankIndexToGlobalCoor(grid->ThisRank(),o,i,gcoor);
mergebuf[i]=(Integer)gcoor[mu];
}
merge<vector_type,scalar_type>(vI,mergebuf);
l_v[o]=vI;
}
});
};
// LatticeCoordinate();

View File

@ -156,7 +156,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////
template<class vobj,class sobj>
void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
accelerator_inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
GridBase *grid = l.Grid();
@ -185,7 +185,7 @@ void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
};
template<class vobj,class sobj>
void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
accelerator_inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
GridBase *grid=l.Grid();

View File

@ -1,5 +1,4 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_transfer.h
@ -83,12 +82,35 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
});
}
template<class vobj,class CComplex,int nbasis>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<CComplex> ip(coarse);
// auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
auto ip_ = ip.View();
for(int v=0;v<nbasis;v++) {
blockInnerProduct(ip,Basis[v],fineData);
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
coalescedWrite(coarseData_[sc](v),ip_(sc));
});
}
}
template<class vobj,class CComplex,int nbasis>
inline void blockProject1(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
typedef iVector<CComplex,nbasis > coarseSiteData;
coarseSiteData elide;
typedef decltype(coalescedRead(elide)) ScalarComplex;
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
@ -106,26 +128,40 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d] == fine->_rdimensions[d]);
}
int blockVol = fine->oSites()/coarse->oSites();
coarseData=Zero();
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
// Loop over coars parallel, and then loop over fine associated with coarse.
thread_for( sf, fine->oSites(), {
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
////////////////////////////////////////////////////////////////////////////////////////////////////////
// To make this lock free, loop over coars parallel, and then loop over fine associated with coarse.
// Otherwise do fine inner product per site, and make the update atomic
////////////////////////////////////////////////////////////////////////////////////////////////////////
accelerator_for( sci, nbasis*coarse->oSites(), vobj::Nsimd(), {
thread_critical {
for(int i=0;i<nbasis;i++) {
auto Basis_ = Basis[i].View();
coarseData_[sc](i)=coarseData_[sc](i) + innerProduct(Basis_[sf],fineData_[sf]);
}
auto sc=sci/nbasis;
auto i=sci%nbasis;
auto Basis_ = Basis[i].View();
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
int sf;
decltype(innerProduct(Basis_(sf),fineData_(sf))) reduce=Zero();
for(int sb=0;sb<blockVol;sb++){
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r);
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d]+coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
reduce=reduce+innerProduct(Basis_(sf),fineData_(sf));
}
coalescedWrite(coarseData_[sc](i),reduce);
});
return;
}
@ -160,7 +196,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
auto fineY_ = fineY.View();
auto coarseA_= coarseA.View();
thread_for(sf, fine->oSites(), {
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
int sc;
Coordinate coor_c(_ndimension);
@ -171,7 +207,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y
fineZ_[sf]=coarseA_[sc]*fineX_[sf]+fineY_[sf];
coalescedWrite(fineZ_[sf],coarseA_(sc)*fineX_(sf)+fineY_(sf));
});
@ -196,7 +232,7 @@ inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
thread_for(ss, coarse->oSites(),{
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
}
@ -226,23 +262,29 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
int blockVol = fine->oSites()/coarse->oSites();
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
coarseData=Zero();
auto coarseData_ = coarseData.View();
auto fineData_ = fineData.View();
thread_for(sf,fine->oSites(),{
int sc;
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
thread_critical {
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
for(int sb=0;sb<blockVol;sb++){
int sf;
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
@ -296,6 +338,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
}
}
#if 0
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
@ -321,7 +364,7 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
auto coarseData_ = coarseData.View();
// Loop with a cache friendly loop ordering
thread_for(sf,fine->oSites(),{
accelerator_for(sf,fine->oSites(),1,{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
@ -332,13 +375,35 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
for(int i=0;i<nbasis;i++) {
auto basis_ = Basis[i].View();
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf];
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf];
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
}
});
return;
}
#else
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
fineData=Zero();
for(int i=0;i<nbasis;i++) {
Lattice<iScalar<CComplex> > ip = PeekIndex<0>(coarseData,i);
Lattice<CComplex> cip(coarse);
auto cip_ = cip.View();
auto ip_ = ip.View();
accelerator_forNB(sc,coarse->oSites(),CComplex::Nsimd(),{
coalescedWrite(cip_[sc], ip_(sc)());
});
blockZAXPY<vobj,CComplex >(fineData,cip,Basis[i],fineData);
}
}
#endif
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
// Simd layouts need not match since we use peek/poke Local
@ -374,6 +439,67 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
});
}
template<class vobj>
void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate FromLowerLeft, Coordinate ToLowerLeft, Coordinate RegionSize)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
static const int words=sizeof(vobj)/sizeof(vector_type);
GridBase *Fg = From.Grid();
GridBase *Tg = To.Grid();
assert(!Fg->_isCheckerBoarded);
assert(!Tg->_isCheckerBoarded);
int Nsimd = Fg->Nsimd();
int nF = Fg->_ndimension;
int nT = Tg->_ndimension;
int nd = nF;
assert(nF == nT);
for(int d=0;d<nd;d++){
assert(Fg->_processors[d] == Tg->_processors[d]);
}
// the above should guarantee that the operations are local
Coordinate ldf = Fg->_ldimensions;
Coordinate rdf = Fg->_rdimensions;
Coordinate isf = Fg->_istride;
Coordinate osf = Fg->_ostride;
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
auto t_v = To.View();
auto f_v = From.View();
accelerator_for(idx,Fg->lSites(),1,{
sobj s;
Coordinate Fcoor(nd);
Coordinate Tcoor(nd);
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
int in_region=1;
for(int d=0;d<nd;d++){
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
in_region=0;
}
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
}
if (in_region) {
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
scalar_type * fp = (scalar_type *)&f_v[odx_f];
scalar_type * tp = (scalar_type *)&t_v[odx_t];
for(int w=0;w<words;w++){
tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke
}
// peekLocalSite(s,From,Fcoor);
// pokeLocalSite(s,To ,Tcoor);
}
});
}
template<class vobj>
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)

