mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-17 15:27:06 +01:00
Re-Merge branch 'develop' into feature/gpu-port
Pull in Regensburg MultiGrid pull request
This commit is contained in:
@ -48,6 +48,12 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/MinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
@ -211,10 +211,11 @@ public:
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
@ -254,6 +255,7 @@ public:
|
||||
////////////////////
|
||||
Geometry geom;
|
||||
GridBase * _grid;
|
||||
|
||||
CartesianStencil<siteVector,siteVector,int> Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> A;
|
||||
@ -297,15 +299,64 @@ public:
|
||||
return norm2(out);
|
||||
};
|
||||
|
||||
RealD Mdag (const CoarseVector &in, CoarseVector &out){
|
||||
return M(in,out);
|
||||
RealD Mdag (const CoarseVector &in, CoarseVector &out){
|
||||
// // corresponds to Petrov-Galerkin coarsening
|
||||
// return M(in,out);
|
||||
|
||||
// corresponds to Galerkin coarsening
|
||||
CoarseVector tmp(Grid());
|
||||
G5C(tmp, in);
|
||||
M(tmp, out);
|
||||
G5C(out, out);
|
||||
return norm2(out);
|
||||
};
|
||||
|
||||
// Defer support for further coarsening for now
|
||||
void Mdiag (const CoarseVector &in, CoarseVector &out){};
|
||||
void Mdir (const CoarseVector &in, CoarseVector &out,int dir, int disp){};
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
|
||||
auto point = [dir, disp](){
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else
|
||||
return (4 * dir + 1 - disp) / 2;
|
||||
}();
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid) :
|
||||
auto out_v = out.View();
|
||||
auto in_v = in.View();
|
||||
thread_loop( (int ss=0;ss<Grid()->oSites();ss++),{
|
||||
siteVector res = Zero();
|
||||
siteVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local&&SE->_permute) {
|
||||
permute(nbr,in_v[SE->_offset],ptype);
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in_v[SE->_offset];
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
|
||||
auto A_point = A[point].View();
|
||||
res = res + A_point[ss]*nbr;
|
||||
|
||||
vstream(out_v[ss],res);
|
||||
});
|
||||
};
|
||||
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out){
|
||||
Mdir(in, out, 0, 0); // use the self coupling (= last) point of the stencil
|
||||
};
|
||||
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid) :
|
||||
|
||||
_grid(&CoarseGrid),
|
||||
geom(CoarseGrid._ndimension),
|
||||
@ -422,36 +473,11 @@ public:
|
||||
std::cout<<GridLogMessage<< iProj <<std::endl;
|
||||
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
|
||||
#endif
|
||||
// ForceHermitian();
|
||||
AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
// ForceHermitian();
|
||||
// AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
}
|
||||
void ForceDiagonal(void) {
|
||||
|
||||
|
||||
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"**** Forcing coarse operator to be diagonal ****"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"**************************************************"<<std::endl;
|
||||
for(int p=0;p<8;p++){
|
||||
A[p]=Zero();
|
||||
}
|
||||
|
||||
GridParallelRNG RNG(Grid()); RNG.SeedFixedIntegers(std::vector<int>({55,72,19,17,34}));
|
||||
Lattice<iScalar<CComplex> > val(Grid()); random(RNG,val);
|
||||
|
||||
Complex one(1.0);
|
||||
|
||||
iMatrix<CComplex,nbasis> ident; ident=one;
|
||||
|
||||
val = val*adj(val);
|
||||
val = val + 1.0;
|
||||
|
||||
A[8] = val*ident;
|
||||
|
||||
// for(int s=0;s<Grid()->oSites();s++) {
|
||||
// A[8][s]=val[s];
|
||||
// }
|
||||
}
|
||||
void ForceHermitian(void) {
|
||||
for(int d=0;d<4;d++){
|
||||
int dd=d+1;
|
||||
|
@ -476,6 +476,8 @@ class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<RealD> Coeffs;
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
Polynomial(std::vector<RealD> &_Coeffs) : Coeffs(_Coeffs) { };
|
||||
|
||||
// Implement the required interface
|
||||
|
@ -0,0 +1,246 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/CommunicationAvoidingGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class CommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when CAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the CAGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
CommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular GMRES" << std::endl;
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "CAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "CommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// this should probably be made a class member so that it is only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "CommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(v, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(v[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + v[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -39,6 +39,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
template<class Field>
|
||||
class ConjugateResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
|
@ -0,0 +1,258 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/FlexibleCommunicationAvoidingGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_FLEXIBLE_COMMUNICATION_AVOIDING_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class FlexibleCommunicationAvoidingGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when FCAGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the FCAGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
FlexibleCommunicationAvoidingGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
LinearFunction<Field> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
std::cout << GridLogWarning << "This algorithm currently doesn't differ from regular FGMRES" << std::endl;
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FCAGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "FlexibleCommunicationAvoidingGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v[iter], z[iter]);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
256
Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Normal file
256
Grid/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
Normal file
@ -0,0 +1,256 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/FlexibleGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class FlexibleGeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when FGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the FGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
|
||||
FlexibleGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
LinearFunction<Field> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "FGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "FlexibleGeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
std::vector<Field> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "FlexibleGeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, std::vector<Field> &z, Field &w, int iter) {
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v[iter], z[iter]);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &z, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
244
Grid/algorithms/iterative/GeneralisedMinimalResidual.h
Normal file
244
Grid/algorithms/iterative/GeneralisedMinimalResidual.h
Normal file
@ -0,0 +1,244 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/GeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class GeneralisedMinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the GMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
GeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.) {};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: src " << ssq << std::endl;
|
||||
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "GMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "GeneralisedMinimalResidual did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<Field> &LinOp, const Field &src, Field &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
Field w(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// this should probably be made a class member so that it is only allocated once, not in every restart
|
||||
std::vector<Field> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "GeneralisedMinimalResidual: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(v, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<Field> &LinOp, std::vector<Field> &v, Field &w, int iter) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(v[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<Field> const &v, Field &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + v[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
157
Grid/algorithms/iterative/MinimalResidual.h
Normal file
157
Grid/algorithms/iterative/MinimalResidual.h
Normal file
@ -0,0 +1,157 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MINIMAL_RESIDUAL_H
|
||||
#define GRID_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field> class MinimalResidual : public OperatorFunction<Field> {
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the MR fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
RealD overRelaxParam;
|
||||
Integer IterationsToComplete; // Number of iterations the MR took to finish.
