1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-17 15:27:06 +01:00

Merge branch 'develop' into sycl

This commit is contained in:
Peter Boyle
2020-06-09 04:00:12 -04:00
85 changed files with 2632 additions and 1334 deletions

View File

@ -252,19 +252,14 @@ public:
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
RealD M (const CoarseVector &in, CoarseVector &out)
void M (const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
// RealD Nin = norm2(in);
SimpleCompressor<siteVector> compressor;
double comms_usec = -usecond();
Stencil.HaloExchange(in,compressor);
comms_usec += usecond();
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
typedef LatticeView<Cobj> Aview;
@ -278,12 +273,7 @@ public:
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
GridStopWatch ArithmeticTimer;
int osites=Grid()->oSites();
// double flops = osites*Nsimd*nbasis*nbasis*8.0*geom.npoint;
// double bytes = osites*nbasis*nbasis*geom.npoint*sizeof(CComplex);
double usecs =-usecond();
// assert(geom.npoint==9);
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
@ -310,18 +300,11 @@ public:
}
coalescedWrite(out_v[ss](b),res);
});
usecs +=usecond();
double nrm_usec=-usecond();
RealD Nout= norm2(out);
nrm_usec+=usecond();
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
return Nout;
};
RealD Mdag (const CoarseVector &in, CoarseVector &out)
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if(hermitian) {
// corresponds to Petrov-Galerkin coarsening
@ -332,7 +315,6 @@ public:
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
return norm2(out);
}
};
void MdirComms(const CoarseVector &in)
@ -553,8 +535,6 @@ public:
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
// if( disp!= 0 ) { accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });}
// accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_self[ss](j,i),A_self(ss)(j,i)+iZProj_v(ss)); });
}
}