View File

@ -101,7 +101,8 @@ public:
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void Meooe5D (const FermionField &in, FermionField &out);
void MeooeDag5D (const FermionField &in, FermionField &out);

View File

@ -62,14 +62,15 @@ public:
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
// virtual void Dminus(const FermionField &psi, FermionField &chi); // Inherit trivial case
// virtual void DminusDag(const FermionField &psi, FermionField &chi); // Inherit trivial case
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
// virtual void Dminus(const FermionField &psi, FermionField &chi); // Inherit trivial case
// virtual void DminusDag(const FermionField &psi, FermionField &chi); // Inherit trivial case
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
// Constructors
ContinuedFractionFermion5D(GaugeField &_Umu,

View File

@ -89,6 +89,7 @@ public:
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};

View File

@ -103,6 +103,7 @@ public:
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
///////////////////////////////////////////////////////////////

View File

@ -86,7 +86,8 @@ public:
void MooeeDag (const FermionField &in, FermionField &out);
void MooeeInvDag (const FermionField &in, FermionField &out);
void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
// These can be overridden by fancy 5d chiral action

View File

@ -40,6 +40,11 @@ inline void convert(const Fieldi &from,Fieldo &to)
to=from;
}
struct MADWFinnerIterCallbackBase{
virtual void operator()(const RealD current_resid){}
virtual ~MADWFinnerIterCallbackBase(){}
};
template<class Matrixo,class Matrixi,class PVinverter,class SchurSolver, class Guesser>
class MADWF
{
@ -56,24 +61,30 @@ class MADWF
RealD target_resid;
int maxiter;
public:
//operator() is called on "callback" at the end of every inner iteration. This allows for example the adjustment of the inner
//tolerance to speed up subsequent iteration
MADWFinnerIterCallbackBase* callback;
public:
MADWF(Matrixo &_Mato,
Matrixi &_Mati,
PVinverter &_PauliVillarsSolvero,
Matrixi &_Mati,
PVinverter &_PauliVillarsSolvero,
SchurSolver &_SchurSolveri,
Guesser & _Guesseri,
RealD resid,
int _maxiter) :
int _maxiter,
MADWFinnerIterCallbackBase* _callback = NULL) :
Mato(_Mato),Mati(_Mati),
SchurSolveri(_SchurSolveri),
PauliVillarsSolvero(_PauliVillarsSolvero),Guesseri(_Guesseri)
{
target_resid=resid;
maxiter =_maxiter;
};
PauliVillarsSolvero(_PauliVillarsSolvero),Guesseri(_Guesseri),
callback(_callback)
{
target_resid=resid;
maxiter =_maxiter;
};
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
{
std::cout << GridLogMessage<< " ************************************************" << std::endl;
@ -177,6 +188,8 @@ class MADWF
std::cout << GridLogMessage << "Residual " << i << ": " << resid << std::endl;
std::cout << GridLogMessage << "***************************************" <<std::endl;
if(callback != NULL) (*callback)(resid);
if (resid < target_resid) {
return;
}

View File

@ -67,12 +67,13 @@ public:
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
///////////////////////////////////////////////////////////////
// Physical surface field utilities
///////////////////////////////////////////////////////////////
virtual void ExportPhysicalFermionSolution(const FermionField &solution5d,FermionField &exported4d);
virtual void ImportPhysicalFermionSource (const FermionField &input4d,FermionField &imported5d);
// Constructors
PartialFractionFermion5D(GaugeField &_Umu,

View File

@ -115,9 +115,10 @@ public:
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp);
void MdirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp);
void DhopDirDisp(const FermionField &in, FermionField &out, int dirdisp,
int gamma, int dag);
void DhopDirAll(const FermionField &in, std::vector<FermionField> &out);
void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag);
///////////////////////////////////////////////////////////////
// Extra methods added by derived

View File

@ -111,15 +111,16 @@ public:
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MdirAll(const FermionField &in, std::vector<FermionField> &out){assert(0);}; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
// These can be overridden by fancy 5d chiral action
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
@ -131,6 +132,9 @@ public:
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
void DhopDirAll(const FermionField &in,std::vector<FermionField> &out);
void DhopDirComms(const FermionField &in);
void DhopDirCalc(const FermionField &in, FermionField &out,int point);
///////////////////////////////////////////////////////////////
// New methods added

View File

@ -60,13 +60,25 @@ public:
int Ls, int Nsite, const FermionField &in, FermionField &out,
int interior=1,int exterior=1) ;
static void DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out) ;
static void DhopDirKernel(StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma);
private:
static accelerator void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor * buf,
static accelerator_inline void DhopDirK(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor * buf,
int sF, int sU, const FermionFieldView &in, FermionFieldView &out, int dirdisp, int gamma);
static accelerator_inline void DhopDirXp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTp(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirXm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirYm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirZm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
static accelerator_inline void DhopDirTm(StencilView &st,DoubledGaugeFieldView &U,SiteHalfSpinor *buf,int sF,int sU,const FermionFieldView &in,FermionFieldView &out,int dirdisp);
// Specialised variants
static accelerator void GenericDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor * buf,

View File

@ -54,6 +54,14 @@ public:
_Mat.Mdir(in,tmp,dir,disp);
G5R5(out,tmp);
}
void OpDirAll(const Field &in, std::vector<Field> &out) {
Field tmp(in.Grid());
_Mat.MdirAll(in,out);
for(int p=0;p<out.size();p++) {
tmp=out[p];
G5R5(out[p],tmp);
}
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
@ -96,6 +104,12 @@ public:
_Mat.Mdir(in,tmp,dir,disp);
out=g5*tmp;
}
void OpDirAll(const Field &in, std::vector<Field> &out) {
_Mat.MdirAll(in,out);
for(int p=0;p<out.size();p++) {
out[p]=g5*out[p];
}
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){

