mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
Getting closer to having a wilson solver... introducing a first and untested
cut at Conjugate gradient. Also copied in Remez, Zolotarev, Chebyshev from Mike Clark, Tony Kennedy and my BFM package respectively since we know we will need these. I wanted the structure of algorithms/approx algorithms/iterative etc.. to start taking shape.
This commit is contained in:
parent
8e99e4671f
commit
d0e4673a3f
13
configure
vendored
13
configure
vendored
@ -4244,7 +4244,18 @@ fi
|
||||
|
||||
done
|
||||
|
||||
#AC_CHECK_HEADERS(machine/endian.h)
|
||||
for ac_header in gmp.h
|
||||
do :
|
||||
ac_fn_cxx_check_header_mongrel "$LINENO" "gmp.h" "ac_cv_header_gmp_h" "$ac_includes_default"
|
||||
if test "x$ac_cv_header_gmp_h" = xyes; then :
|
||||
cat >>confdefs.h <<_ACEOF
|
||||
#define HAVE_GMP_H 1
|
||||
_ACEOF
|
||||
|
||||
fi
|
||||
|
||||
done
|
||||
|
||||
ac_fn_cxx_check_decl "$LINENO" "ntohll" "ac_cv_have_decl_ntohll" "#include <arpa/inet.h>
|
||||
"
|
||||
if test "x$ac_cv_have_decl_ntohll" = xyes; then :
|
||||
|
@ -20,7 +20,7 @@ AC_CHECK_HEADERS(mm_malloc.h)
|
||||
AC_CHECK_HEADERS(malloc/malloc.h)
|
||||
AC_CHECK_HEADERS(malloc.h)
|
||||
AC_CHECK_HEADERS(endian.h)
|
||||
#AC_CHECK_HEADERS(machine/endian.h)
|
||||
AC_CHECK_HEADERS(gmp.h)
|
||||
AC_CHECK_DECLS([ntohll],[], [], [[#include <arpa/inet.h>]])
|
||||
AC_CHECK_DECLS([be64toh],[], [], [[#include <arpa/inet.h>]])
|
||||
|
||||
|
23
lib/Grid.h
23
lib/Grid.h
@ -10,15 +10,17 @@
|
||||
#ifndef GRID_H
|
||||
#define GRID_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <cassert>
|
||||
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <valarray>
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <iomanip>
|
||||
#include <random>
|
||||
#include <functional>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/time.h>
|
||||
#include <stdio.h>
|
||||
@ -45,16 +47,19 @@
|
||||
#endif
|
||||
|
||||
#include <Grid_aligned_allocator.h>
|
||||
|
||||
#include <Grid_simd.h>
|
||||
#include <Grid_threads.h>
|
||||
|
||||
#include <Grid_cartesian.h>
|
||||
|
||||
#include <Grid_math.h>
|
||||
#include <Grid_lattice.h>
|
||||
#include <Grid_cartesian.h> // subdir aggregate
|
||||
#include <Grid_math.h> // subdir aggregate
|
||||
#include <Grid_lattice.h> // subdir aggregate
|
||||
#include <Grid_comparison.h>
|
||||
#include <Grid_cshift.h>
|
||||
#include <Grid_stencil.h>
|
||||
#include <Grid_cshift.h> // subdir aggregate
|
||||
#include <Grid_stencil.h> // subdir aggregate
|
||||
|
||||
#include <Grid_algorithms.h>// subdir aggregate
|
||||
|
||||
#include <qcd/Grid_qcd.h>
|
||||
#include <parallelIO/GridNerscIO.h>
|
||||
|
||||
|
34
lib/Grid_algorithms.h
Normal file
34
lib/Grid_algorithms.h
Normal file
@ -0,0 +1,34 @@
|
||||
#ifndef GRID_ALGORITHMS_H
|
||||
#define GRID_ALGORITHMS_H
|
||||
|
||||
#include <algorithms/SparseMatrix.h>
|
||||
#include <algorithms/LinearOperator.h>
|
||||
|
||||
#include <algorithms/iterative/ConjugateGradient.h>
|
||||
#include <algorithms/iterative/NormalEquations.h>
|
||||
#include <algorithms/iterative/SchurRedBlack.h>
|
||||
|
||||
#include <algorithms/approx/Zolotarev.h>
|
||||
#include <algorithms/approx/Chebyshev.h>
|
||||
#include <algorithms/approx/Remez.h>
|
||||
|
||||
// Eigen/lanczos
|
||||
// EigCg
|
||||
// MCR
|
||||
// Pcg
|
||||
// Multishift CG
|
||||
// Hdcg
|
||||
// GCR
|
||||
// etc..
|
||||
|
||||
// integrator/Leapfrog
|
||||
// integrator/Omelyan
|
||||
// integrator/ForceGradient
|
||||
|
||||
// montecarlo/hmc
|
||||
// montecarlo/rhmc
|
||||
// montecarlo/metropolis
|
||||
// etc...
|
||||
|
||||
|
||||
#endif
|
@ -29,6 +29,9 @@
|
||||
/* Define to 1 if you have the `gettimeofday' function. */
|
||||
#undef HAVE_GETTIMEOFDAY
|
||||
|
||||
/* Define to 1 if you have the <gmp.h> header file. */
|
||||
#undef HAVE_GMP_H
|
||||
|
||||
/* Define to 1 if you have the <inttypes.h> header file. */
|
||||
#undef HAVE_INTTYPES_H
|
||||
|
||||
|
@ -19,35 +19,50 @@ libGrid_a_SOURCES =\
|
||||
stencil/Grid_stencil_common.cc\
|
||||
qcd/Grid_qcd_dirac.cc\
|
||||
qcd/Grid_qcd_wilson_dop.cc\
|
||||
algorithms/approx/Zolotarev.cc\
|
||||
algorithms/approx/Remez.cc\
|
||||
$(extra_sources)
|
||||
|
||||
#
|
||||
# Include files
|
||||
#
|
||||
include_HEADERS =\
|
||||
nobase_include_HEADERS = algorithms/approx/bigfloat.h\
|
||||
algorithms/approx/Chebyshev.h\
|
||||
algorithms/approx/Remez.h\
|
||||
algorithms/approx/Zolotarev.h\
|
||||
algorithms/iterative/ConjugateGradient.h\
|
||||
algorithms/iterative/NormalEquations.h\
|
||||
algorithms/iterative/SchurRedBlack.h\
|
||||
algorithms/LinearOperator.h\
|
||||
algorithms/SparseMatrix.h\
|
||||
cartesian/Grid_cartesian_base.h\
|
||||
cartesian/Grid_cartesian_full.h\
|
||||
cartesian/Grid_cartesian_red_black.h\
|
||||
communicator/Grid_communicator_base.h\
|
||||
cshift/Grid_cshift_common.h\
|
||||
cshift/Grid_cshift_mpi.h\
|
||||
cshift/Grid_cshift_none.h\
|
||||
Grid.h\
|
||||
Grid_algorithms.h\
|
||||
Grid_aligned_allocator.h\
|
||||
Grid_cartesian.h\
|
||||
Grid_communicator.h\
|
||||
Grid_comparison.h\
|
||||
Grid_config.h\
|
||||
Grid_cshift.h\
|
||||
Grid_extract.h\
|
||||
Grid_lattice.h\
|
||||
Grid_math.h\
|
||||
Grid_simd.h\
|
||||
Grid_stencil.h
|
||||
|
||||
nobase_include_HEADERS=\
|
||||
cartesian/Grid_cartesian_base.h\
|
||||
cartesian/Grid_cartesian_full.h\
|
||||
cartesian/Grid_cartesian_red_black.h\
|
||||
cshift/Grid_cshift_common.h\
|
||||
cshift/Grid_cshift_mpi.h\
|
||||
cshift/Grid_cshift_none.h\
|
||||
Grid_stencil.h\
|
||||
Grid_threads.h\
|
||||
lattice/Grid_lattice_arith.h\
|
||||
lattice/Grid_lattice_base.h\
|
||||
lattice/Grid_lattice_comparison.h\
|
||||
lattice/Grid_lattice_conformable.h\
|
||||
lattice/Grid_lattice_coordinate.h\
|
||||
lattice/Grid_lattice_ET.h\
|
||||
lattice/Grid_lattice_local.h\
|
||||
lattice/Grid_lattice_overload.h\
|
||||
lattice/Grid_lattice_peekpoke.h\
|
||||
lattice/Grid_lattice_reality.h\
|
||||
lattice/Grid_lattice_reduction.h\
|
||||
@ -71,8 +86,11 @@ nobase_include_HEADERS=\
|
||||
math/Grid_math_trace.h\
|
||||
math/Grid_math_traits.h\
|
||||
math/Grid_math_transpose.h\
|
||||
parallelIO/GridNerscIO.h\
|
||||
qcd/Grid_qcd.h\
|
||||
qcd/Grid_qcd_2spinor.h\
|
||||
qcd/Grid_qcd_dirac.h\
|
||||
qcd/Grid_qcd_wilson_dop.h\
|
||||
simd/Grid_vComplexD.h\
|
||||
simd/Grid_vComplexF.h\
|
||||
simd/Grid_vInteger.h\
|
||||
|
@ -1,26 +1,8 @@
|
||||
#ifndef GRID_ALGORITHM_LINEAR_OP_H
|
||||
#define GRID_ALGORITHM_LINEAR_OP_H
|
||||
|
||||
#include <Grid.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SparseMatrixBase {
|
||||
public:
|
||||
// Full checkerboar operations
|
||||
virtual void M (const Field &in, Field &out);
|
||||
virtual void Mdag (const Field &in, Field &out);
|
||||
virtual RealD MdagM(const Field &in, Field &out);
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Mpc (const Field &in, Field &out);
|
||||
virtual void MpcDag (const Field &in, Field &out);
|
||||
virtual RealD MpcDagMpc(const Field &in, Field &out);
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// LinearOperators Take a something and return a something.
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -61,11 +43,11 @@ namespace Grid {
|
||||
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
|
||||
// replication of code.