|
||||
// Filled in upon completion
|
||||
|
||||
MinimalResidual(RealD tol, Integer maxit, Real ovrelparam = 1.0, bool err_on_no_conv = true)
|
||||
: Tolerance(tol), MaxIterations(maxit), overRelaxParam(ovrelparam), ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
Complex a, c;
|
||||
Real d;
|
||||
|
||||
Field Mr(src);
|
||||
Field r(src);
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
Linop.Op(psi, Mr);
|
||||
|
||||
r = src - Mr;
|
||||
|
||||
RealD cp = norm2(r);
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "MinimalResidual: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << "MinimalResidual: cp,r " << cp << std::endl;
|
||||
|
||||
if (cp <= rsq) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "MinimalResidual: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(r, Mr);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
c = innerProduct(Mr, r);
|
||||
|
||||
d = norm2(Mr);
|
||||
|
||||
a = c / d;
|
||||
|
||||
a = a * overRelaxParam;
|
||||
|
||||
psi = psi + r * a;
|
||||
|
||||
r = r - Mr * a;
|
||||
|
||||
cp = norm2(r);
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "MinimalResidual: Iteration " << k
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
std::cout << GridLogDebug << "a = " << a << " c = " << c << " d = " << d << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
SolverTimer.Stop();
|
||||
|
||||
Linop.Op(psi, Mr);
|
||||
r = src - Mr;
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "MinimalResidual Converged on iteration " << k
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MR Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MinimalResidual did NOT converge"
|
||||
<< std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
};
|
||||
} // namespace Grid
|
||||
#endif
|
@ -0,0 +1,273 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
#define GRID_MIXED_PRECISION_FLEXIBLE_GENERALISED_MINIMAL_RESIDUAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class FieldD, class FieldF, typename std::enable_if<getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionFlexibleGeneralisedMinimalResidual : public OperatorFunction<FieldD> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // Throw an assert when MPFGMRES fails to converge,
|
||||
// defaults to true
|
||||
|
||||
RealD Tolerance;
|
||||
|
||||
Integer MaxIterations;
|
||||
Integer RestartLength;
|
||||
Integer MaxNumberOfRestarts;
|
||||
Integer IterationCount; // Number of iterations the MPFGMRES took to finish,
|
||||
// filled in upon completion
|
||||
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch QrTimer;
|
||||
GridStopWatch CompSolutionTimer;
|
||||
GridStopWatch ChangePrecTimer;
|
||||
|
||||
Eigen::MatrixXcd H;
|
||||
|
||||
std::vector<std::complex<double>> y;
|
||||
std::vector<std::complex<double>> gamma;
|
||||
std::vector<std::complex<double>> c;
|
||||
std::vector<std::complex<double>> s;
|
||||
|
||||
GridBase* SinglePrecGrid;
|
||||
|
||||
LinearFunction<FieldF> &Preconditioner;
|
||||
|
||||
MixedPrecisionFlexibleGeneralisedMinimalResidual(RealD tol,
|
||||
Integer maxit,
|
||||
GridBase * sp_grid,
|
||||
LinearFunction<FieldF> &Prec,
|
||||
Integer restart_length,
|
||||
bool err_on_no_conv = true)
|
||||
: Tolerance(tol)
|
||||
, MaxIterations(maxit)
|
||||
, RestartLength(restart_length)
|
||||
, MaxNumberOfRestarts(MaxIterations/RestartLength + ((MaxIterations%RestartLength == 0) ? 0 : 1))
|
||||
, ErrorOnNoConverge(err_on_no_conv)
|
||||
, H(Eigen::MatrixXcd::Zero(RestartLength, RestartLength + 1)) // sizes taken from DD-αAMG code base
|
||||
, y(RestartLength + 1, 0.)
|
||||
, gamma(RestartLength + 1, 0.)
|
||||
, c(RestartLength + 1, 0.)
|
||||
, s(RestartLength + 1, 0.)
