1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Merge branch 'feature/dirichlet' into feature/block_lanczos22

This commit is contained in:
Peter Boyle 2023-03-24 12:08:09 -04:00 committed by GitHub
commit d57ed25071
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
316 changed files with 24065 additions and 13298 deletions

View File

@ -45,7 +45,7 @@ directory
//disables nvcc specific warning in json.hpp //disables nvcc specific warning in json.hpp
#pragma clang diagnostic ignored "-Wdeprecated-register" #pragma clang diagnostic ignored "-Wdeprecated-register"
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5) #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
//disables nvcc specific warning in json.hpp //disables nvcc specific warning in json.hpp
#pragma nv_diag_suppress unsigned_compare_with_zero #pragma nv_diag_suppress unsigned_compare_with_zero
#pragma nv_diag_suppress cast_to_qualified_type #pragma nv_diag_suppress cast_to_qualified_type

View File

@ -44,10 +44,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridStd.h> #include <Grid/GridStd.h>
#include <Grid/threads/Pragmas.h> #include <Grid/threads/Pragmas.h>
#include <Grid/perfmon/Timer.h> #include <Grid/perfmon/Timer.h>
#include <Grid/perfmon/Tracing.h>
//#include <Grid/perfmon/PerfCount.h> //#include <Grid/perfmon/PerfCount.h>
#include <Grid/util/Util.h> #include <Grid/util/Util.h>
#include <Grid/log/Log.h> #include <Grid/log/Log.h>
#include <Grid/perfmon/Tracing.h>
#include <Grid/allocator/Allocator.h> #include <Grid/allocator/Allocator.h>
#include <Grid/simd/Simd.h> #include <Grid/simd/Simd.h>
#include <Grid/threads/ThreadReduction.h> #include <Grid/threads/ThreadReduction.h>

View File

@ -14,7 +14,7 @@
/* NVCC save and restore compile environment*/ /* NVCC save and restore compile environment*/
#ifdef __NVCC__ #ifdef __NVCC__
#pragma push #pragma push
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5) #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress code_is_unreachable #pragma nv_diag_suppress code_is_unreachable
#else #else
#pragma diag_suppress code_is_unreachable #pragma diag_suppress code_is_unreachable

View File

@ -262,7 +262,7 @@ public:
autoView( Tnp_v , (*Tnp), AcceleratorWrite); autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite); autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd(); const int Nsimd = CComplex::Nsimd();
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, { accelerator_for(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss)); coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss)); coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
}); });
@ -324,9 +324,9 @@ public:
GridBase* _cbgrid; GridBase* _cbgrid;
int hermitian; int hermitian;
CartesianStencil<siteVector,siteVector,int> Stencil; CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;
CartesianStencil<siteVector,siteVector,int> StencilEven; CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
CartesianStencil<siteVector,siteVector,int> StencilOdd; CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
std::vector<CoarseMatrix> A; std::vector<CoarseMatrix> A;
std::vector<CoarseMatrix> Aeven; std::vector<CoarseMatrix> Aeven;
@ -631,7 +631,7 @@ public:
assert(Aself != nullptr); assert(Aself != nullptr);
} }
void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a, void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
const CoarseVector &in, CoarseVector &out, int dag) { const CoarseVector &in, CoarseVector &out, int dag) {
int point = geom.npoint-1; int point = geom.npoint-1;
autoView( out_v, out, AcceleratorWrite); autoView( out_v, out, AcceleratorWrite);
@ -694,7 +694,7 @@ public:
} }
} }
void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a, void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
const CoarseVector &in, CoarseVector &out, int dag) { const CoarseVector &in, CoarseVector &out, int dag) {
SimpleCompressor<siteVector> compressor; SimpleCompressor<siteVector> compressor;
@ -784,9 +784,9 @@ public:
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)), _cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
geom(CoarseGrid._ndimension), geom(CoarseGrid._ndimension),
hermitian(hermitian_), hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0), Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0), StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0), StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid), A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,_cbgrid), Aeven(geom.npoint,_cbgrid),
Aodd(geom.npoint,_cbgrid), Aodd(geom.npoint,_cbgrid),
@ -804,9 +804,9 @@ public:
_cbgrid(&CoarseRBGrid), _cbgrid(&CoarseRBGrid),
geom(CoarseGrid._ndimension), geom(CoarseGrid._ndimension),
hermitian(hermitian_), hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0), Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0), StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0), StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid), A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,&CoarseRBGrid), Aeven(geom.npoint,&CoarseRBGrid),
Aodd(geom.npoint,&CoarseRBGrid), Aodd(geom.npoint,&CoarseRBGrid),

