1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
This commit is contained in:
Issaku Kanamori 2020-10-16 20:30:32 +09:00
commit c772bcd514
148 changed files with 1129 additions and 409 deletions

View File

@ -9,11 +9,6 @@ matrix:
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=single
- os: osx
osx_image: xcode8.3
compiler: clang
env: PREC=double
before_install:
- export GRIDDIR=`pwd`
@ -55,7 +50,7 @@ script:
- make -j4
- make install
- cd $CWD/build
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- ../configure --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- make check

View File

@ -36,7 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
//#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_real_imag.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>

View File

@ -342,14 +342,10 @@ inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
GridUnopClass(UnarySub, -a);
GridUnopClass(UnaryNot, Not(a));
GridUnopClass(UnaryAdj, adj(a));
GridUnopClass(UnaryConj, conjugate(a));
GridUnopClass(UnaryTrace, trace(a));
GridUnopClass(UnaryTranspose, transpose(a));
GridUnopClass(UnaryTa, Ta(a));
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
GridUnopClass(UnaryToReal, toReal(a));
GridUnopClass(UnaryToComplex, toComplex(a));
GridUnopClass(UnaryTimesI, timesI(a));
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
GridUnopClass(UnaryAbs, abs(a));
@ -456,14 +452,12 @@ GridTrinOpClass(TrinaryWhere,
GRID_DEF_UNOP(operator-, UnarySub);
GRID_DEF_UNOP(Not, UnaryNot);
GRID_DEF_UNOP(operator!, UnaryNot);
GRID_DEF_UNOP(adj, UnaryAdj);
GRID_DEF_UNOP(conjugate, UnaryConj);
//GRID_DEF_UNOP(adj, UnaryAdj);
//GRID_DEF_UNOP(conjugate, UnaryConj);
GRID_DEF_UNOP(trace, UnaryTrace);
GRID_DEF_UNOP(transpose, UnaryTranspose);
GRID_DEF_UNOP(Ta, UnaryTa);
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
GRID_DEF_UNOP(toReal, UnaryToReal);
GRID_DEF_UNOP(toComplex, UnaryToComplex);
GRID_DEF_UNOP(timesI, UnaryTimesI);
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
@ -494,27 +488,27 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
/////////////////////////////////////////////////////////////
template <class Op, class T1>
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
{
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2>
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
{
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))> ret(expr);
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
return ret;
}
template <class Op, class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
-> Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))>
vecEval(0, expr.arg3)))>::type >
{
Lattice<decltype(expr.op.func(vecEval(0, expr.arg1),
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
vecEval(0, expr.arg2),
vecEval(0, expr.arg3)))> ret(expr);
vecEval(0, expr.arg3)))>::type > ret(expr);
return ret;
}
#define EXPRESSION_CLOSURE(function) \

View File

@ -45,8 +45,8 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = adj(lhs_v[ss]);
});
return ret;
};
@ -64,6 +64,53 @@ template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
return ret;
};
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
Lattice<typename vobj::Complexified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toComplex(lhs_v[ss]);
});
return ret;
};
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
Lattice<typename vobj::Realified> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), 1, {
ret_v[ss] = toReal(lhs_v[ss]);
});
return ret;
};
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toComplex(const Expression &expr) -> decltype(closure(expr))
{
return toComplex(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto toReal(const Expression &expr) -> decltype(closure(expr))
{
return toReal(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto adj(const Expression &expr) -> decltype(closure(expr))
{
return adj(closure(expr));
}
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
auto conjugate(const Expression &expr) -> decltype(closure(expr))
{
return conjugate(closure(expr));
}
NAMESPACE_END(Grid);
#endif

View File

@ -130,6 +130,8 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
std::ios_base::fmtflags f(stream.flags());
stream << log.background()<< std::left;
if (log.topWidth > 0)
{
@ -152,6 +154,8 @@ public:
<< now << log.background() << " : " ;
}
stream << log.colour();
stream.flags(f);
return stream;
} else {
return devnull;

View File

@ -1,3 +1,4 @@
#include <Grid/GridCore.h>
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
int Grid::BinaryIO::latticeWriteMaxRetry = -1;
Grid::BinaryIO::IoPerf Grid::BinaryIO::lastPerf;

View File

@ -79,6 +79,13 @@ inline void removeWhitespace(std::string &key)
///////////////////////////////////////////////////////////////////////////////////////////////////
class BinaryIO {
public:
struct IoPerf
{
uint64_t size{0},time{0};
double mbytesPerSecond{0.};
};
static IoPerf lastPerf;
static int latticeWriteMaxRetry;
/////////////////////////////////////////////////////////////////////////////
@ -502,12 +509,15 @@ class BinaryIO {
timer.Stop();
}
lastPerf.size = sizeof(fobj)*iodata.size()*nrank;
lastPerf.time = timer.useconds();
lastPerf.mbytesPerSecond = lastPerf.size/1024./1024./(lastPerf.time/1.0e6);
std::cout<<GridLogMessage<<"IOobject: ";
if ( control & BINARYIO_READ) std::cout << " read ";
else std::cout << " write ";
uint64_t bytes = sizeof(fobj)*iodata.size()*nrank;
std::cout<< bytes <<" bytes in "<<timer.Elapsed() <<" "
<< (double)bytes/ (double)timer.useconds() <<" MB/s "<<std::endl;
std::cout<< lastPerf.size <<" bytes in "<< timer.Elapsed() <<" "
<< lastPerf.mbytesPerSecond <<" MB/s "<<std::endl;
std::cout<<GridLogMessage<<"IOobject: endian and checksum overhead "<<bstimer.Elapsed() <<std::endl;

View File

@ -47,7 +47,7 @@ static constexpr int Ym = 5;
static constexpr int Zm = 6;
static constexpr int Tm = 7;
static constexpr int Nc=3;
static constexpr int Nc=Config_Nc;
static constexpr int Ns=4;
static constexpr int Nd=4;
static constexpr int Nhs=2; // half spinor

View File

@ -133,14 +133,14 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
pickCheckerboard(Even, CloverTermEven, CloverTerm);
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
pickCheckerboard(Even, CloverTermDagEven, closure(adj(CloverTerm)));
pickCheckerboard(Odd, CloverTermDagOdd, closure(adj(CloverTerm)));
pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm));
pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm));
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv);
pickCheckerboard(Even, CloverTermInvDagEven, closure(adj(CloverTermInv)));
pickCheckerboard(Odd, CloverTermInvDagOdd, closure(adj(CloverTermInv)));
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
}
template <class Impl>

View File

@ -449,7 +449,8 @@ public:
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
alpha = toReal(2.0 * xi);
xi = 2.0 *xi;
alpha = toReal(xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R',