|
||||
, SinglePrecGrid(sp_grid)
|
||||
, Preconditioner(Prec) {};
|
||||
|
||||
void operator()(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi) {
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
RealD cp;
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
FieldD r(src.Grid());
|
||||
|
||||
std::cout << std::setprecision(4) << std::scientific;
|
||||
std::cout << GridLogIterative << "MPFGMRES: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << "MPFGMRES: src " << ssq << std::endl;
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatrixTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
QrTimer.Reset();
|
||||
CompSolutionTimer.Reset();
|
||||
ChangePrecTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
IterationCount = 0;
|
||||
|
||||
for (int k=0; k<MaxNumberOfRestarts; k++) {
|
||||
|
||||
cp = outerLoopBody(LinOp, src, psi, rsq);
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
LinOp.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
|
||||
RealD srcnorm = sqrt(ssq);
|
||||
RealD resnorm = sqrt(norm2(r));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES: Converged on iteration " << IterationCount
|
||||
<< " computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual
|
||||
<< " target " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Total " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Precon " << PrecTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Matrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: Linalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: QR " << QrTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: CompSol " << CompSolutionTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "MPFGMRES Time elapsed: PrecChange " << ChangePrecTimer.Elapsed() << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "MPFGMRES did NOT converge" << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge)
|
||||
assert(0);
|
||||
}
|
||||
|
||||
RealD outerLoopBody(LinearOperatorBase<FieldD> &LinOp, const FieldD &src, FieldD &psi, RealD rsq) {
|
||||
|
||||
RealD cp = 0;
|
||||
|
||||
FieldD w(src.Grid());
|
||||
FieldD r(src.Grid());
|
||||
|
||||
// these should probably be made class members so that they are only allocated once, not in every restart
|
||||
std::vector<FieldD> v(RestartLength + 1, src.Grid()); for (auto &elem : v) elem = Zero();
|
||||
std::vector<FieldD> z(RestartLength + 1, src.Grid()); for (auto &elem : z) elem = Zero();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(psi, w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r = src - w;
|
||||
|
||||
gamma[0] = sqrt(norm2(r));
|
||||
|
||||
v[0] = (1. / gamma[0]) * r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for (int i=0; i<RestartLength; i++) {
|
||||
|
||||
IterationCount++;
|
||||
|
||||
arnoldiStep(LinOp, v, z, w, i);
|
||||
|
||||
qrUpdate(i);
|
||||
|
||||
cp = std::norm(gamma[i+1]);
|
||||
|
||||
std::cout << GridLogIterative << "MPFGMRES: Iteration " << IterationCount
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
if ((i == RestartLength - 1) || (IterationCount == MaxIterations) || (cp <= rsq)) {
|
||||
|
||||
computeSolution(z, psi, i);
|
||||
|
||||
return cp;
|
||||
}
|
||||
}
|
||||
|
||||
assert(0); // Never reached
|
||||
return cp;
|
||||
}
|
||||
|
||||
void arnoldiStep(LinearOperatorBase<FieldD> &LinOp, std::vector<FieldD> &v, std::vector<FieldD> &z, FieldD &w, int iter) {
|
||||
|
||||
FieldF v_f(SinglePrecGrid);
|
||||
FieldF z_f(SinglePrecGrid);
|
||||
|
||||
ChangePrecTimer.Start();
|
||||
precisionChange(v_f, v[iter]);
|
||||
precisionChange(z_f, z[iter]);
|
||||
ChangePrecTimer.Stop();
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(v_f, z_f);
|
||||
PrecTimer.Stop();
|
||||
|
||||
ChangePrecTimer.Start();
|
||||
precisionChange(z[iter], z_f);
|
||||
ChangePrecTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
LinOp.Op(z[iter], w);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
for (int i = 0; i <= iter; ++i) {
|
||||
H(iter, i) = innerProduct(v[i], w);
|
||||
w = w - H(iter, i) * v[i];
|
||||
}
|
||||
|
||||
H(iter, iter + 1) = sqrt(norm2(w));
|
||||
v[iter + 1] = (1. / H(iter, iter + 1)) * w;
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
void qrUpdate(int iter) {
|
||||
|
||||
QrTimer.Start();
|
||||
for (int i = 0; i < iter ; ++i) {
|
||||
auto tmp = -s[i] * H(iter, i) + c[i] * H(iter, i + 1);
|
||||
H(iter, i) = std::conj(c[i]) * H(iter, i) + std::conj(s[i]) * H(iter, i + 1);
|
||||
H(iter, i + 1) = tmp;
|
||||
}
|
||||
|
||||
// Compute new Givens Rotation
|
||||
ComplexD nu = sqrt(std::norm(H(iter, iter)) + std::norm(H(iter, iter + 1)));
|
||||
c[iter] = H(iter, iter) / nu;
|
||||
s[iter] = H(iter, iter + 1) / nu;
|
||||
|
||||
// Apply new Givens rotation
|
||||
H(iter, iter) = nu;
|
||||
H(iter, iter + 1) = 0.;
|
||||
|
||||
gamma[iter + 1] = -s[iter] * gamma[iter];
|
||||
gamma[iter] = std::conj(c[iter]) * gamma[iter];
|
||||
QrTimer.Stop();
|
||||
}
|
||||
|
||||
void computeSolution(std::vector<FieldD> const &z, FieldD &psi, int iter) {
|
||||
|
||||
CompSolutionTimer.Start();
|
||||
for (int i = iter; i >= 0; i--) {
|
||||
y[i] = gamma[i];
|
||||
for (int k = i + 1; k <= iter; k++)
|
||||
y[i] = y[i] - H(k, i) * y[k];
|
||||
y[i] = y[i] / H(i, i);
|
||||
}
|
||||
|
||||
for (int i = 0; i <= iter; i++)
|
||||
psi = psi + z[i] * y[i];
|
||||
CompSolutionTimer.Stop();
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -132,6 +132,7 @@ public:
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<RealD> qq(mmax);
|
||||
|
||||
|
||||
//////////////////////////////////
|
||||
// initial guess x0 is taken as nonzero.
|
||||
// r0=src-A x0 = src
|
||||
@ -139,8 +140,11 @@ public:
|
||||
MatTimer.Start();
|
||||
Linop.HermOpAndNorm(psi,Az,zAz,zAAz);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
r=src-Az;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
|
||||
/////////////////////
|
||||
// p = Prec(r)
|
||||
/////////////////////
|
||||
@ -152,8 +156,10 @@ public:
|
||||
Linop.HermOp(z,tmp);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
ttmp=tmp;
|
||||
tmp=tmp-r;
|
||||
LinalgTimer.Stop();
|
||||
|
||||
/*
|
||||
std::cout<<GridLogMessage<<r<<std::endl;
|
||||
@ -166,12 +172,14 @@ public:
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
//p[0],q[0],qq[0]
|
||||
p[0]= z;
|
||||
q[0]= Az;
|
||||
qq[0]= zAAz;
|
||||
|
||||
|
||||
cp =norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for(int k=0;k<nstep;k++){
|
||||
|
||||
@ -181,12 +189,14 @@ public:
|
||||
int peri_k = k %mmax;
|
||||
int peri_kp= kp%mmax;
|
||||
|
||||
LinalgTimer.Start();
|
||||
rq= real(innerProduct(r,q[peri_k])); // what if rAr not real?