View File

@ -526,6 +526,7 @@ public:
(*this)(Linop,in[k],out[k]); (*this)(Linop,in[k],out[k]);
} }
}; };
virtual ~OperatorFunction(){};
}; };
template<class Field> class LinearFunction { template<class Field> class LinearFunction {

View File

@ -258,26 +258,12 @@ public:
for(int n=2;n<order;n++){ for(int n=2;n<order;n++){
Linop.HermOp(*Tn,y); Linop.HermOp(*Tn,y);
#if 0
auto y_v = y.View();
auto Tn_v = Tn->View();
auto Tnp_v = Tnp->View();
auto Tnm_v = Tnm->View();
constexpr int Nsimd = vector_type::Nsimd();
accelerator_forNB(ss, in.Grid()->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out);
}
#else
axpby(y,xscale,mscale,y,(*Tn)); axpby(y,xscale,mscale,y,(*Tn));
axpby(*Tnp,2.0,-1.0,y,(*Tnm)); axpby(*Tnp,2.0,-1.0,y,(*Tnm));
if ( Coeffs[n] != 0.0) { if ( Coeffs[n] != 0.0) {
axpy(out,Coeffs[n],*Tnp,out); axpy(out,Coeffs[n],*Tnp,out);
} }
#endif
// Cycle pointers to avoid copies // Cycle pointers to avoid copies
Field *swizzle = Tnm; Field *swizzle = Tnm;
Tnm =Tn; Tnm =Tn;

View File

@ -109,6 +109,9 @@ NAMESPACE_BEGIN(Grid);
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){ for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
//Compute double precision rsd and also new RHS vector. //Compute double precision rsd and also new RHS vector.
Linop_d.HermOp(sol_d, tmp_d); Linop_d.HermOp(sol_d, tmp_d);
@ -123,7 +126,7 @@ NAMESPACE_BEGIN(Grid);
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ?? while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(src_f, src_d); precisionChange(src_f, src_d, pc_wk_dp_to_sp);
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
sol_f = Zero(); sol_f = Zero();
@ -142,7 +145,7 @@ NAMESPACE_BEGIN(Grid);
//Convert sol back to double and add to double prec solution //Convert sol back to double and add to double prec solution
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(tmp_d, sol_f); precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
axpy(sol_d, 1.0, tmp_d, sol_d); axpy(sol_d, 1.0, tmp_d, sol_d);