View File

@ -43,7 +43,6 @@ NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
@ -94,7 +93,10 @@ public:
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
_Mat.MdagM(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
_Mat.MdagM(in,out);
@ -131,17 +133,14 @@ public:
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
out = out + _shift*in;
ComplexD dot;
dot= innerProduct(in,out);
HermOp(in,out);
ComplexD dot = innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
_Mat.MdagM(in,out);
out = out + _shift*in;
}
};
@ -170,7 +169,7 @@ public:
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.M(in,out);
HermOp(in,out);
ComplexD dot= innerProduct(in,out); n1=real(dot);
n2=norm2(out);
}
@ -208,338 +207,305 @@ public:
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out,n1,n2);
}
virtual void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
public:
Matrix &_Mat;
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
//std::cout << "cb in " << in.Checkerboard() << " cb out " << out.Checkerboard() << std::endl;
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Field>
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
{
public:
virtual RealD Mpc (const Field& in, Field& out) = 0;
virtual RealD MpcDag (const Field& in, Field& out) = 0;
virtual void MpcDagMpc(const Field& in, Field& out, RealD& ni, RealD& no) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
ni = Mpc(in,tmp);
no = MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
assert(0);
}
virtual void HermOp(const Field& in, Field& out) {
assert(0);
}
void Op(const Field& in, Field& out) {
Mpc(in, out);
}
void AdjOp(const Field& in, Field& out) {
MpcDag(in, out);
}
// Support for coarsening to a multigrid
void OpDiag(const Field& in, Field& out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir(const Field& in, Field& out, int dir, int disp) {
assert(0);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
{
public:
Matrix& _Mat;
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
virtual RealD Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
_Mat.Mooee(in, out);
return axpy_norm(out, -1.0, tmp, out);
}
virtual RealD MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeDag(in, out);
return axpy_norm(out, -1.0, tmp, out);
}
};
template<class Matrix,class Field>
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix &_Mat;
public:
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
virtual RealD Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.Meooe(in, out);
_Mat.MooeeInv(out, tmp);
_Mat.Meooe(tmp, out);
_Mat.MooeeInv(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
virtual RealD MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInvDag(in, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix& _Mat;
public:
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
virtual RealD Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in, out);
_Mat.Meooe(out, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
virtual RealD MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, out);
_Mat.MooeeInvDag(out, tmp);
_Mat.MeooeDag(tmp, out);
_Mat.MooeeInvDag(out, tmp);
return axpy_norm(out, -1.0, tmp, in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
Field tmp;
RealD mass;
double tMpc;
double tIP;
double tMeo;
double taxpby_norm;
uint64_t ncall;
public:
void Report(void)
{
std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " HermOpAndNorm.IP "<< tIP /ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " Mpc.MeoMoe "<< tMeo/ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " Mpc.axpby_norm "<< taxpby_norm/ncall<<" usec "<<std::endl;
}
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
mass = _Mat.Mass();
tMpc=0;
tIP =0;
tMeo=0;
taxpby_norm=0;
ncall=0;
}
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual void Mpc (const Field &in, Field &out) =0;
virtual void MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
ncall++;
tMpc-=usecond();
n2 = Mpc(in,out);
tMpc+=usecond();
tIP-=usecond();
ComplexD dot= innerProduct(in,out);
tIP+=usecond();
n1 = real(dot);
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
ComplexD dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
virtual void HermOp(const Field &in, Field &out){
ncall++;
tMpc-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
tMpc+=usecond();
taxpby_norm-=usecond();
axpby(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
out.Checkerboard() = in.Checkerboard();
MpcDagMpc(in,out);
}
virtual RealD Mpc (const Field &in, Field &out)
{
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
public:
Matrix &_Mat;
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
axpy(out,-1.0,tmp,out);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
axpy(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
axpy(out,-1.0,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
axpy(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual void Mpc (const Field &in, Field &out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
axpy(out,-1.0,tmp,in);
}
virtual void MpcDag (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
axpy(out,-1.0,tmp,in);
}
};
template<class Field>
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
{
public:
virtual void Mpc (const Field& in, Field& out) = 0;
virtual void MpcDag (const Field& in, Field& out) = 0;
virtual void MpcDagMpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = in.Checkerboard();
Mpc(in,tmp);
MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
assert(0);
}
virtual void HermOp(const Field& in, Field& out) {
assert(0);
}
void Op(const Field& in, Field& out) {
Mpc(in, out);
}
void AdjOp(const Field& in, Field& out) {
MpcDag(in, out);
}
// Support for coarsening to a multigrid
void OpDiag(const Field& in, Field& out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir(const Field& in, Field& out, int dir, int disp) {
assert(0);
}
void OpDirAll(const Field& in, std::vector<Field>& out){
assert(0);
};
};
template<class Matrix, class Field>
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
{
public:
Matrix& _Mat;
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
tmp.Checkerboard() = !in.Checkerboard();
_Mat.Meooe(in, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
_Mat.Mooee(in, out);
axpy(out, -1.0, tmp, out);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeDag(in, out);
axpy(out, -1.0, tmp, out);
}
};
template<class Matrix,class Field>
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix &_Mat;
public:
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.Meooe(in, out);
_Mat.MooeeInv(out, tmp);
_Mat.Meooe(tmp, out);
_Mat.MooeeInv(out, tmp);
axpy(out, -1.0, tmp, in);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInvDag(in, out);
_Mat.MeooeDag(out, tmp);
_Mat.MooeeInvDag(tmp, out);
_Mat.MeooeDag(out, tmp);
axpy(out, -1.0, tmp, in);
}
};
template<class Matrix, class Field>
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
{
protected:
Matrix& _Mat;
public:
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
virtual void Mpc(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MooeeInv(in, out);
_Mat.Meooe(out, tmp);
_Mat.MooeeInv(tmp, out);
_Mat.Meooe(out, tmp);
axpy(out, -1.0, tmp, in);
}
virtual void MpcDag(const Field& in, Field& out) {
Field tmp(in.Grid());
_Mat.MeooeDag(in, out);
_Mat.MooeeInvDag(out, tmp);
_Mat.MeooeDag(tmp, out);
_Mat.MooeeInvDag(out, tmp);
axpy(out, -1.0, tmp, in);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
///////////////////////////////////////////////////////////////////////////////////////////////////
// Staggered use
///////////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
Field tmp;
RealD mass;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
mass = _Mat.Mass();
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
Mpc(in,out);
ComplexD dot= innerProduct(in,out);
n1 = real(dot);
n2 =0.0;
}
virtual void HermOp(const Field &in, Field &out){
Mpc(in,out);
// _Mat.Meooe(in,out);
// _Mat.Meooe(out,tmp);
// axpby(out,-1.0,mass*mass,tmp,in);
}
virtual void Mpc (const Field &in, Field &out)
{
Field tmp(in.Grid());
Field tmp2(in.Grid());
// _Mat.Mooee(in,out);
// _Mat.Mooee(out,tmp);
// std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
_Mat.Mooee(in,out);
_Mat.Mooee(out,tmp);
// std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
tMeo-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
tMeo+=usecond();
taxpby_norm-=usecond();
RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
return nn;
axpby(out,-1.0,mass*mass,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
return Mpc(in,out);
virtual void MpcDag (const Field &in, Field &out){
Mpc(in,out);
}
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
assert(0);// Never need with staggered
@ -547,7 +513,6 @@ public:
};
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////