|
||||
a = rq/qq[peri_k];
|
||||
|
||||
axpy(psi,a,p[peri_k],psi);
|
||||
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
if((k==nstep-1)||(cp<rsq)){
|
||||
return cp;
|
||||
@ -202,6 +212,8 @@ public:
|
||||
Linop.HermOpAndNorm(z,Az,zAz,zAAz);
|
||||
Linop.HermOp(z,tmp);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
tmp=tmp-r;
|
||||
std::cout<<GridLogMessage<< " Preconditioner resid " <<sqrt(norm2(tmp)/norm2(r))<<std::endl;
|
||||
|
||||
@ -219,8 +231,7 @@ public:
|
||||
|
||||
}
|
||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||
|
||||
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
assert(0); // never reached
|
||||
return cp;
|
||||
|
@ -769,7 +769,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
|
||||
for(int j=0;j<Nblock;j++){
|
||||
auto tmp = innerProduct(Left[i],Right[j]);
|
||||
auto rtmp = TensorRemove(tmp);
|
||||
mat_thread(i,j) += Reduce(rtmp);
|
||||
auto red = Reduce(rtmp);
|
||||
mat_thread(i,j) += std::complex<double>(real(red),imag(red));
|
||||
}}
|
||||
}});
|
||||
thread_critical
|
||||
|
@ -59,6 +59,7 @@ void GridLogTimestamp(int on){
|
||||
}
|
||||
|
||||
Colours GridLogColours(0);
|
||||
GridLogger GridLogMG (1, "MG" , GridLogColours, "NORMAL");
|
||||
GridLogger GridLogIRL (1, "IRL" , GridLogColours, "NORMAL");
|
||||
GridLogger GridLogSolver (1, "Solver", GridLogColours, "NORMAL");
|
||||
GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
|
||||
|
@ -168,6 +168,7 @@ public:
|
||||
|
||||
void GridLogConfigure(std::vector<std::string> &logstreams);
|
||||
|
||||
extern GridLogger GridLogMG;
|
||||
extern GridLogger GridLogIRL;
|
||||
extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
|
@ -4,9 +4,11 @@
|
||||
|
||||
Source file: ./lib/qcd/action/gauge/Photon.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015-2018
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
Author: James Harrison <J.Harrison@soton.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -23,398 +25,304 @@
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef QCD_PHOTON_ACTION_H
|
||||
#define QCD_PHOTON_ACTION_H
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class S>
|
||||
class QedGimpl
|
||||
{
|
||||
public:
|
||||
typedef S Simd;
|
||||
template <class S>
|
||||
class QedGImpl
|
||||
{
|
||||
public:
|
||||
typedef S Simd;
|
||||
|
||||
template <typename vtype>
|
||||
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
|
||||
template <typename vtype>
|
||||
using iImplGaugeField = iVector<iScalar<iScalar<vtype>>, Nd>;
|
||||
template <typename vtype>
|
||||
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
|
||||
template <typename vtype>
|
||||
using iImplGaugeField = iVector<iScalar<iScalar<vtype>>, Nd>;
|
||||
|
||||
typedef iImplGaugeLink<Simd> SiteLink;
|
||||
typedef iImplGaugeField<Simd> SiteField;
|
||||
typedef SiteField SiteComplex;
|
||||
typedef iImplGaugeLink<Simd> SiteLink;
|
||||
typedef iImplGaugeField<Simd> SiteField;
|
||||
typedef SiteLink SiteComplex;
|
||||
|
||||
typedef Lattice<SiteLink> LinkField;
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Field ComplexField;
|
||||
};
|
||||
typedef Lattice<SiteLink> LinkField;
|
||||
typedef Lattice<SiteField> Field;
|
||||
typedef Field ComplexField;
|
||||
};
|
||||
|
||||
typedef QedGimpl<vComplex> QedGimplR;
|
||||
typedef QedGImpl<vComplex> QedGImplR;
|
||||
|
||||
template<class Gimpl>
|
||||
class Photon
|
||||
{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl);
|
||||
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
|
||||
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2, qedInf, 3);
|
||||
public:
|
||||
Photon(Gauge gauge, ZmScheme zmScheme);
|
||||
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements);
|
||||
Photon(Gauge gauge, ZmScheme zmScheme, Real G0);
|
||||
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements, Real G0);
|
||||
virtual ~Photon(void) = default;
|
||||
void FreePropagator(const GaugeField &in, GaugeField &out);
|
||||
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
|
||||
void StochasticWeight(GaugeLinkField &weight);
|
||||
void StochasticField(GaugeField &out, GridParallelRNG &rng);
|
||||
void StochasticField(GaugeField &out, GridParallelRNG &rng,
|
||||
const GaugeLinkField &weight);
|
||||
void UnitField(GaugeField &out);
|
||||
private:
|
||||
void infVolPropagator(GaugeLinkField &out);
|
||||
void invKHatSquared(GaugeLinkField &out);
|
||||
void zmSub(GaugeLinkField &out);
|
||||
private:
|
||||
Gauge gauge_;
|
||||
ZmScheme zmScheme_;
|
||||
std::vector<Real> improvement_;
|
||||
Real G0_;
|
||||
};
|
||||
template <class GImpl>
|
||||
class Photon
|
||||
{
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(GImpl);
|
||||
typedef typename SiteGaugeLink::scalar_object ScalarSite;
|
||||
typedef typename ScalarSite::scalar_type ScalarComplex;
|
||||
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
|
||||
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2);
|
||||
public:
|
||||
Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvement);
|
||||
Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme);
|
||||
virtual ~Photon(void) = default;
|
||||
void FreePropagator(const GaugeField &in, GaugeField &out);
|
||||
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
|
||||
void StochasticWeight(GaugeLinkField &weight);
|
||||
void StochasticField(GaugeField &out, GridParallelRNG &rng);
|
||||
void StochasticField(GaugeField &out, GridParallelRNG &rng,
|
||||
const GaugeLinkField &weight);
|
||||
void UnitField(GaugeField &out);
|
||||
private:
|
||||
void makeSpatialNorm(LatticeInteger &spNrm);
|
||||
