1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-18 07:47:06 +01:00

Merge branch 'develop' into sycl

This commit is contained in:
Peter Boyle
2020-06-09 04:00:12 -04:00
85 changed files with 2632 additions and 1334 deletions

View File

@ -36,7 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_local.h>
#include <Grid/lattice/Lattice_reduction.h>
#include <Grid/lattice/Lattice_peekpoke.h>
#include <Grid/lattice/Lattice_reality.h>
//#include <Grid/lattice/Lattice_reality.h>
#include <Grid/lattice/Lattice_comparison_utils.h>
#include <Grid/lattice/Lattice_comparison.h>
#include <Grid/lattice/Lattice_coordinate.h>
@ -44,4 +44,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/lattice/Lattice_rng.h>
#include <Grid/lattice/Lattice_unary.h>
#include <Grid/lattice/Lattice_transfer.h>
#include <Grid/lattice/Lattice_basis.h>

View File

@ -9,6 +9,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: neo <cossu@post.kek.jp>
Author: Christoph Lehner <christoph@lhnr.de
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -99,7 +100,7 @@ const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
template <class lobj> accelerator_inline
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
{
auto view = arg.View();
auto view = arg.View(AcceleratorRead);
return view[ss];
}
#endif

View File

@ -7,6 +7,7 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

View File

@ -9,6 +9,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -91,6 +92,7 @@ public:
// The view is trivially copy constructible and may be copied to an accelerator device
// in device lambdas
/////////////////////////////////////////////////////////////////////////////////
LatticeView<vobj> View (ViewMode mode) const
{
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);

View File

@ -0,0 +1,226 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_basis.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template<class Field>
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
{
// If assume basis[j] are already orthonormal,
// can take all inner products in parallel saving 2x bandwidth
// Save 3x bandwidth on the second line of loop.
// perhaps 2.5x speed up.
// 2x overall in Multigrid Lanczos
for(int j=0; j<k; ++j){
auto ip = innerProduct(basis[j],w);
w = w - ip*basis[j];
}
}
template<class VField, class Matrix>
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
{
typedef decltype(basis[0]) Field;
typedef decltype(basis[0].View(AcceleratorRead)) View;
Vector<View> basis_v; basis_v.reserve(basis.size());
GridBase* grid = basis[0].Grid();
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
View *basis_vp = &basis_v[0];
int nrot = j1-j0;
if (!nrot) // edge case not handled gracefully by Cuda
return;
uint64_t oSites =grid->oSites();
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
Vector <vobj> Bt(siteBlock * nrot);
auto Bp=&Bt[0];
// GPU readable copy of matrix
Vector<double> Qt_jv(Nm*Nm);
double *Qt_p = & Qt_jv[0];
thread_for(i,Nm*Nm,{
int j = i/Nm;
int k = i%Nm;
Qt_p[i]=Qt(j,k);
});
// Block the loop to keep storage footprint down
for(uint64_t s=0;s<oSites;s+=siteBlock){
// remaining work in this block
int ssites=MIN(siteBlock,oSites-s);
// zero out the accumulators
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
decltype(coalescedRead(Bp[ss])) z;
z=Zero();
coalescedWrite(Bp[ss],z);
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
for(int k=k0; k<k1; ++k){
auto tmp = coalescedRead(Bp[ss*nrot+j]);
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
}
});
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
int j =sj%nrot;
int jj =j0+j;
int ss =sj/nrot;
int sss=ss+s;
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
});
}
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
// Extract a single rotated vector
template<class Field>
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
{
typedef decltype(basis[0].View(AcceleratorRead)) View;
typedef typename Field::vector_object vobj;
GridBase* grid = basis[0].Grid();
result.Checkerboard() = basis[0].Checkerboard();
Vector<View> basis_v; basis_v.reserve(basis.size());
for(int k=0;k<basis.size();k++){
basis_v.push_back(basis[k].View(AcceleratorRead));
}
vobj zz=Zero();
Vector<double> Qt_jv(Nm);
double * Qt_j = & Qt_jv[0];
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
}
coalescedWrite(result_v[ss], B);
});
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
}
template<class Field>
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
{
int vlen = idx.size();
assert(vlen>=1);
assert(vlen<=sort_vals.size());
assert(vlen<=_v.size());
for (size_t i=0;i<vlen;i++) {
if (idx[i] != i) {
//////////////////////////////////////
// idx[i] is a table of desired sources giving a permutation.
// Swap v[i] with v[idx[i]].
// Find j>i for which _vnew[j] = _vold[i],
// track the move idx[j] => idx[i]
// track the move idx[i] => i
//////////////////////////////////////
size_t j;
for (j=i;j<idx.size();j++)
if (idx[j]==i)
break;
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
std::swap(sort_vals[i],sort_vals[idx[i]]);
idx[j] = idx[i];
idx[i] = i;
}
}
}
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
{
std::vector<int> idx(sort_vals.size());
std::iota(idx.begin(), idx.end(), 0);
// sort indexes based on comparing values in v
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
});
return idx;
}
template<class Field>
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
{
std::vector<int> idx = basisSortGetIndex(sort_vals);
if (reverse)
std::reverse(idx.begin(), idx.end());
basisReorderInPlace(_v,sort_vals,idx);
}
// PAB: faster to compute the inner products first then fuse loops.
// If performance critical can improve.
template<class Field>
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
result = Zero();
assert(_v.size()==eval.size());
int N = (int)_v.size();
for (int i=0;i<N;i++) {
Field& tmp = _v[i];
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
}
}
NAMESPACE_END(Grid);