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class SparseMatrix,class Field>
|
||||
template<class Matrix,class Field>
|
||||
class NonHermitianOperator : public LinearOperatorBase<Field> {
|
||||
SparseMatrix &_Mat;
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
NonHermitianOperator(SparseMatrix &Mat): _Mat(Mat){};
|
||||
NonHermitianOperator(Matrix &Mat): _Mat(Mat){};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
@ -77,11 +59,11 @@ namespace Grid {
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Redblack Non hermitian wrapper
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class SparseMatrix,class Field>
|
||||
class NonHermitianRedBlackOperator : public LinearOperatorBase<Field> {
|
||||
SparseMatrix &_Mat;
|
||||
template<class Matrix,class Field>
|
||||
class NonHermitianCheckerBoardedOperator : public LinearOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
NonHermitianRedBlackOperator(SparseMatrix &Mat): _Mat(Mat){};
|
||||
NonHermitianCheckerBoardedOperator(Matrix &Mat): _Mat(Mat){};
|
||||
void Op (const Field &in, Field &out){
|
||||
_Mat.Mpc(in,out);
|
||||
}
|
||||
@ -93,75 +75,35 @@ namespace Grid {
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hermitian wrapper
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class SparseMatrix,class Field>
|
||||
template<class Matrix,class Field>
|
||||
class HermitianOperator : public HermitianOperatorBase<Field> {
|
||||
SparseMatrix &_Mat;
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
HermitianOperator(SparseMatrix &Mat): _Mat(Mat) {};
|
||||
HermitianOperator(Matrix &Mat): _Mat(Mat) {};
|
||||
RealD OpAndNorm(const Field &in, Field &out){
|
||||
return _Mat.MdagM(in,out);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hermitian RedBlack wrapper
|
||||
// Hermitian CheckerBoarded wrapper
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class SparseMatrix,class Field>
|
||||
class HermitianRedBlackOperator : public HermitianOperatorBase<Field> {
|
||||
SparseMatrix &_Mat;
|
||||
template<class Matrix,class Field>
|
||||
class HermitianCheckerBoardedOperator : public HermitianOperatorBase<Field> {
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
HermitianRedBlackOperator(SparseMatrix &Mat): _Mat(Mat) {};
|
||||
RealD OpAndNorm(const Field &in, Field &out){
|
||||
return _Mat.MpcDagMpc(in,out);
|
||||
HermitianCheckerBoardedOperator(Matrix &Mat): _Mat(Mat) {};
|
||||
void OpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for functions of operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class OperatorFunction {
|
||||
public:
|
||||
virtual void operator() (LinearOperatorBase<Field> *Linop, const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for polynomial functions of operators ? needed?
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class OperatorPolynomial : public OperatorFunction<Field> {
|
||||
public:
|
||||
virtual void operator() (LinearOperatorBase<Field> *Linop,const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class IterativeProcess : public OperatorFunction<Field> {
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
IterativeProcess(RealD tol,Integer maxit) : Tolerance(tol),MaxIterations(maxit) {};
|
||||
virtual void operator() (LinearOperatorBase<Field> *Linop,const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Grand daddy iterative method
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class ConjugateGradient : public IterativeProcess<Field> {
|
||||
public:
|
||||
virtual void operator() (HermitianOperatorBase<Field> *Linop,const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// A little more modern
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Field> class PreconditionedConjugateGradient : public IterativeProcess<Field> {
|
||||
public:
|
||||
void operator() (HermitianOperatorBase<Field> *Linop,
|
||||
OperatorFunction<Field> *Preconditioner,
|
||||
const Field &in,
|
||||
Field &out) = 0;
|
||||
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
|
||||
};
|
||||
|
||||
// FIXME : To think about
|
||||
|
72
lib/algorithms/SparseMatrix.h
Normal file
72
lib/algorithms/SparseMatrix.h
Normal file
@ -0,0 +1,72 @@
|
||||
#ifndef GRID_ALGORITHM_SPARSE_MATRIX_H
|
||||
#define GRID_ALGORITHM_SPARSE_MATRIX_H
|
||||
|
||||
#include <Grid.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Interface defining what I expect of a general sparse matrix, such as a Fermion action
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SparseMatrixBase {
|
||||
public:
|
||||
// Full checkerboar operations
|
||||
virtual RealD M (const Field &in, Field &out)=0;
|
||||
virtual RealD Mdag (const Field &in, Field &out)=0;
|
||||
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
Field tmp (in._grid);
|
||||
ni=M(in,tmp);
|
||||
no=Mdag(tmp,out);
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Interface augmented by a red black sparse matrix, such as a Fermion action
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
|
||||
public:
|
||||
|
||||
// half checkerboard operaions
|
||||
virtual void Meooe (const Field &in, Field &out)=0;
|
||||
virtual void Mooee (const Field &in, Field &out)=0;
|
||||
virtual void MooeeInv (const Field &in, Field &out)=0;
|
||||
|
||||
virtual void MeooeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeInvDag (const Field &in, Field &out)=0;
|
||||
|
||||
// Schur decomp operators
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
|
||||
Meooe(in,tmp);
|
||||
MooeeInv(tmp,out);
|
||||
Meooe(out,tmp);
|
||||
|
||||
Mooee(in,out);
|
||||
out=out-tmp; // axpy_norm
|
||||
RealD n=norm2(out);
|
||||
return n;
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in._grid);
|
||||
|
||||
MeooeDag(in,tmp);
|
||||
MooeeInvDag(tmp,out);
|
||||
MeooeDag(out,tmp);
|
||||
|
||||
MooeeDag(in,out);
|
||||
out=out-tmp; // axpy_norm
|
||||
RealD n=norm2(out);
|
||||
return n;
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD ni,RealD no) {
|
||||
Field tmp(in._grid);
|
||||
ni=Mpc(in,tmp);
|
||||
no=Mpc(tmp,out);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -1,5 +1,5 @@
|
||||
#ifndef GRID_POLYNOMIAL_APPROX_H
|
||||
#define GRID_POLYNOMIAL_APPROX_H
|
||||
#ifndef GRID_CHEBYSHEV_H
|
||||
#define GRID_CHEBYSHEV_H
|
||||
|
||||
#include<Grid.h>
|
||||
#include<algorithms/LinearOperator.h>
|
||||
@ -12,7 +12,7 @@ namespace Grid {
|
||||
template<class Field>
|
||||
class Polynomial : public OperatorFunction<Field> {
|
||||
private:
|
||||
std::vector<double> _oeffs;
|
||||
std::vector<double> Coeffs;
|
||||
public:
|
||||
Polynomial(std::vector<double> &_Coeffs) : Coeffs(_Coeffs) {};
|
||||
|
||||
@ -111,17 +111,13 @@ namespace Grid {
|
||||
double xscale = 2.0/(hi-lo);
|
||||
double mscale = -(hi+lo)/(hi-lo);
|
||||
|
||||
Field *T0=Tnm;
|
||||
Field *T1=Tn;
|
||||
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
Linop.Op(T0,y);
|
||||
|
||||
T1=y*xscale+in*mscale;
|
||||
|
||||
// sum = .5 c[0] T0 + c[1] T1
|
||||
out = (0.5*coeffs[0])*T0 + coeffs[1]*T1;
|
||||
out = (0.5*Coeffs[0])*T0 + Coeffs[1]*T1;
|
||||
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
@ -131,7 +127,7 @@ namespace Grid {
|
||||
|
||||
*Tnp=2.0*y-(*Tnm);
|
||||
|
||||
out=out+coeffs[n]* (*Tnp);
|
||||
out=out+Coeffs[n]* (*Tnp);
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
21
lib/algorithms/approx/LICENSE
Normal file
21
lib/algorithms/approx/LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
|
||||
Copyright (c) 2011 Michael Clark
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
80
lib/algorithms/approx/README
Normal file
80
lib/algorithms/approx/README
Normal file
@ -0,0 +1,80 @@
|
||||
-----------------------------------------------------------------------------------
|
||||
|
||||
PAB. Took Mike Clark's AlgRemez from GitHub and (modified a little) include.
|
||||
This is open source and license and readme and comments are preserved consistent
|
||||
with the license. Mike, thankyou!
|
||||
-----------------------------------------------------------------------------------
|
||||
-----------------------------------------------------------------------------------
|
||||
AlgRemez
|
||||
|
||||
The archive downloadable here contains an implementation of the Remez
|
||||
algorithm which calculates optimal rational (and polynomial)
|
||||
approximations to the nth root over a given spectral range. The Remez
|
||||
algorithm, although in principle is extremely straightforward to
|
||||
program, is quite difficult to get completely correct, e.g., the Maple
|
||||
implementation of the algorithm does not always converge to the
|
||||
correct answer.
|
||||
|
||||
To use this algorithm you need to install GMP, the GNU Multiple
|
||||
Precision Library, and when configuring the install, you must include
|
||||
the --enable-mpfr option (see the GMP manual for more details). You
|
||||
also have to edit the Makefile for AlgRemez appropriately for your
|
||||
system, namely to point corrrectly to the location of the GMP library.
|
||||
|
||||
The simple main program included with this archive invokes the
|
||||
AlgRemez class to calculate an approximation given by command line
|
||||
arguments. It is invoked by the following
|
||||
|
||||
./test y z n d lambda_low lambda_high precision,
|
||||
|
||||
where the function to be approximated is f(x) = x^(y/z), with degree
|
||||
(n,d) over the spectral range [lambda_low, lambda_high], using
|
||||
precision digits of precision in the arithmetic. So an example would
|
||||
be
|
||||
|
||||
./test 1 2 5 5 0.0004 64 40
|
||||
|
||||
which corresponds to constructing a rational approximation to the
|
||||
square root function, with degree (5,5) over the range [0.0004,64]
|
||||
with 40 digits of precision used for the arithmetic. The parameters y
|
||||
and z must be positive, the approximation to f(x) = x^(-y/z) is simply
|
||||
the inverse of the approximation to f(x) = x^(y/z). After the
|
||||
approximation has been constructed, the roots and poles of the
|
||||
rational function are found, and then the partial fraction expansion
|
||||
of both the rational function and it's inverse are found, the results
|
||||
of which are output to a file called "approx.dat". In addition, the
|
||||
error function of the approximation is output to "error.dat", where it
|
||||
can be checked that the resultant approximation satisfies Chebychev's
|
||||
criterion, namely all error maxima are equal in magnitude, and
|
||||
adjacent maxima are oppostie in sign. There are some caveats here
|
||||
however, the optimal polynomial approximation has complex roots, and
|
||||
the root finding implemented here cannot (yet) handle complex roots.
