mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-10 03:17:07 +01:00
Merge branch 'develop' into feature/doxygen
# Conflicts: # configure.ac
This commit is contained in:
@ -1,153 +1,168 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_H
|
||||
#define GRID_CONJUGATE_GRADIENT_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class ConjugateGradient : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; //throw an assert when the CG fails to converge. Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
ConjugateGradient(RealD tol,Integer maxit, bool err_on_no_conv = true) : Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){
|
||||
};
|
||||
template <class Field>
|
||||
class ConjugateGradient : public OperatorFunction<Field> {
|
||||
public:
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
|
||||
Field &psi) {
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi, src);
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
RealD cp, c, a, d, b, ssq, qq, b_pred;
|
||||
|
||||
psi.checkerboard = src.checkerboard;
|
||||
conformable(psi,src);
|
||||
Field p(src);
|
||||
Field mmp(src);
|
||||
Field r(src);
|
||||
|
||||
RealD cp,c,a,d,b,ssq,qq,b_pred;
|
||||
|
||||
Field p(src);
|
||||
Field mmp(src);
|
||||
Field r(src);
|
||||
|
||||
//Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess)==0);
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.HermOpAndNorm(psi,mmp,d,b);
|
||||
|
||||
r= src-mmp;
|
||||
p= r;
|
||||
|
||||
a =norm2(p);
|
||||
cp =a;
|
||||
ssq=norm2(src);
|
||||
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
|
||||
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: guess "<<guess<<std::endl;
|
||||
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: src "<<ssq <<std::endl;
|
||||
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: mp "<<d <<std::endl;
|
||||
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: mmp "<<b <<std::endl;
|
||||
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: cp,r "<<cp <<std::endl;
|
||||
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: p "<<a <<std::endl;
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
RealD rsq = Tolerance* Tolerance*ssq;
|
||||
|
||||
//Check if guess is really REALLY good :)
|
||||
if ( cp <= rsq ) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout<<GridLogIterative << std::setprecision(4)<< "ConjugateGradient: k=0 residual "<<cp<<" target "<<rsq<<std::endl;
|
||||
a = norm2(p);
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: mp " << d << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: mmp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: cp,r " << cp << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: p " << a << std::endl;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
|
||||
c=cp;
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.HermOpAndNorm(p,mmp,d,qq);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
// RealD qqck = norm2(mmp);
|
||||
// ComplexD dck = innerProduct(p,mmp);
|
||||
|
||||
a = c/d;
|
||||
b_pred = a*(a*qq-d)/c;
|
||||
|
||||
cp = axpy_norm(r,-a,mmp,r);
|
||||
b = cp/c;
|
||||
|
||||
// Fuse these loops ; should be really easy
|
||||
psi= a*p+psi;
|
||||
p = p*b+r;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
std::cout<<GridLogIterative<<"ConjugateGradient: Iteration " <<k<<" residual "<<cp<< " target "<< rsq<<std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if ( cp <= rsq ) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
Linop.HermOpAndNorm(psi,mmp,d,qq);
|
||||
p=mmp-src;
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp));
|
||||
RealD psinorm = sqrt(norm2(psi));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD true_residual = resnorm/srcnorm;
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateGradient: Converged on iteration " <<k
|
||||
<<" computed residual "<<sqrt(cp/ssq)
|
||||
<<" true residual " <<true_residual
|
||||
<<" target "<<Tolerance<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Time elapsed: Total "<< SolverTimer.Elapsed() << " Matrix "<<MatrixTimer.Elapsed() << " Linalg "<<LinalgTimer.Elapsed();
|
||||
std::cout<<std::endl;
|
||||
|
||||
if(ErrorOnNoConverge)
|
||||
assert(true_residual/Tolerance < 1000.0);
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
std::cout<<GridLogMessage<<"ConjugateGradient did NOT converge"<<std::endl;
|
||||
if(ErrorOnNoConverge)
|
||||
assert(0);
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(4)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq
|
||||
<< std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.HermOpAndNorm(p, mmp, d, qq);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
// RealD qqck = norm2(mmp);
|
||||
// ComplexD dck = innerProduct(p,mmp);
|
||||
|
||||
a = c / d;
|
||||
b_pred = a * (a * qq - d) / c;
|
||||
|
||||
cp = axpy_norm(r, -a, mmp, r);
|
||||
b = cp / c;
|
||||
|
||||
// Fuse these loops ; should be really easy
|
||||
psi = a * p + psi;
|
||||
p = p * b + r;
|
||||
|
||||
LinalgTimer.Stop();
|
||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||
<< " residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
SolverTimer.Stop();
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp));
|
||||
RealD psinorm = sqrt(norm2(psi));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage
|
||||
<< "ConjugateGradient: Converged on iteration " << k << std::endl;
|
||||
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
|
||||
<< " true residual " << true_residual << " target "
|
||||
<< Tolerance << std::endl;
|
||||
std::cout << GridLogMessage << "Time elapsed: Iterations "
|
||||
<< SolverTimer.Elapsed() << " Matrix "
|
||||
<< MatrixTimer.Elapsed() << " Linalg "
|
||||
<< LinalgTimer.Elapsed();
|
||||
std::cout << std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 1000.0);
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge"
|
||||
<< std::endl;
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user