1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-08-10 16:27:05 +01:00

Re-Merge branch 'develop' into feature/gpu-port

Pull in Regensburg MultiGrid pull request
This commit is contained in:
Peter Boyle
2019-01-03 01:50:16 +00:00
52 changed files with 4444 additions and 404 deletions

View File

@@ -4,9 +4,11 @@
Source file: ./lib/qcd/action/gauge/Photon.h
Copyright (C) 2015
Copyright (C) 2015-2018
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <J.Harrison@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -23,398 +25,304 @@
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PHOTON_ACTION_H
#define QCD_PHOTON_ACTION_H
#pragma once
NAMESPACE_BEGIN(Grid);
template <class S>
class QedGimpl
{
public:
typedef S Simd;
template <class S>
class QedGImpl
{
public:
typedef S Simd;
template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
template <typename vtype>
using iImplGaugeField = iVector<iScalar<iScalar<vtype>>, Nd>;
template <typename vtype>
using iImplGaugeLink = iScalar<iScalar<iScalar<vtype>>>;
template <typename vtype>
using iImplGaugeField = iVector<iScalar<iScalar<vtype>>, Nd>;
typedef iImplGaugeLink<Simd> SiteLink;
typedef iImplGaugeField<Simd> SiteField;
typedef SiteField SiteComplex;
typedef iImplGaugeLink<Simd> SiteLink;
typedef iImplGaugeField<Simd> SiteField;
typedef SiteLink SiteComplex;
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef Field ComplexField;
};
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef Field ComplexField;
};
typedef QedGimpl<vComplex> QedGimplR;
typedef QedGImpl<vComplex> QedGImplR;
template<class Gimpl>
class Photon
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2, qedInf, 3);
public:
Photon(Gauge gauge, ZmScheme zmScheme);
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements);
Photon(Gauge gauge, ZmScheme zmScheme, Real G0);
Photon(Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvements, Real G0);
virtual ~Photon(void) = default;
void FreePropagator(const GaugeField &in, GaugeField &out);
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
void StochasticWeight(GaugeLinkField &weight);
void StochasticField(GaugeField &out, GridParallelRNG &rng);
void StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight);
void UnitField(GaugeField &out);
private:
void infVolPropagator(GaugeLinkField &out);
void invKHatSquared(GaugeLinkField &out);
void zmSub(GaugeLinkField &out);
private:
Gauge gauge_;
ZmScheme zmScheme_;
std::vector<Real> improvement_;
Real G0_;
};
template <class GImpl>
class Photon
{
public:
INHERIT_GIMPL_TYPES(GImpl);
typedef typename SiteGaugeLink::scalar_object ScalarSite;
typedef typename ScalarSite::scalar_type ScalarComplex;
GRID_SERIALIZABLE_ENUM(Gauge, undef, feynman, 1, coulomb, 2, landau, 3);
GRID_SERIALIZABLE_ENUM(ZmScheme, undef, qedL, 1, qedTL, 2);
public:
Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme, std::vector<Real> improvement);
Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme);
virtual ~Photon(void) = default;
void FreePropagator(const GaugeField &in, GaugeField &out);
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
void StochasticWeight(GaugeLinkField &weight);
void StochasticField(GaugeField &out, GridParallelRNG &rng);
void StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight);
void UnitField(GaugeField &out);
private:
void makeSpatialNorm(LatticeInteger &spNrm);
void makeKHat(std::vector<GaugeLinkField> &khat);
void makeInvKHatSquared(GaugeLinkField &out);
void zmSub(GaugeLinkField &out);
void transverseProjectSpatial(GaugeField &out);
void gaugeTransform(GaugeField &out);
private:
GridBase *grid_;
Gauge gauge_;
ZmScheme zmScheme_;
std::vector<Real> improvement_;
};
typedef Photon<QedGimplR> PhotonR;
typedef Photon<QedGImplR> PhotonR;
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()),
G0_(0.15493339023106021408483720810737508876916113364521)
{}
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
template<class GImpl>
Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme,
std::vector<Real> improvements)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements),
G0_(0.15493339023106021408483720810737508876916113364521)
: grid_(grid), gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements)
{}
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme, Real G0)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(std::vector<Real>()), G0_(G0)
template<class GImpl>
Photon<GImpl>::Photon(GridBase *grid, Gauge gauge, ZmScheme zmScheme)
: Photon(grid, gauge, zmScheme, std::vector<Real>())
{}
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme,
std::vector<Real> improvements, Real G0)
: gauge_(gauge), zmScheme_(zmScheme), improvement_(improvements), G0_(G0)
{}
template<class Gimpl>
void Photon<Gimpl>::FreePropagator (const GaugeField &in,GaugeField &out)
{
FFT theFFT(in.Grid());
template<class GImpl>
void Photon<GImpl>::FreePropagator(const GaugeField &in, GaugeField &out)
{
FFT theFFT(dynamic_cast<GridCartesian *>(grid_));
GaugeField in_k(grid_);
GaugeField prop_k(grid_);
GaugeField in_k(in.Grid());
GaugeField prop_k(in.Grid());
theFFT.FFT_all_dim(in_k,in,FFT::forward);
MomentumSpacePropagator(prop_k,in_k);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
template<class Gimpl>
void Photon<Gimpl>::infVolPropagator(GaugeLinkField &out)
{
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
LatticeReal xmu(grid);
LatticeReal pmusq(grid);
LatticeComplex pmusq_z(grid);
GaugeLinkField one(grid);
const unsigned int nd = grid->_ndimension;
Coordinate &l = grid->_fdimensions;
Coordinate x0(nd,0);
TComplex Tone = Complex(1.0,0.0);
TComplex Tzero = Complex(G0_,0.0);
FFT fft(grid);
one = Complex(1.0,0.0);
out = Zero();
for(int mu = 0; mu < nd; mu++) {
LatticeCoordinate(xmu,mu);
Real lo2 = l[mu]/2.0;
xmu = where(xmu < lo2, xmu, xmu-double(l[mu]));
pmusq = (4.0*M_PI*M_PI)*xmu*xmu;
pmusq_z= toComplex(pmusq);
out = out + pmusq_z;
theFFT.FFT_all_dim(in_k, in, FFT::forward);
MomentumSpacePropagator(prop_k, in_k);
theFFT.FFT_all_dim(out, prop_k, FFT::backward);
}
pokeSite(Tone, out, x0);
out = one/out;
pokeSite(Tzero, out, x0);
fft.FFT_all_dim(out, out, FFT::forward);
}
template<class Gimpl>
void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out)
{
GridBase *grid = out.Grid();
GaugeLinkField kmu(grid), one(grid);
const unsigned int nd = grid->_ndimension;
Coordinate &l = grid->_fdimensions;
Coordinate zm(nd,0);