View File

@ -38,16 +38,12 @@ template<class Field> class SparseMatrixBase {
public:
virtual GridBase *Grid(void) =0;
// Full checkerboar operations
virtual RealD M (const Field &in, Field &out)=0;
virtual RealD Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp (in.Grid());
ni=M(in,tmp);
no=Mdag(tmp,out);
}
virtual void M (const Field &in, Field &out)=0;
virtual void Mdag (const Field &in, Field &out)=0;
virtual void MdagM(const Field &in, Field &out) {
RealD ni, no;
MdagM(in,out,ni,no);
Field tmp (in.Grid());
M(in,tmp);
Mdag(tmp,out);
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;

View File

@ -234,10 +234,8 @@ public:
GridBase *grid=in.Grid();
// std::cout << "Chevyshef(): in.Grid()="<<in.Grid()<<std::endl;
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
int vol=grid->gSites();
typedef typename Field::vector_type vector_type;
Field T0(grid); T0 = in;
Field T1(grid);
@ -258,14 +256,28 @@ public:
// out = ()*T0 + Coeffs[1]*T1;
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y);
// y=xscale*y+mscale*(*Tn);
// *Tnp=2.0*y-(*Tnm);
// out=out+Coeffs[n]* (*Tnp);
#if 0
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd();
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#else
axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
axpy(out,Coeffs[n],*Tnp,out);
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#endif
// Cycle pointers to avoid copies
Field *swizzle = Tnm;
Tnm =Tn;

View File

@ -37,218 +37,6 @@ Author: Christoph Lehner <clehner@bnl.gov>
NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////
// Move following 100 LOC to lattice/Lattice_basis.h
////////////////////////////////////////////////////////
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class Field>
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
{
GridBase* grid = basis[0].Grid();
typedef typename Field::vector_object vobj;
typedef decltype(basis[0].View(CpuWrite)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
for(int k=0;k<basis.size();k++) basis_v.push_back(basis[k].View(CpuWrite));
View *basis_vp = &basis_v[0];
#if 1
std::vector < vobj , commAllocator<vobj> > Bt(thread_max() * Nm); // Thread private
thread_region
{
vobj* B = Bt.data() + Nm * thread_num();
thread_for_in_region(ss, grid->oSites(),{
for(int j=j0; j<j1; ++j) B[j]=0.;
for(int j=j0; j<j1; ++j){
for(int k=k0; k<k1; ++k){
B[j] +=Qt(j,k) * basis_v[k][ss];
}
}
for(int j=j0; j<j1; ++j){
basis_v[j][ss] = B[j];
}
});
}
#else
int nrot = j1-j0;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
// printf("BasisRotate %d %d nrot %d siteBlock %d\n",j0,j1,nrot,siteBlock);
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of Eigen matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
for(int k=0;k<Nm;++k){
for(int j=0;j<Nm;++j){
Qt_p[j*Nm+k]=Qt(j,k);
}
}
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
auto z=coalescedRead(Bp[ss]);
z=Zero();
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
#endif
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
GridBase* grid = basis[0].Grid();
typedef typename Field::vector_object vobj;
typedef decltype(basis[0].View(AcceleratorWrite)) View;
result.Checkerboard() = basis[0].Checkerboard();
autoView(result_v,result, AcceleratorWrite);
Vector<View> basis_v; basis_v.reserve(basis.size());
View * basis_vp = &basis_v[0];
for(int k=0;k<basis.size();k++) basis_v.push_back(basis[k].View(AcceleratorRead));
Vector<double> Qt_jv(Nm); double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(basis_vp[k0][ss]);
B=Zero();
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
/////////////////////////////////////////////////////////////
// Implicitly restarted lanczos
/////////////////////////////////////////////////////////////