View File

@ -389,6 +389,14 @@ void CayleyFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,in
Meo5D(psi,tmp);
this->DhopDir(tmp,chi,dir,disp);
}
template<class Impl>
void CayleyFermion5D<Impl>::MdirAll(const FermionField &psi, std::vector<FermionField> &out)
{
FermionField tmp(psi.Grid());
Meo5D(psi,tmp);
this->DhopDirAll(tmp,out);
}
// force terms; five routines; default to Dhop on diagonal
template<class Impl>
void CayleyFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)

View File

@ -143,6 +143,25 @@ void ContinuedFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionFi
}
}
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MdirAll (const FermionField &psi, std::vector<FermionField> &chi)
{
int Ls = this->Ls;
this->DhopDirAll(psi,chi); // Dslash on diagonal. g5 Dslash is hermitian
for(int p=0;p<chi.size();p++){
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==(Ls-1) ){
ag5xpby_ssp(chi[p],Beta[s]*ZoloHiInv,chi[p],0.0,chi[p],s,s);
} else {
ag5xpby_ssp(chi[p],cc[s]*Beta[s]*sign*ZoloHiInv,chi[p],0.0,chi[p],s,s);
}
sign=-sign;
}
}
}
template<class Impl>
void ContinuedFractionFermion5D<Impl>::Meooe (const FermionField &psi, FermionField &chi)
{
int Ls = this->Ls;

View File

@ -538,10 +538,16 @@ void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void)
// Implement the general interface. Here we use SAME mass on all slices
/////////////////////////////////////////////////////////////////////////
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp) {
void ImprovedStaggeredFermion5D<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
{
DhopDir(in, out, dir, disp);
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
{
assert(0);
}
template <class Impl>
RealD ImprovedStaggeredFermion5D<Impl>::M(const FermionField &in, FermionField &out) {
out.Checkerboard() = in.Checkerboard();
Dhop(in, out, DaggerNo);

View File

@ -362,12 +362,19 @@ void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp) {
void ImprovedStaggeredFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
{
DhopDir(in, out, dir, disp);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
{
assert(0); // Not implemented yet
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp) {
void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
{
Compressor compressor;
Stencil.HaloExchange(in, compressor);
@ -380,6 +387,7 @@ void ImprovedStaggeredFermion<Impl>::DhopDir(const FermionField &in, FermionFiel
});
};
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
@ -404,7 +412,6 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
#ifdef GRID_OMP
Compressor compressor;
int len = U.Grid()->oSites();
const int LLs = 1;
DhopTotalTime -= usecond();

View File

@ -31,7 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid);
template<class Impl>
template<class Impl>
void PartialFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
// this does both dag and undag but is trivial; make a common helper routing
int Ls = this->Ls;
@ -45,8 +45,25 @@ void PartialFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionFiel
ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1);
}
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
}
template<class Impl>
void PartialFractionFermion5D<Impl>::MdirAll (const FermionField &psi, std::vector<FermionField> &chi){
// this does both dag and undag but is trivial; make a common helper routing
int Ls = this->Ls;
this->DhopDirAll(psi,chi);
for(int point=0;point<chi.size();point++){
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
int s = 2*b;
ag5xpby_ssp(chi[point],-scale,chi[point],0.0,chi[point],s,s);
ag5xpby_ssp(chi[point], scale,chi[point],0.0,chi[point],s+1,s+1);
}
ag5xpby_ssp(chi[point],p[nblock]*scale/amax,chi[point],0.0,chi[point],Ls-1,Ls-1);
}
}
template<class Impl>
void PartialFractionFermion5D<Impl>::Meooe_internal(const FermionField &psi, FermionField &chi,int dag)
{

View File

@ -241,6 +241,15 @@ void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,in
Kernels::DhopDirKernel(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out,dirdisp,gamma);
};
template<class Impl>
void WilsonFermion5D<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in,compressor);
uint64_t Nsite = Umu.Grid()->oSites();
Kernels::DhopDirAll(Stencil,Umu,Stencil.CommBuf(),Ls,Nsite,in,out);
};
template<class Impl>
void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,