|
||||
In addition, the partial fraction expansion of rational approximations
|
||||
is only found for the case n = d, i.e., the degree of numerator
|
||||
polynomial equals that of the denominator polynomial. The convention
|
||||
for the partial fraction expansion is that polar shifts are always
|
||||
written added to x, not subtracted.
|
||||
|
||||
To do list
|
||||
|
||||
1. Include an exponential dampening factor in the function to be
|
||||
approximated. This may sound trivial to implement, but for some
|
||||
parameters, the algorithm seems to breakdown. Also, the roots in the
|
||||
rational approximation sometimes become complex, which currently
|
||||
breaks the stupidly simple root finding code.
|
||||
|
||||
2. Make the algorithm faster - it's too slow when running on qcdoc.
|
||||
|
||||
3. Add complex root finding.
|
||||
|
||||
4. Add more options for error minimisation - currently the code
|
||||
minimises the relative error, should add options for absolute error,
|
||||
and other norms.
|
||||
|
||||
There will be a forthcoming publication concerning the results
|
||||
generated by this software, but in the meantime, if you use this
|
||||
software, please cite it as
|
||||
"M.A. Clark and A.D. Kennedy, https://github.com/mikeaclark/AlgRemez, 2005".
|
||||
|
||||
If you have any problems using the software, then please email scientist.mike@gmail.com.
|
||||
|
755
lib/algorithms/approx/Remez.cc
Executable file
755
lib/algorithms/approx/Remez.cc
Executable file
@ -0,0 +1,755 @@
|
||||
/*
|
||||
|
||||
Mike Clark - 25th May 2005
|
||||
|
||||
alg_remez.C
|
||||
|
||||
AlgRemez is an implementation of the Remez algorithm, which in this
|
||||
case is used for generating the optimal nth root rational
|
||||
approximation.
|
||||
|
||||
Note this class requires the gnu multiprecision (GNU MP) library.
|
||||
|
||||
*/
|
||||
|
||||
#include<math.h>
|
||||
#include<stdio.h>
|
||||
#include<stdlib.h>
|
||||
#include<string>
|
||||
#include<iostream>
|
||||
#include<iomanip>
|
||||
#include<cassert>
|
||||
|
||||
#include<algorithms/approx/Remez.h>
|
||||
|
||||
// Constructor
|
||||
AlgRemez::AlgRemez(double lower, double upper, long precision)
|
||||
{
|
||||
prec = precision;
|
||||
bigfloat::setDefaultPrecision(prec);
|
||||
|
||||
apstrt = lower;
|
||||
apend = upper;
|
||||
apwidt = apend - apstrt;
|
||||
|
||||
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
|
||||
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
|
||||
|
||||
alloc = 0;
|
||||
n = 0;
|
||||
d = 0;
|
||||
|
||||
foundRoots = 0;
|
||||
|
||||
// Only require the approximation spread to be less than 1 ulp
|
||||
tolerance = 1e-15;
|
||||
}
|
||||
|
||||
// Destructor
|
||||
AlgRemez::~AlgRemez()
|
||||
{
|
||||
if (alloc) {
|
||||
delete [] param;
|
||||
delete [] roots;
|
||||
delete [] poles;
|
||||
delete [] xx;
|
||||
delete [] mm;
|
||||
delete [] a_power;
|
||||
delete [] a;
|
||||
}
|
||||
}
|
||||
|
||||
// Free memory and reallocate as necessary
|
||||
void AlgRemez::allocate(int num_degree, int den_degree)
|
||||
{
|
||||
// Arrays have previously been allocated, deallocate first, then allocate
|
||||
if (alloc) {
|
||||
delete [] param;
|
||||
delete [] roots;
|
||||
delete [] poles;
|
||||
delete [] xx;
|
||||
delete [] mm;
|
||||
}
|
||||
|
||||
// Note use of new and delete in memory allocation - cannot run on qcdsp
|
||||
param = new bigfloat[num_degree+den_degree+1];
|
||||
roots = new bigfloat[num_degree];
|
||||
poles = new bigfloat[den_degree];
|
||||
xx = new bigfloat[num_degree+den_degree+3];
|
||||
mm = new bigfloat[num_degree+den_degree+2];
|
||||
|
||||
if (!alloc) {
|
||||
// The coefficients of the sum in the exponential
|
||||
a = new bigfloat[SUM_MAX];
|
||||
a_power = new int[SUM_MAX];
|
||||
}
|
||||
|
||||
alloc = 1;
|
||||
}
|
||||
|
||||
// Reset the bounds of the approximation
|
||||
void AlgRemez::setBounds(double lower, double upper)
|
||||
{
|
||||
apstrt = lower;
|
||||
apend = upper;
|
||||
apwidt = apend - apstrt;
|
||||
}
|
||||
|
||||
// Generate the rational approximation x^(pnum/pden)
|
||||
double AlgRemez::generateApprox(int degree, unsigned long pnum,
|
||||
unsigned long pden)
|
||||
{
|
||||
return generateApprox(degree, degree, pnum, pden);
|
||||
}
|
||||
|
||||
double AlgRemez::generateApprox(int num_degree, int den_degree,
|
||||
unsigned long pnum, unsigned long pden)
|
||||
{
|
||||
double *a_param = 0;
|
||||
int *a_pow = 0;
|
||||
return generateApprox(num_degree, den_degree, pnum, pden, 0, a_param, a_pow);
|
||||
}
|
||||
|
||||
// Generate the rational approximation x^(pnum/pden)
|
||||
double AlgRemez::generateApprox(int num_degree, int den_degree,
|
||||
unsigned long pnum, unsigned long pden,
|
||||
int a_len, double *a_param, int *a_pow)
|
||||
{
|
||||
std::cout<<"Degree of the approximation is ("<<num_degree<<","<<den_degree<<")\n";
|
||||
std::cout<<"Approximating the function x^("<<pnum<<"/"<<pden<<"\n";
|
||||
|
||||
// Reallocate arrays, since degree has changed
|
||||
if (num_degree != n || den_degree != d) allocate(num_degree,den_degree);
|
||||
|
||||
assert(a_len<=SUM_MAX);
|
||||
|
||||
step = new bigfloat[num_degree+den_degree+2];
|
||||
|
||||
a_length = a_len;
|
||||
for (int j=0; j<a_len; j++) {
|
||||
a[j]= a_param[j];
|
||||
a_power[j] = a_pow[j];
|
||||
}
|
||||
|
||||
power_num = pnum;
|
||||
power_den = pden;
|
||||
spread = 1.0e37;
|
||||
iter = 0;
|
||||
|
||||
n = num_degree;
|
||||
d = den_degree;
|
||||
neq = n + d + 1;
|
||||
|
||||
initialGuess();
|
||||
stpini(step);
|
||||
|
||||
while (spread > tolerance) { //iterate until convergance
|
||||
|
||||
if (iter++%100==0)
|
||||
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta<<std::endl;
|
||||
|
||||
equations();
|
||||
assert( delta>= tolerance);
|
||||
|
||||
search(step);
|
||||
}
|
||||
|
||||
int sign;
|
||||
double error = (double)getErr(mm[0],&sign);
|
||||
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
|
||||
|
||||
// Once the approximation has been generated, calculate the roots
|
||||
if(!root()) {
|
||||
std::cout<<"Root finding failed\n";
|
||||
} else {
|
||||
foundRoots = 1;
|
||||
}
|
||||
|
||||
delete [] step;
|
||||
|
||||
// Return the maximum error in the approximation
|
||||
return error;
|
||||
}
|
||||
|
||||
// Return the partial fraction expansion of the approximation x^(pnum/pden)
|
||||
int AlgRemez::getPFE(double *Res, double *Pole, double *Norm) {
|
||||
|
||||
if (n!=d) {
|
||||
std::cout<<"Cannot handle case: Numerator degree neq Denominator degree\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!alloc) {
|
||||
std::cout<<"Approximation not yet generated\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!foundRoots) {
|
||||
std::cout<<"Roots not found, so PFE cannot be taken\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
bigfloat *r = new bigfloat[n];
|
||||
bigfloat *p = new bigfloat[d];
|
||||
|
||||
for (int i=0; i<n; i++) r[i] = roots[i];
|
||||
for (int i=0; i<d; i++) p[i] = poles[i];
|
||||
|
||||
// Perform a partial fraction expansion
|
||||