33
README
View File

@ -111,11 +111,10 @@ Now you can execute the `configure` script to generate makefiles (here from a bu
``` bash
mkdir build; cd build
../configure --enable-precision=double --enable-simd=AVX --enable-comms=mpi-auto --prefix=<path>
../configure --enable-simd=AVX --enable-comms=mpi-auto --prefix=<path>
```
where `--enable-precision=` set the default precision,
`--enable-simd=` set the SIMD type, `--enable-
where `--enable-simd=` set the SIMD type, `--enable-
comms=`, and `<path>` should be replaced by the prefix path where you want to
install Grid. Other options are detailed in the next section, you can also use `configure
--help` to display them. Like with any other program using GNU autotool, the
@ -146,8 +145,8 @@ If you want to build all the tests at once just use `make tests`.
- `--enable-numa`: enable NUMA first touch optimisation
- `--enable-simd=<code>`: setup Grid for the SIMD target `<code>` (default: `GEN`). A list of possible SIMD targets is detailed in a section below.
- `--enable-gen-simd-width=<size>`: select the size (in bytes) of the generic SIMD vector type (default: 32 bytes).
- `--enable-precision={single|double}`: set the default precision (default: `double`).
- `--enable-precision=<comm>`: Use `<comm>` for message passing (default: `none`). A list of possible SIMD targets is detailed in a section below.
- `--enable-precision={single|double}`: set the default precision (default: `double`). **Deprecated option**
- `--enable-comms=<comm>`: Use `<comm>` for message passing (default: `none`). A list of possible SIMD targets is detailed in a section below.
- `--enable-rng={sitmo|ranlux48|mt19937}`: choose the RNG (default: `sitmo `).
- `--disable-timers`: disable system dependent high-resolution timers.
- `--enable-chroma`: enable Chroma regression tests.
@ -201,8 +200,7 @@ Alternatively, some CPU codenames can be directly used:
The following configuration is recommended for the Intel Knights Landing platform:
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
@ -212,8 +210,7 @@ The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi \
--enable-mkl \
CXX=CC CC=cc
@ -232,8 +229,7 @@ for interior communication. This is the mpi3 communications implementation.
We recommend four ranks per node for best performance, but optimum is local volume dependent.
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi3-auto \
--enable-mkl \
CC=icpc MPICXX=mpiicpc
@ -244,8 +240,7 @@ We recommend four ranks per node for best performance, but optimum is local volu
The following configuration is recommended for the Intel Haswell platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi3-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
@ -262,8 +257,7 @@ where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
@ -280,8 +274,7 @@ This is the default.
The following configuration is recommended for the Intel Skylake platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
../configure --enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=mpiicpc
@ -298,8 +291,7 @@ where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
../configure --enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
@ -330,8 +322,7 @@ and 8 threads per rank.
The following configuration is recommended for the AMD EPYC platform.
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi3 \
CXX=mpicxx
```

View File

@ -115,11 +115,10 @@ Now you can execute the `configure` script to generate makefiles (here from a bu
``` bash
mkdir build; cd build
../configure --enable-precision=double --enable-simd=AVX --enable-comms=mpi-auto --prefix=<path>
../configure --enable-simd=AVX --enable-comms=mpi-auto --prefix=<path>
```
where `--enable-precision=` set the default precision,
`--enable-simd=` set the SIMD type, `--enable-
where `--enable-simd=` set the SIMD type, `--enable-
comms=`, and `<path>` should be replaced by the prefix path where you want to
install Grid. Other options are detailed in the next section, you can also use `configure
--help` to display them. Like with any other program using GNU autotool, the
@ -150,8 +149,8 @@ If you want to build all the tests at once just use `make tests`.
- `--enable-numa`: enable NUMA first touch optimisation
- `--enable-simd=<code>`: setup Grid for the SIMD target `<code>` (default: `GEN`). A list of possible SIMD targets is detailed in a section below.
- `--enable-gen-simd-width=<size>`: select the size (in bytes) of the generic SIMD vector type (default: 32 bytes).
- `--enable-precision={single|double}`: set the default precision (default: `double`).
- `--enable-precision=<comm>`: Use `<comm>` for message passing (default: `none`). A list of possible SIMD targets is detailed in a section below.
- `--enable-precision={single|double}`: set the default precision (default: `double`). **Deprecated option**
- `--enable-comms=<comm>`: Use `<comm>` for message passing (default: `none`). A list of possible SIMD targets is detailed in a section below.
- `--enable-rng={sitmo|ranlux48|mt19937}`: choose the RNG (default: `sitmo `).
- `--disable-timers`: disable system dependent high-resolution timers.
- `--enable-chroma`: enable Chroma regression tests.
@ -205,8 +204,7 @@ Alternatively, some CPU codenames can be directly used:
The following configuration is recommended for the Intel Knights Landing platform:
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
@ -216,8 +214,7 @@ The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi \
--enable-mkl \
CXX=CC CC=cc
@ -236,8 +233,7 @@ for interior communication. This is the mpi3 communications implementation.
We recommend four ranks per node for best performance, but optimum is local volume dependent.
``` bash
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi3-auto \
--enable-mkl \
CC=icpc MPICXX=mpiicpc
@ -248,8 +244,7 @@ We recommend four ranks per node for best performance, but optimum is local volu
The following configuration is recommended for the Intel Haswell platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi3-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
@ -266,8 +261,7 @@ where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
@ -284,8 +278,7 @@ This is the default.
The following configuration is recommended for the Intel Skylake platform:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
../configure --enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=mpiicpc
@ -302,8 +295,7 @@ where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use:
``` bash
../configure --enable-precision=double\
--enable-simd=AVX512 \
../configure --enable-simd=AVX512 \
--enable-comms=mpi3 \
--enable-mkl \
CXX=CC CC=cc
@ -334,8 +326,7 @@ and 8 threads per rank.
The following configuration is recommended for the AMD EPYC platform.
``` bash
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi3 \
CXX=mpicxx
```

View File

@ -12,31 +12,31 @@ module load mpi/openmpi-aarch64
scl enable gcc-toolset-10 bash
../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=g++ CC=gcc CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN"
../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=g++ CC=gcc CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN"
* gcc 10.1 prebuild w/ MPI, QPACE4 interactive login
scl enable gcc-toolset-10 bash
module load mpi/openmpi-aarch64
../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=mpi-auto --enable-shm=shmget --enable-openmp CXX=mpicxx CC=mpicc CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN"
../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=mpi-auto --enable-shm=shmget --enable-openmp CXX=mpicxx CC=mpicc CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN"
------------------------------------------------------------------------------
* armclang 20.2 (qp4)
../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -mcpu=a64fx -DA64FX -DARMCLANGCOMPAT -DA64FXASM -DDSLASHINTRIN"
../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -mcpu=a64fx -DA64FX -DARMCLANGCOMPAT -DA64FXASM -DDSLASHINTRIN"
------------------------------------------------------------------------------
* gcc 10.0.1 VLA (merlin)
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=g++-10.0.1 CC=gcc-10.0.1 CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FX -DA64FXASM -DDSLASHINTRIN" LDFLAGS=-static GRID_LDFLAGS=-static MPI_CXXLDFLAGS=-static
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=g++-10.0.1 CC=gcc-10.0.1 CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FX -DA64FXASM -DDSLASHINTRIN" LDFLAGS=-static GRID_LDFLAGS=-static MPI_CXXLDFLAGS=-static
* gcc 10.0.1 fixed-size ACLE (merlin)
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=g++-10.0.1 CC=gcc-10.0.1 CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN"
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=g++-10.0.1 CC=gcc-10.0.1 CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN"
* gcc 10.0.1 fixed-size ACLE (fjt) w/ MPI
@ -46,34 +46,34 @@ export OMPI_CXX=g++-10.0.1
export MPICH_CC=gcc-10.0.1
export MPICH_CXX=g++-10.0.1
$ ../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=mpi3 --enable-openmp CXX=mpiFCC CC=mpifcc CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN -DTOFU -I/opt/FJSVxtclanga/tcsds-1.2.25/include/mpi/fujitsu -lrt" LDFLAGS="-L/opt/FJSVxtclanga/tcsds-1.2.25/lib64 -lrt"
$ ../configure --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=mpi3 --enable-openmp CXX=mpiFCC CC=mpifcc CXXFLAGS="-std=c++11 -march=armv8-a+sve -msve-vector-bits=512 -fno-gcse -DA64FXFIXEDSIZE -DA64FXASM -DDSLASHINTRIN -DTOFU -I/opt/FJSVxtclanga/tcsds-1.2.25/include/mpi/fujitsu -lrt" LDFLAGS="-L/opt/FJSVxtclanga/tcsds-1.2.25/lib64 -lrt"
--------------------------------------------------------
* armclang 20.0 VLA (merlin)
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -fno-unroll-loops -mllvm -vectorizer-min-trip-count=2 -march=armv8-a+sve -DARMCLANGCOMPAT -DA64FX -DA64FXASM -DDSLASHINTRIN" LDFLAGS=-static GRID_LDFLAGS=-static MPI_CXXLDFLAGS=-static
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -fno-unroll-loops -mllvm -vectorizer-min-trip-count=2 -march=armv8-a+sve -DARMCLANGCOMPAT -DA64FX -DA64FXASM -DDSLASHINTRIN" LDFLAGS=-static GRID_LDFLAGS=-static MPI_CXXLDFLAGS=-static
TODO check ARMCLANGCOMPAT
* armclang 20.1 VLA (merlin)
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -mcpu=a64fx -DARMCLANGCOMPAT -DA64FX -DA64FXASM -DDSLASHINTRIN" LDFLAGS=-static GRID_LDFLAGS=-static MPI_CXXLDFLAGS=-static
../configure --with-lime=/home/men04359/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -mcpu=a64fx -DARMCLANGCOMPAT -DA64FX -DA64FXASM -DDSLASHINTRIN" LDFLAGS=-static GRID_LDFLAGS=-static MPI_CXXLDFLAGS=-static
TODO check ARMCLANGCOMPAT
* armclang 20.1 VLA (fjt cluster)
../configure --with-lime=$HOME/local --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -mcpu=a64fx -DARMCLANGCOMPAT -DA64FX -DA64FXASM -DDSLASHINTRIN -DTOFU"