void makeKHat(std::vector<GaugeLinkField> &khat);
|
||||
void makeInvKHatSquared(GaugeLinkField &out);
|
||||
void zmSub(GaugeLinkField &out);
|
||||
void transverseProjectSpatial(GaugeField &out);
|
||||
void gaugeTransform(GaugeField &out);
|
||||
private:
|
||||
GridBase *grid_;
|
||||
Gauge gauge_;
|
||||
ZmScheme zmScheme_;
|
||||
std::vector<Real> improvement_;
|
||||
};
|
||||
|
||||
typedef Photon<QedGimplR> PhotonR;
|
||||
typedef Photon<QedGImplR> PhotonR;
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()),
|
||||
G0_(0.15493339023106021408483720810737508876916113364521)
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
|
||||
template<class GImpl>
|
||||
Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme,
|
||||
std::vector<Real> improvements)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements),
|
||||
G0_(0.15493339023106021408483720810737508876916113364521)
|
||||
: grid_(grid), gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements)
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme, Real G0)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()), G0_(G0)
|
||||
template<class GImpl>
|
||||
Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme)
|
||||
: Photon(grid, gauge, zmScheme, std::vector<Real>())
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
|
||||
std::vector<Real> improvements, Real G0)
|
||||
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements), G0_(G0)
|
||||
{}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::FreePropagator (const GaugeField &in,GaugeField &out)
|
||||
{
|
||||
FFT theFFT(in.Grid());
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::FreePropagator(const GaugeField &in, GaugeField &out)
|
||||
{
|
||||
FFT theFFT(dynamic_cast<GridCartesian *>(grid_));
|
||||
GaugeField in_k(grid_);
|
||||
GaugeField prop_k(grid_);
|
||||
|
||||
GaugeField in_k(in.Grid());
|
||||
GaugeField prop_k(in.Grid());
|
||||
|
||||
theFFT.FFT_all_dim(in_k,in,FFT::forward);
|
||||
MomentumSpacePropagator(prop_k,in_k);
|
||||
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::infVolPropagator(GaugeLinkField &out)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
|
||||
LatticeReal xmu(grid);
|
||||
LatticeReal pmusq(grid);
|
||||
LatticeComplex pmusq_z(grid);
|
||||
GaugeLinkField one(grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
Coordinate &l = grid->_fdimensions;
|
||||
Coordinate x0(nd,0);
|
||||
TComplex Tone = Complex(1.0,0.0);
|
||||
TComplex Tzero = Complex(G0_,0.0);
|
||||
FFT fft(grid);
|
||||
|
||||
one = Complex(1.0,0.0);
|
||||
out = Zero();
|
||||
for(int mu = 0; mu < nd; mu++) {
|
||||
LatticeCoordinate(xmu,mu);
|
||||
Real lo2 = l[mu]/2.0;
|
||||
xmu = where(xmu < lo2, xmu, xmu-double(l[mu]));
|
||||
pmusq = (4.0*M_PI*M_PI)*xmu*xmu;
|
||||
pmusq_z= toComplex(pmusq);
|
||||
out = out + pmusq_z;
|
||||
theFFT.FFT_all_dim(in_k, in, FFT::forward);
|
||||
MomentumSpacePropagator(prop_k, in_k);
|
||||
theFFT.FFT_all_dim(out, prop_k, FFT::backward);
|
||||
}
|
||||
pokeSite(Tone, out, x0);
|
||||
out = one/out;
|
||||
pokeSite(Tzero, out, x0);
|
||||
fft.FFT_all_dim(out, out, FFT::forward);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out)
|
||||
{
|
||||
GridBase *grid = out.Grid();
|
||||
GaugeLinkField kmu(grid), one(grid);
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
Coordinate &l = grid->_fdimensions;
|
||||
Coordinate zm(nd,0);
|
||||
TComplex Tone = Complex(1.0,0.0);
|
||||
TComplex Tzero= Complex(0.0,0.0);
|
||||
|
||||
one = Complex(1.0,0.0);
|
||||
out = Zero();
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::makeSpatialNorm(LatticeInteger &spNrm)
|
||||
{
|
||||
LatticeInteger coor(grid_);
|
||||
auto l = grid_->FullDimensions();
|
||||
|
||||
spNrm = Zero();
|
||||
for(int mu = 0; mu < grid_->Nd() - 1; mu++)
|
||||
{
|
||||
Real twoPiL = M_PI*2./l[mu];
|
||||
|
||||
LatticeCoordinate(kmu,mu);
|
||||
kmu = 2.*sin(.5*twoPiL*kmu);
|
||||
out = out + kmu*kmu;
|
||||
LatticeCoordinate(coor, mu);
|
||||
coor = where(coor < Integer(l[mu]/2), coor, coor - Integer(l[mu]));
|
||||
spNrm = spNrm + coor*coor;
|
||||
}
|
||||
pokeSite(Tone, out, zm);
|
||||
out = one/out;
|
||||
pokeSite(Tzero, out, zm);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::zmSub(GaugeLinkField &out)
|
||||
{
|
||||
GridBase *grid = out.Grid();
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
Coordinate &l = grid->_fdimensions;
|
||||
|
||||
switch (zmScheme_)
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::makeKHat(std::vector<GaugeLinkField> &khat)
|
||||
{
|
||||
const unsigned int nd = grid_->Nd();
|
||||
auto l = grid_->FullDimensions();
|
||||
Complex ci(0., 1.);
|
||||
|
||||
khat.resize(nd, grid_);
|
||||
for (unsigned int mu = 0; mu < nd; ++mu)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
Real piL = M_PI/l[mu];
|
||||
|
||||
LatticeCoordinate(khat[mu], mu);
|
||||
khat[mu] = exp(piL*ci*khat[mu])*2.*sin(piL*khat[mu]);
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::makeInvKHatSquared(GaugeLinkField &out)
|
||||
{
|
||||
std::vector<GaugeLinkField> khat;
|
||||
GaugeLinkField lone(grid_);
|
||||
const unsigned int nd = grid_->Nd();
|
||||
Coordinate zm(nd, 0);
|
||||
ScalarSite one = ScalarComplex(1., 0.), z = ScalarComplex(0., 0.);
|
||||
|
||||
out = Zero();
|
||||
makeKHat(khat);
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
out = out + khat[mu]*conjugate(khat[mu]);
|
||||
}
|
||||
lone = ScalarComplex(1., 0.);
|
||||
pokeSite(one, out, zm);
|
||||
out = lone/out;
|
||||
pokeSite(z, out, zm);
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::zmSub(GaugeLinkField &out)
|
||||
{
|
||||