pfe(r, p, norm);
|
||||
|
||||
// Convert to double and return
|
||||
*Norm = (double)norm;
|
||||
for (int i=0; i<n; i++) Res[i] = (double)r[i];
|
||||
for (int i=0; i<d; i++) Pole[i] = (double)p[i];
|
||||
|
||||
delete [] r;
|
||||
delete [] p;
|
||||
|
||||
// Where the smallest shift is located
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Return the partial fraction expansion of the approximation x^(-pnum/pden)
|
||||
int AlgRemez::getIPFE(double *Res, double *Pole, double *Norm) {
|
||||
|
||||
if (n!=d) {
|
||||
std::cout<<"Cannot handle case: Numerator degree neq Denominator degree\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!alloc) {
|
||||
std::cout<<"Approximation not yet generated\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!foundRoots) {
|
||||
std::cout<<"Roots not found, so PFE cannot be taken\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
bigfloat *r = new bigfloat[d];
|
||||
bigfloat *p = new bigfloat[n];
|
||||
|
||||
// Want the inverse function
|
||||
for (int i=0; i<n; i++) {
|
||||
r[i] = poles[i];
|
||||
p[i] = roots[i];
|
||||
}
|
||||
|
||||
// Perform a partial fraction expansion
|
||||
pfe(r, p, (bigfloat)1l/norm);
|
||||
|
||||
// Convert to double and return
|
||||
*Norm = (double)((bigfloat)1l/(norm));
|
||||
for (int i=0; i<n; i++) {
|
||||
Res[i] = (double)r[i];
|
||||
Pole[i] = (double)p[i];
|
||||
}
|
||||
|
||||
delete [] r;
|
||||
delete [] p;
|
||||
|
||||
// Where the smallest shift is located
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Initial values of maximal and minimal errors
|
||||
void AlgRemez::initialGuess() {
|
||||
|
||||
// Supply initial guesses for solution points
|
||||
long ncheb = neq; // Degree of Chebyshev error estimate
|
||||
bigfloat a, r;
|
||||
|
||||
// Find ncheb+1 extrema of Chebyshev polynomial
|
||||
|
||||
a = ncheb;
|
||||
mm[0] = apstrt;
|
||||
for (long i = 1; i < ncheb; i++) {
|
||||
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
|
||||
//r *= sqrt_bf(r);
|
||||
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
|
||||
mm[i] = apstrt + r * apwidt;
|
||||
}
|
||||
mm[ncheb] = apend;
|
||||
|
||||
a = 2.0 * ncheb;
|
||||
for (long i = 0; i <= ncheb; i++) {
|
||||
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
|
||||
//r *= sqrt_bf(r); // Squeeze to low end of interval
|
||||
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
|
||||
xx[i] = apstrt + r * apwidt;
|
||||
}
|
||||
}
|
||||
|
||||
// Initialise step sizes
|
||||
void AlgRemez::stpini(bigfloat *step) {
|
||||
xx[neq+1] = apend;
|
||||
delta = 0.25;
|
||||
step[0] = xx[0] - apstrt;
|
||||
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
|
||||
step[neq] = step[neq-1];
|
||||
}
|
||||
|
||||
// Search for error maxima and minima
|
||||
void AlgRemez::search(bigfloat *step) {
|
||||
bigfloat a, q, xm, ym, xn, yn, xx0, xx1;
|
||||
int i, j, meq, emsign, ensign, steps;
|
||||
|
||||
meq = neq + 1;
|
||||
bigfloat *yy = new bigfloat[meq];
|
||||
|
||||
bigfloat eclose = 1.0e30;
|
||||
bigfloat farther = 0l;
|
||||
|
||||
j = 1;
|
||||
xx0 = apstrt;
|
||||
|
||||
for (i = 0; i < meq; i++) {
|
||||
steps = 0;
|
||||
xx1 = xx[i]; // Next zero
|
||||
if (i == meq-1) xx1 = apend;
|
||||
xm = mm[i];
|
||||
ym = getErr(xm,&emsign);
|
||||
q = step[i];
|
||||
xn = xm + q;
|
||||
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
|
||||
q = -q;
|
||||
xn = xm;
|
||||
yn = ym;
|
||||
ensign = emsign;
|
||||
} else {
|
||||
yn = getErr(xn,&ensign);
|
||||
if (yn < ym) {
|
||||
q = -q;
|
||||
xn = xm;
|
||||
yn = ym;
|
||||
ensign = emsign;
|
||||
}
|
||||
}
|
||||
|
||||
while(yn >= ym) { // March until error becomes smaller.
|
||||
if (++steps > 10) break;
|
||||
ym = yn;
|
||||
xm = xn;
|
||||
emsign = ensign;
|
||||
a = xm + q;
|
||||
if (a == xm || a <= xx0 || a >= xx1) break;// Must not skip over the zeros either side.
|
||||
xn = a;
|
||||
yn = getErr(xn,&ensign);
|
||||
}
|
||||
|
||||
mm[i] = xm; // Position of maximum
|
||||
yy[i] = ym; // Value of maximum
|
||||
|
||||
if (eclose > ym) eclose = ym;
|
||||
if (farther < ym) farther = ym;
|
||||
|
||||
xx0 = xx1; // Walk to next zero.
|
||||
} // end of search loop
|
||||
|
||||
q = (farther - eclose); // Decrease step size if error spread increased
|
||||
if (eclose != 0.0) q /= eclose; // Relative error spread
|
||||
if (q >= spread) delta *= 0.5; // Spread is increasing; decrease step size
|
||||
spread = q;
|
||||
|
||||
for (i = 0; i < neq; i++) {
|
||||
q = yy[i+1];
|
||||
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
|
||||
else q = 0.0625;
|
||||
if (q > (bigfloat)0.25) q = 0.25;
|
||||
q *= mm[i+1] - mm[i];
|
||||
step[i] = q * delta;
|
||||
}
|
||||
step[neq] = step[neq-1];
|
||||
|
||||
for (i = 0; i < neq; i++) { // Insert new locations for the zeros.
|
||||
xm = xx[i] - step[i];
|
||||
if (xm <= apstrt) continue;
|
||||
if (xm >= apend) continue;
|
||||
if (xm <= mm[i]) xm = (bigfloat)0.5 * (mm[i] + xx[i]);
|
||||
if (xm >= mm[i+1]) xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
|
||||
xx[i] = xm;
|
||||
}
|
||||
|
||||
delete [] yy;
|
||||
}
|
||||
|
||||
// Solve the equations
|
||||
void AlgRemez::equations(void) {
|
||||
bigfloat x, y, z;
|
||||
int i, j, ip;
|
||||
bigfloat *aa;
|
||||
|
||||
bigfloat *AA = new bigfloat[(neq)*(neq)];
|
||||
bigfloat *BB = new bigfloat[neq];
|
||||
|
||||
for (i = 0; i < neq; i++) { // set up the equations for solution by simq()
|
||||
ip = neq * i; // offset to 1st element of this row of matrix
|
||||
x = xx[i]; // the guess for this row
|
||||
y = func(x); // right-hand-side vector
|
||||
|
||||
z = (bigfloat)1l;
|
||||
aa = AA+ip;
|
||||
for (j = 0; j <= n; j++) {
|
||||
*aa++ = z;
|
||||
z *= x;
|
||||
}
|
||||
|
||||
z = (bigfloat)1l;
|
||||
for (j = 0; j < d; j++) {
|
||||
*aa++ = -y * z;
|
||||
z *= x;
|
||||
}
|
||||
BB[i] = y * z; // Right hand side vector
|
||||
}
|
||||
|
||||
// Solve the simultaneous linear equations.
|
||||
if (simq(AA, BB, param, neq)) {
|
||||
std::cout<<"simq failed\n";
|
||||
exit(0);
|
||||
}
|
||||
|
||||
delete [] AA;
|
||||
delete [] BB;
|
||||
|
||||
}
|
||||
|
||||
// Evaluate the rational form P(x)/Q(x) using coefficients
|
||||
// from the solution vector param
|
||||
bigfloat AlgRemez::approx(const bigfloat x) {
|
||||
bigfloat yn, yd;
|
||||
int i;
|
||||
|
||||
// Work backwards toward the constant term.
|
||||
yn = param[n]; // Highest order numerator coefficient
|
||||
for (i = n-1; i >= 0; i--) yn = x * yn + param[i];
|
||||
yd = x + param[n+d]; // Highest degree coefficient = 1.0
|
||||
for (i = n+d-1; i > n; i--) yd = x * yd + param[i];
|
||||
|
||||
return(yn/yd);
|
||||
}
|
||||
|
||||
// Compute size and sign of the approximation error at x
|
||||
bigfloat AlgRemez::getErr(bigfloat x, int *sign) {
|
||||
bigfloat e, f;
|
||||
|
||||
f = func(x);
|
||||
e = approx(x) - f;
|
||||
if (f != 0) e /= f;
|
||||
if (e < (bigfloat)0.0) {
|
||||
*sign = -1;
|
||||
e = -e;
|
||||
}
|
||||
else *sign = 1;
|
||||
|
||||
return(e);
|
||||
}
|
||||
|
||||
// Calculate function required for the approximation.