../configure --with-lime=$HOME/local --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp CXX=armclang++ CC=armclang CXXFLAGS="-std=c++11 -mcpu=a64fx -DARMCLANGCOMPAT -DA64FX -DA64FXASM -DDSLASHINTRIN -DTOFU"
TODO check ARMCLANGCOMPAT
* armclang 20.1 VLA w/MPI (fjt cluster)
../configure --with-lime=$HOME/local --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=mpi3 --enable-openmp CXX=mpiFCC CC=mpifcc CXXFLAGS="-std=c++11 -mcpu=a64fx -DA64FX -DA64FXASM -DDSLASHINTRIN -DTOFU -I/opt/FJSVxtclanga/tcsds-1.2.25/include/mpi/fujitsu -lrt" LDFLAGS="-L/opt/FJSVxtclanga/tcsds-1.2.25/lib64"
../configure --with-lime=$HOME/local --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=mpi3 --enable-openmp CXX=mpiFCC CC=mpifcc CXXFLAGS="-std=c++11 -mcpu=a64fx -DA64FX -DA64FXASM -DDSLASHINTRIN -DTOFU -I/opt/FJSVxtclanga/tcsds-1.2.25/include/mpi/fujitsu -lrt" LDFLAGS="-L/opt/FJSVxtclanga/tcsds-1.2.25/lib64"
No ARMCLANGCOMPAT -> still correct ?
@ -81,9 +81,9 @@ No ARMCLANGCOMPAT -> still correct ?
* Fujitsu fcc
../configure --with-lime=$HOME/grid-a64fx/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=none --enable-openmp --with-mpfr=/home/users/gre/gre-1/grid-a64fx/mpfr-build/install CXX=FCC CC=fcc CXXFLAGS="-Nclang -Kfast -DA64FX -DA64FXASM -DDSLASHINTRIN"
../configure --with-lime=$HOME/grid-a64fx/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=none --enable-openmp --with-mpfr=/home/users/gre/gre-1/grid-a64fx/mpfr-build/install CXX=FCC CC=fcc CXXFLAGS="-Nclang -Kfast -DA64FX -DA64FXASM -DDSLASHINTRIN"
* Fujitsu fcc w/ MPI
../configure --with-lime=$HOME/grid-a64fx/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-precision=double --enable-comms=mpi --enable-openmp --with-mpfr=/home/users/gre/gre-1/grid-a64fx/mpfr-build/install CXX=mpiFCC CC=mpifcc CXXFLAGS="-Nclang -Kfast -DA64FX -DA64FXASM -DDSLASHINTRIN -DTOFU"
../configure --with-lime=$HOME/grid-a64fx/lime/c-lime --without-hdf5 --enable-gen-simd-width=64 --enable-simd=GEN --enable-comms=mpi --enable-openmp --with-mpfr=/home/users/gre/gre-1/grid-a64fx/mpfr-build/install CXX=mpiFCC CC=mpifcc CXXFLAGS="-Nclang -Kfast -DA64FX -DA64FXASM -DDSLASHINTRIN -DTOFU"

View File

@ -1,8 +1,16 @@
#include "Benchmark_IO.hpp"
#ifndef BENCH_IO_LMIN
#define BENCH_IO_LMIN 8
#endif
#ifndef BENCH_IO_LMAX
#define BENCH_IO_LMAX 40
#define BENCH_IO_LMAX 32
#endif
#ifndef BENCH_IO_NPASS
#define BENCH_IO_NPASS 10
#endif
using namespace Grid;
@ -12,37 +20,179 @@ std::string filestem(const int l)
return "iobench_l" + std::to_string(l);
}
int vol(const int i)
{
return BENCH_IO_LMIN + 2*i;
}
int volInd(const int l)
{
return (l - BENCH_IO_LMIN)/2;
}
template <typename Mat>
void stats(Mat &mean, Mat &stdDev, const std::vector<Mat> &data)
{
auto nr = data[0].rows(), nc = data[0].cols();
Eigen::MatrixXd sqSum(nr, nc);
double n = static_cast<double>(data.size());
assert(n > 1.);
mean = Mat::Zero(nr, nc);
sqSum = Mat::Zero(nr, nc);
for (auto &d: data)
{
mean += d;
sqSum += d.cwiseProduct(d);
}
stdDev = ((sqSum - mean.cwiseProduct(mean)/n)/(n - 1.)).cwiseSqrt();
mean /= n;
}
#define grid_printf(...) \
{\
char _buf[1024];\
sprintf(_buf, __VA_ARGS__);\
MSG << _buf;\
}
enum {sRead = 0, sWrite = 1, gRead = 2, gWrite = 3};
int main (int argc, char ** argv)
{
#ifdef HAVE_LIME
Grid_init(&argc,&argv);
int64_t threads = GridThread::GetThreads();
int64_t threads = GridThread::GetThreads();
auto mpi = GridDefaultMpi();
unsigned int nVol = (BENCH_IO_LMAX - BENCH_IO_LMIN)/2 + 1;
unsigned int nRelVol = (BENCH_IO_LMAX - 24)/2 + 1;
std::vector<Eigen::MatrixXd> perf(BENCH_IO_NPASS, Eigen::MatrixXd::Zero(nVol, 4));
std::vector<Eigen::VectorXd> avPerf(BENCH_IO_NPASS, Eigen::VectorXd::Zero(4));
std::vector<int> latt;
MSG << "Grid is setup to use " << threads << " threads" << std::endl;
MSG << SEP << std::endl;
MSG << "Benchmark Lime write" << std::endl;
MSG << SEP << std::endl;
for (int l = 4; l <= BENCH_IO_LMAX; l += 2)
MSG << "MPI partition " << mpi << std::endl;
for (unsigned int i = 0; i < BENCH_IO_NPASS; ++i)
{
auto mpi = GridDefaultMpi();
std::vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
MSG << BIGSEP << std::endl;
MSG << "Pass " << i + 1 << "/" << BENCH_IO_NPASS << std::endl;
MSG << BIGSEP << std::endl;
MSG << SEP << std::endl;
MSG << "Benchmark std write" << std::endl;
MSG << SEP << std::endl;
for (int l = BENCH_IO_LMIN; l <= BENCH_IO_LMAX; l += 2)
{
latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
std::cout << "-- Local volume " << l << "^4" << std::endl;
writeBenchmark<LatticeFermion>(latt, filestem(l), limeWrite<LatticeFermion>);
MSG << "-- Local volume " << l << "^4" << std::endl;
writeBenchmark<LatticeFermion>(latt, filestem(l), stdWrite<LatticeFermion>);
perf[i](volInd(l), sWrite) = BinaryIO::lastPerf.mbytesPerSecond;
}
MSG << SEP << std::endl;
MSG << "Benchmark std read" << std::endl;
MSG << SEP << std::endl;
for (int l = BENCH_IO_LMIN; l <= BENCH_IO_LMAX; l += 2)
{
latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
MSG << "-- Local volume " << l << "^4" << std::endl;
readBenchmark<LatticeFermion>(latt, filestem(l), stdRead<LatticeFermion>);
perf[i](volInd(l), sRead) = BinaryIO::lastPerf.mbytesPerSecond;
}
#ifdef HAVE_LIME
MSG << SEP << std::endl;
MSG << "Benchmark Grid C-Lime write" << std::endl;
MSG << SEP << std::endl;
for (int l = BENCH_IO_LMIN; l <= BENCH_IO_LMAX; l += 2)
{
latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
MSG << "-- Local volume " << l << "^4" << std::endl;
writeBenchmark<LatticeFermion>(latt, filestem(l), limeWrite<LatticeFermion>);
perf[i](volInd(l), gWrite) = BinaryIO::lastPerf.mbytesPerSecond;
}
MSG << SEP << std::endl;
MSG << "Benchmark Grid C-Lime read" << std::endl;
MSG << SEP << std::endl;
for (int l = BENCH_IO_LMIN; l <= BENCH_IO_LMAX; l += 2)
{
latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
MSG << "-- Local volume " << l << "^4" << std::endl;
readBenchmark<LatticeFermion>(latt, filestem(l), limeRead<LatticeFermion>);
perf[i](volInd(l), gRead) = BinaryIO::lastPerf.mbytesPerSecond;
}
#endif
avPerf[i].fill(0.);
for (int f = 0; f < 4; ++f)
for (int l = 24; l <= BENCH_IO_LMAX; l += 2)
{
avPerf[i](f) += perf[i](volInd(l), f);
}
avPerf[i] /= nRelVol;
}
MSG << "Benchmark Lime read" << std::endl;
MSG << SEP << std::endl;
for (int l = 4; l <= BENCH_IO_LMAX; l += 2)
{
auto mpi = GridDefaultMpi();
std::vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
Eigen::MatrixXd mean(nVol, 4), stdDev(nVol, 4), rob(nVol, 4);
Eigen::VectorXd avMean(4), avStdDev(4), avRob(4);
double n = BENCH_IO_NPASS;
std::cout << "-- Local volume " << l << "^4" << std::endl;
readBenchmark<LatticeFermion>(latt, filestem(l), limeRead<LatticeFermion>);
stats(mean, stdDev, perf);
stats(avMean, avStdDev, avPerf);
rob.fill(100.);
rob -= 100.*stdDev.cwiseQuotient(mean.cwiseAbs());
avRob.fill(100.);
avRob -= 100.*avStdDev.cwiseQuotient(avMean.cwiseAbs());
MSG << BIGSEP << std::endl;
MSG << "SUMMARY" << std::endl;
MSG << BIGSEP << std::endl;
MSG << "Summary of individual results (all results in MB/s)." << std::endl;
MSG << "Every second colum gives the standard deviation of the previous column." << std::endl;
MSG << std::endl;
grid_printf("%4s %12s %12s %12s %12s %12s %12s %12s %12s\n",
"L", "std read", "std dev", "std write", "std dev",
"Grid read", "std dev", "Grid write", "std dev");
for (int l = BENCH_IO_LMIN; l <= BENCH_IO_LMAX; l += 2)
{
grid_printf("%4d %12.1f %12.1f %12.1f %12.1f %12.1f %12.1f %12.1f %12.1f\n",
l, mean(volInd(l), sRead), stdDev(volInd(l), sRead),
mean(volInd(l), sWrite), stdDev(volInd(l), sWrite),
mean(volInd(l), gRead), stdDev(volInd(l), gRead),
mean(volInd(l), gWrite), stdDev(volInd(l), gWrite));
}
MSG << std::endl;
MSG << "Robustness of individual results, in \%. (rob = 100\% - std dev / mean)" << std::endl;
MSG << std::endl;
grid_printf("%4s %12s %12s %12s %12s\n",
"L", "std read", "std write", "Grid read", "Grid write");
for (int l = BENCH_IO_LMIN; l <= BENCH_IO_LMAX; l += 2)
{
grid_printf("%4d %12.1f %12.1f %12.1f %12.1f\n",
l, rob(volInd(l), sRead), rob(volInd(l), sWrite),
rob(volInd(l), gRead), rob(volInd(l), gWrite));
}
MSG << std::endl;
MSG << "Summary of results averaged over local volumes 24^4-" << BENCH_IO_LMAX << "^4 (all results in MB/s)." << std::endl;
MSG << "Every second colum gives the standard deviation of the previous column." << std::endl;
MSG << std::endl;
grid_printf("%12s %12s %12s %12s %12s %12s %12s %12s\n",
"std read", "std dev", "std write", "std dev",
"Grid read", "std dev", "Grid write", "std dev");
grid_printf("%12.1f %12.1f %12.1f %12.1f %12.1f %12.1f %12.1f %12.1f\n",
avMean(sRead), avStdDev(sRead), avMean(sWrite), avStdDev(sWrite),
avMean(gRead), avStdDev(gRead), avMean(gWrite), avStdDev(gWrite));
MSG << std::endl;
MSG << "Robustness of volume-averaged results, in \%. (rob = 100\% - std dev / mean)" << std::endl;
MSG << std::endl;
grid_printf("%12s %12s %12s %12s\n",
"std read", "std write", "Grid read", "Grid write");
grid_printf("%12.1f %12.1f %12.1f %12.1f\n",
avRob(sRead), avRob(sWrite), avRob(gRead), avRob(gWrite));
Grid_finalize();
#endif
return EXIT_SUCCESS;
}

View File

@ -5,6 +5,8 @@
#ifdef HAVE_LIME
#define MSG std::cout << GridLogMessage
#define SEP \
"-----------------------------------------------------------------------------"
#define BIGSEP \
"============================================================================="
namespace Grid {
@ -14,13 +16,152 @@ using WriterFn = std::function<void(const std::string, Field &)> ;
template <typename Field>
using ReaderFn = std::function<void(Field &, const std::string)>;
// AP 06/10/2020: Standard C version in case one is suspicious of the C++ API
//
// template <typename Field>
// void stdWrite(const std::string filestem, Field &vec)
// {
// std::string rankStr = std::to_string(vec.Grid()->ThisRank());
// std::FILE *file = std::fopen((filestem + "." + rankStr + ".bin").c_str(), "wb");
// size_t size;
// uint32_t crc;
// GridStopWatch ioWatch, crcWatch;
// size = vec.Grid()->lSites()*sizeof(typename Field::scalar_object);
// autoView(vec_v, vec, CpuRead);
// crcWatch.Start();
// crc = GridChecksum::crc32(vec_v.cpu_ptr, size);
// std::fwrite(&crc, sizeof(uint32_t), 1, file);
// crcWatch.Stop();
// MSG << "Std I/O write: Data CRC32 " << std::hex << crc << std::dec << std::endl;
// ioWatch.Start();
// std::fwrite(vec_v.cpu_ptr, sizeof(typename Field::scalar_object), vec.Grid()->lSites(), file);
// ioWatch.Stop();
// std::fclose(file);
// size *= vec.Grid()->ProcessorCount();
// auto &p = BinaryIO::lastPerf;
// p.size = size;
// p.time = ioWatch.useconds();
// p.mbytesPerSecond = size/1024./1024./(ioWatch.useconds()/1.e6);
// MSG << "Std I/O write: Wrote " << p.size << " bytes in " << ioWatch.Elapsed()
// << ", " << p.mbytesPerSecond << " MB/s" << std::endl;
// MSG << "Std I/O write: checksum overhead " << crcWatch.Elapsed() << std::endl;
// }
//
// template <typename Field>
// void stdRead(Field &vec, const std::string filestem)