View File

@ -319,28 +319,51 @@ void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int d
}
template <class Impl>
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp) {
void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
{
DhopDir(in, out, dir, disp);
}
template <class Impl>
void WilsonFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
{
DhopDirAll(in, out);
}
template <class Impl>
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
{
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in, compressor);
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
DhopDirDisp(in, out, dirdisp, gamma, DaggerNo);
DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
};
template <class Impl>
void WilsonFermion<Impl>::DhopDirDisp(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
{
Compressor compressor(dag);
Compressor compressor(DaggerNo);
Stencil.HaloExchange(in, compressor);
assert((out.size()==8)||(out.size()==9));
for(int dir=0;dir<Nd;dir++){
for(int disp=-1;disp<=1;disp+=2){
int skip = (disp == 1) ? 0 : 1;
int dirdisp = dir + skip * 4;
int gamma = dir + (1 - skip) * 4;
DhopDirCalc(in, out[dirdisp], dirdisp, gamma, DaggerNo);
}
}
}
template <class Impl>
void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
{
int Ls=1;
int Nsite=in.oSites();
uint64_t Nsite=in.oSites();
Kernels::DhopDirKernel(Stencil, Umu, Stencil.CommBuf(), Ls, Nsite, in, out, dirdisp, gamma);
};
@ -348,7 +371,8 @@ template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag) {
FermionField &out, int dag)
{
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);

View File

@ -91,8 +91,7 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} \
synchronise();
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
#define GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon) \
if (SE->_is_local ) { \
int perm= SE->_permute; \
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
@ -102,10 +101,14 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
} \
synchronise(); \
Impl::multLink(Uchi, U[sU], chi, dir, SE, st); \
Recon(result, Uchi); \
synchronise(); \
Recon(result, Uchi);
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,Recon); \
}
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
@ -284,7 +287,36 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilView &st, DoubledGaugeField
}
};
template <class Impl>
#define DhopDirMacro(Dir,spProj,spRecon) \
template <class Impl> \
void WilsonKernels<Impl>::DhopDir##Dir(StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF, \
int sU, const FermionFieldView &in, FermionFieldView &out, int dir) \
{ \
typedef decltype(coalescedRead(buf[0])) calcHalfSpinor; \
typedef decltype(coalescedRead(in[0])) calcSpinor; \
calcHalfSpinor chi; \
calcSpinor result; \
calcHalfSpinor Uchi; \
StencilEntry *SE; \
int ptype; \
const int Nsimd = SiteHalfSpinor::Nsimd(); \
const int lane=SIMTlane(Nsimd); \
\
SE = st.GetEntry(ptype, dir, sF); \
GENERIC_DHOPDIR_LEG_BODY(Dir,spProj,spRecon); \
coalescedWrite(out[sF], result,lane); \
}
DhopDirMacro(Xp,spProjXp,spReconXp);
DhopDirMacro(Yp,spProjYp,spReconYp);