|
||||
bigfloat AlgRemez::func(const bigfloat x) {
|
||||
|
||||
bigfloat z = (bigfloat)power_num / (bigfloat)power_den;
|
||||
bigfloat y;
|
||||
|
||||
if (x == (bigfloat)1.0) y = (bigfloat)1.0;
|
||||
else y = pow_bf(x,z);
|
||||
|
||||
if (a_length > 0) {
|
||||
bigfloat sum = 0l;
|
||||
for (int j=0; j<a_length; j++) sum += a[j]*pow_bf(x,a_power[j]);
|
||||
return y * exp_bf(sum);
|
||||
} else {
|
||||
return y;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Solve the system AX=B
|
||||
int AlgRemez::simq(bigfloat A[], bigfloat B[], bigfloat X[], int n) {
|
||||
|
||||
int i, j, ij, ip, ipj, ipk, ipn;
|
||||
int idxpiv, iback;
|
||||
int k, kp, kp1, kpk, kpn;
|
||||
int nip, nkp, nm1;
|
||||
bigfloat em, q, rownrm, big, size, pivot, sum;
|
||||
bigfloat *aa;
|
||||
|
||||
// simq() work vector
|
||||
int *IPS = new int[(neq) * sizeof(int)];
|
||||
|
||||
nm1 = n - 1;
|
||||
// Initialize IPS and X
|
||||
|
||||
ij = 0;
|
||||
for (i = 0; i < n; i++) {
|
||||
IPS[i] = i;
|
||||
rownrm = 0.0;
|
||||
for(j = 0; j < n; j++) {
|
||||
q = abs_bf(A[ij]);
|
||||
if(rownrm < q) rownrm = q;
|
||||
++ij;
|
||||
}
|
||||
if (rownrm == (bigfloat)0l) {
|
||||
std::cout<<"simq rownrm=0\n";
|
||||
delete [] IPS;
|
||||
return(1);
|
||||
}
|
||||
X[i] = (bigfloat)1.0 / rownrm;
|
||||
}
|
||||
|
||||
for (k = 0; k < nm1; k++) {
|
||||
big = 0.0;
|
||||
idxpiv = 0;
|
||||
|
||||
for (i = k; i < n; i++) {
|
||||
ip = IPS[i];
|
||||
ipk = n*ip + k;
|
||||
size = abs_bf(A[ipk]) * X[ip];
|
||||
if (size > big) {
|
||||
big = size;
|
||||
idxpiv = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (big == (bigfloat)0l) {
|
||||
std::cout<<"simq big=0\n";
|
||||
delete [] IPS;
|
||||
return(2);
|
||||
}
|
||||
if (idxpiv != k) {
|
||||
j = IPS[k];
|
||||
IPS[k] = IPS[idxpiv];
|
||||
IPS[idxpiv] = j;
|
||||
}
|
||||
kp = IPS[k];
|
||||
kpk = n*kp + k;
|
||||
pivot = A[kpk];
|
||||
kp1 = k+1;
|
||||
for (i = kp1; i < n; i++) {
|
||||
ip = IPS[i];
|
||||
ipk = n*ip + k;
|
||||
em = -A[ipk] / pivot;
|
||||
A[ipk] = -em;
|
||||
nip = n*ip;
|
||||
nkp = n*kp;
|
||||
aa = A+nkp+kp1;
|
||||
for (j = kp1; j < n; j++) {
|
||||
ipj = nip + j;
|
||||
A[ipj] = A[ipj] + em * *aa++;
|
||||
}
|
||||
}
|
||||
}
|
||||
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
|
||||
if (A[kpn] == (bigfloat)0l) {
|
||||
std::cout<<"simq A[kpn]=0\n";
|
||||
delete [] IPS;
|
||||
return(3);
|
||||
}
|
||||
|
||||
|
||||
ip = IPS[0];
|
||||
X[0] = B[ip];
|
||||
for (i = 1; i < n; i++) {
|
||||
ip = IPS[i];
|
||||
ipj = n * ip;
|
||||
sum = 0.0;
|
||||
for (j = 0; j < i; j++) {
|
||||
sum += A[ipj] * X[j];
|
||||
++ipj;
|
||||
}
|
||||
X[i] = B[ip] - sum;
|
||||
}
|
||||
|
||||
ipn = n * IPS[n-1] + n - 1;
|
||||
X[n-1] = X[n-1] / A[ipn];
|
||||
|
||||
for (iback = 1; iback < n; iback++) {
|
||||
//i goes (n-1),...,1
|
||||
i = nm1 - iback;
|
||||
ip = IPS[i];
|
||||
nip = n*ip;
|
||||
sum = 0.0;
|
||||
aa = A+nip+i+1;
|
||||
for (j= i + 1; j < n; j++)
|
||||
sum += *aa++ * X[j];
|
||||
X[i] = (X[i] - sum) / A[nip+i];
|
||||
}
|
||||
|
||||
delete [] IPS;
|
||||
return(0);
|
||||
}
|
||||
|
||||
// Calculate the roots of the approximation
|
||||
int AlgRemez::root() {
|
||||
|
||||
long i,j;
|
||||
bigfloat x,dx=0.05;
|
||||
bigfloat upper=1, lower=-100000;
|
||||
bigfloat tol = 1e-20;
|
||||
|
||||
bigfloat *poly = new bigfloat[neq+1];
|
||||
|
||||
// First find the numerator roots
|
||||
for (i=0; i<=n; i++) poly[i] = param[i];
|
||||
|
||||
for (i=n-1; i>=0; i--) {
|
||||
roots[i] = rtnewt(poly,i+1,lower,upper,tol);
|
||||
if (roots[i] == 0.0) {
|
||||
std::cout<<"Failure to converge on root "<<i+1<<"/"<<n<<"\n";
|
||||
return 0;
|
||||
}
|
||||
poly[0] = -poly[0]/roots[i];
|
||||
for (j=1; j<=i; j++) poly[j] = (poly[j-1] - poly[j])/roots[i];
|
||||
}
|
||||
|
||||
// Now find the denominator roots
|
||||
poly[d] = 1l;
|
||||
for (i=0; i<d; i++) poly[i] = param[n+1+i];
|
||||
|
||||
for (i=d-1; i>=0; i--) {
|
||||
poles[i]=rtnewt(poly,i+1,lower,upper,tol);
|
||||
if (poles[i] == 0.0) {
|
||||
std::cout<<"Failure to converge on pole "<<i+1<<"/"<<d<<"\n";
|
||||
return 0;
|
||||
}
|
||||
poly[0] = -poly[0]/poles[i];
|
||||
for (j=1; j<=i; j++) poly[j] = (poly[j-1] - poly[j])/poles[i];
|
||||
}
|
||||
|
||||
norm = param[n];
|
||||
|
||||
delete [] poly;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Evaluate the polynomial
|
||||
bigfloat AlgRemez::polyEval(bigfloat x, bigfloat *poly, long size) {
|
||||
bigfloat f = poly[size];
|
||||
for (int i=size-1; i>=0; i--) f = f*x + poly[i];
|
||||
return f;
|
||||
}
|
||||
|
||||
// Evaluate the differential of the polynomial
|
||||
bigfloat AlgRemez::polyDiff(bigfloat x, bigfloat *poly, long size) {
|
||||
bigfloat df = (bigfloat)size*poly[size];
|
||||
for (int i=size-1; i>0; i--) df = df*x + (bigfloat)i*poly[i];
|
||||
return df;
|
||||
}
|
||||
|
||||
|
||||
// Newton's method to calculate roots
|
||||
bigfloat AlgRemez::rtnewt(bigfloat *poly, long i, bigfloat x1,
|
||||
bigfloat x2, bigfloat xacc) {
|
||||
int j;
|
||||
bigfloat df, dx, f, rtn;
|
||||
|
||||
rtn=(bigfloat)0.5*(x1+x2);
|
||||
for (j=1; j<=JMAX;j++) {
|
||||
f = polyEval(rtn, poly, i);
|
||||
df = polyDiff(rtn, poly, i);
|
||||
dx = f/df;
|
||||
rtn -= dx;
|
||||
if (abs_bf(dx) < xacc) return rtn;
|
||||
}
|
||||
std::cout<<"Maximum number of iterations exceeded in rtnewt\n";
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
// Evaluate the partial fraction expansion of the rational function
|
||||
// with res roots and poles poles. Result is overwritten on input
|
||||
// arrays.
|
||||
void AlgRemez::pfe(bigfloat *res, bigfloat *poles, bigfloat norm) {
|
||||
int i,j,small;
|
||||
bigfloat temp;
|
||||
bigfloat *numerator = new bigfloat[n];
|
||||
bigfloat *denominator = new bigfloat[d];
|
||||
|
||||
// Construct the polynomials explicitly
|
||||
for (i=1; i<n; i++) {
|
||||
numerator[i] = 0l;
|
||||
denominator[i] = 0l;
|
||||
}
|
||||
numerator[0]=1l;
|
||||
denominator[0]=1l;
|
||||
|
||||
for (j=0; j<n; j++) {
|
||||
for (i=n-1; i>=0; i--) {
|
||||
numerator[i] *= -res[j];
|
||||
denominator[i] *= -poles[j];
|
||||
if (i>0) {
|
||||
numerator[i] += numerator[i-1];
|
||||
denominator[i] += denominator[i-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert to proper fraction form.
|
||||
// Fraction is now in the form 1 + n/d, where O(n)+1=O(d)
|
||||
for (i=0; i<n; i++) numerator[i] -= denominator[i];
|
||||
|
||||
// Find the residues of the partial fraction expansion and absorb the
|
||||
// coefficients.
|
||||
for (i=0; i<n; i++) {
|
||||
res[i] = 0l;
|
||||
for (j=n-1; j>=0; j--) {
|
||||
res[i] = poles[i]*res[i]+numerator[j];
|
||||
}
|
||||
for (j=n-1; j>=0; j--) {
|
||||
if (i!=j) res[i] /= poles[i]-poles[j];
|
||||
}
|
||||
res[i] *= norm;
|
||||
}
|
||||
|
||||
// res now holds the residues
|
||||
j = 0;
|
||||
for (i=0; i<n; i++) poles[i] = -poles[i];
|
||||
|
||||
// Move the ordering of the poles from smallest to largest
|
||||
for (j=0; j<n; j++) {
|
||||
small = j;
|
||||
for (i=j+1; i<n; i++) {
|
||||
if (poles[i] < poles[small]) small = i;
|
||||
}
|
||||
if (small != j) {
|
||||
temp = poles[small];
|
||||
poles[small] = poles[j];
|
||||
poles[j] = temp;
|
||||
temp = res[small];
|
||||
res[small] = res[j];
|
||||
res[j] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
delete [] numerator;
|
||||
delete [] denominator;
|
||||
}
|
||||
|
||||
double AlgRemez::evaluateApprox(double x) {
|
||||
return (double)approx((bigfloat)x);
|
||||
}
|
||||
|
||||
double AlgRemez::evaluateInverseApprox(double x) {
|
||||
return 1.0/(double)approx((bigfloat)x);
|
||||
}
|
||||
|
||||
double AlgRemez::evaluateFunc(double x) {
|
||||
return (double)func((bigfloat)x);
|
||||
}
|
||||
|
||||
double AlgRemez::evaluateInverseFunc(double x) {
|
||||
return 1.0/(double)func((bigfloat)x);
|
||||
}
|
||||
|
||||
void AlgRemez::csv(std::ostream & os)
|
||||
{
|
||||
double lambda_low = apstrt;
|
||||
double lambda_high= apend;
|
||||
for (double x=lambda_low; x<lambda_high; x*=1.05) {
|
||||
double f = evaluateFunc(x);
|
||||
double r = evaluateApprox(x);
|
||||
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
167
lib/algorithms/approx/Remez.h
Executable file
167
lib/algorithms/approx/Remez.h
Executable file
@ -0,0 +1,167 @@
|
||||
/*
|
||||
|
||||
Mike Clark - 25th May 2005
|
||||
|
||||
alg_remez.h
|
||||
|
||||
AlgRemez is an implementation of the Remez algorithm, which in this
|
||||
case is used for generating the optimal nth root rational
|
||||
approximation.