TComplex Tone = Complex(1.0,0.0);
TComplex Tzero= Complex(0.0,0.0);
one = Complex(1.0,0.0);
out = Zero();
for(int mu = 0; mu < nd; mu++)
template<class GImpl>
void Photon<GImpl>::makeSpatialNorm(LatticeInteger &spNrm)
{
LatticeInteger coor(grid_);
auto l = grid_->FullDimensions();
spNrm = Zero();
for(int mu = 0; mu < grid_->Nd() - 1; mu++)
{
Real twoPiL = M_PI*2./l[mu];
LatticeCoordinate(kmu,mu);
kmu = 2.*sin(.5*twoPiL*kmu);
out = out + kmu*kmu;
LatticeCoordinate(coor, mu);
coor = where(coor < Integer(l[mu]/2), coor, coor - Integer(l[mu]));
spNrm = spNrm + coor*coor;
}
pokeSite(Tone, out, zm);
out = one/out;
pokeSite(Tzero, out, zm);
}
template<class Gimpl>
void Photon<Gimpl>::zmSub(GaugeLinkField &out)
{
GridBase *grid = out.Grid();
const unsigned int nd = grid->_ndimension;
Coordinate &l = grid->_fdimensions;
switch (zmScheme_)
}
template<class GImpl>
void Photon<GImpl>::makeKHat(std::vector<GaugeLinkField> &khat)
{
const unsigned int nd = grid_->Nd();
auto l = grid_->FullDimensions();
Complex ci(0., 1.);
khat.resize(nd, grid_);
for (unsigned int mu = 0; mu < nd; ++mu)
{
case ZmScheme::qedTL:
Real piL = M_PI/l[mu];
LatticeCoordinate(khat[mu], mu);
khat[mu] = exp(piL*ci*khat[mu])*2.*sin(piL*khat[mu]);
}
}
template<class GImpl>
void Photon<GImpl>::makeInvKHatSquared(GaugeLinkField &out)
{
std::vector<GaugeLinkField> khat;
GaugeLinkField lone(grid_);
const unsigned int nd = grid_->Nd();
Coordinate zm(nd, 0);
ScalarSite one = ScalarComplex(1., 0.), z = ScalarComplex(0., 0.);
out = Zero();
makeKHat(khat);
for(int mu = 0; mu < nd; mu++)
{
out = out + khat[mu]*conjugate(khat[mu]);
}
lone = ScalarComplex(1., 0.);
pokeSite(one, out, zm);
out = lone/out;
pokeSite(z, out, zm);
}
template<class GImpl>
void Photon<GImpl>::zmSub(GaugeLinkField &out)
{
switch (zmScheme_)
{
case ZmScheme::qedTL:
{
Coordinate zm(nd,0);
TComplex Tzero = Complex(0.0,0.0);
pokeSite(Tzero, out, zm);
Coordinate zm(grid_->Nd(), 0);
ScalarSite z = ScalarComplex(0., 0.);
pokeSite(z, out, zm);
break;
}
case ZmScheme::qedL:
case ZmScheme::qedL:
{
LatticeInteger spNrm(grid), coor(grid);
GaugeLinkField z(grid);
spNrm = Zero();
for(int d = 0; d < grid->_ndimension - 1; d++)
{
LatticeCoordinate(coor,d);
coor = where(coor < Integer(l[d]/2), coor, coor-Integer(l[d]));
spNrm = spNrm + coor*coor;
}
LatticeInteger spNrm(grid_);
makeSpatialNorm(spNrm);
out = where(spNrm == Integer(0), 0.*out, out);
// IR improvement
for(int i = 0; i < improvement_.size(); i++)
{
Real f = sqrt(improvement_[i]+1);
out = where(spNrm == Integer(i+1), f*out, out);
Real f = sqrt(improvement_[i] + 1);
out = where(spNrm == Integer(i + 1), f*out, out);
}
}
default:
break;
}
}
template<class Gimpl>
void Photon<Gimpl>::MomentumSpacePropagator(const GaugeField &in,
GaugeField &out)
{
GridBase *grid = out.Grid();
LatticeComplex momProp(grid);
switch (zmScheme_)
{
case ZmScheme::qedTL:
case ZmScheme::qedL:
{
invKHatSquared(momProp);
zmSub(momProp);
break;
}
case ZmScheme::qedInf:
{
infVolPropagator(momProp);
break;
}
default:
assert(0);
break;
}
}
template<class GImpl>
void Photon<GImpl>::transverseProjectSpatial(GaugeField &out)
{
const unsigned int nd = grid_->Nd();
GaugeLinkField invKHat(grid_), cst(grid_), spdiv(grid_);