View File

@ -40,8 +40,11 @@ NAMESPACE_BEGIN(Grid);
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard()=lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
});
@ -50,8 +53,11 @@ template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
autoView( lhs_v, lhs, AcceleratorRead);
autoView( ret_v, ret, AcceleratorWrite);
ret.Checkerboard() = lhs.Checkerboard();
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss)));
});

View File

@ -5,6 +5,7 @@
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
@ -64,6 +65,37 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
return ssum;
}
template<class vobj>
inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
{
typedef typename vobj::scalar_objectD sobj;
const int nthread = GridThread::GetThreads();
Vector<sobj> sumarray(nthread);
for(int i=0;i<nthread;i++){
sumarray[i]=Zero();
}
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
vobj vvsum=Zero();
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg[ss];
}
sumarray[thr]=Reduce(vvsum);
});
sobj ssum=Zero(); // sum across threads
for(int i=0;i<nthread;i++){
ssum = ssum+sumarray[i];
}
return ssum;
}
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
@ -74,6 +106,15 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
return sum_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{
#if defined(GRID_CUDA)||defined(GRID_HIP)
return sumD_gpu(arg,osites);
#else
return sumD_cpu(arg,osites);
#endif
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
@ -101,44 +142,49 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
ComplexD nrm;
GridBase *grid = left.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// Might make all code paths go this way.
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
// GPU - SIMT lane compliance...
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
{
autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead);
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
})
// GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss);
auto y_l = right_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
})
}
// This is in single precision and fails some tests
// Need a sumD that sums in double
#if defined(GRID_CUDA)||defined(GRID_HIP)
nrm = TensorRemove(sumD_gpu(inner_tmp_v,sites));
#else
nrm = TensorRemove(sum_cpu(inner_tmp_v,sites));
#endif
grid->GlobalSum(nrm);
nrm = TensorRemove(sumD(inner_tmp_v,sites));
return nrm;
}
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
GridBase *grid = left.Grid();
ComplexD nrm = rankInnerProduct(left,right);
grid->GlobalSum(nrm);
return nrm;
}
/////////////////////////
// Fast axpby_norm
// z = a x + b y
@ -181,17 +227,51 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
coalescedWrite(z_v[ss],tmp);
});
#if defined(GRID_CUDA)||defined(GRID_HIP)
nrm = real(TensorRemove(sumD_gpu(inner_tmp_v,sites)));
#else
// Already promoted to double
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
#endif
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
grid->GlobalSum(nrm);
return nrm;
}
template<class vobj> strong_inline void
innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right)
{
conformable(left,right);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2);
GridBase *grid = left.Grid();
const uint64_t nsimd = grid->Nsimd();
const uint64_t sites = grid->oSites();
// GPU
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
typedef decltype(innerProduct(vobj(),vobj())) norm_t;
Vector<inner_t> inner_tmp(sites);
Vector<norm_t> norm_tmp(sites);
auto inner_tmp_v = &inner_tmp[0];
auto norm_tmp_v = &norm_tmp[0];
{
autoView(left_v,left, AcceleratorRead);
autoView(right_v,right,AcceleratorRead);
accelerator_for( ss, sites, nsimd,{
auto left_tmp = left_v(ss);
coalescedWrite(inner_tmp_v[ss],innerProduct(left_tmp,right_v(ss)));
coalescedWrite(norm_tmp_v[ss],innerProduct(left_tmp,left_tmp));
});
}
tmp[0] = TensorRemove(sumD(inner_tmp_v,sites));
tmp[1] = TensorRemove(sumD(norm_tmp_v,sites));
grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector
ip = tmp[0];
nrm = real(tmp[1]);
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object