View File

@ -0,0 +1,373 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
//Every update_freq iterations the residual is corrected in double precision.
//For safety the a final regular CG is applied to clean up if necessary
//PB Pure single, then double fixup
template<class FieldD, class FieldF,
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
public OperatorFunction<FieldD>
{
public:
using OperatorFunction<FieldD>::operator();
RealD Tolerance;
Integer MaxIterationsMshift;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
int verbose;
MultiShiftFunction shifts;
std::vector<RealD> TrueResidualShift;
int ReliableUpdateFreq; //number of iterations between reliable updates
GridBase* SinglePrecGrid; //Grid for single-precision fields
LinearOperatorBase<FieldF> &Linop_f; //single precision
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq) :
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
MaxIterations(20000)
{
verbose=1;
IterationsToCompleteShift.resize(_shifts.order);
TrueResidualShift.resize(_shifts.order);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
{
GridBase *grid = src.Grid();
int nshift = shifts.order;
std::vector<FieldD> results(nshift,grid);
(*this)(Linop,src,results,psi);
}
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
{
int nshift = shifts.order;
(*this)(Linop,src,results);
psi = shifts.norm*src;
for(int i=0;i<nshift;i++){
psi = psi + shifts.residues[i]*results[i];
}
return;
}
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
{
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
GridBase *DoublePrecGrid = src_d.Grid();
////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction"
////////////////////////////////////////////////////////////////////////
int nshift = shifts.order;
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
std::vector<RealD> &mresidual(shifts.tolerances);
std::vector<RealD> alpha(nshift,1.0);
//Double precision search directions
FieldD p_d(DoublePrecGrid);
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
FieldD tmp_d(DoublePrecGrid);
FieldD r_d(DoublePrecGrid);
FieldF r_f(SinglePrecGrid);
FieldD mmp_d(DoublePrecGrid);
assert(psi_d.size()==nshift);
assert(mass.size()==nshift);
assert(mresidual.size()==nshift);
// dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift];
RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2];
int converged[nshift];
const int primary =0;
//Primary shift fields CG iteration
RealD a,b,c,d;
RealD cp,bp,qq; //prev
// Matrix mult fields
FieldF p_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid);
// Check lightest mass
for(int s=0;s<nshift;s++){
assert( mass[s]>= mass[primary] );
converged[s]=0;
}
// Wire guess to zero
// Residuals "r" are src
// First search direction "p" is also src
cp = norm2(src_d);
// Handle trivial case of zero src.
if( cp == 0. ){
for(int s=0;s<nshift;s++){
psi_d[s] = Zero();
psi_f[s] = Zero();
IterationsToCompleteShift[s] = 1;
TrueResidualShift[s] = 0.;
}
return;
}
for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s];
rsqf[s] =rsq[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
// ps_d[s] = src_d;
precisionChangeFast(ps_f[s],src_d);
}
// r and p for primary
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
r_d = p_d;
//MdagM+m[0]
precisionChangeFast(p_f,p_d);
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
precisionChangeFast(tmp_d,mmp_f);
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
// assert(norm2(tmp_d)< 1.0e-4);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
b = -cp /d;
// Set up the various shift variables
int iz=0;
z[0][1-iz] = 1.0;
z[0][iz] = 1.0;
bs[0] = b;
for(int s=1;s<nshift;s++){
z[s][1-iz] = 1.0;
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
bs[s] = b*z[s][iz];
}
// r += b[0] A.p[0]
// c= norm(r)
c=axpy_norm(r_d,b,mmp_d,r_d);
for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
precisionChangeFast(psi_f[s],psi_d[s]);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
SolverTimer.Start();
// Iteration loop
int k;
for (k=1;k<=MaxIterationsMshift;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p_d,a,p_d,r_d);
AXPYTimer.Stop();
PrecChangeTimer.Start();
precisionChangeFast(r_f, r_d);
PrecChangeTimer.Stop();
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
axpy(ps_f[s],a,ps_f[s],r_f);
} else{
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
}
}
}
AXPYTimer.Stop();
cp=c;
PrecChangeTimer.Start();
precisionChangeFast(p_f, p_d); //get back single prec search direction for linop
PrecChangeTimer.Stop();
MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f);
MatrixTimer.Stop();
PrecChangeTimer.Start();
precisionChangeFast(mmp_d, mmp_f); // From Float to Double
PrecChangeTimer.Stop();
d=real(innerProduct(p_d,mmp_d));
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0];
bp=b;
b=-cp/d;
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
RealD z1 = z[s][iz];
z[s][iz] = z0*z1*bp
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
//Update single precision solutions
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
int ss = s;
if( (!converged[s]) ) {
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
}
}
c = axpy_norm(r_d,b,mmp_d,r_d);
AXPYTimer.Stop();
// Convergence checks
int all_converged = 1;
for(int s=0;s<nshift;s++){
if ( (!converged[s]) ){
IterationsToCompleteShift[s] = k;
RealD css = c * z[s][iz]* z[s][iz];
if(css<rsqf[s]){
if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1;
} else {
all_converged=0;
}
}
}
if ( all_converged || k == MaxIterationsMshift-1){
SolverTimer.Stop();
for(int s=0;s<nshift;s++){
precisionChangeFast(psi_d[s],psi_f[s]);
}
if ( all_converged ){
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
} else {
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
}
// Check answers
for(int s=0; s < nshift; s++) {
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
axpy(r_d,-alpha[s],src_d,tmp_d);
RealD rn = norm2(r_d);
RealD cn = norm2(src_d);
TrueResidualShift[s] = std::sqrt(rn/cn);
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
if(rn >= rsq[s]){
CleanupTimer.Start();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
//Setup linear operators for final cleanup
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
cg(src_d, psi_d[s]);
TrueResidualShift[s] = cg.TrueResidual;
CleanupTimer.Stop();
}
}
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
IterationsToComplete = k;
return;
}
}
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
assert(0);
}
};
NAMESPACE_END(Grid);