LatticeInteger spNrm(grid_);
std::vector<GaugeLinkField> khat, a(nd, grid_), aProj(nd, grid_);
invKHat = Zero();
makeSpatialNorm(spNrm);
makeKHat(khat);
for (unsigned int mu = 0; mu < nd; ++mu)
{
a[mu] = peekLorentz(out, mu);
if (mu < nd - 1)
{
invKHat += khat[mu]*conjugate(khat[mu]);
}
}
cst = ScalarComplex(1., 0.);
invKHat = where(spNrm == Integer(0), cst, invKHat);
invKHat = cst/invKHat;
cst = Zero();
invKHat = where(spNrm == Integer(0), cst, invKHat);
spdiv = Zero();
for (unsigned int nu = 0; nu < nd - 1; ++nu)
{
spdiv += conjugate(khat[nu])*a[nu];
}
spdiv *= invKHat;
for (unsigned int mu = 0; mu < nd; ++mu)
{
aProj[mu] = a[mu] - khat[mu]*spdiv;
pokeLorentz(out, aProj[mu], mu);
}
}
template<class GImpl>
void Photon<GImpl>::gaugeTransform(GaugeField &out)
{
switch (gauge_)
{
case Gauge::feynman:
break;
case Gauge::coulomb:
transverseProjectSpatial(out);
break;
case Gauge::landau:
assert(0);
break;
default:
assert(0);
break;
}
}
template<class GImpl>
void Photon<GImpl>::MomentumSpacePropagator(const GaugeField &in,
GaugeField &out)
{
LatticeComplex momProp(grid_);
makeInvKHatSquared(momProp);
zmSub(momProp);
out = in*momProp;
}
}
template<class Gimpl>
void Photon<Gimpl>::StochasticWeight(GaugeLinkField &weight)
{
auto *grid = dynamic_cast<GridCartesian *>(weight.Grid());
const unsigned int nd = grid->_ndimension;
Coordinate latt_size = grid->_fdimensions;
switch (zmScheme_)
template<class GImpl>
void Photon<GImpl>::StochasticWeight(GaugeLinkField &weight)
{
const unsigned int nd = grid_->Nd();
auto l = grid_->FullDimensions();
Integer vol = 1;
for(unsigned int mu = 0; mu < nd; mu++)
{
case ZmScheme::qedTL:
case ZmScheme::qedL:
{
Integer vol = 1;
for(int d = 0; d < nd; d++)
{
vol = vol * latt_size[d];
vol = vol*l[mu];
}
invKHatSquared(weight);
weight = sqrt(vol)*sqrt(weight);
zmSub(weight);
break;
}
case ZmScheme::qedInf:
{
infVolPropagator(weight);
weight = sqrt(real(weight));
break;
}
default:
break;
}
}
makeInvKHatSquared(weight);
weight = sqrt(vol)*sqrt(weight);
zmSub(weight);
}
template<class Gimpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
{
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
GaugeLinkField weight(grid);
template<class GImpl>
void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
{
GaugeLinkField weight(grid_);
StochasticWeight(weight);
StochasticField(out, rng, weight);
}
StochasticWeight(weight);
StochasticField(out, rng, weight);
}
template<class Gimpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight)
{
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
const unsigned int nd = grid->_ndimension;
GaugeLinkField r(grid);
GaugeField aTilde(grid);
FFT fft(grid);
template<class GImpl>
void Photon<GImpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
const GaugeLinkField &weight)
{
const unsigned int nd = grid_->Nd();
GaugeLinkField r(grid_);
GaugeField aTilde(grid_);
FFT fft(dynamic_cast<GridCartesian *>(grid_));
switch (zmScheme_)
{
case ZmScheme::qedTL:
case ZmScheme::qedL:
{
for(int mu = 0; mu < nd; mu++)
for(unsigned int mu = 0; mu < nd; mu++)
{
gaussian(rng, r);
r = weight*r;
pokeLorentz(aTilde, r, mu);
}
break;
}
case ZmScheme::qedInf:
{
Complex shift(1., 1.); // This needs to be a GaugeLink element?