|
||||
|
||||
Note this class requires the gnu multiprecision (GNU MP) library.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_ALG_REMEZ_H
|
||||
#define INCLUDED_ALG_REMEZ_H
|
||||
|
||||
#include <algorithms/approx/bigfloat.h>
|
||||
|
||||
#define JMAX 10000 //Maximum number of iterations of Newton's approximation
|
||||
#define SUM_MAX 10 // Maximum number of terms in exponential
|
||||
|
||||
/*
|
||||
*Usage examples
|
||||
AlgRemez remez(lambda_low,lambda_high,precision);
|
||||
error = remez.generateApprox(n,d,y,z);
|
||||
remez.getPFE(res,pole,&norm);
|
||||
remez.getIPFE(res,pole,&norm);
|
||||
remez.csv(ostream &os);
|
||||
*/
|
||||
class AlgRemez
|
||||
{
|
||||
private:
|
||||
char *cname;
|
||||
|
||||
// The approximation parameters
|
||||
bigfloat *param, *roots, *poles;
|
||||
bigfloat norm;
|
||||
|
||||
// The numerator and denominator degree (n=d)
|
||||
int n, d;
|
||||
|
||||
// The bounds of the approximation
|
||||
bigfloat apstrt, apwidt, apend;
|
||||
|
||||
// the numerator and denominator of the power we are approximating
|
||||
unsigned long power_num;
|
||||
unsigned long power_den;
|
||||
|
||||
// Flag to determine whether the arrays have been allocated
|
||||
int alloc;
|
||||
|
||||
// Flag to determine whether the roots have been found
|
||||
int foundRoots;
|
||||
|
||||
// Variables used to calculate the approximation
|
||||
int nd1, iter;
|
||||
bigfloat *xx, *mm, *step;
|
||||
bigfloat delta, spread, tolerance;
|
||||
|
||||
// The exponential summation coefficients
|
||||
bigfloat *a;
|
||||
int *a_power;
|
||||
int a_length;
|
||||
|
||||
// The number of equations we must solve at each iteration (n+d+1)
|
||||
int neq;
|
||||
|
||||
// The precision of the GNU MP library
|
||||
long prec;
|
||||
|
||||
// Initial values of maximal and minmal errors
|
||||
void initialGuess();
|
||||
|
||||
// Solve the equations
|
||||
void equations();
|
||||
|
||||
// Search for error maxima and minima
|
||||
void search(bigfloat *step);
|
||||
|
||||
// Initialise step sizes
|
||||
void stpini(bigfloat *step);
|
||||
|
||||
// Calculate the roots of the approximation
|
||||
int root();
|
||||
|
||||
// Evaluate the polynomial
|
||||
bigfloat polyEval(bigfloat x, bigfloat *poly, long size);
|
||||
//complex_bf polyEval(complex_bf x, complex_bf *poly, long size);
|
||||
|
||||
// Evaluate the differential of the polynomial
|
||||
bigfloat polyDiff(bigfloat x, bigfloat *poly, long size);
|
||||
//complex_bf polyDiff(complex_bf x, complex_bf *poly, long size);
|
||||
|
||||
// Newton's method to calculate roots
|
||||
bigfloat rtnewt(bigfloat *poly, long i, bigfloat x1, bigfloat x2, bigfloat xacc);
|
||||
//complex_bf rtnewt(complex_bf *poly, long i, bigfloat x1, bigfloat x2, bigfloat xacc);
|
||||
|
||||
// Evaluate the partial fraction expansion of the rational function
|
||||
// with res roots and poles poles. Result is overwritten on input
|
||||
// arrays.
|
||||
void pfe(bigfloat *res, bigfloat* poles, bigfloat norm);
|
||||
|
||||
// Calculate function required for the approximation
|
||||
bigfloat func(bigfloat x);
|
||||
|
||||
// Compute size and sign of the approximation error at x
|
||||
bigfloat getErr(bigfloat x, int *sign);
|
||||
|
||||
// Solve the system AX=B
|
||||
int simq(bigfloat *A, bigfloat *B, bigfloat *X, int n);
|
||||
|
||||
// Free memory and reallocate as necessary
|
||||
void allocate(int num_degree, int den_degree);
|
||||
|
||||
// Evaluate the rational form P(x)/Q(x) using coefficients from the
|
||||
// solution vector param
|
||||
bigfloat approx(bigfloat x);
|
||||
|
||||
public:
|
||||
|
||||
// Constructor
|
||||
AlgRemez(double lower, double upper, long prec);
|
||||
|
||||
// Destructor
|
||||
virtual ~AlgRemez();
|
||||
|
||||
// Reset the bounds of the approximation
|
||||
void setBounds(double lower, double upper);
|
||||
|
||||
// Generate the rational approximation x^(pnum/pden)
|
||||
double generateApprox(int num_degree, int den_degree,
|
||||
unsigned long power_num, unsigned long power_den,
|
||||
int a_len, double* a_param, int* a_pow);
|
||||
double generateApprox(int num_degree, int den_degree,
|
||||
unsigned long power_num, unsigned long power_den);
|
||||
double generateApprox(int degree, unsigned long power_num,
|
||||
unsigned long power_den);
|
||||
|
||||
// Return the partial fraction expansion of the approximation x^(pnum/pden)
|
||||
int getPFE(double *res, double *pole, double *norm);
|
||||
|
||||
// Return the partial fraction expansion of the approximation x^(-pnum/pden)
|
||||
int getIPFE(double *res, double *pole, double *norm);
|
||||
|
||||
// Evaluate the rational form P(x)/Q(x) using coefficients from the
|
||||
// solution vector param
|
||||
double evaluateApprox(double x);
|
||||
|
||||
// Evaluate the rational form Q(x)/P(x) using coefficients from the
|
||||
// solution vector param
|
||||
double evaluateInverseApprox(double x);
|
||||
|
||||
// Calculate function required for the approximation
|
||||
double evaluateFunc(double x);
|
||||
|
||||
// Calculate inverse function required for the approximation
|
||||
double evaluateInverseFunc(double x);
|
||||
|
||||
// Dump csv of function, approx and error
|
||||
void csv(std::ostream &os);
|
||||
};
|
||||
|
||||
#endif // Include guard
|
||||
|
||||
|
||||
|
368
lib/algorithms/approx/bigfloat.h
Executable file
368
lib/algorithms/approx/bigfloat.h
Executable file
@ -0,0 +1,368 @@
|
||||
/*
|
||||
Mike Clark - 25th May 2005
|
||||
|
||||
bigfloat.h
|
||||
|
||||
Simple C++ wrapper for multiprecision datatype used by AlgRemez
|
||||
algorithm
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_BIGFLOAT_H
|
||||
#define INCLUDED_BIGFLOAT_H
|
||||
|
||||
#ifdef HAVE_GMP
|
||||
#include <gmp.h>
|
||||
#include <mpf2mpfr.h>
|
||||
#include <mpfr.h>
|
||||
class bigfloat {
|
||||
|
||||
private:
|
||||
|
||||
mpf_t x;
|
||||
|
||||
public:
|
||||
|
||||
bigfloat() { mpf_init(x); }
|
||||
bigfloat(const bigfloat& y) { mpf_init_set(x, y.x); }
|
||||
bigfloat(const unsigned long u) { mpf_init_set_ui(x, u); }
|
||||
bigfloat(const long i) { mpf_init_set_si(x, i); }
|
||||
bigfloat(const int i) {mpf_init_set_si(x,(long)i);}
|
||||
bigfloat(const float d) { mpf_init_set_d(x, (double)d); }
|
||||
bigfloat(const double d) { mpf_init_set_d(x, d); }
|
||||
bigfloat(const char *str) { mpf_init_set_str(x, (char*)str, 10); }
|
||||
~bigfloat(void) { mpf_clear(x); }
|
||||
operator const double (void) const { return (double)mpf_get_d(x); }
|
||||
static void setDefaultPrecision(unsigned long dprec) {
|
||||
unsigned long bprec = (unsigned long)(3.321928094 * (double)dprec);
|
||||
mpf_set_default_prec(bprec);
|
||||
}
|
||||
|
||||
void setPrecision(unsigned long dprec) {
|
||||
unsigned long bprec = (unsigned long)(3.321928094 * (double)dprec);
|
||||
mpf_set_prec(x,bprec);
|
||||
}
|
||||
|
||||
unsigned long getPrecision(void) const { return mpf_get_prec(x); }
|
||||
|
||||
unsigned long getDefaultPrecision(void) const { return mpf_get_default_prec(); }
|
||||
|
||||
bigfloat& operator=(const bigfloat& y) {
|
||||
mpf_set(x, y.x);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bigfloat& operator=(const unsigned long y) {
|
||||
mpf_set_ui(x, y);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bigfloat& operator=(const signed long y) {
|
||||
mpf_set_si(x, y);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bigfloat& operator=(const float y) {
|
||||
mpf_set_d(x, (double)y);
|
||||
return *this;
|
||||
}
|
||||
|
||||
bigfloat& operator=(const double y) {
|
||||
mpf_set_d(x, y);
|
||||
return *this;
|
||||
}
|
||||
|
||||
size_t write(void);
|
||||
size_t read(void);
|
||||
|
||||
/* Arithmetic Functions */
|
||||
|
||||
bigfloat& operator+=(const bigfloat& y) { return *this = *this + y; }
|
||||
bigfloat& operator-=(const bigfloat& y) { return *this = *this - y; }
|
||||
bigfloat& operator*=(const bigfloat& y) { return *this = *this * y; }
|
||||
bigfloat& operator/=(const bigfloat& y) { return *this = *this / y; }
|
||||
|
||||
friend bigfloat operator+(const bigfloat& x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
mpf_add(a.x,x.x,y.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator+(const bigfloat& x, const unsigned long y) {
|
||||
bigfloat a;
|
||||
mpf_add_ui(a.x,x.x,y);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const bigfloat& x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
mpf_sub(a.x,x.x,y.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const unsigned long x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
mpf_ui_sub(a.x,x,y.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const bigfloat& x, const unsigned long y) {
|
||||
bigfloat a;
|
||||
mpf_sub_ui(a.x,x.x,y);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const bigfloat& x) {