View File

@ -81,6 +81,7 @@ public:
using OperatorFunction<FieldD>::operator(); using OperatorFunction<FieldD>::operator();
RealD Tolerance; RealD Tolerance;
Integer MaxIterationsMshift;
Integer MaxIterations; Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
std::vector<int> IterationsToCompleteShift; // Iterations for this shift std::vector<int> IterationsToCompleteShift; // Iterations for this shift
@ -95,9 +96,9 @@ public:
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts, ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f, GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
int _ReliableUpdateFreq int _ReliableUpdateFreq) :
) : MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq) MaxIterations(20000)
{ {
verbose=1; verbose=1;
IterationsToCompleteShift.resize(_shifts.order); IterationsToCompleteShift.resize(_shifts.order);
@ -130,6 +131,9 @@ public:
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec"); GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
GridBase *DoublePrecGrid = src_d.Grid(); GridBase *DoublePrecGrid = src_d.Grid();
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Convenience references to the info stored in "MultiShiftFunction" // Convenience references to the info stored in "MultiShiftFunction"
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
@ -154,6 +158,7 @@ public:
// dynamic sized arrays on stack; 2d is a pain with vector // dynamic sized arrays on stack; 2d is a pain with vector
RealD bs[nshift]; RealD bs[nshift];
RealD rsq[nshift]; RealD rsq[nshift];
RealD rsqf[nshift];
RealD z[nshift][2]; RealD z[nshift][2];
int converged[nshift]; int converged[nshift];
@ -164,12 +169,8 @@ public:
RealD cp,bp,qq; //prev RealD cp,bp,qq; //prev
// Matrix mult fields // Matrix mult fields
FieldF r_f(SinglePrecGrid);
FieldF p_f(SinglePrecGrid); FieldF p_f(SinglePrecGrid);
FieldF tmp_f(SinglePrecGrid);
FieldF mmp_f(SinglePrecGrid); FieldF mmp_f(SinglePrecGrid);
FieldF src_f(SinglePrecGrid);
precisionChange(src_f, src_d);
// Check lightest mass // Check lightest mass
for(int s=0;s<nshift;s++){ for(int s=0;s<nshift;s++){
@ -194,18 +195,26 @@ public:
for(int s=0;s<nshift;s++){ for(int s=0;s<nshift;s++){
rsq[s] = cp * mresidual[s] * mresidual[s]; rsq[s] = cp * mresidual[s] * mresidual[s];
rsqf[s] =rsq[s];
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl; std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
ps_d[s] = src_d; ps_d[s] = src_d;
} }
// r and p for primary // r and p for primary
r_f=src_f; //residual maintained in single
p_f=src_f;
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
r_d = p_d;
//MdagM+m[0] //MdagM+m[0]
precisionChange(p_f, p_d, pc_wk_d_to_s);
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp) Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
axpy(mmp_f,mass[0],p_f,mmp_f); precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
RealD rn = norm2(p_f); Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
tmp_d = tmp_d - mmp_d;
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
// assert(norm2(tmp_d)< 1.0e-4);
axpy(mmp_d,mass[0],p_d,mmp_d);
RealD rn = norm2(p_d);
d += rn*mass[0]; d += rn*mass[0];
b = -cp /d; b = -cp /d;
@ -223,7 +232,7 @@ public:
// r += b[0] A.p[0] // r += b[0] A.p[0]
// c= norm(r) // c= norm(r)
c=axpy_norm(r_f,b,mmp_f,r_f); c=axpy_norm(r_d,b,mmp_d,r_d);
for(int s=0;s<nshift;s++) { for(int s=0;s<nshift;s++) {