DhopDirMacro(Zp,spProjZp,spReconZp);
DhopDirMacro(Tp,spProjTp,spReconTp);
DhopDirMacro(Xm,spProjXm,spReconXm);
DhopDirMacro(Ym,spProjYm,spReconYm);
DhopDirMacro(Zm,spProjZm,spReconZm);
DhopDirMacro(Tm,spProjTm,spReconTm);
template <class Impl>
void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionFieldView &in, FermionFieldView &out, int dir, int gamma)
{
@ -299,18 +331,7 @@ void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,Si
const int lane=SIMTlane(Nsimd);
SE = st.GetEntry(ptype, dir, sF);
if (gamma == Xp) {
if (SE->_is_local ) {
int perm= SE->_permute;
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane);
spProjXp(chi,tmp);
} else {
chi = coalescedRead(buf[SE->_offset],lane);
}
Impl::multLink(Uchi, U[sU], chi, dir, SE, st);
spReconXp(result, Uchi);
}
GENERIC_DHOPDIR_LEG(Xp,spProjXp,spReconXp);
GENERIC_DHOPDIR_LEG(Yp,spProjYp,spReconYp);
GENERIC_DHOPDIR_LEG(Zp,spProjZp,spReconZp);
GENERIC_DHOPDIR_LEG(Tp,spProjTp,spReconTp);
@ -321,6 +342,38 @@ void WilsonKernels<Impl>::DhopDirK( StencilView &st, DoubledGaugeFieldView &U,Si
coalescedWrite(out[sF], result,lane);
}
template <class Impl>
void WilsonKernels<Impl>::DhopDirAll( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, std::vector<FermionField> &out)
{
auto U_v = U.View();
auto in_v = in.View();
auto st_v = st.View();
auto out_Xm = out[0].View();
auto out_Ym = out[1].View();
auto out_Zm = out[2].View();
auto out_Tm = out[3].View();
auto out_Xp = out[4].View();
auto out_Yp = out[5].View();
auto out_Zp = out[6].View();
auto out_Tp = out[7].View();
accelerator_forNB(sss,Nsite*Ls,Simd::Nsimd(),{
int sU=sss/Ls;
int sF =sss;
DhopDirXm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Xm,0);
DhopDirYm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Ym,1);
DhopDirZm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Zm,2);
DhopDirTm(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Tm,3);
DhopDirXp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Xp,4);
DhopDirYp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Yp,5);
DhopDirZp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Zp,6);
DhopDirTp(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_Tp,7);
});
}
template <class Impl>
void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int Ls,
int Nsite, const FermionField &in, FermionField &out, int dirdisp, int gamma)
@ -332,13 +385,32 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
auto in_v = in.View();
auto out_v = out.View();
auto st_v = st.View();
accelerator_for(ss,Nsite,Simd::Nsimd(),{
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
DhopDirK(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_v,dirdisp,gamma);
}
});
#define LoopBody(Dir) \
case Dir : \
accelerator_forNB(ss,Nsite,Simd::Nsimd(),{ \
for(int s=0;s<Ls;s++){ \
int sU=ss; \
int sF = s+Ls*sU; \
DhopDir##Dir(st_v,U_v,st.CommBuf(),sF,sU,in_v,out_v,dirdisp);\
} \
}); \
break;
switch(gamma){
LoopBody(Xp);
LoopBody(Yp);
LoopBody(Zp);
LoopBody(Tp);
LoopBody(Xm);
LoopBody(Ym);
LoopBody(Zm);
LoopBody(Tm);
default:
assert(0);
break;
}
#undef LoopBody
}
#define KERNEL_CALLNB(A) \