|
||||
bigfloat a;
|
||||
mpf_neg(a.x,x.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator*(const bigfloat& x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
mpf_mul(a.x,x.x,y.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator*(const bigfloat& x, const unsigned long y) {
|
||||
bigfloat a;
|
||||
mpf_mul_ui(a.x,x.x,y);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator/(const bigfloat& x, const bigfloat& y){
|
||||
bigfloat a;
|
||||
mpf_div(a.x,x.x,y.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator/(const unsigned long x, const bigfloat& y){
|
||||
bigfloat a;
|
||||
mpf_ui_div(a.x,x,y.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator/(const bigfloat& x, const unsigned long y){
|
||||
bigfloat a;
|
||||
mpf_div_ui(a.x,x.x,y);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat sqrt_bf(const bigfloat& x){
|
||||
bigfloat a;
|
||||
mpf_sqrt(a.x,x.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat sqrt_bf(const unsigned long x){
|
||||
bigfloat a;
|
||||
mpf_sqrt_ui(a.x,x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat abs_bf(const bigfloat& x){
|
||||
bigfloat a;
|
||||
mpf_abs(a.x,x.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat pow_bf(const bigfloat& a, long power) {
|
||||
bigfloat b;
|
||||
mpf_pow_ui(b.x,a.x,power);
|
||||
return b;
|
||||
}
|
||||
|
||||
friend bigfloat pow_bf(const bigfloat& a, bigfloat &power) {
|
||||
bigfloat b;
|
||||
mpfr_pow(b.x,a.x,power.x,GMP_RNDN);
|
||||
return b;
|
||||
}
|
||||
|
||||
friend bigfloat exp_bf(const bigfloat& a) {
|
||||
bigfloat b;
|
||||
mpfr_exp(b.x,a.x,GMP_RNDN);
|
||||
return b;
|
||||
}
|
||||
|
||||
/* Comparison Functions */
|
||||
|
||||
friend int operator>(const bigfloat& x, const bigfloat& y) {
|
||||
int test;
|
||||
test = mpf_cmp(x.x,y.x);
|
||||
if (test > 0) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
friend int operator<(const bigfloat& x, const bigfloat& y) {
|
||||
int test;
|
||||
test = mpf_cmp(x.x,y.x);
|
||||
if (test < 0) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
friend int sgn(const bigfloat&);
|
||||
|
||||
};
|
||||
#else
|
||||
|
||||
typedef double mfloat;
|
||||
class bigfloat {
|
||||
private:
|
||||
|
||||
mfloat x;
|
||||
|
||||
public:
|
||||
|
||||
bigfloat() { }
|
||||
bigfloat(const bigfloat& y) { x=y.x; }
|
||||
bigfloat(const unsigned long u) { x=u; }
|
||||
bigfloat(const long i) { x=i; }
|
||||
bigfloat(const int i) { x=i;}
|
||||
bigfloat(const float d) { x=d;}
|
||||
bigfloat(const double d) { x=d;}
|
||||
bigfloat(const char *str) { x=std::stod(std::string(str));}
|
||||
~bigfloat(void) { }
|
||||
operator double (void) const { return (double)x; }
|
||||
static void setDefaultPrecision(unsigned long dprec) {
|
||||
}
|
||||
|
||||
void setPrecision(unsigned long dprec) {
|
||||
}
|
||||
|
||||
unsigned long getPrecision(void) const { return 64; }
|
||||
unsigned long getDefaultPrecision(void) const { return 64; }
|
||||
|
||||
bigfloat& operator=(const bigfloat& y) { x=y.x; return *this; }
|
||||
bigfloat& operator=(const unsigned long y) { x=y; return *this; }
|
||||
bigfloat& operator=(const signed long y) { x=y; return *this; }
|
||||
bigfloat& operator=(const float y) { x=y; return *this; }
|
||||
bigfloat& operator=(const double y) { x=y; return *this; }
|
||||
|
||||
size_t write(void);
|
||||
size_t read(void);
|
||||
|
||||
/* Arithmetic Functions */
|
||||
|
||||
bigfloat& operator+=(const bigfloat& y) { return *this = *this + y; }
|
||||
bigfloat& operator-=(const bigfloat& y) { return *this = *this - y; }
|
||||
bigfloat& operator*=(const bigfloat& y) { return *this = *this * y; }
|
||||
bigfloat& operator/=(const bigfloat& y) { return *this = *this / y; }
|
||||
|
||||
friend bigfloat operator+(const bigfloat& x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
a.x=x.x+y.x;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator+(const bigfloat& x, const unsigned long y) {
|
||||
bigfloat a;
|
||||
a.x=x.x+y;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const bigfloat& x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
a.x=x.x-y.x;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const unsigned long x, const bigfloat& y) {
|
||||
bigfloat bx(x);
|
||||
return bx-y;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const bigfloat& x, const unsigned long y) {
|
||||
bigfloat by(y);
|
||||
return x-by;
|
||||
}
|
||||
|
||||
friend bigfloat operator-(const bigfloat& x) {
|
||||
bigfloat a;
|
||||
a.x=-x.x;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator*(const bigfloat& x, const bigfloat& y) {
|
||||
bigfloat a;
|
||||
a.x=x.x*y.x;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator*(const bigfloat& x, const unsigned long y) {
|
||||
bigfloat a;
|
||||
a.x=x.x*y;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator/(const bigfloat& x, const bigfloat& y){
|
||||
bigfloat a;
|
||||
a.x=x.x/y.x;
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat operator/(const unsigned long x, const bigfloat& y){
|
||||
bigfloat bx(x);
|
||||
return bx/y;
|
||||
}
|
||||
|
||||
friend bigfloat operator/(const bigfloat& x, const unsigned long y){
|
||||
bigfloat by(y);
|
||||
return x/by;
|
||||
}
|
||||
|
||||
friend bigfloat sqrt_bf(const bigfloat& x){
|
||||
bigfloat a;
|
||||
a.x= sqrt(x.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat sqrt_bf(const unsigned long x){
|
||||
bigfloat a(x);
|
||||
return sqrt_bf(a);
|
||||
}
|
||||
|
||||
friend bigfloat abs_bf(const bigfloat& x){
|
||||
bigfloat a;
|
||||
a.x=abs(x.x);
|
||||
return a;
|
||||
}
|
||||
|
||||
friend bigfloat pow_bf(const bigfloat& a, long power) {
|
||||
bigfloat b;
|
||||
b.x=pow(a.x,power);
|
||||
return b;
|
||||
}
|
||||
|
||||
friend bigfloat pow_bf(const bigfloat& a, bigfloat &power) {
|
||||
bigfloat b;
|
||||
b.x=pow(a.x,power.x);
|
||||
return b;
|
||||
}
|
||||
|
||||
friend bigfloat exp_bf(const bigfloat& a) {
|
||||
bigfloat b;
|
||||
b.x=exp(a.x);
|
||||
return b;
|
||||
}
|
||||
|
||||
/* Comparison Functions */
|
||||
friend int operator>(const bigfloat& x, const bigfloat& y) {
|
||||
return x.x>y.x;
|
||||
}
|
||||
|
||||
friend int operator<(const bigfloat& x, const bigfloat& y) {
|
||||
return x.x<y.x;
|
||||
}
|
||||
|
||||
friend int sgn(const bigfloat& x) {
|
||||
if ( x.x>=0 ) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
/* Miscellaneous Functions */
|
||||
|
||||
// friend bigfloat& random(void);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,19 +1,25 @@
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_H
|
||||
#define GRID_CONJUGATE_GRADIENT_H
|
||||
|
||||
#include<Grid.h>
|
||||
#include<algorithms/LinearOperator.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field> class ConjugateGradient : public IterativeProcess<Field> {
|
||||
public:
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
ConjugateGradient(RealD tol,Integer maxit): IterativeProces(tol,maxit) {};
|
||||
template<class Field>
|
||||
class ConjugateGradient : public OperatorFunction<Field> {
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
|
||||
void operator() (HermitianOperatorBase<Field> *Linop,const Field &src, Field &psi){
|
||||
ConjugateGradient(RealD tol,Integer maxit) : Tolerance(tol), MaxIterations(maxit) {
|
||||
std::cout << Tolerance<<std::endl;
|
||||
};
|
||||
|
||||
void operator() (HermitianOperatorBase<Field> &Linop,const Field &src, Field &psi){
|
||||
|
||||
RealD residual = Tolerance;
|
||||
RealD cp,c,a,d,b,ssq,qq,b_pred;
|
||||
|
||||
Field p(src);
|
||||
@ -32,24 +38,24 @@ namespace Grid {
|
||||
cp =a;
|
||||
ssq=norm2(src);
|
||||
|
||||
std::cout <<setprecision(4)<< "ConjugateGradient: guess "<<guess<<std::endl;
|
||||
std::cout <<setprecision(4)<< "ConjugateGradient: src "<<ssq <<std::endl;
|
||||
std::cout <<setprecision(4)<< "ConjugateGradient: mp "<<d <<std::endl;
|
||||
std::cout <<setprecision(4)<< "ConjugateGradient: mmp "<<b <<std::endl;
|
||||
std::cout <<setprecision(4)<< "ConjugateGradient: r "<<cp <<std::endl;
|
||||
std::cout <<setprecision(4)<< "ConjugateGradient: p "<<a <<std::endl;
|
||||
std::cout <<std::setprecision(4)<< "ConjugateGradient: guess "<<guess<<std::endl;
|
||||
std::cout <<std::setprecision(4)<< "ConjugateGradient: src "<<ssq <<std::endl;
|
||||
std::cout <<std::setprecision(4)<< "ConjugateGradient: mp "<<d <<std::endl;
|
||||
std::cout <<std::setprecision(4)<< "ConjugateGradient: mmp "<<b <<std::endl;
|
||||
std::cout <<std::setprecision(4)<< "ConjugateGradient: r "<<cp <<std::endl;
|
||||
std::cout <<std::setprecision(4)<< "ConjugateGradient: p "<<a <<std::endl;
|
||||
|
||||
RealD rsq = residual* residual*ssq;
|
||||
RealD rsq = Tolerance* Tolerance*ssq;
|
||||
|
||||
//Check if guess is really REALLY good :)
|
||||