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d); axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
@ -239,14 +248,9 @@ public:
// Iteration loop // Iteration loop
int k; int k;
for (k=1;k<=MaxIterations;k++){ for (k=1;k<=MaxIterationsMshift;k++){
a = c /cp; a = c /cp;
//Update double precision search direction by residual
PrecChangeTimer.Start();
precisionChange(r_d, r_f);
PrecChangeTimer.Stop();
AXPYTimer.Start(); AXPYTimer.Start();
axpy(p_d,a,p_d,r_d); axpy(p_d,a,p_d,r_d);
@ -263,19 +267,23 @@ public:
AXPYTimer.Stop(); AXPYTimer.Stop();
PrecChangeTimer.Start(); PrecChangeTimer.Start();
precisionChange(p_f, p_d); //get back single prec search direction for linop precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
PrecChangeTimer.Stop(); PrecChangeTimer.Stop();
cp=c; cp=c;
MatrixTimer.Start(); MatrixTimer.Start();
Linop_f.HermOp(p_f,mmp_f); Linop_f.HermOp(p_f,mmp_f);
d=real(innerProduct(p_f,mmp_f));
MatrixTimer.Stop(); MatrixTimer.Stop();
PrecChangeTimer.Start();
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
PrecChangeTimer.Stop();
AXPYTimer.Start(); AXPYTimer.Start();
axpy(mmp_f,mass[0],p_f,mmp_f); d=real(innerProduct(p_d,mmp_d));
axpy(mmp_d,mass[0],p_d,mmp_d);
AXPYTimer.Stop(); AXPYTimer.Stop();
RealD rn = norm2(p_f); RealD rn = norm2(p_d);
d += rn*mass[0]; d += rn*mass[0];
bp=b; bp=b;
@ -306,12 +314,12 @@ public:
} }
//Perform reliable update if necessary; otherwise update residual from single-prec mmp //Perform reliable update if necessary; otherwise update residual from single-prec mmp
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f); c = axpy_norm(r_d,b,mmp_d,r_d);
AXPYTimer.Stop(); AXPYTimer.Stop();
c = c_f;
if(k % ReliableUpdateFreq == 0){ if(k % ReliableUpdateFreq == 0){
RealD c_old = c;
//Replace r with true residual //Replace r with true residual
MatrixTimer.Start(); MatrixTimer.Start();
Linop_d.HermOp(psi_d[0],mmp_d); Linop_d.HermOp(psi_d[0],mmp_d);
@ -320,15 +328,10 @@ public:
AXPYTimer.Start(); AXPYTimer.Start();
axpy(mmp_d,mass[0],psi_d[0],mmp_d); axpy(mmp_d,mass[0],psi_d[0],mmp_d);
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d); c = axpy_norm(r_d, -1.0, mmp_d, src_d);
AXPYTimer.Stop(); AXPYTimer.Stop();
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl; std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
PrecChangeTimer.Start();
precisionChange(r_f, r_d);
PrecChangeTimer.Stop();
c = c_d;
} }
// Convergence checks // Convergence checks
@ -340,7 +343,7 @@ public:
RealD css = c * z[s][iz]* z[s][iz]; RealD css = c * z[s][iz]* z[s][iz];
if(css<rsq[s]){ if(css<rsqf[s]){
if ( ! converged[s] ) if ( ! converged[s] )
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl; std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
converged[s]=1; converged[s]=1;
@ -351,11 +354,16 @@ public:
} }
} }
if ( all_converged ){ if ( all_converged || k == MaxIterationsMshift-1){
SolverTimer.Stop(); SolverTimer.Stop();
if ( all_converged ){
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl; std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl; std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
} else {
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
}
// Check answers // Check answers
for(int s=0; s < nshift; s++) { for(int s=0; s < nshift; s++) {
@ -398,11 +406,9 @@ public:
return; return;
} }
} }
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl; std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
// assert(0); assert(0);
} }
}; };