// {
// std::string rankStr = std::to_string(vec.Grid()->ThisRank());
// std::FILE *file = std::fopen((filestem + "." + rankStr + ".bin").c_str(), "rb");
// size_t size;
// uint32_t crcRead, crcData;
// GridStopWatch ioWatch, crcWatch;
// size = vec.Grid()->lSites()*sizeof(typename Field::scalar_object);
// crcWatch.Start();
// std::fread(&crcRead, sizeof(uint32_t), 1, file);
// crcWatch.Stop();
// {
// autoView(vec_v, vec, CpuWrite);
// ioWatch.Start();
// std::fread(vec_v.cpu_ptr, sizeof(typename Field::scalar_object), vec.Grid()->lSites(), file);
// ioWatch.Stop();
// std::fclose(file);
// }
// {
// autoView(vec_v, vec, CpuRead);
// crcWatch.Start();
// crcData = GridChecksum::crc32(vec_v.cpu_ptr, size);
// crcWatch.Stop();
// }
// MSG << "Std I/O read: Data CRC32 " << std::hex << crcData << std::dec << std::endl;
// assert(crcData == crcRead);
// size *= vec.Grid()->ProcessorCount();
// auto &p = BinaryIO::lastPerf;
// p.size = size;
// p.time = ioWatch.useconds();
// p.mbytesPerSecond = size/1024./1024./(ioWatch.useconds()/1.e6);
// MSG << "Std I/O read: Read " << p.size << " bytes in " << ioWatch.Elapsed()
// << ", " << p.mbytesPerSecond << " MB/s" << std::endl;
// MSG << "Std I/O read: checksum overhead " << crcWatch.Elapsed() << std::endl;
// }
template <typename Field>
void stdWrite(const std::string filestem, Field &vec)
{
std::string rankStr = std::to_string(vec.Grid()->ThisRank());
std::ofstream file(filestem + "." + rankStr + ".bin", std::ios::out | std::ios::binary);
size_t size, sizec;
uint32_t crc;
GridStopWatch ioWatch, crcWatch;
size = vec.Grid()->lSites()*sizeof(typename Field::scalar_object);
sizec = size/sizeof(char); // just in case of...
autoView(vec_v, vec, CpuRead);
crcWatch.Start();
crc = GridChecksum::crc32(vec_v.cpu_ptr, size);
file.write(reinterpret_cast<char *>(&crc), sizeof(uint32_t)/sizeof(char));
crcWatch.Stop();
MSG << "Std I/O write: Data CRC32 " << std::hex << crc << std::dec << std::endl;
ioWatch.Start();
file.write(reinterpret_cast<char *>(vec_v.cpu_ptr), sizec);
file.flush();
ioWatch.Stop();
size *= vec.Grid()->ProcessorCount();
auto &p = BinaryIO::lastPerf;
p.size = size;
p.time = ioWatch.useconds();
p.mbytesPerSecond = size/1024./1024./(ioWatch.useconds()/1.e6);
MSG << "Std I/O write: Wrote " << p.size << " bytes in " << ioWatch.Elapsed()
<< ", " << p.mbytesPerSecond << " MB/s" << std::endl;
MSG << "Std I/O write: checksum overhead " << crcWatch.Elapsed() << std::endl;
}
template <typename Field>
void stdRead(Field &vec, const std::string filestem)
{
std::string rankStr = std::to_string(vec.Grid()->ThisRank());
std::ifstream file(filestem + "." + rankStr + ".bin", std::ios::in | std::ios::binary);
size_t size, sizec;
uint32_t crcRead, crcData;
GridStopWatch ioWatch, crcWatch;
size = vec.Grid()->lSites()*sizeof(typename Field::scalar_object);
sizec = size/sizeof(char); // just in case of...
crcWatch.Start();
file.read(reinterpret_cast<char *>(&crcRead), sizeof(uint32_t)/sizeof(char));
crcWatch.Stop();
{
autoView(vec_v, vec, CpuWrite);
ioWatch.Start();
file.read(reinterpret_cast<char *>(vec_v.cpu_ptr), sizec);
ioWatch.Stop();
}
{
autoView(vec_v, vec, CpuRead);
crcWatch.Start();
crcData = GridChecksum::crc32(vec_v.cpu_ptr, size);
crcWatch.Stop();
}
MSG << "Std I/O read: Data CRC32 " << std::hex << crcData << std::dec << std::endl;
assert(crcData == crcRead);
size *= vec.Grid()->ProcessorCount();
auto &p = BinaryIO::lastPerf;
p.size = size;
p.time = ioWatch.useconds();
p.mbytesPerSecond = size/1024./1024./(ioWatch.useconds()/1.e6);
MSG << "Std I/O read: Read " << p.size << " bytes in " << ioWatch.Elapsed()
<< ", " << p.mbytesPerSecond << " MB/s" << std::endl;
MSG << "Std I/O read: checksum overhead " << crcWatch.Elapsed() << std::endl;
}
template <typename Field>
void limeWrite(const std::string filestem, Field &vec)
{
emptyUserRecord record;
ScidacWriter binWriter(vec.Grid()->IsBoss());
binWriter.open(filestem + ".bin");
binWriter.open(filestem + ".lime.bin");
binWriter.writeScidacFieldRecord(vec, record);
binWriter.close();
}
@ -31,7 +172,7 @@ void limeRead(Field &vec, const std::string filestem)
emptyUserRecord record;
ScidacReader binReader;
binReader.open(filestem + ".bin");
binReader.open(filestem + ".lime.bin");
binReader.readScidacFieldRecord(vec, record);
binReader.close();
}
@ -73,12 +214,18 @@ void writeBenchmark(const Coordinate &latt, const std::string filename,
auto simd = GridDefaultSimd(latt.size(), Field::vector_type::Nsimd());
std::shared_ptr<GridCartesian> gBasePt(SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
std::shared_ptr<GridBase> gPt;
std::random_device rd;
makeGrid(gPt, gBasePt, Ls, rb);
GridBase *g = gPt.get();
GridParallelRNG rng(g);
Field vec(g);
GridBase *g = gPt.get();
GridParallelRNG rng(g);
Field vec(g);
rng.SeedFixedIntegers({static_cast<int>(rd()), static_cast<int>(rd()),
static_cast<int>(rd()), static_cast<int>(rd()),
static_cast<int>(rd()), static_cast<int>(rd()),
static_cast<int>(rd()), static_cast<int>(rd())});
random(rng, vec);
write(filename, vec);
@ -96,8 +243,8 @@ void readBenchmark(const Coordinate &latt, const std::string filename,
makeGrid(gPt, gBasePt, Ls, rb);
GridBase *g = gPt.get();
Field vec(g);
GridBase *g = gPt.get();
Field vec(g);
read(vec, filename);
}

View File

@ -1,14 +1,9 @@
#include "Benchmark_IO.hpp"
#define MSG std::cout << GridLogMessage
#define SEP \
"============================================================================="
using namespace Grid;
int main (int argc, char ** argv)
{
#ifdef HAVE_LIME
std::vector<std::string> dir;
unsigned int Ls;
bool rb;
@ -34,46 +29,71 @@ int main (int argc, char ** argv)
}
Grid_init(&argc,&argv);
int64_t threads = GridThread::GetThreads();
auto mpi = GridDefaultMpi();
MSG << "Grid is setup to use " << threads << " threads" << std::endl;
MSG << SEP << std::endl;
MSG << "Benchmark double precision Lime write" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
writeBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermion>, Ls, rb);
}
MSG << "MPI partition " << mpi << std::endl;
MSG << SEP << std::endl;
MSG << "Benchmark double precision Lime read" << std::endl;
MSG << "Benchmark Grid std write" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermion>, Ls, rb);
writeBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench",
stdWrite<LatticeFermion>, Ls, rb);
}
MSG << SEP << std::endl;
MSG << "Benchmark Grid std read" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench",
stdRead<LatticeFermion>, Ls, rb);
}
#ifdef HAVE_LIME
MSG << SEP << std::endl;
MSG << "Benchmark single precision Lime write" << std::endl;
MSG << "Benchmark Grid C-Lime write" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
writeBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermionF>, Ls, rb);
writeBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench",
limeWrite<LatticeFermion>, Ls, rb);
}
MSG << SEP << std::endl;
MSG << "Benchmark Grid C-Lime read" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench",
limeRead<LatticeFermion>, Ls, rb);
}
#endif
MSG << SEP << std::endl;
MSG << "Benchmark single precision Lime read" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermionF>, Ls, rb);
}
// MSG << SEP << std::endl;
// MSG << "Benchmark single precision Lime write" << std::endl;
// MSG << SEP << std::endl;
// for (auto &d: dir)
// {
// MSG << "-- Directory " << d << std::endl;
// writeBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermionF>, Ls, rb);
// }
// MSG << SEP << std::endl;
// MSG << "Benchmark single precision Lime read" << std::endl;
// MSG << SEP << std::endl;
// for (auto &d: dir)
// {
// MSG << "-- Directory " << d << std::endl;
// readBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermionF>, Ls, rb);
// }
Grid_finalize();
#endif
return EXIT_SUCCESS;
}

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -62,7 +62,7 @@ struct time_statistics{
void comms_header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
<<std::setw(11)<<"bytes"<<"MB/s uni (err/min/max)"<<"\t\t"<<"MB/s bidi (err/min/max)"<<std::endl;
<<"bytes\t MB/s uni (err/min/max) \t\t MB/s bidi (err/min/max)"<<std::endl;
};
Gamma::Algebra Gmu [] = {
@ -125,7 +125,7 @@ public:
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
std::cout << GridLogMessage<< latt_size <<std::endl;
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
@ -137,8 +137,8 @@ public:
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
rbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
// bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
// bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
@ -189,11 +189,11 @@ public:
// double rbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)
<<std::right<< xbytes/timestat.mean<<" "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " "
std::cout<<GridLogMessage << lat<<"\t"<<Ls<<"\t "
<< bytes << " \t "
<<xbytes/timestat.mean<<" \t "<< xbytes*timestat.err/(timestat.mean*timestat.mean)<< " \t "
<<xbytes/timestat.max <<" "<< xbytes/timestat.min
<< "\t\t"<<std::setw(7)<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< "\t\t"<< bidibytes/timestat.mean<< " " << bidibytes*timestat.err/(timestat.mean*timestat.mean) << " "
<< bidibytes/timestat.max << " " << bidibytes/timestat.min << std::endl;
}
@ -224,7 +224,7 @@ public:
uint64_t lmax=32;
#define NLOOP (100*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
@ -249,11 +249,6 @@ public:
double start=usecond();
for(int i=0;i<Nloop;i++){
z=a*x-y;
autoView( x_v , x, CpuWrite);
autoView( y_v , y, CpuWrite);
autoView( z_v , z, CpuRead);
x_v[0]=z_v[0]; // force serial dependency to prevent optimise away
y_v[4]=z_v[4];
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
@ -286,7 +281,7 @@ public:
uint64_t lmax=32;
#define NLOOP (100*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
#define NLOOP (1000*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
for(int lat=8;lat<=lmax;lat+=8){
@ -309,11 +304,6 @@ public:
double start=usecond();
for(int i=0;i<Nloop;i++){
z=x*y;
autoView( x_v , x, CpuWrite);
autoView( y_v , y, CpuWrite);
autoView( z_v , z, CpuRead);
x_v[0]=z_v[0]; // force serial dependency to prevent optimise away
y_v[4]=z_v[4];
}
double stop=usecond();
double time = (stop-start)/Nloop*1000;
@ -358,6 +348,7 @@ public:
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "Benchmark DWF on "<<L<<"^4 local volume "<<std::endl;
std::cout<<GridLogMessage << "* Nc : "<<Nc<<std::endl;
std::cout<<GridLogMessage << "* Global volume : "<<GridCmdVectorIntToString(latt4)<<std::endl;
std::cout<<GridLogMessage << "* Ls : "<<Ls<<std::endl;
std::cout<<GridLogMessage << "* ranks : "<<NP <<std::endl;
@ -386,7 +377,7 @@ public:
typedef LatticeGaugeFieldF Gauge;
///////// Source preparation ////////////
Gauge Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
Gauge Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