if ( cp <= rsq ) {
|
||||
return 0;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << setprecision(4)<< "ConjugateGradient: k=0 residual "<<cp<<" rsq"<<rsq<<std::endl;
|
||||
std::cout << std::setprecision(4)<< "ConjugateGradient: k=0 residual "<<cp<<" rsq"<<rsq<<std::endl;
|
||||
|
||||
int k;
|
||||
for (k=1;k<=max_iter;k++){
|
||||
for (k=1;k<=MaxIterations;k++){
|
||||
|
||||
c=cp;
|
||||
|
||||
@ -62,10 +68,10 @@ namespace Grid {
|
||||
b = cp/c;
|
||||
|
||||
// Fuse these loops ; should be really easy
|
||||
// Update psi; New (conjugate/M-orthogonal) search direction
|
||||
psi= a*p+psi;
|
||||
p = p*b+r;
|
||||
|
||||
std::cout << "Iteration " <<k<<" residual "<<cp<< " target"<< rsq<<std::endl;
|
||||
// Stopping condition
|
||||
if ( cp <= rsq ) {
|
||||
|
||||
@ -78,10 +84,11 @@ namespace Grid {
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD true_residual = resnorm/srcnorm;
|
||||
std::cout<<"ConjugateGradient: true residual is "<<true_residual<<" sol "<<psinorm<<" src "<<srcnorm<<std::endl;
|
||||
std::cout<<"ConjugateGradient: target residual was "<<residual<<std::endl;
|
||||
return k;
|
||||
std::cout<<"ConjugateGradient: target residual was "<<Tolerance<<std::endl;
|
||||
}
|
||||
}
|
||||
std::cout<<"ConjugateGradient did NOT converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
34
lib/algorithms/iterative/NormalEquations.h
Normal file
34
lib/algorithms/iterative/NormalEquations.h
Normal file
@ -0,0 +1,34 @@
|
||||
#ifndef GRID_NORMAL_EQUATIONS_H
|
||||
#define GRID_NORMAL_EQUATIONS_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class NormalEquations : public OperatorFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
NormalEquations(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianSolver)
|
||||
: _Matrix(Matrix), _HermitianSolver(HermitianSolver) {};
|
||||
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
Field src(in._grid);
|
||||
|
||||
_Matrix.Mdag(in,src);
|
||||
_HermitianSolver(src,out); // Mdag M out = Mdag in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
106
lib/algorithms/iterative/SchurRedBlack.h
Normal file
106
lib/algorithms/iterative/SchurRedBlack.h
Normal file
@ -0,0 +1,106 @@
|
||||
#ifndef GRID_SCHUR_RED_BLACK_H
|
||||
#define GRID_SCHUR_RED_BLACK_H
|
||||
|
||||
/*
|
||||
* Red black Schur decomposition
|
||||
*
|
||||
* M = (Mee Meo) = (1 0 ) (Mee 0 ) (1 Mee^{-1} Meo)
|
||||
* (Moe Moo) (Moe Mee^-1 1 ) (0 Moo-Moe Mee^-1 Meo) (0 1 )
|
||||
* = L D U
|
||||
*
|
||||
* L^-1 = (1 0 )
|
||||
* (-MoeMee^{-1} 1 )
|
||||
* L^{dag} = ( 1 Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
* L^{-d} = ( 1 -Mee^{-dag} Moe^{dag} )
|
||||
* ( 0 1 )
|
||||
*
|
||||
* U^-1 = (1 -Mee^{-1} Meo)
|
||||
* (0 1 )
|
||||
* U^{dag} = ( 1 0)
|
||||
* (Meo^dag Mee^{-dag} 1)
|
||||
* U^{-dag} = ( 1 0)
|
||||
* (-Meo^dag Mee^{-dag} 1)
|
||||
***********************
|
||||
* M psi = eta
|
||||
***********************
|
||||
*Odd
|
||||
* i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^\dag L^{-1} eta_o
|
||||
* eta_o' = D_oo (eta_o - Moe Mee^{-1} eta_e)
|
||||
*Even
|
||||
* ii) Mee psi_e + Meo psi_o = src_e
|
||||
*
|
||||
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
*
|
||||
*/
|
||||
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackSolve : public OperatorFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackSolve(SparseMatrixBase<Field> &Matrix, OperatorFunction<Field> &HermitianRBSolver)
|
||||
: _Matrix(Matrix), _HermitianRBSolver(HermitianRBSolver) {
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME need to make eo grid from full grid.
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
const int Even=0;
|
||||
const int Odd =1;
|
||||
|
||||
// Make a cartesianRedBlack from full Grid
|
||||
GridRedBlackCartesian grid(in._grid);
|
||||
|
||||
Field src_e(&grid);
|
||||
Field src_o(&grid);
|
||||
Field sol_e(&grid);
|
||||
Field sol_o(&grid);
|
||||
Field tmp(&grid);
|
||||
Field Mtmp(&grid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); // MooeeInv(source[Even],tmp,DaggerNo,Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); // Meo (tmp,src,Odd,DaggerNo);
|
||||
tmp=src_o-Mtmp; // axpy (tmp,src,source[Odd],-1.0);
|
||||
_Matrix.MpcDag(tmp,src_o); // Mprec(tmp,src,Mtmp,DaggerYes);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
_HermitianRBSolver(src_o,sol_o); // CGNE_prec_MdagM(solution[Odd],src);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); // Meo(solution[Odd],tmp,Even,DaggerNo);
|
||||
src_e = src_e-tmp; // axpy(src,tmp,source[Even],-1.0);
|
||||
_Matrix.MooeeInv(src_e,sol_e); // MooeeInv(src,solution[Even],DaggerNo,Even);
|
||||
|
||||
setCheckerboard(out,sol_e);
|
||||
setCheckerboard(out,sol_o);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
15
lib/algorithms/iterative/TODO
Normal file
15
lib/algorithms/iterative/TODO
Normal file
@ -0,0 +1,15 @@
|
||||
- ConjugateGradientMultiShift
|
||||
- MCR
|
||||
|
||||
- Potentially Useful Boost libraries
|
||||
|
||||
- MultiArray
|
||||
- Aligned allocator; memory pool
|
||||
- Remez -- Mike or Boost?
|
||||
- Multiprecision
|
||||
- quaternians
|
||||
- Tokenize
|
||||
- Serialization
|
||||
- Regex
|
||||
- Proto (ET)
|
||||
- uBlas
|
@ -85,20 +85,40 @@ void WilsonMatrix::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeF
|
||||
}
|
||||
}
|
||||
|
||||
void WilsonMatrix::M(const LatticeFermion &in, LatticeFermion &out)
|
||||
RealD WilsonMatrix::M(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
Dhop(in,out);
|
||||
return;
|
||||
return 0.0;
|
||||
}
|
||||
void WilsonMatrix::Mdag(const LatticeFermion &in, LatticeFermion &out)
|
||||
RealD WilsonMatrix::Mdag(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
Dhop(in,out);
|
||||
return;
|
||||
return 0.0;
|
||||
}
|
||||
void WilsonMatrix::MdagM(const LatticeFermion &in, LatticeFermion &out)
|
||||
|
||||
void WilsonMatrix::Meooe(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
Dhop(in,out);
|
||||
return;
|
||||
}
|
||||
void WilsonMatrix::MeooeDag(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
Dhop(in,out);
|
||||
}
|
||||
void WilsonMatrix::Mooee(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return ;
|
||||
}
|
||||
void WilsonMatrix::MooeeInv(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return ;
|
||||
}
|
||||
void WilsonMatrix::MooeeDag(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return ;
|
||||
}
|
||||
void WilsonMatrix::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return ;
|
||||
}
|
||||
|
||||
void WilsonMatrix::Dhop(const LatticeFermion &in, LatticeFermion &out)
|
||||
@ -278,18 +298,6 @@ void WilsonMatrix::Dw(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return;
|
||||
}
|
||||
void WilsonMatrix::MpcDag (const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return;
|
||||
}
|
||||
void WilsonMatrix::Mpc (const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return;
|
||||
}
|
||||
void WilsonMatrix::MpcDagMpc(const LatticeFermion &in, LatticeFermion &out)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -1,15 +1,12 @@
|
||||
#ifndef GRID_QCD_WILSON_DOP_H
|
||||
#define GRID_QCD_WILSON_DOP_H
|
||||
|
||||
#include <Grid.h>
|
||||
|
||||
#include <algorithms/LinearOperator.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
namespace QCD {
|
||||
|
||||
class WilsonMatrix : public SparseMatrixBase<LatticeFermion>
|
||||
class WilsonMatrix : public CheckerBoardedSparseMatrixBase<LatticeFermion>
|
||||
{
|
||||
//NB r=1;
|
||||
public:
|
||||
@ -36,14 +33,16 @@ namespace Grid {
|
||||
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
|
||||
|
||||
// override multiply
|
||||
virtual void M (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void Mdag (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void MdagM(const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
|
||||
|
||||
// half checkerboard operaions
|
||||
void Mpc (const LatticeFermion &in, LatticeFermion &out);
|
||||
void MpcDag (const LatticeFermion &in, LatticeFermion &out);
|
||||
void MpcDagMpc(const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
|
||||
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
|
||||
|
||||
// non-hermitian hopping term; half cb or both
|
||||
void Dhop(const LatticeFermion &in, LatticeFermion &out);
|
||||
|
@ -48,7 +48,7 @@ int main (int argc, char ** argv)
|
||||
latt_size[3] = lat;
|
||||
double volume = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
|
||||
|
||||
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
|
||||
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
|
||||
GridRedBlackCartesian rbFine(latt_size,simd_layout,mpi_layout);
|
||||
GridParallelRNG FineRNG(&Fine);
|
||||
FineRNG.SeedRandomDevice();
|
||||
|
Loading…
Reference in New Issue
Block a user