for(int mu = 0; mu < nd; mu++)
{
bernoulli(rng, r);
r = weight*(2.*r - shift);
pokeLorentz(aTilde, r, mu);
}
break;
}
default:
break;
}
gaugeTransform(aTilde);
fft.FFT_all_dim(out, aTilde, FFT::backward);
out = real(out);
}
fft.FFT_all_dim(out, aTilde, FFT::backward);
out = real(out);
}
template<class Gimpl>
void Photon<Gimpl>::UnitField(GaugeField &out)
template<class GImpl>
void Photon<GImpl>::UnitField(GaugeField &out)
{
auto *grid = dynamic_cast<GridCartesian *>(out.Grid());
const unsigned int nd = grid->_ndimension;
GaugeLinkField r(grid);
const unsigned int nd = grid_->Nd();
GaugeLinkField r(grid_);
r = Complex(1.0,0.0);
for(int mu = 0; mu < nd; mu++)
r = ScalarComplex(1., 0.);
for(unsigned int mu = 0; mu < nd; mu++)
{
pokeLorentz(out, r, mu);
}
out = real(out);
}
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out,
// const GaugeField &in)
// {
//
// FeynmanGaugeMomentumSpacePropagator_TL(out,in);
//
// GridBase *grid = out.Grid();
// LatticeInteger coor(grid);
// GaugeField zz(grid); zz=zero;
//
// // xyzt
// for(int d = 0; d < grid->_ndimension-1;d++){
// LatticeCoordinate(coor,d);
// out = where(coor==Integer(0),zz,out);
// }
// }
//
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out,
// const GaugeField &in)
// {
//
// // what type LatticeComplex
// GridBase *grid = out.Grid();
// int nd = grid->_ndimension;
//
// typedef typename GaugeField::vector_type vector_type;
// typedef typename GaugeField::scalar_type ScalComplex;
// typedef Lattice<iSinglet<vector_type> > LatComplex;
//
// Coordinate latt_size = grid->_fdimensions;
//
// LatComplex denom(grid); denom= Zero();
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
// LatComplex kmu(grid);
//
// ScalComplex ci(0.0,1.0);
// // momphase = n * 2pi / L
// for(int mu=0;mu<Nd;mu++) {
//
// LatticeCoordinate(kmu,mu);
//
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
//
// kmu = TwoPiL * kmu ;
//
// denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
// }
// Coordinate zero_mode(nd,0);
// TComplexD Tone = ComplexD(1.0,0.0);
// TComplexD Tzero= ComplexD(0.0,0.0);
//
// pokeSite(Tone,denom,zero_mode);
//
// denom= one/denom;
//
// pokeSite(Tzero,denom,zero_mode);
//
// out = Zero();
// out = in*denom;
// };
NAMESPACE_END(Grid);
#endif

View File

@@ -27,8 +27,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_LINALG_UTILS_H
#define GRID_QCD_LINALG_UTILS_H
#pragma once
NAMESPACE_BEGIN(Grid);
@@ -197,5 +196,40 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
});
}
// I explicitly need these outside the QCD namespace
template<typename vobj>
void G5C(Lattice<vobj> &z, const Lattice<vobj> &x)
{
GridBase *grid = x._grid;
z.checkerboard = x.checkerboard;
conformable(x, z);
Gamma G5(Gamma::Algebra::Gamma5);
z = G5 * x;
}
template<class CComplex, int nbasis>
void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex, nbasis>> &x)
{
GridBase *grid = x.Grid();
z.Checkerboard() = x.Checkerboard();
conformable(x, z);
static_assert(nbasis % 2 == 0, "");
int nb = nbasis / 2;
auto z_v = z.View();
auto x_v = x.View();
thread_loop( (int ss = 0; ss < grid->oSites(); ss++) ,
{
for(int n = 0; n < nb; ++n) {
z_v[ss](n) = x_v[ss](n);
}
for(int n = nb; n < nbasis; ++n) {
z_v[ss](n) = -x_v[ss](n);
}
});
}
NAMESPACE_END(Grid);
#endif

View File

@@ -6,10 +6,12 @@
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: James Harrison <J.Harrison@soton.ac.uk>
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -645,6 +647,184 @@ public:
}
}
}
//////////////////////////////////////////////////
// Wilson loop of size (R1, R2), oriented in mu,nu plane
//////////////////////////////////////////////////
static void wilsonLoop(GaugeMat &wl, const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
wl = U[nu];
for(int i = 0; i < Rnu-1; i++){