Fermion src (FGrid); random(RNG5,src);
Fermion src_e (FrbGrid);
Fermion src_o (FrbGrid);
@ -431,7 +422,7 @@ public:
}
FGrid->Barrier();
double t1=usecond();
uint64_t ncall = 50;
uint64_t ncall = 500;
FGrid->Broadcast(0,&ncall,sizeof(ncall));
@ -449,7 +440,13 @@ public:
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume)/2;
// Nc=3 gives
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
// double flops=(1344.0*volume)/2;
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + Nd*Nc*Ns + Nd*Nc*Ns*2;
double flops=(fps*volume)/2;
double mf_hi, mf_lo, mf_err;
timestat.statistics(t_time);
@ -464,6 +461,7 @@ public:
if ( mflops>mflops_best ) mflops_best = mflops;
if ( mflops<mflops_worst) mflops_worst= mflops;
std::cout<<GridLogMessage<< "Deo FlopsPerSite is "<<fps<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s = "<< mflops << " ("<<mf_err<<") " << mf_lo<<"-"<<mf_hi <<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per rank "<< mflops/NP<<std::endl;
std::cout<<GridLogMessage << std::fixed << std::setprecision(1)<<"Deo mflop/s per node "<< mflops/NN<<std::endl;
@ -540,7 +538,7 @@ public:
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid); SU3::HotConfiguration(RNG4,Umu);
Gauge Umu(FGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
typename Action::ImplParams params;
Action Ds(Umu,Umu,*FGrid,*FrbGrid,mass,c1,c2,u0,params);
@ -698,7 +696,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\tt Staggered" <<std::endl;
std::cout<<GridLogMessage << "L \t\t Wilson \t\t DWF4 \t\t Staggered" <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t\t "<<dwf4[l] << " \t\t "<< staggered[l]<<std::endl;
}
@ -729,9 +727,9 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4 " <<std::endl;
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4\t\t Staggered " <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<<std::endl;
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<< " \t "<<staggered[l]/NN<<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;

View File

@ -108,7 +108,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
#if 0
Umu=1.0;

View File

@ -0,0 +1,364 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_dwf.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#ifdef GRID_CUDA
#define CUDA_PROFILE
#endif
#ifdef CUDA_PROFILE
#include <cuda_profiler_api.h>
#endif
using namespace std;
using namespace Grid;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int threads = GridThread::GetThreads();
Coordinate latt4 = GridDefaultLatt();
int Ls=8;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
GridLogLayout();
long unsigned int single_site_flops = 8*Nc*(7+16*Nc);
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::cout << GridLogMessage << "Making s innermost grids"<<std::endl;
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedUniqueString(std::string("The 4D RNG"));
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedUniqueString(std::string("The 5D RNG"));
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
LatticeFermionF src (FGrid); random(RNG5,src);
#if 0
src = Zero();
{
Coordinate origin({0,0,0,latt4[2]-1,0});
SpinColourVectorF tmp;
tmp=Zero();
tmp()(0)(0)=Complex(-2.0,0.0);
std::cout << " source site 0 " << tmp<<std::endl;
pokeSite(tmp,src,origin);
}
#else
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
#endif
LatticeFermionF result(FGrid); result=Zero();
LatticeFermionF ref(FGrid); ref=Zero();
LatticeFermionF tmp(FGrid);
LatticeFermionF err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
SU<Nc>::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
#if 0
Umu=1.0;
for(int mu=0;mu<Nd;mu++){
LatticeColourMatrixF ttmp(UGrid);
ttmp = PeekIndex<LorentzIndex>(Umu,mu);
// if (mu !=2 ) ttmp = 0;
// ttmp = ttmp* pow(10.0,mu);
PokeIndex<LorentzIndex>(Umu,ttmp,mu);
}
std::cout << GridLogMessage << "Forced to diagonal " << std::endl;
#endif
////////////////////////////////////
// Naive wilson implementation
////////////////////////////////////
// replicate across fifth dimension
LatticeGaugeFieldF Umu5d(FGrid);
std::vector<LatticeColourMatrixF> U(4,FGrid);
{
autoView( Umu5d_v, Umu5d, CpuWrite);
autoView( Umu_v , Umu , CpuRead);
for(int ss=0;ss<Umu.Grid()->oSites();ss++){
for(int s=0;s<Ls;s++){
Umu5d_v[Ls*ss+s] = Umu_v[ss];
}
}
}
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu5d,mu);
}
std::cout << GridLogMessage << "Setting up Cshift based reference " << std::endl;
if (1)
{
ref = Zero();
for(int mu=0;mu<Nd;mu++){
tmp = U[mu]*Cshift(src,mu+1,1);
ref=ref + tmp - Gamma(Gmu[mu])*tmp;
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
ref=ref + tmp + Gamma(Gmu[mu])*tmp;
}
ref = -0.5*ref;
}
RealD mass=0.1;
RealD M5 =1.8;
RealD NP = UGrid->_Nprocessors;
RealD NN = UGrid->NodeCount();
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermionR::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexF::Nsimd()<<std::endl;
std::cout << GridLogMessage<< "* VComplexF size is "<<sizeof(vComplexF)<< " B"<<std::endl;
if ( sizeof(RealF)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(RealF)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
Dw.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=single_site_flops*volume*ncall;
auto nsimd = vComplex::Nsimd();
auto simdwidth = sizeof(vComplex);
// RF: Nd Wilson * Ls, Nd gauge * Ls, Nc colors
double data_rf = volume * ((2*Nd+1)*Nd*Nc + 2*Nd*Nc*Nc) * simdwidth / nsimd * ncall / (1024.*1024.*1024.);
// mem: Nd Wilson * Ls, Nd gauge, Nc colors
double data_mem = (volume * (2*Nd+1)*Nd*Nc + (volume/Ls) *2*Nd*Nc*Nc) * simdwidth / nsimd * ncall / (1024.*1024.*1024.);
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
std::cout<<GridLogMessage << "RF GiB/s (base 2) = "<< 1000000. * data_rf/((t1-t0))<<std::endl;
std::cout<<GridLogMessage << "mem GiB/s (base 2) = "<< 1000000. * data_mem/((t1-t0))<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
//exit(0);
if(( norm2(err)>1.0e-4) ) {
/*
std::cout << "RESULT\n " << result<<std::endl;
std::cout << "REF \n " << ref <<std::endl;
std::cout << "ERR \n " << err <<std::endl;
*/
std::cout<<GridLogMessage << "WRONG RESULT" << std::endl;
FGrid->Barrier();
exit(-1);
}
assert (norm2(err)< 1.0e-4 );
Dw.Report();
}
if (1)
{ // Naive wilson dag implementation
ref = Zero();
for(int mu=0;mu<Nd;mu++){
// ref = src - Gamma(Gamma::Algebra::GammaX)* src ; // 1+gamma_x
tmp = U[mu]*Cshift(src,mu+1,1);
{
autoView( ref_v, ref, CpuWrite);
autoView( tmp_v, tmp, CpuRead);
for(int i=0;i<ref_v.size();i++){
ref_v[i]+= tmp_v[i] + Gamma(Gmu[mu])*tmp_v[i]; ;
}
}
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
{
autoView( ref_v, ref, CpuWrite);
autoView( tmp_v, tmp, CpuRead);
for(int i=0;i<ref_v.size();i++){
ref_v[i]+= tmp_v[i] - Gamma(Gmu[mu])*tmp_v[i]; ;
}
}
}
ref = -0.5*ref;
}
// dump=1;
Dw.Dhop(src,result,1);
std::cout << GridLogMessage << "Compare to naive wilson implementation Dag to verify correctness" << std::endl;
std::cout<<GridLogMessage << "Called DwDag"<<std::endl;
std::cout<<GridLogMessage << "norm dag result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm dag ref "<< norm2(ref)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm dag diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){
/*
std::cout<< "DAG RESULT\n " <<ref << std::endl;
std::cout<< "DAG sRESULT\n " <<result << std::endl;
std::cout<< "DAG ERR \n " << err <<std::endl;
*/
}
LatticeFermionF src_e (FrbGrid);
LatticeFermionF src_o (FrbGrid);
LatticeFermionF r_e (FrbGrid);
LatticeFermionF r_o (FrbGrid);
LatticeFermionF r_eo (FGrid);
std::cout<<GridLogMessage << "Calling Deo and Doe and //assert Deo+Doe == Dunprec"<<std::endl;
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
std::cout<<GridLogMessage << "src_e"<<norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "src_o"<<norm2(src_o)<<std::endl;
// S-direction is INNERMOST and takes no part in the parity.
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermionF::DhopEO "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexF::Nsimd()<<std::endl;
if ( sizeof(RealF)==4 ) std::cout << GridLogMessage<< "* SINGLE precision "<<std::endl;
if ( sizeof(RealF)==8 ) std::cout << GridLogMessage<< "* DOUBLE precision "<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
{
Dw.ZeroCounters();
FGrid->Barrier();
Dw.DhopEO(src_o,r_e,DaggerNo);
double t0=usecond();
for(int i=0;i<ncall;i++){
#ifdef CUDA_PROFILE
if(i==10) cudaProfilerStart();
#endif
Dw.DhopEO(src_o,r_e,DaggerNo);
#ifdef CUDA_PROFILE
if(i==20) cudaProfilerStop();
#endif
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(single_site_flops*volume*ncall)/2.0;
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per rank "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);
Dw.Dhop (src ,result,DaggerNo);
std::cout<<GridLogMessage << "r_e"<<norm2(r_e)<<std::endl;
std::cout<<GridLogMessage << "r_o"<<norm2(r_o)<<std::endl;
std::cout<<GridLogMessage << "res"<<norm2(result)<<std::endl;
setCheckerboard(r_eo,r_o);
setCheckerboard(r_eo,r_e);
err = r_eo-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
if((norm2(err)>1.0e-4)){
/*
std::cout<< "Deo RESULT\n " <<r_eo << std::endl;
std::cout<< "Deo REF\n " <<result << std::endl;
std::cout<< "Deo ERR \n " << err <<std::endl;
*/
}
pickCheckerboard(Even,src_e,err);
pickCheckerboard(Odd,src_o,err);
std::cout<<GridLogMessage << "norm diff even "<< norm2(src_e)<<std::endl;
std::cout<<GridLogMessage << "norm diff odd "<< norm2(src_o)<<std::endl;
assert(norm2(src_e)<1.0e-4);
assert(norm2(src_o)<1.0e-4);
Grid_finalize();
exit(0);
}

View File

@ -63,7 +63,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
RealD mass=0.1;

View File

@ -30,7 +30,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
using namespace std;
using namespace Grid;
;
int main (int argc, char ** argv)
@ -53,7 +53,7 @@ int main (int argc, char ** argv)
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Seeded"<<std::endl;
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "made random gauge fields"<<std::endl;

View File

@ -123,6 +123,24 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK]);;
esac
############### Nc
AC_ARG_ENABLE([Nc],
[AC_HELP_STRING([--enable-Nc=2|3|4], [enable number of colours])],
[ac_Nc=${enable_Nc}], [ac_Nc=3])
case ${ac_Nc} in
2)
AC_DEFINE([Config_Nc],[2],[Gauge group Nc]);;
3)
AC_DEFINE([Config_Nc],[3],[Gauge group Nc]);;
4)
AC_DEFINE([Config_Nc],[4],[Gauge group Nc]);;
5)
AC_DEFINE([Config_Nc],[5],[Gauge group Nc]);;
*)
AC_MSG_ERROR(["Unsupport gauge group choice Nc = ${ac_Nc}"]);;
esac
############### FP16 conversions
AC_ARG_ENABLE([sfw-fp16],
[AC_HELP_STRING([--enable-sfw-fp16=yes|no], [enable software fp16 comms])],
@ -459,23 +477,24 @@ esac
AM_CXXFLAGS="$SIMD_FLAGS $AM_CXXFLAGS"
AM_CFLAGS="$SIMD_FLAGS $AM_CFLAGS"
############### Precision selection
AC_ARG_ENABLE([precision],
[AC_HELP_STRING([--enable-precision=single|double],
[Select default word size of Real])],
[ac_PRECISION=${enable_precision}],[ac_PRECISION=double])