View File

@ -80,6 +80,8 @@ static Registrar<OneFlavourRatioEOFModule<FermionImplementationPolicy>,
static Registrar< ConjugateGradientModule<WilsonFermionR::FermionField>,
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient");
static Registrar< BiCGSTABModule<WilsonFermionR::FermionField>,
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CGWFmodXMLInit("BiCGSTAB");
static Registrar< ConjugateResidualModule<WilsonFermionR::FermionField>,
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual");

View File

@ -119,6 +119,17 @@ class ConjugateGradientModule: public SolverModule<ConjugateGradient, Field, Sol
}
};
template <class Field >
class BiCGSTABModule: public SolverModule<BiCGSTAB, Field, SolverParameters> {
typedef SolverModule<BiCGSTAB, Field, SolverParameters> SolverBase;
using SolverBase::SolverBase; // for constructors
// acquire resource
virtual void initialize(){
this->SolverPtr.reset(new BiCGSTAB<Field>(this->Par_.tolerance, this->Par_.max_iterations, true));
}
};
template <class Field >
class ConjugateResidualModule: public SolverModule<ConjugateResidual, Field, SolverParameters> {
typedef SolverModule<ConjugateResidual, Field, SolverParameters> SolverBase;

View File

@ -92,6 +92,7 @@ public:
};
void Mdir(const GaugeField&, GaugeField&, int, int){ assert(0);}
void MdirAll(const GaugeField&, std::vector<GaugeField> &){ assert(0);}
void Mdiag(const GaugeField&, GaugeField&){ assert(0);}
void ImportGauge(const GaugeField& _U) {