View File

@ -48,7 +48,7 @@ public:
LinearOperatorBase<FieldF> &Linop_f; LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d; LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid; GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single //Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback; LinearOperatorBase<FieldF> *Linop_fallback;
@ -65,7 +65,9 @@ public:
ErrorOnNoConverge(err_on_no_conv), ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true), DoFinalCleanup(true),
Linop_fallback(NULL) Linop_fallback(NULL)
{}; {
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){ void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback; Linop_fallback = &_Linop_fallback;
@ -116,9 +118,12 @@ public:
} }
//Single prec initialization //Single prec initialization
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
FieldF r_f(SinglePrecGrid); FieldF r_f(SinglePrecGrid);
r_f.Checkerboard() = r.Checkerboard(); r_f.Checkerboard() = r.Checkerboard();
precisionChange(r_f, r); precisionChange(r_f, r, pc_wk_dp_to_sp);
FieldF psi_f(r_f); FieldF psi_f(r_f);
psi_f = Zero(); psi_f = Zero();
@ -134,6 +139,7 @@ public:
GridStopWatch LinalgTimer; GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer; GridStopWatch MatrixTimer;
GridStopWatch SolverTimer; GridStopWatch SolverTimer;
GridStopWatch PrecChangeTimer;
SolverTimer.Start(); SolverTimer.Start();
int k = 0; int k = 0;
@ -173,7 +179,9 @@ public:
// Stopping condition // Stopping condition
if (cp <= rsq) { if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution //Although not written in the paper, I assume that I have to add on the final solution
precisionChange(mmp, psi_f); PrecChangeTimer.Start();
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
psi = psi + mmp; psi = psi + mmp;
@ -194,6 +202,9 @@ public:
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl; std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
IterationsToComplete = k; IterationsToComplete = k;
ReliableUpdatesPerformed = l; ReliableUpdatesPerformed = l;
@ -214,14 +225,21 @@ public:
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate " std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n"; << cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
precisionChange(mmp, psi_f); PrecChangeTimer.Start();
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
PrecChangeTimer.Stop();
psi = psi + mmp; psi = psi + mmp;
MatrixTimer.Start();
Linop_d.HermOpAndNorm(psi, mmp, d, qq); Linop_d.HermOpAndNorm(psi, mmp, d, qq);
MatrixTimer.Stop();
r = src - mmp; r = src - mmp;
psi_f = Zero(); psi_f = Zero();
precisionChange(r_f, r); PrecChangeTimer.Start();
precisionChange(r_f, r, pc_wk_dp_to_sp);
PrecChangeTimer.Stop();
cp = norm2(r); cp = norm2(r);
MaxResidSinceLastRelUp = cp; MaxResidSinceLastRelUp = cp;