############### Precision selection - deprecate
#AC_ARG_ENABLE([precision],
# [AC_HELP_STRING([--enable-precision=single|double],
# [Select default word size of Real])],
# [ac_PRECISION=${enable_precision}],[ac_PRECISION=double])
case ${ac_PRECISION} in
single)
AC_DEFINE([GRID_DEFAULT_PRECISION_SINGLE],[1],[GRID_DEFAULT_PRECISION is SINGLE] )
;;
double)
AC_DEFINE([GRID_DEFAULT_PRECISION_DOUBLE],[1],[GRID_DEFAULT_PRECISION is DOUBLE] )
;;
*)
AC_MSG_ERROR([${ac_PRECISION} unsupported --enable-precision option]);
;;
esac
AC_DEFINE([GRID_DEFAULT_PRECISION_DOUBLE],[1],[GRID_DEFAULT_PRECISION is DOUBLE] )
#case ${ac_PRECISION} in
# single)
# AC_DEFINE([GRID_DEFAULT_PRECISION_SINGLE],[1],[GRID_DEFAULT_PRECISION is SINGLE] )
# ;;
# double)
# ;;
# *)
# AC_MSG_ERROR([${ac_PRECISION} unsupported --enable-precision option]);
# ;;
#esac
###################### Shared memory allocation technique under MPI3
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmopen|shmget|hugetlbfs|shmnone],
@ -656,6 +675,7 @@ os (target) : $target_os
compiler vendor : ${ax_cv_cxx_compiler_vendor}
compiler version : ${ax_cv_gxx_version}
----- BUILD OPTIONS -----------------------------------
Nc : ${ac_Nc}
SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG}
Threading : ${ac_openmp}
Acceleration : ${ac_ACCELERATOR}

View File

@ -184,19 +184,19 @@ Below are shown the `configure` script invocations for three recommended configu
This is the build for every day developing and debugging with Xcode. It uses the Xcode clang c++ compiler, without MPI, and defaults to double-precision. Xcode builds the `Debug` configuration with debug symbols for full debugging:
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=none --enable-precision=double --prefix=$GridPre/Debug
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=none --prefix=$GridPre/Debug
#### 2. `Release`
Since Grid itself doesn't really have debug configurations, the release build is recommended to be the same as `Debug`, except using single-precision (handy for validation):
Since Grid itself doesn't really have debug configurations, the release build is recommended to be the same as `Debug`:
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=none --enable-precision=single --prefix=$GridPre/Release
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=none --prefix=$GridPre/Release
#### 3. `MPIDebug`
Debug configuration with MPI:
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=mpi-auto MPICXX=$GridPre/bin/mpicxx --enable-precision=double --prefix=$GridPre/MPIDebug
../configure CXX=clang++ CXXFLAGS="-I$GridPkg/include/libomp -Xpreprocessor -fopenmp -std=c++11" LDFLAGS="-L$GridPkg/lib/libomp" LIBS="-lomp" --with-hdf5=$GridPkg --with-gmp=$GridPkg --with-mpfr=$GridPkg --with-fftw=$GridPkg --with-lime=$GridPre --enable-simd=GEN --enable-comms=mpi-auto MPICXX=$GridPre/bin/mpicxx --prefix=$GridPre/MPIDebug
### 5.3 Build Grid

View File

@ -178,15 +178,10 @@ Then enter the cloned directory and set up the build system::
Now you can execute the `configure` script to generate makefiles (here from a build directory)::
mkdir build; cd build
../configure --enable-precision=double --enable-simd=AVX --enable-comms=mpi-auto \
../configure --enable-simd=AVX --enable-comms=mpi-auto \
--prefix=<path>
where::
--enable-precision=single|double
sets the **default precision**. Since this is largely a benchmarking convenience, it is anticipated that the default precision may be removed in future implementations,
and that explicit type selection be made at all points. Naturally, most code will be type templated in any case.::
::
--enable-simd=GEN|SSE4|AVX|AVXFMA|AVXFMA4|AVX2|AVX512|NEONv8|QPX
@ -236,7 +231,7 @@ Detailed build configuration options
--enable-mkl[=path] use Intel MKL for FFT (and LAPACK if enabled) routines. A UNIX prefix containing the library can be specified (optional).
--enable-simd=code setup Grid for the SIMD target `<code>`(default: `GEN`). A list of possible SIMD targets is detailed in a section below.
--enable-gen-simd-width=size select the size (in bytes) of the generic SIMD vector type (default: 32 bytes). E.g. SSE 128 bit corresponds to 16 bytes.
--enable-precision=single|double set the default precision (default: `double`).
--enable-precision=single|double set the default precision (default: `double`). **Deprecated option**
--enable-comms=mpi|none use `<comm>` for message passing (default: `none`).
--enable-rng=sitmo|ranlux48|mt19937 choose the RNG (default: `sitmo`).
--disable-timers disable system dependent high-resolution timers.
@ -304,8 +299,7 @@ Build setup for Intel Knights Landing platform
The following configuration is recommended for the Intel Knights Landing platform::
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
@ -314,8 +308,7 @@ The MKL flag enables use of BLAS and FFTW from the Intel Math Kernels Library.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use::
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi \
--enable-mkl \
CXX=CC CC=cc
@ -332,8 +325,7 @@ presently performs better with use of more than one rank per node, using shared
for interior communication.
We recommend four ranks per node for best performance, but optimum is local volume dependent. ::
../configure --enable-precision=double\
--enable-simd=KNL \
../configure --enable-simd=KNL \
--enable-comms=mpi-auto \
--enable-mkl \
CC=icpc MPICXX=mpiicpc
@ -343,8 +335,7 @@ Build setup for Intel Haswell Xeon platform
The following configuration is recommended for the Intel Haswell platform::
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi-auto \
--enable-mkl \
CXX=icpc MPICXX=mpiicpc
@ -360,8 +351,7 @@ where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use::
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi \
--enable-mkl \
CXX=CC CC=cc
@ -379,8 +369,7 @@ Build setup for Intel Skylake Xeon platform
The following configuration is recommended for the Intel Skylake platform::
../configure --enable-precision=double\
--enable-simd=AVX512 \
../configure --enable-simd=AVX512 \
--enable-comms=mpi \
--enable-mkl \
CXX=mpiicpc
@ -396,8 +385,7 @@ where `<path>` is the UNIX prefix where GMP and MPFR are installed.
If you are working on a Cray machine that does not use the `mpiicpc` wrapper, please use::
../configure --enable-precision=double\
--enable-simd=AVX512 \
../configure --enable-simd=AVX512 \
--enable-comms=mpi \
--enable-mkl \
CXX=CC CC=cc
@ -422,8 +410,7 @@ and 8 threads per rank.
The following configuration is recommended for the AMD EPYC platform::
../configure --enable-precision=double\
--enable-simd=AVX2 \
../configure --enable-simd=AVX2 \
--enable-comms=mpi \
CXX=mpicxx

View File

@ -69,7 +69,7 @@ int main (int argc, char ** argv)
std::vector<LatticeColourMatrix> U(4,&Fine);
SU3::HotConfiguration(pRNGa,Umu);
SU<Nc>::HotConfiguration(pRNGa,Umu);
FieldMetaData header;

View File

@ -84,7 +84,7 @@ int main (int argc, char ** argv)
std::vector<LatticeColourMatrix> U(4,&Fine);
SU3::HotConfiguration(pRNGa,Umu);
SU<Nc>::HotConfiguration(pRNGa,Umu);
FieldMetaData header;
std::string file("./ckpoint_lat.4000");

View File

@ -80,7 +80,7 @@ int main (int argc, char ** argv)
GridParallelRNG sRNG5(sFGrid); sRNG5.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
RealD mass=0.1;
RealD M5 =1.8;

View File

@ -202,7 +202,7 @@ int main (int argc, char ** argv) {
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
// FieldMetaData header;
// NerscIO::readConfiguration(Umu,header,Params.config);

View File

@ -71,7 +71,7 @@ int main (int argc, char ** argv)
LatticeGaugeFieldD Umu(UGrid);
LatticeGaugeFieldF Umu_f(UGrid_f);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
precisionChange(Umu_f,Umu);

View File

@ -69,7 +69,7 @@ int main (int argc, char ** argv)
LatticeGaugeFieldD Umu(UGrid);
LatticeGaugeFieldF Umu_f(UGrid_f);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
precisionChange(Umu_f,Umu);

View File

@ -64,7 +64,7 @@ int main (int argc, char ** argv)
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){

View File

@ -131,7 +131,7 @@ int main (int argc, char ** argv)
// LatticeFermion result(FGrid); result=Zero();
// LatticeGaugeField Umu(UGrid);
// SU3::HotConfiguration(RNG4,Umu);
// SU<Nc>::HotConfiguration(RNG4,Umu);
// std::vector<LatticeColourMatrix> U(4,UGrid);
// for(int mu=0;mu<Nd;mu++){

View File

@ -69,7 +69,7 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
RealD mass=0.1;

View File

@ -73,7 +73,7 @@ int main (int argc, char ** argv)
LatticeFermion ref (FGrid); ref = Zero();
LatticeFermion tmp (FGrid); tmp = Zero();
LatticeFermion err (FGrid); err = Zero();
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
LatticeGaugeField Umu (UGrid); SU<Nc>::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)

View File

@ -72,7 +72,7 @@ int main (int argc, char ** argv)
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid); tmp=Zero();
LatticeFermion err(FGrid); tmp=Zero();
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)

View File

@ -138,7 +138,7 @@ int main (int argc, char ** argv)
LatticeGaugeFieldD Umu(&GRID);
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
// Umu=Zero();
////////////////////////////////////////////////////
// Wilson test

View File

@ -73,11 +73,11 @@ int main (int argc, char ** argv)
LatticeColourMatrix xform2(&GRID); // Gauge xform
LatticeColourMatrix xform3(&GRID); // Gauge xform
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
Uorg=Umu;
Urnd=Umu;
SU3::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
SU<Nc>::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;
@ -121,7 +121,7 @@ int main (int argc, char ** argv)
std::cout<< "* Testing non-unit configuration *" <<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
SU3::HotConfiguration(pRNG,Umu); // Unit gauge
SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;
@ -136,7 +136,7 @@ int main (int argc, char ** argv)
std::cout<< "*****************************************************************" <<std::endl;
Umu=Urnd;
SU3::HotConfiguration(pRNG,Umu); // Unit gauge
SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;

View File

@ -114,7 +114,7 @@ int main (int argc, char ** argv)
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
GparityGaugeField Umu_2f(UGrid_2f);
SU3::HotConfiguration(RNG4_2f,Umu_2f);
SU<Nc>::HotConfiguration(RNG4_2f,Umu_2f);
StandardFermionField src (FGrid_2f);
StandardFermionField tmpsrc(FGrid_2f);

View File

@ -61,7 +61,7 @@ int main (int argc, char ** argv)
FermionField ref(&Grid); ref=Zero();
FermionField tmp(&Grid); tmp=Zero();
FermionField err(&Grid); tmp=Zero();
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
double volume=1;

View File

@ -66,7 +66,7 @@ int main(int argc, char** argv) {
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
std::cout << GridLogMessage << "* Generators for SU(3)" << std::endl;
