1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-24 12:45:56 +01:00

4D pseudo fermion, with Schur red black solvers

This commit is contained in:
Peter Boyle 2021-05-06 23:15:16 +02:00
parent cb28568198
commit cdeb718229

View File

@ -0,0 +1,203 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////
// Two flavour ratio
///////////////////////////////////////
template<class Impl>
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
INHERIT_IMPL_TYPES(Impl);
private:
typedef FermionOperator<Impl> FermOp;
FermionOperator<Impl> & NumOp;// the basic operator
FermionOperator<Impl> & DenOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
OperatorFunction<FermionField> &DerivativeDagSolver;
OperatorFunction<FermionField> &ActionSolver;
OperatorFunction<FermionField> &HeatbathSolver;
FermionField phi4; // the pseudo fermion field for this trajectory
public:
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS ) :
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & DDS,
OperatorFunction<FermionField> & AS,
OperatorFunction<FermionField> & HS
) : NumOp(_NumOp),
DenOp(_DenOp),
DerivativeSolver(DS),
DerivativeDagSolver(DDS),
ActionSolver(AS),
HeatbathSolver(HS),
phi4(_NumOp.GaugeGrid())
{};
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
virtual std::string LogParameters(){
std::stringstream sstream;
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
return sstream.str();
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
//
// NumOp == V
// DenOp == M
//
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
//
// P(eta) = e^{- eta^dag eta}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
//
RealD scale = std::sqrt(0.5);
FermionField eta4(NumOp.GaugeGrid());
FermionField eta5(NumOp.FermionGrid());
FermionField tmp(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
gaussian(pRNG,eta4);
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
DenOp.M(eta5,tmp); // M eta
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
phi5=phi5*scale;
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
// Project to 4d
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
};
//////////////////////////////////////////////////////
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField Y4(NumOp.GaugeGrid());
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi5(NumOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
NumOp.M(phi5,X); // X= V phi
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
NumOp.ExportFourDimPseudoFermion(Y,Y4);
RealD action = norm2(Y4);
return action;
};
//////////////////////////////////////////////////////
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
//////////////////////////////////////////////////////
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
NumOp.ImportGauge(U);
DenOp.ImportGauge(U);
FermionField X(NumOp.FermionGrid());
FermionField Y(NumOp.FermionGrid());
FermionField phi(NumOp.FermionGrid());
FermionField Vphi(NumOp.FermionGrid());
FermionField MinvVphi(NumOp.FermionGrid());
FermionField tmp4(NumOp.GaugeGrid());
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
GaugeField force(NumOp.GaugeGrid());
//Y=V phi
//X = (Mdag V phi
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
NumOp.ImportFourDimPseudoFermion(phi4,phi);
NumOp.M(phi,Vphi); // V phi
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
// Projects onto the physical space and back
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
// X = proj M^-dag V phi
// Need an adjoint solve
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
dSdU *= -1.0;
//dSdU = - Ta(dSdU);
};
};
NAMESPACE_END(Grid);