View File

@ -97,6 +97,23 @@ namespace Grid {
template<typename T, typename V = void> struct is_tensor_variable : public std::false_type {};
template<typename T> struct is_tensor_variable<T, typename std::enable_if<is_tensor<T>::value
&& !is_tensor_fixed<T>::value>::type> : public std::true_type {};
// Helper functions to get the ultimate scalar inside a tensor, and corresponding size
template <typename ET>
inline typename std::enable_if<is_tensor<ET>::value, const typename ET::Index>::type
getScalarCount(const ET &eigenTensor) { return eigenTensor.size() * Traits<ET>::count; }
template <typename ET>
inline typename std::enable_if<is_tensor_of_scalar<ET>::value, const typename ET::Scalar *>::type
getFirstScalar(const ET &eigenTensor) { return eigenTensor.data(); }
template <typename ET>
inline typename std::enable_if<is_tensor_of_scalar<ET>::value, typename ET::Scalar *>::type
getFirstScalar(ET &eigenTensor) { return eigenTensor.data(); }
template <typename ET>
inline typename std::enable_if<is_tensor_of_container<ET>::value, const typename Traits<ET>::scalar_type *>::type
getFirstScalar(const ET &eigenTensor) { return eigenTensor.data()->begin(); }
template <typename ET>
inline typename std::enable_if<is_tensor_of_container<ET>::value, typename Traits<ET>::scalar_type *>::type
getFirstScalar(ET &eigenTensor) { return eigenTensor.data()->begin(); }
}
// Abstract writer/reader classes ////////////////////////////////////////////
@ -128,23 +145,6 @@ namespace Grid {
typename std::enable_if<EigenIO::is_tensor<ETensor>::value>::type
write(const std::string &s, const ETensor &output);
// Helper functions for Scalar vs Container specialisations
template <typename ETensor>
inline typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value,
const typename ETensor::Scalar *>::type
getFirstScalar(const ETensor &output)
{
return output.data();
}
template <typename ETensor>
inline typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value,
const typename EigenIO::Traits<ETensor>::scalar_type *>::type
getFirstScalar(const ETensor &output)
{
return output.data()->begin();
}
template <typename S>
inline typename std::enable_if<EigenIO::is_scalar<S>::value, void>::type
copyScalars(S * &pCopy, const S &Source)
@ -318,12 +318,12 @@ namespace Grid {
TotalDims[TensorRank + i] = Traits::Dimension(i);
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{NumElements > 1 && ETensor::Layout != Eigen::StorageOptions::RowMajor};
const bool CopyData{NumElements > 1 && static_cast<int>( ETensor::Layout ) != static_cast<int>( Eigen::StorageOptions::RowMajor )};
const Scalar * pWriteBuffer;
std::vector<Scalar> CopyBuffer;
const Index TotalNumElements = NumElements * Traits::count;
if( !CopyData ) {
pWriteBuffer = getFirstScalar( output );
pWriteBuffer = EigenIO::getFirstScalar( output );
} else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
CopyBuffer.resize( TotalNumElements );

View File

@ -403,6 +403,10 @@ namespace Optimization {
accelerator_inline GpuVectorRD operator()(GpuVectorRD a, GpuVectorRD b){
return a/b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a, GpuVectorI b){
return a/b;
}
// Danger -- element wise divide fro complex, not complex div.
// See Grid_vector_types.h lines around 735, applied after "toReal"
accelerator_inline GpuVectorCF operator()(GpuVectorCF a, GpuVectorCF b){

View File

@ -628,6 +628,7 @@ void Grid_debug_handler_init(void)
sigaction(SIGSEGV,&sa,NULL);
sigaction(SIGTRAP,&sa,NULL);
sigaction(SIGBUS,&sa,NULL);
sigaction(SIGUSR2,&sa,NULL);
feenableexcept( FE_INVALID|FE_OVERFLOW|FE_DIVBYZERO);