std::cout << GridLogMessage << "* Generators for SU(Nc" << std::endl;
std::cout << GridLogMessage << "*********************************************"
<< std::endl;
SU3::printGenerators();
@ -114,8 +114,8 @@ int main(int argc, char** argv) {
LatticeGaugeField U(grid), V(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V);
// Adjoint representation
// Test group structure
@ -123,8 +123,8 @@ int main(int argc, char** argv) {
LatticeGaugeField UV(grid);
UV = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu = peekLorentz(U,mu);
SU<Nc>::LatticeMatrix Vmu = peekLorentz(V,mu);
SU3::LatticeMatrix Umu = peekLorentz(U,mu);
SU3::LatticeMatrix Vmu = peekLorentz(V,mu);
pokeLorentz(UV,Umu*Vmu, mu);
}
@ -151,16 +151,16 @@ int main(int argc, char** argv) {
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_adj(grid);
SU3::LatticeAlgebraVector h_adj(grid);
typename AdjointRep<Nc>::LatticeMatrix Ar(grid);
random(gridRNG,h_adj);
h_adj = real(h_adj);
SU_Adjoint<Nc>::AdjointLieAlgebraMatrix(h_adj,Ar);
// Re-extract h_adj
SU<Nc>::LatticeAlgebraVector h_adj2(grid);
SU3::LatticeAlgebraVector h_adj2(grid);
SU_Adjoint<Nc>::projectOnAlgebra(h_adj2, Ar);
SU<Nc>::LatticeAlgebraVector h_diff = h_adj - h_adj2;
SU3::LatticeAlgebraVector h_diff = h_adj - h_adj2;
std::cout << GridLogMessage << "Projections structure check vector difference (Adjoint representation) : " << norm2(h_diff) << std::endl;
// Exponentiate
@ -183,14 +183,14 @@ int main(int argc, char** argv) {
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_adj,Af);
SU<Nc>::LatticeMatrix Ufund(grid);
SU3::LatticeMatrix Af(grid);
SU3::FundamentalLieAlgebraMatrix(h_adj,Af);
SU3::LatticeMatrix Ufund(grid);
Ufund = expMat(Af, 1.0, 16);
// Check unitarity
SU<Nc>::LatticeMatrix uno_f(grid);
SU3::LatticeMatrix uno_f(grid);
uno_f = 1.0;
SU<Nc>::LatticeMatrix UnitCheck(grid);
SU3::LatticeMatrix UnitCheck(grid);
UnitCheck = Ufund * adj(Ufund) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck)
<< std::endl;
@ -311,14 +311,14 @@ int main(int argc, char** argv) {
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2(grid), V2(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2);
LatticeGaugeField UV2(grid);
UV2 = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu2 = peekLorentz(U2,mu);
SU<Nc>::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
SU3::LatticeMatrix Umu2 = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2 = peekLorentz(V2,mu);
pokeLorentz(UV2,Umu2*Vmu2, mu);
}
@ -345,16 +345,16 @@ int main(int argc, char** argv) {
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_sym(grid);
SU3::LatticeAlgebraVector h_sym(grid);
typename TwoIndexRep< Nc, Symmetric>::LatticeMatrix Ar_sym(grid);
random(gridRNG,h_sym);
h_sym = real(h_sym);
SU_TwoIndex<Nc,Symmetric>::TwoIndexLieAlgebraMatrix(h_sym,Ar_sym);
// Re-extract h_sym
SU<Nc>::LatticeAlgebraVector h_sym2(grid);
SU3::LatticeAlgebraVector h_sym2(grid);
SU_TwoIndex< Nc, Symmetric>::projectOnAlgebra(h_sym2, Ar_sym);
SU<Nc>::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
SU3::LatticeAlgebraVector h_diff_sym = h_sym - h_sym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index Symmetric): " << norm2(h_diff_sym) << std::endl;
@ -379,11 +379,11 @@ int main(int argc, char** argv) {
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af_sym(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
SU<Nc>::LatticeMatrix Ufund2(grid);
SU3::LatticeMatrix Af_sym(grid);
SU3::FundamentalLieAlgebraMatrix(h_sym,Af_sym);
SU3::LatticeMatrix Ufund2(grid);
Ufund2 = expMat(Af_sym, 1.0, 16);
SU<Nc>::LatticeMatrix UnitCheck2(grid);
SU3::LatticeMatrix UnitCheck2(grid);
UnitCheck2 = Ufund2 * adj(Ufund2) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2)
<< std::endl;
@ -421,14 +421,14 @@ int main(int argc, char** argv) {
// Test group structure
// (U_f * V_f)_r = U_r * V_r
LatticeGaugeField U2A(grid), V2A(grid);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU<Nc>::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, U2A);
SU3::HotConfiguration<LatticeGaugeField>(gridRNG, V2A);
LatticeGaugeField UV2A(grid);
UV2A = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU<Nc>::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
SU3::LatticeMatrix Umu2A = peekLorentz(U2,mu);
SU3::LatticeMatrix Vmu2A = peekLorentz(V2,mu);
pokeLorentz(UV2A,Umu2A*Vmu2A, mu);
}
@ -455,16 +455,16 @@ int main(int argc, char** argv) {
// Check correspondence of algebra and group transformations
// Create a random vector
SU<Nc>::LatticeAlgebraVector h_Asym(grid);
SU3::LatticeAlgebraVector h_Asym(grid);
typename TwoIndexRep< Nc, AntiSymmetric>::LatticeMatrix Ar_Asym(grid);
random(gridRNG,h_Asym);
h_Asym = real(h_Asym);
SU_TwoIndex< Nc, AntiSymmetric>::TwoIndexLieAlgebraMatrix(h_Asym,Ar_Asym);
// Re-extract h_sym
SU<Nc>::LatticeAlgebraVector h_Asym2(grid);
SU3::LatticeAlgebraVector h_Asym2(grid);
SU_TwoIndex< Nc, AntiSymmetric>::projectOnAlgebra(h_Asym2, Ar_Asym);
SU<Nc>::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
SU3::LatticeAlgebraVector h_diff_Asym = h_Asym - h_Asym2;
std::cout << GridLogMessage << "Projections structure check vector difference (Two Index anti-Symmetric): " << norm2(h_diff_Asym) << std::endl;
@ -489,11 +489,11 @@ int main(int argc, char** argv) {
// Construct the fundamental matrix in the group
SU<Nc>::LatticeMatrix Af_Asym(grid);
SU<Nc>::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU<Nc>::LatticeMatrix Ufund2A(grid);
SU3::LatticeMatrix Af_Asym(grid);
SU3::FundamentalLieAlgebraMatrix(h_Asym,Af_Asym);
SU3::LatticeMatrix Ufund2A(grid);
Ufund2A = expMat(Af_Asym, 1.0, 16);
SU<Nc>::LatticeMatrix UnitCheck2A(grid);
SU3::LatticeMatrix UnitCheck2A(grid);
UnitCheck2A = Ufund2A * adj(Ufund2A) - uno_f;
std::cout << GridLogMessage << "unitarity check 1: " << norm2(UnitCheck2A)
<< std::endl;

View File

@ -444,7 +444,7 @@ int main(int argc, char **argv) {
// Lattice 12x12 GEMM
scFooBar = scFoo * scBar;
// Benchmark some simple operations LatticeSU3 * Lattice SU3.
// Benchmark some simple operations LatticeSU<Nc> * Lattice SU<Nc>.
double t0, t1, flops;
double bytes;
int ncall = 5000;

View File

@ -73,7 +73,7 @@ int main (int argc, char ** argv)
LatticeFermion ref (FGrid); ref = Zero();
LatticeFermion tmp (FGrid); tmp = Zero();
LatticeFermion err (FGrid); err = Zero();
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
LatticeGaugeField Umu (UGrid); SU<Nc>::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)

View File

@ -55,7 +55,7 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
// SU3 colour operatoions
// SU<Nc> colour operatoions
LatticeColourMatrix link(grid);
LatticeColourMatrix staple(grid);
@ -87,10 +87,10 @@ int main (int argc, char ** argv)
link = PeekIndex<LorentzIndex>(Umu,mu);
for( int subgroup=0;subgroup<SU3::su2subgroups();subgroup++ ) {
for( int subgroup=0;subgroup<SU<Nc>::su2subgroups();subgroup++ ) {
// update Even checkerboard
SU3::SubGroupHeatBath(sRNG,pRNG,beta,link,staple,subgroup,20,mask);
SU<Nc>::SubGroupHeatBath(sRNG,pRNG,beta,link,staple,subgroup,20,mask);
}

View File

@ -64,7 +64,7 @@ int main (int argc, char ** argv)
FermionField err(&Grid); tmp=Zero();
FermionField phi (&Grid); random(pRNG,phi);
FermionField chi (&Grid); random(pRNG,chi);
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);

View File

@ -75,7 +75,7 @@ int main (int argc, char ** argv)
FermionField phi (FGrid); random(pRNG5,phi);
FermionField chi (FGrid); random(pRNG5,chi);
LatticeGaugeField Umu(UGrid); SU3::ColdConfiguration(pRNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::ColdConfiguration(pRNG4,Umu);
LatticeGaugeField Umua(UGrid); Umua=Umu;
double volume=Ls;

View File

@ -84,7 +84,7 @@ int main (int argc, char ** argv)
FermionField chi (FGrid); random(pRNG5,chi);
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(pRNG4,Umu);
SU<Nc>::HotConfiguration(pRNG4,Umu);
/*
for(int mu=1;mu<4;mu++){

View File

@ -83,7 +83,7 @@ int main (int argc, char ** argv)
FermionField chi (FGrid); random(pRNG5,chi);
LatticeGaugeFieldF Umu(UGrid);
SU3::HotConfiguration(pRNG4,Umu);
SU<Nc>::HotConfiguration(pRNG4,Umu);
/*
for(int mu=1;mu<4;mu++){

View File

@ -64,7 +64,7 @@ int main (int argc, char ** argv)
FermionField err(&Grid); tmp=Zero();
FermionField phi (&Grid); random(pRNG,phi);
FermionField chi (&Grid); random(pRNG,chi);
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);

View File

@ -74,7 +74,7 @@ int main(int argc, char **argv)
FermionField chi(&Grid);
random(pRNG, chi);
LatticeGaugeField Umu(&Grid);
SU3::HotConfiguration(pRNG, Umu);
SU<Nc>::HotConfiguration(pRNG, Umu);
std::vector<LatticeColourMatrix> U(4, &Grid);
double volume = 1;

View File

@ -70,7 +70,7 @@ int main (int argc, char ** argv)
LatticeFermion tmp(&Grid); tmp=Zero();
LatticeFermion err(&Grid); tmp=Zero();
LatticeGaugeField Umu(&Grid);
SU3::HotConfiguration(pRNG,Umu);
SU<Nc>::HotConfiguration(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
double volume=1;

View File

@ -71,7 +71,7 @@ int main (int argc, char ** argv)
LatticeFermion ref(&Grid); ref=Zero();
LatticeFermion tmp(&Grid); tmp=Zero();
LatticeFermion err(&Grid); tmp=Zero();
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
LatticeGaugeField Umu(&Grid); SU<Nc>::HotConfiguration(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
double volume=1;

View File

@ -116,7 +116,7 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(UGrid);
LatticeGaugeFieldF UmuF(UGridF);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
precisionChange(UmuF,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);

View File

@ -77,7 +77,7 @@ int main (int argc, char ** argv)
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
#if 0
std::vector<LatticeColourMatrix> U(4,UGrid);

View File

@ -70,7 +70,7 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
RealD mass=0.1;

View File

@ -71,9 +71,9 @@ int main (int argc, char ** argv)
std::string file("./ckpoint_lat.400");
NerscIO::readConfiguration(Umu,header,file);
// SU3::ColdConfiguration(RNG4,Umu);
// SU3::TepidConfiguration(RNG4,Umu);
// SU3::HotConfiguration(RNG4,Umu);
// SU<Nc>::ColdConfiguration(RNG4,Umu);
// SU<Nc>::TepidConfiguration(RNG4,Umu);
// SU<Nc>::HotConfiguration(RNG4,Umu);
// Umu=Zero();
RealD mass=0.1;

View File

@ -108,8 +108,8 @@ int main (int argc, char ** argv)
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
SU3::ColdConfiguration(Umu);
// SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::ColdConfiguration(Umu);
// SU<Nc>::HotConfiguration(RNG4,Umu);
RealD mass=0.3;
RealD M5 =1.0;

View File

@ -73,7 +73,7 @@ int main(int argc, char** argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
DomainWallEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5);
DomainWallEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5);

View File

@ -77,7 +77,7 @@ int main(int argc, char** argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
// GparityDomainWallFermionR::ImplParams params;