switch (zmScheme_)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
{
|
||||
Coordinate zm(nd,0);
|
||||
TComplex Tzero = Complex(0.0,0.0);
|
||||
|
||||
pokeSite(Tzero, out, zm);
|
||||
Coordinate zm(grid_->Nd(), 0);
|
||||
ScalarSite z = ScalarComplex(0., 0.);
|
||||
|
||||
pokeSite(z, out, zm);
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedL:
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
LatticeInteger spNrm(grid), coor(grid);
|
||||
GaugeLinkField z(grid);
|
||||
|
||||
spNrm = Zero();
|
||||
for(int d = 0; d < grid->_ndimension - 1; d++)
|
||||
{
|
||||
LatticeCoordinate(coor,d);
|
||||
coor = where(coor < Integer(l[d]/2), coor, coor-Integer(l[d]));
|
||||
spNrm = spNrm + coor*coor;
|
||||
}
|
||||
LatticeInteger spNrm(grid_);
|
||||
|
||||
makeSpatialNorm(spNrm);
|
||||
out = where(spNrm == Integer(0), 0.*out, out);
|
||||
|
||||
// IR improvement
|
||||
for(int i = 0; i < improvement_.size(); i++)
|
||||
{
|
||||
Real f = sqrt(improvement_[i]+1);
|
||||
out = where(spNrm == Integer(i+1), f*out, out);
|
||||
Real f = sqrt(improvement_[i] + 1);
|
||||
out = where(spNrm == Integer(i + 1), f*out, out);
|
||||
}
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::MomentumSpacePropagator(const GaugeField &in,
|
||||
GaugeField &out)
|
||||
{
|
||||
GridBase *grid = out.Grid();
|
||||
LatticeComplex momProp(grid);
|
||||
|
||||
switch (zmScheme_)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
invKHatSquared(momProp);
|
||||
zmSub(momProp);
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedInf:
|
||||
{
|
||||
infVolPropagator(momProp);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::transverseProjectSpatial(GaugeField &out)
|
||||
{
|
||||
const unsigned int nd = grid_->Nd();
|
||||
GaugeLinkField invKHat(grid_), cst(grid_), spdiv(grid_);
|
||||
LatticeInteger spNrm(grid_);
|
||||
std::vector<GaugeLinkField> khat, a(nd, grid_), aProj(nd, grid_);
|
||||
|
||||
invKHat = Zero();
|
||||
makeSpatialNorm(spNrm);
|
||||
makeKHat(khat);
|
||||
for (unsigned int mu = 0; mu < nd; ++mu)
|
||||
{
|
||||
a[mu] = peekLorentz(out, mu);
|
||||
if (mu < nd - 1)
|
||||
{
|
||||
invKHat += khat[mu]*conjugate(khat[mu]);
|
||||
}
|
||||
}
|
||||
cst = ScalarComplex(1., 0.);
|
||||
invKHat = where(spNrm == Integer(0), cst, invKHat);
|
||||
invKHat = cst/invKHat;
|
||||
cst = Zero();
|
||||
invKHat = where(spNrm == Integer(0), cst, invKHat);
|
||||
spdiv = Zero();
|
||||
for (unsigned int nu = 0; nu < nd - 1; ++nu)
|
||||
{
|
||||
spdiv += conjugate(khat[nu])*a[nu];
|
||||
}
|
||||
spdiv *= invKHat;
|
||||
for (unsigned int mu = 0; mu < nd; ++mu)
|
||||
{
|
||||
aProj[mu] = a[mu] - khat[mu]*spdiv;
|
||||
pokeLorentz(out, aProj[mu], mu);
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::gaugeTransform(GaugeField &out)
|
||||
{
|
||||
switch (gauge_)
|
||||
{
|
||||
case Gauge::feynman:
|
||||
break;
|
||||
case Gauge::coulomb:
|
||||
transverseProjectSpatial(out);
|
||||
break;
|
||||
case Gauge::landau:
|
||||
assert(0);
|
||||
break;
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::MomentumSpacePropagator(const GaugeField &in,
|
||||
GaugeField &out)
|
||||
{
|
||||
LatticeComplex momProp(grid_);
|
||||
|
||||
makeInvKHatSquared(momProp);
|
||||
zmSub(momProp);
|
||||
|
||||
out = in*momProp;
|
||||
}
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::StochasticWeight(GaugeLinkField &weight)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(weight.Grid());
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
Coordinate latt_size = grid->_fdimensions;
|
||||
|
||||
switch (zmScheme_)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::StochasticWeight(GaugeLinkField &weight)
|
||||
{
|
||||
const unsigned int nd = grid_->Nd();
|
||||
auto l = grid_->FullDimensions();
|
||||
Integer vol = 1;
|
||||
|
||||
for(unsigned int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
Integer vol = 1;
|
||||
for(int d = 0; d < nd; d++)
|
||||
{
|
||||
vol = vol * latt_size[d];
|
||||
vol = vol*l[mu];
|
||||
}
|
||||
invKHatSquared(weight);
|
||||
weight = sqrt(vol)*sqrt(weight);
|
||||
zmSub(weight);
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedInf:
|
||||
{
|
||||
infVolPropagator(weight);
|
||||
weight = sqrt(real(weight));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
makeInvKHatSquared(weight);
|
||||
weight = sqrt(vol)*sqrt(weight);
|
||||
zmSub(weight);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
|
||||
GaugeLinkField weight(grid);
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
|
||||
{
|
||||
GaugeLinkField weight(grid_);
|
||||
|
||||
StochasticWeight(weight);
|
||||
StochasticField(out, rng, weight);
|
||||
}
|
||||
StochasticWeight(weight);
|
||||
StochasticField(out, rng, weight);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
|
||||
const GaugeLinkField &weight)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
GaugeLinkField r(grid);
|
||||
GaugeField aTilde(grid);
|
||||
FFT fft(grid);
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
|
||||
const GaugeLinkField &weight)
|
||||
{
|
||||
const unsigned int nd = grid_->Nd();
|
||||
GaugeLinkField r(grid_);
|
||||
GaugeField aTilde(grid_);
|
||||
FFT fft(dynamic_cast<GridCartesian *>(grid_));
|
||||
|
||||
switch (zmScheme_)
|
||||
{
|
||||
case ZmScheme::qedTL:
|
||||
case ZmScheme::qedL:
|
||||
{
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
for(unsigned int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
gaussian(rng, r);
|
||||
r = weight*r;
|
||||
pokeLorentz(aTilde, r, mu);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ZmScheme::qedInf:
|
||||
{
|
||||
Complex shift(1., 1.); // This needs to be a GaugeLink element?