View File

@ -37,6 +37,7 @@ NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace
////////////////////////////////////////////////////////////////////////////////////////////////////
/*
template<class vobj>
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
{
@ -48,6 +49,7 @@ inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
});
return ret;
};
*/
////////////////////////////////////////////////////////////////////////////////////////////////////
// Trace Index level dependent operation

View File

@ -6,6 +6,7 @@
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -83,32 +84,138 @@ template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Latti
}
});
}
template<class vobj,class CComplex,int nbasis>
////////////////////////////////////////////////////////////////////////////////////////////
// Flexible Type Conversion for internal promotion to double as well as graceful
// treatment of scalar-compatible types
////////////////////////////////////////////////////////////////////////////////////////////
accelerator_inline void convertType(ComplexD & out, const std::complex<double> & in) {
out = in;
}
accelerator_inline void convertType(ComplexF & out, const std::complex<float> & in) {
out = in;
}
#ifdef GRID_SIMT
accelerator_inline void convertType(vComplexF & out, const ComplexF & in) {
((ComplexF*)&out)[SIMTlane(vComplexF::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD & out, const ComplexD & in) {
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd())] = in;
}
accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
((ComplexD*)&out)[SIMTlane(vComplexD::Nsimd()*2)] = in;
}
#endif
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
}
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in);
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in);
template<typename T1,typename T2, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr>
accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal);
}
template<typename T1,typename T2>
accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iMatrix<T1,N> & out, const iMatrix<T2,N> & in) {
for (int i=0;i<N;i++)
for (int j=0;j<N;j++)
convertType(out._internal[i][j],in._internal[i][j]);
}
template<typename T1,typename T2,int N>
accelerator_inline void convertType(iVector<T1,N> & out, const iVector<T2,N> & in) {
for (int i=0;i<N;i++)
convertType(out._internal[i],in._internal[i]);
}
template<typename T, typename std::enable_if<isGridFundamental<T>::value, T>::type* = nullptr>
accelerator_inline void convertType(T & out, const T & in) {
out = in;
}
template<typename T1,typename T2>
accelerator_inline void convertType(Lattice<T1> & out, const Lattice<T2> & in) {
autoView( out_v , out,AcceleratorWrite);
autoView( in_v , in ,AcceleratorRead);
accelerator_for(ss,out_v.size(),T1::Nsimd(),{
convertType(out_v[ss],in_v(ss));
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// precision-promoted local inner product
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
inline auto localInnerProductD(const Lattice<vobj> &lhs,const Lattice<vobj> &rhs)
-> Lattice<iScalar<decltype(TensorRemove(innerProductD2(lhs.View()[0],rhs.View()[0])))>>
{
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
typedef decltype(TensorRemove(innerProductD2(lhs_v[0],rhs_v[0]))) t_inner;
Lattice<iScalar<t_inner>> ret(lhs.Grid());
{
autoView(ret_v, ret,AcceleratorWrite);
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
convertType(ret_v[ss],innerProductD2(lhs_v(ss),rhs_v(ss)));
});
}
return ret;
}
////////////////////////////////////////////////////////////////////////////////////////////
// block routines
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
const Lattice<vobj> &fineData,
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
Lattice<CComplex> ip(coarse);
Lattice<iScalar<CComplex>> ip(coarse);
Lattice<vobj> fineDataRed = fineData;
autoView( coarseData_ , coarseData, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorWrite);
for(int v=0;v<nbasis;v++) {
blockInnerProduct(ip,Basis[v],fineData);
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
coalescedWrite(coarseData_[sc](v),ip_(sc));
convertType(coarseData_[sc](v),ip_[sc]);
});
// improve numerical stability of projection
// |fine> = |fine> - <basis|fine> |basis>
ip=-ip;
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
}
}
template<class vobj,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<CComplex> &coarseA,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
template<class vobj,class vobj2,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<CComplex> &coarseA,
const Lattice<vobj2> &fineX,
const Lattice<vobj> &fineY)
{
GridBase * fine = fineZ.Grid();
GridBase * coarse= coarseA.Grid();
@ -120,7 +227,7 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
conformable(fineX,fineZ);
int _ndimension = coarse->_ndimension;
Coordinate block_r (_ndimension);
// FIXME merge with subdivide checking routine as this is redundant
@ -135,23 +242,60 @@ inline void blockZAXPY(Lattice<vobj> &fineZ,
autoView( coarseA_, coarseA, AcceleratorRead);
accelerator_for(sf, fine->oSites(), CComplex::Nsimd(), {
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