View File

@ -36,6 +36,11 @@ NAMESPACE_BEGIN(Grid);
#define GRID_ALLOC_SMALL_LIMIT (4096) #define GRID_ALLOC_SMALL_LIMIT (4096)
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
/*Pinning pages is costly*/ /*Pinning pages is costly*/
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
// Advise the LatticeAccelerator class // Advise the LatticeAccelerator class
@ -92,8 +97,9 @@ private:
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ; static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ; static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
static void PrintBytes(void);
public: public:
static void PrintBytes(void);
static void Audit(std::string s);
static void Init(void); static void Init(void);
static void InitMessage(void); static void InitMessage(void);
static void *AcceleratorAllocate(size_t bytes); static void *AcceleratorAllocate(size_t bytes);
@ -113,6 +119,8 @@ private:
static uint64_t DeviceToHostBytes; static uint64_t DeviceToHostBytes;
static uint64_t HostToDeviceXfer; static uint64_t HostToDeviceXfer;
static uint64_t DeviceToHostXfer; static uint64_t DeviceToHostXfer;
static uint64_t DeviceEvictions;
static uint64_t DeviceDestroy;
private: private:
#ifndef GRID_UVM #ifndef GRID_UVM
@ -170,6 +178,7 @@ private:
public: public:
static void Print(void); static void Print(void);
static void PrintAll(void);
static void PrintState( void* CpuPtr); static void PrintState( void* CpuPtr);
static int isOpen (void* CpuPtr); static int isOpen (void* CpuPtr);
static void ViewClose(void* CpuPtr,ViewMode mode); static void ViewClose(void* CpuPtr,ViewMode mode);