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
bernoulli(rng, r);
|
||||
r = weight*(2.*r - shift);
|
||||
pokeLorentz(aTilde, r, mu);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
gaugeTransform(aTilde);
|
||||
fft.FFT_all_dim(out, aTilde, FFT::backward);
|
||||
out = real(out);
|
||||
}
|
||||
|
||||
fft.FFT_all_dim(out, aTilde, FFT::backward);
|
||||
|
||||
out = real(out);
|
||||
}
|
||||
|
||||
template<class Gimpl>
|
||||
void Photon<Gimpl>::UnitField(GaugeField &out)
|
||||
template<class GImpl>
|
||||
void Photon<GImpl>::UnitField(GaugeField &out)
|
||||
{
|
||||
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
|
||||
const unsigned int nd = grid->_ndimension;
|
||||
GaugeLinkField r(grid);
|
||||
const unsigned int nd = grid_->Nd();
|
||||
GaugeLinkField r(grid_);
|
||||
|
||||
r = Complex(1.0,0.0);
|
||||
|
||||
for(int mu = 0; mu < nd; mu++)
|
||||
r = ScalarComplex(1., 0.);
|
||||
for(unsigned int mu = 0; mu < nd; mu++)
|
||||
{
|
||||
pokeLorentz(out, r, mu);
|
||||
}
|
||||
|
||||
out = real(out);
|
||||
}
|
||||
// template<class Gimpl>
|
||||
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out,
|
||||
// const GaugeField &in)
|
||||
// {
|
||||
//
|
||||
// FeynmanGaugeMomentumSpacePropagator_TL(out,in);
|
||||
//
|
||||
// GridBase *grid = out.Grid();
|
||||
// LatticeInteger coor(grid);
|
||||
// GaugeField zz(grid); zz=zero;
|
||||
//
|
||||
// // xyzt
|
||||
// for(int d = 0; d < grid->_ndimension-1;d++){
|
||||
// LatticeCoordinate(coor,d);
|
||||
// out = where(coor==Integer(0),zz,out);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// template<class Gimpl>
|
||||
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out,
|
||||
// const GaugeField &in)
|
||||
// {
|
||||
//
|
||||
// // what type LatticeComplex
|
||||
// GridBase *grid = out.Grid();
|
||||
// int nd = grid->_ndimension;
|
||||
//
|
||||
// typedef typename GaugeField::vector_type vector_type;
|
||||
// typedef typename GaugeField::scalar_type ScalComplex;
|
||||
// typedef Lattice<iSinglet<vector_type> > LatComplex;
|
||||
//
|
||||
// Coordinate latt_size = grid->_fdimensions;
|
||||
//
|
||||
// LatComplex denom(grid); denom= Zero();
|
||||
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
|
||||
// LatComplex kmu(grid);
|
||||
//
|
||||
// ScalComplex ci(0.0,1.0);
|
||||
// // momphase = n * 2pi / L
|
||||
// for(int mu=0;mu<Nd;mu++) {
|
||||
//
|
||||
// LatticeCoordinate(kmu,mu);
|
||||
//
|
||||
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
|
||||
//
|
||||
// kmu = TwoPiL * kmu ;
|
||||
//
|
||||
// denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
|
||||
// }
|
||||
// Coordinate zero_mode(nd,0);
|
||||
// TComplexD Tone = ComplexD(1.0,0.0);
|
||||
// TComplexD Tzero= ComplexD(0.0,0.0);
|
||||
//
|
||||
// pokeSite(Tone,denom,zero_mode);
|
||||
//
|
||||
// denom= one/denom;
|
||||
//
|
||||
// pokeSite(Tzero,denom,zero_mode);
|
||||
//
|
||||
// out = Zero();
|
||||
// out = in*denom;
|
||||
// };
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
@ -27,8 +27,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_QCD_LINALG_UTILS_H
|
||||
#define GRID_QCD_LINALG_UTILS_H
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -197,5 +196,40 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
|
||||
});
|
||||
}
|
||||
|
||||
// I explicitly need these outside the QCD namespace
|
||||
template<typename vobj>
|
||||
void G5C(Lattice<vobj> &z, const Lattice<vobj> &x)
|
||||
{
|
||||
GridBase *grid = x._grid;
|
||||
z.checkerboard = x.checkerboard;
|
||||
conformable(x, z);
|
||||
|
||||
Gamma G5(Gamma::Algebra::Gamma5);
|
||||
z = G5 * x;
|
||||
}
|
||||
|
||||
template<class CComplex, int nbasis>
|
||||
void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex, nbasis>> &x)
|
||||
{
|
||||
GridBase *grid = x.Grid();
|
||||
z.Checkerboard() = x.Checkerboard();
|
||||
conformable(x, z);
|
||||
|
||||
static_assert(nbasis % 2 == 0, "");
|
||||
int nb = nbasis / 2;
|
||||
|
||||
auto z_v = z.View();
|
||||
auto x_v = x.View();
|
||||
thread_loop( (int ss = 0; ss < grid->oSites(); ss++) ,
|
||||
{
|
||||
for(int n = 0; n < nb; ++n) {
|
||||
z_v[ss](n) = x_v[ss](n);
|
||||
}
|
||||
for(int n = nb; n < nbasis; ++n) {
|
||||
z_v[ss](n) = -x_v[ss](n);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
@ -6,10 +6,12 @@
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: James Harrison <J.Harrison@soton.ac.uk>
|
||||
Author: Antonin Portelli <antonin.portelli@me.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -645,6 +647,184 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// Wilson loop of size (R1, R2), oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void wilsonLoop(GaugeMat &wl, const std::vector<GaugeMat> &U,
|
||||
const int Rmu, const int Rnu,
|
||||
const int mu, const int nu) {