// z = A x + y
coalescedWrite(fineZ_[sf],coarseA_(sc)*fineX_(sf)+fineY_(sf));
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
});
// z = A x + y
#ifdef GRID_SIMT
typename vobj2::tensor_reduced::scalar_object cA;
typename vobj::scalar_object cAx;
#else
typename vobj2::tensor_reduced cA;
vobj cAx;
#endif
convertType(cA,TensorRemove(coarseA_(sc)));
auto prod = cA*fineX_(sf);
convertType(cAx,prod);
coalescedWrite(fineZ_[sf],cAx+fineY_(sf));
});
return;
}
template<class vobj,class CComplex>
inline void blockInnerProductD(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef iScalar<decltype(TensorRemove(innerProductD2(vobj(),vobj())))> dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
// Precision promotion
fine_inner = localInnerProductD(fineX,fineY);
blockSum(coarse_inner,fine_inner);
{
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
});
}
}
template<class vobj,class CComplex> // deprecate
inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
@ -167,12 +311,15 @@ inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
// Precision promotion?
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
autoView( CoarseInner_ , CoarseInner, AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner, AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
{
autoView( CoarseInner_ , CoarseInner, AcceleratorWrite);
autoView( coarse_inner_ , coarse_inner, AcceleratorRead);
accelerator_for(ss, coarse->oSites(), 1, {
CoarseInner_[ss] = coarse_inner_[ss];
});
}
}
template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
@ -185,7 +332,7 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
// useful in multigrid project;
// Generic name : Coarsen?
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
@ -193,9 +340,9 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
subdivides(coarse,fine); // require they map
int _ndimension = coarse->_ndimension;
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
@ -208,27 +355,28 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
accelerator_for(sc,coarse->oSites(),1,{
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
// One thread per sub block
Coordinate coor_c(_ndimension);
Lexicographic::CoorFromIndex(coor_c,sc,coarse->_rdimensions); // Block coordinate
coarseData_[sc]=Zero();
for(int sb=0;sb<blockVol;sb++){
int sf;
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
for(int sb=0;sb<blockVol;sb++){
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
int sf;
Coordinate coor_b(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
Lexicographic::IndexFromCoor(coor_f,sf,fine->_rdimensions);
});
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
});
return;
}
template<class vobj>
inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vobj> &picked,Coordinate coor)
{
@ -250,8 +398,8 @@ inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vob
}
}
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis)
template<class CComplex,class VLattice>
inline void blockOrthonormalize(Lattice<CComplex> &ip,VLattice &Basis)
{
GridBase *coarse = ip.Grid();
GridBase *fine = Basis[0].Grid();
@ -259,23 +407,30 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
int nbasis = Basis.size() ;
// checks
subdivides(coarse,fine);
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i].Grid(),fine);
}
for(int v=0;v<nbasis;v++) {
for(int u=0;u<v;u++) {
//Inner product & remove component
blockInnerProduct(ip,Basis[u],Basis[v]);
//Inner product & remove component
blockInnerProductD(ip,Basis[u],Basis[v]);
ip = -ip;
blockZAXPY<vobj,CComplex> (Basis[v],ip,Basis[u],Basis[v]);
blockZAXPY(Basis[v],ip,Basis[u],Basis[v]);
}
blockNormalise(ip,Basis[v]);
}
}
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis) // deprecated inaccurate naming
{
blockOrthonormalize(ip,Basis);
}
#if 0
// TODO: CPU optimized version here
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
@ -320,17 +475,17 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
}
#else
template<class vobj,class CComplex,int nbasis>
template<class vobj,class CComplex,int nbasis,class VLattice>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
const VLattice &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
fineData=Zero();
for(int i=0;i<nbasis;i++) {
Lattice<iScalar<CComplex> > ip = PeekIndex<0>(coarseData,i);
Lattice<CComplex> cip(coarse);
autoView( cip_ , cip, AcceleratorWrite);
autoView( ip_ , ip, AcceleratorRead);
@ -407,6 +562,7 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Coordinate rdt = Tg->_rdimensions;
Coordinate ist = Tg->_istride;
Coordinate ost = Tg->_ostride;
autoView( t_v , To, AcceleratorWrite);
autoView( f_v , From, AcceleratorRead);
accelerator_for(idx,Fg->lSites(),1,{

View File

@ -38,6 +38,7 @@ NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
/*
template<class vobj>
inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
Lattice<vobj> ret(lhs.Grid());
@ -48,7 +49,8 @@ inline Lattice<vobj> transpose(const Lattice<vobj> &lhs){
});
return ret;
};
*/
////////////////////////////////////////////////////////////////////////////////////////////////////
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////