FermionAction::ImplParams params;

View File

@ -75,7 +75,7 @@ int main(int argc, char** argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
MobiusEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c);

View File

@ -79,7 +79,7 @@ int main(int argc, char** argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
FermionAction::ImplParams params;
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c, params);

View File

@ -102,7 +102,7 @@ int main(int argc, char **argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
DomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5);

View File

@ -104,7 +104,7 @@ int main(int argc, char **argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
GparityDomainWallFermionR::ImplParams params;

View File

@ -104,7 +104,7 @@ int main(int argc, char **argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
MobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c);

View File

@ -106,7 +106,7 @@ int main(int argc, char **argv)
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
GparityDomainWallFermionR::ImplParams params;

View File

@ -59,7 +59,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -93,7 +93,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -60,7 +60,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -94,7 +94,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -72,7 +72,7 @@ int main (int argc, char** argv)
LatticeFermion MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -105,7 +105,7 @@ int main (int argc, char** argv)
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);

View File

@ -63,8 +63,8 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
// SU3::ColdConfiguration(pRNG,U);
SU<Nc>::HotConfiguration(RNG4,U);
// SU<Nc>::ColdConfiguration(pRNG,U);
////////////////////////////////////
// Unmodified matrix element
@ -112,7 +112,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
Hmom -= real(sum(trace(mommu*mommu)));

View File

@ -75,7 +75,7 @@ int main (int argc, char** argv)
FermionField MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -109,7 +109,7 @@ int main (int argc, char** argv)
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(&Grid);
SU3::HotConfiguration(pRNG,U);
SU<Nc>::HotConfiguration(pRNG,U);
double beta = 1.0;
ConjugateWilsonGaugeActionR Action(beta);
@ -80,7 +80,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -54,7 +54,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(&Grid);
SU3::HotConfiguration(pRNG,U);
SU<Nc>::HotConfiguration(pRNG,U);
double beta = 1.0;
double c1 = 0.331;
@ -82,7 +82,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -63,7 +63,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -100,7 +100,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -57,7 +57,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -94,7 +94,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
// Traceless antihermitian momentum; gaussian in lie alg
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu);
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -58,7 +58,7 @@ int main (int argc, char ** argv)
PokeIndex<LorentzIndex>(P, P_mu, mu);
}
SU3::HotConfiguration(pRNG,U);
SU<Nc>::HotConfiguration(pRNG,U);
ConjugateGradient<LatticeGaugeField> CG(1.0e-8, 10000);
@ -95,7 +95,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Update the U " << std::endl;
for(int mu=0;mu<Nd;mu++){
// Traceless antihermitian momentum; gaussian in lie algebra
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
auto Umu = PeekIndex<LorentzIndex>(U, mu);
PokeIndex<LorentzIndex>(mom,mommu,mu);
Umu = expMat(mommu, dt, 12) * Umu;

View File

@ -60,7 +60,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -96,7 +96,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -72,7 +72,7 @@ int main (int argc, char** argv)
LatticeFermion MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -107,7 +107,7 @@ int main (int argc, char** argv)
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);

View File

@ -76,7 +76,7 @@ int main (int argc, char** argv)
FermionField MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -112,7 +112,7 @@ int main (int argc, char** argv)
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
autoView( U_v , U, CpuRead);

View File

@ -62,7 +62,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -96,7 +96,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -54,7 +54,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(&Grid);
SU3::HotConfiguration(pRNG,U);
SU<Nc>::HotConfiguration(pRNG,U);
double beta = 1.0;
double c1 = -0.331;
@ -82,7 +82,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -61,7 +61,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(&Grid);
//SU2::HotConfiguration(pRNG,U);
SU3::ColdConfiguration(pRNG,U);
SU<Nc>::ColdConfiguration(pRNG,U);
////////////////////////////////////
// Unmodified matrix element
@ -98,7 +98,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
// Traceless antihermitian momentum; gaussian in lie alg
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
Hmom -= real(sum(trace(mommu*mommu)));

View File

@ -62,8 +62,8 @@ int main(int argc, char **argv)
LatticeGaugeField U(&Grid);
SU3::HotConfiguration(pRNG, U);
//SU3::ColdConfiguration(pRNG, U);// Clover term Zero()
SU<Nc>::HotConfiguration(pRNG, U);
//SU<Nc>::ColdConfiguration(pRNG, U);// Clover term Zero()
////////////////////////////////////
// Unmodified matrix element
@ -101,7 +101,7 @@ int main(int argc, char **argv)
for (int mu = 0; mu < Nd; mu++)
{
// Traceless antihermitian momentum; gaussian in lie alg
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
Hmom -= real(sum(trace(mommu * mommu)));
PokeIndex<LorentzIndex>(mom, mommu, mu);

View File

@ -59,7 +59,7 @@ int main (int argc, char ** argv)
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
SU<Nc>::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
@ -109,7 +109,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<Nd;mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom,mommu,mu);

View File

@ -293,7 +293,7 @@ int main (int argc, char ** argv) {
{
std::vector<int> seeds4({1,2,3,4});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
}
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " Ls: " << Ls << std::endl;

View File

@ -54,7 +54,7 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5rb(FrbGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){

View File

@ -61,7 +61,7 @@ int main(int argc, char** argv) {
RNG5.SeedFixedIntegers(seeds5);
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
/*
std::vector<LatticeColourMatrix> U(4, UGrid);

View File

@ -280,7 +280,7 @@ void make_gauge(GaugeField &Umu, Grid::LatticePropagator &q1,Grid::LatticePropag
Grid::GridCartesian *UGrid = (Grid::GridCartesian *)Umu.Grid();
Grid::GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
Grid::SU3::HotConfiguration(RNG4, Umu);
Grid::SU<Nc>::HotConfiguration(RNG4, Umu);
// Propagator
Grid::gaussian(RNG4, q1);

View File

@ -277,7 +277,7 @@ double calc_grid_p(Grid::LatticeGaugeField & Umu)
Grid::GridCartesian * UGrid = (Grid::GridCartesian *) Umu.Grid();
Grid::GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
Grid::SU3::HotConfiguration(RNG4,Umu);
Grid::SU<Nc>::HotConfiguration(RNG4,Umu);
Grid::LatticeColourMatrix tmp(UGrid);
tmp = Grid::zero;

View File

@ -502,7 +502,7 @@ void calc_grid(ChromaAction action,Grid::LatticeGaugeField & Umu, Grid::LatticeF
Grid::gaussian(RNG5,src);
Grid::gaussian(RNG5,res);
Grid::SU3::HotConfiguration(RNG4,Umu);
Grid::SU<Nc>::HotConfiguration(RNG4,Umu);
/*
Grid::LatticeColourMatrix U(UGrid);

View File

@ -333,7 +333,7 @@ void make_gauge(GaugeField & Umu,FermionField &src)
Grid::GridCartesian * UGrid = (Grid::GridCartesian *) Umu.Grid();
Grid::GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
Grid::SU3::HotConfiguration(RNG4,Umu);
Grid::SU<Nc>::HotConfiguration(RNG4,Umu);
Grid::gaussian(RNG4,src);
}

View File

@ -348,7 +348,7 @@ void make_gauge(GaugeField &Umu, FermionField &src)
Grid::GridCartesian *UGrid = (Grid::GridCartesian *)Umu._grid;
Grid::GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
Grid::SU3::HotConfiguration(RNG4, Umu);
Grid::SU<Nc>::HotConfiguration(RNG4, Umu);
// Fermion field
Grid::gaussian(RNG4, src);

View File

@ -47,8 +47,8 @@ int main (int argc, char ** argv)
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=Zero();
LatticeGaugeField Umu(&Grid);
// SU3::HotConfiguration(pRNG,Umu);
SU3::ColdConfiguration(Umu);
// SU<Nc>::HotConfiguration(pRNG,Umu);
SU<Nc>::ColdConfiguration(Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
for(int mu=0;mu<Nd;mu++){

View File

@ -61,7 +61,7 @@ int main (int argc, char ** argv)
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=Zero();
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){

View File

@ -94,7 +94,7 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
RealD mass=0.1;

View File

@ -67,7 +67,7 @@ int main(int argc, char** argv) {
result = Zero();
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
SU<Nc>::HotConfiguration(RNG4, Umu);
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt()
<< " Ls: " << Ls << std::endl;

View File

@ -61,7 +61,7 @@ int main (int argc, char ** argv)
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=Zero();
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){

View File

@ -61,7 +61,7 @@ int main (int argc, char ** argv)
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=Zero();
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){

View File

@ -65,7 +65,7 @@ int main (int argc, char ** argv)
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=Zero();
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(RNG4,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);

View File

@ -68,7 +68,7 @@ int main (int argc, char ** argv)
LatticeFermion result(FGrid); result=Zero();
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
ConjugateResidual<LatticeFermion> CR(1.0e-6,10000);

View File

@ -93,7 +93,7 @@ int main (int argc, char ** argv)
for(int s=0;s<nrhs;s++) random(pRNG5,src[s]);
for(int s=0;s<nrhs;s++) result[s]=Zero();
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
LatticeGaugeField Umu(UGrid); SU<Nc>::HotConfiguration(pRNG,Umu);
///////////////////////////////////////////////////////////////
// Bounce these fields to disk

View File

@ -136,11 +136,11 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "Intialising 4D RNG "<<std::endl;
pRNG.SeedFixedIntegers(seeds);
std::cout << GridLogMessage << "Intialised 4D RNG "<<std::endl;
SU3::HotConfiguration(pRNG,Umu);
SU<Nc>::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
// std::cout << " Site zero "<< Umu[0] <<std::endl;
} else {
SU3::ColdConfiguration(Umu);
SU<Nc>::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
/////////////////

Some files were not shown because too many files have changed in this diff Show More