wl = Gimpl::CovShiftForward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftForward(U[mu], mu, wl);
}
for(int i = 0; i < Rnu; i++){
wl = Gimpl::CovShiftBackward(U[nu], nu, wl);
}
for(int i = 0; i < Rmu; i++){
wl = Gimpl::CovShiftBackward(U[mu], mu, wl);
}
}
//////////////////////////////////////////////////
// trace of Wilson Loop oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceWilsonLoop(LatticeComplex &wl,
const std::vector<GaugeMat> &U,
const int Rmu, const int Rnu,
const int mu, const int nu) {
GaugeMat sp(U[0].Grid());
wilsonLoop(sp, U, Rmu, Rnu, mu, nu);
wl = trace(sp);
}
//////////////////////////////////////////////////
// sum over all planes of Wilson loop
//////////////////////////////////////////////////
static void siteWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0].Grid());
Wl = Zero();
for (int mu = 1; mu < U[0].Grid()->_ndimension; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over planes of Wilson loop with length R1
// in the time direction
//////////////////////////////////////////////////
static void siteTimelikeWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0].Grid());
int ndim = U[0].Grid()->_ndimension;
Wl = Zero();
for (int nu = 0; nu < ndim - 1; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, ndim-1, nu);
Wl = Wl + siteWl;
}
}
//////////////////////////////////////////////////
// sum Wilson loop over all planes orthogonal to the time direction
//////////////////////////////////////////////////
static void siteSpatialWilsonLoop(LatticeComplex &Wl,
const std::vector<GaugeMat> &U,
const int R1, const int R2) {
LatticeComplex siteWl(U[0].Grid());
Wl = Zero();
for (int mu = 1; mu < U[0].Grid()->_ndimension - 1; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceWilsonLoop(siteWl, U, R1, R2, mu, nu);
Wl = Wl + siteWl;
traceWilsonLoop(siteWl, U, R2, R1, mu, nu);
Wl = Wl + siteWl;
}
}
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real sumWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu.Grid());
siteWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real sumTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu.Grid());
siteTimelikeWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// sum over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real sumSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
std::vector<GaugeMat> U(4, Umu.Grid());
for (int mu = 0; mu < Umu.Grid()->_ndimension; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Wl(Umu.Grid());
siteSpatialWilsonLoop(Wl, U, R1, R2);
TComplex Tp = sum(Wl);
Complex p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of Wilson loop
//////////////////////////////////////////////////
static Real avgWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu.Grid()->_ndimension;
Real sumWl = sumWilsonLoop(Umu, R1, R2);
Real vol = Umu.Grid()->gSites();
Real faces = 1.0 * ndim * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of timelike Wilson loop
//////////////////////////////////////////////////
static Real avgTimelikeWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu.Grid()->_ndimension;
Real sumWl = sumTimelikeWilsonLoop(Umu, R1, R2);
Real vol = Umu.Grid()->gSites();
Real faces = 1.0 * (ndim - 1);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
//////////////////////////////////////////////////
// average over all x,y,z,t and over all planes of spatial Wilson loop
//////////////////////////////////////////////////
static Real avgSpatialWilsonLoop(const GaugeLorentz &Umu,
const int R1, const int R2) {
int ndim = Umu.Grid()->_ndimension;
Real sumWl = sumSpatialWilsonLoop(Umu, R1, R2);
Real vol = Umu.Grid()->gSites();
Real faces = 1.0 * (ndim - 1) * (ndim - 2);
return sumWl / vol / faces / Nc; // Nc dependent... FIXME
}
};
typedef WilsonLoops<PeriodicGimplR> ColourWilsonLoops;