|
||||
wl = U[nu];
|
||||
|
||||
for(int i = 0; i < Rnu-1; i++){
|
||||
wl = Gimpl::CovShiftForward(U[nu], nu, wl);
|
||||
}
|
||||
|
||||
for(int i = 0; i < Rmu; i++){
|
||||
wl = Gimpl::CovShiftForward(U[mu], mu, wl);
|
||||
}
|
||||
|
||||
for(int i = 0; i < Rnu; i++){
|
||||
wl = Gimpl::CovShiftBackward(U[nu], nu, wl);
|
||||
}
|
||||
|
||||
for(int i = 0; i < Rmu; i++){
|
||||
wl = Gimpl::CovShiftBackward(U[mu], mu, wl);
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// trace of Wilson Loop oriented in mu,nu plane
|
||||
//////////////////////////////////////////////////
|
||||
static void traceWilsonLoop(LatticeComplex &wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int Rmu, const int Rnu,
|
||||
const int mu, const int nu) {
|
||||
GaugeMat sp(U[0].Grid());
|
||||
wilsonLoop(sp, U, Rmu, Rnu, mu, nu);
|
||||
wl = trace(sp);
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all planes of Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static void siteWilsonLoop(LatticeComplex &Wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int R1, const int R2) {
|
||||
LatticeComplex siteWl(U[0].Grid());
|
||||
Wl = Zero();
|
||||
for (int mu = 1; mu < U[0].Grid()->_ndimension; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
}
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over planes of Wilson loop with length R1
|
||||
// in the time direction
|
||||
//////////////////////////////////////////////////
|
||||
static void siteTimelikeWilsonLoop(LatticeComplex &Wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int R1, const int R2) {
|
||||
LatticeComplex siteWl(U[0].Grid());
|
||||
|
||||
int ndim = U[0].Grid()->_ndimension;
|
||||
|
||||
Wl = Zero();
|
||||
for (int nu = 0; nu < ndim - 1; nu++) {
|
||||
traceWilsonLoop(siteWl, U, R1, R2, ndim-1, nu);
|
||||
Wl = Wl + siteWl;
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum Wilson loop over all planes orthogonal to the time direction
|
||||
//////////////////////////////////////////////////
|
||||
static void siteSpatialWilsonLoop(LatticeComplex &Wl,
|
||||
const std::vector<GaugeMat> &U,
|
||||
const int R1, const int R2) {
|
||||
LatticeComplex siteWl(U[0].Grid());
|
||||
|
||||
Wl = Zero();
|
||||
for (int mu = 1; mu < U[0].Grid()->_ndimension - 1; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
|
||||
Wl = Wl + siteWl;
|
||||
}
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real sumWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
std::vector<GaugeMat> U(4, Umu.Grid());
|
||||
|
||||
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Wl(Umu.Grid());
|
||||
|
||||
siteWilsonLoop(Wl, U, R1, R2);
|
||||
|
||||
TComplex Tp = sum(Wl);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of timelike Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
std::vector<GaugeMat> U(4, Umu.Grid());
|
||||
|
||||
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Wl(Umu.Grid());
|
||||
|
||||
siteTimelikeWilsonLoop(Wl, U, R1, R2);
|
||||
|
||||
TComplex Tp = sum(Wl);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all x,y,z,t and over all planes of spatial Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
std::vector<GaugeMat> U(4, Umu.Grid());
|
||||
|
||||
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
LatticeComplex Wl(Umu.Grid());
|
||||
|
||||
siteSpatialWilsonLoop(Wl, U, R1, R2);
|
||||
|
||||
TComplex Tp = sum(Wl);
|
||||
Complex p = TensorRemove(Tp);
|
||||
return p.real();
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real avgWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
int ndim = Umu.Grid()->_ndimension;
|
||||
Real sumWl = sumWilsonLoop(Umu, R1, R2);
|
||||
Real vol = Umu.Grid()->gSites();
|
||||
Real faces = 1.0 * ndim * (ndim - 1);
|
||||
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of timelike Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real avgTimelikeWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
int ndim = Umu.Grid()->_ndimension;
|
||||
Real sumWl = sumTimelikeWilsonLoop(Umu, R1, R2);
|
||||
Real vol = Umu.Grid()->gSites();
|
||||
Real faces = 1.0 * (ndim - 1);
|
||||
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
|
||||
}
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z,t and over all planes of spatial Wilson loop
|
||||
//////////////////////////////////////////////////
|
||||
static Real avgSpatialWilsonLoop(const GaugeLorentz &Umu,
|
||||
const int R1, const int R2) {
|
||||
int ndim = Umu.Grid()->_ndimension;
|
||||
Real sumWl = sumSpatialWilsonLoop(Umu, R1, R2);
|
||||
Real vol = Umu.Grid()->gSites();
|
||||
Real faces = 1.0 * (ndim - 1) * (ndim - 2);
|
||||
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
|
||||
}
|
||||
};
|
||||
|
||||
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;
|
||||
|
Reference in New Issue
Block a user