View File

@ -8,9 +8,8 @@ NAMESPACE_BEGIN(Grid);
static char print_buffer [ MAXLINE ]; static char print_buffer [ MAXLINE ];
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer; #define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
//#define dprintf(...) printf (__VA_ARGS__ ); fflush(stdout); #define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
#define dprintf(...) //#define dprintf(...)
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
@ -29,6 +28,8 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes; uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer; uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer; uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceEvictions;
uint64_t MemoryManager::DeviceDestroy;
//////////////////////////////////// ////////////////////////////////////
// Priority ordering for unlocked entries // Priority ordering for unlocked entries
@ -116,8 +117,10 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
assert(AccCache.CpuPtr!=(uint64_t)NULL); assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) { if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceDestroy++;
DeviceBytes -=AccCache.bytes; DeviceBytes -=AccCache.bytes;
LRUremove(AccCache); LRUremove(AccCache);
AccCache.AccPtr=(uint64_t) NULL;
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes); dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
} }
uint64_t CpuPtr = AccCache.CpuPtr; uint64_t CpuPtr = AccCache.CpuPtr;
@ -127,26 +130,36 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::Evict(AcceleratorViewEntry &AccCache) void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
{ {
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// Make CPU consistent, remove from Accelerator, remove entry // Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
// Cannot be locked. If allocated must be in LRU pool. // Cannot be acclocked. If allocated must be in LRU pool.
//
// Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
// and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
// but there is a weakness where CpuLock entries are attempted for erase
// Take these OUT LRU queue when CPU locked?
// Cannot take out the table as cpuLock data is important.
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty); assert(AccCache.state!=Empty);
mprintf("MemoryManager: Evict(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr); mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
assert(AccCache.accLock==0); (uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
assert(AccCache.cpuLock==0); (uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
if (AccCache.accLock!=0) return;
if (AccCache.cpuLock!=0) return;
if(AccCache.state==AccDirty) { if(AccCache.state==AccDirty) {
Flush(AccCache); Flush(AccCache);
} }
assert(AccCache.CpuPtr!=(uint64_t)NULL);
if(AccCache.AccPtr) { if(AccCache.AccPtr) {
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes); AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache); LRUremove(AccCache);
AccCache.AccPtr=(uint64_t)NULL;
AccCache.state=CpuDirty; // CPU primary now
DeviceBytes -=AccCache.bytes;
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes); dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
} }
uint64_t CpuPtr = AccCache.CpuPtr; // uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr); DeviceEvictions++;
// EntryErase(CpuPtr);
} }
void MemoryManager::Flush(AcceleratorViewEntry &AccCache) void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
{ {
@ -197,6 +210,7 @@ void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
void MemoryManager::ViewClose(void* Ptr,ViewMode mode) void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
{ {
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
AcceleratorViewClose((uint64_t)Ptr); AcceleratorViewClose((uint64_t)Ptr);
} else if( (mode==CpuRead)||(mode==CpuWrite)){ } else if( (mode==CpuRead)||(mode==CpuWrite)){
CpuViewClose((uint64_t)Ptr); CpuViewClose((uint64_t)Ptr);
@ -208,6 +222,7 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
{ {
uint64_t CpuPtr = (uint64_t)_CpuPtr; uint64_t CpuPtr = (uint64_t)_CpuPtr;
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){ if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint); return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
} else if( (mode==CpuRead)||(mode==CpuWrite)){ } else if( (mode==CpuRead)||(mode==CpuWrite)){
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint); return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
@ -218,13 +233,16 @@ void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvis
} }
void MemoryManager::EvictVictims(uint64_t bytes) void MemoryManager::EvictVictims(uint64_t bytes)
{ {
assert(bytes<DeviceMaxBytes);
while(bytes+DeviceLRUBytes > DeviceMaxBytes){ while(bytes+DeviceLRUBytes > DeviceMaxBytes){
if ( DeviceLRUBytes > 0){ if ( DeviceLRUBytes > 0){
assert(LRU.size()>0); assert(LRU.size()>0);
uint64_t victim = LRU.back(); uint64_t victim = LRU.back(); // From the LRU
auto AccCacheIterator = EntryLookup(victim); auto AccCacheIterator = EntryLookup(victim);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
Evict(AccCache); Evict(AccCache);
} else {
return;
} }
} }
} }
@ -247,11 +265,12 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
assert(AccCache.cpuLock==0); // Programming error assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) { if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %lx %lx : %ld %ld\n", dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
(uint64_t)AccCache.CpuPtr, (uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr, (uint64_t)CpuPtr,
(uint64_t)AccCache.bytes, (uint64_t)AccCache.bytes,
(uint64_t)bytes); (uint64_t)bytes,
(uint64_t)AccCache.accLock);
assert(AccCache.CpuPtr == CpuPtr); assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes); assert(AccCache.bytes ==bytes);
} }
@ -286,6 +305,7 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // Empty + AccRead => Consistent AccCache.state = Consistent; // Empty + AccRead => Consistent
} }
AccCache.accLock= 1; AccCache.accLock= 1;
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
} else if(AccCache.state==CpuDirty ){ } else if(AccCache.state==CpuDirty ){
if(mode==AcceleratorWriteDiscard) { if(mode==AcceleratorWriteDiscard) {
CpuDiscard(AccCache); CpuDiscard(AccCache);
@ -298,28 +318,30 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
} }
AccCache.accLock++; AccCache.accLock++;
dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock); dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) { } else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else else
AccCache.state = Consistent; // Consistent + AccRead => Consistent AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++; AccCache.accLock++;
dprintf("Consistent entry into device accLock %d\n",AccCache.accLock); dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) { } else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard)) if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++; AccCache.accLock++;
dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock); dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
} else { } else {
assert(0); assert(0);
} }
// If view is opened on device remove from LRU assert(AccCache.accLock>0);
// If view is opened on device must remove from LRU
if(AccCache.LRU_valid==1){ if(AccCache.LRU_valid==1){
// must possibly remove from LRU as now locked on GPU // must possibly remove from LRU as now locked on GPU
dprintf("AccCache entry removed from LRU \n");
LRUremove(AccCache); LRUremove(AccCache);
} }
@ -340,10 +362,12 @@ void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
assert(AccCache.accLock>0); assert(AccCache.accLock>0);
AccCache.accLock--; AccCache.accLock--;
// Move to LRU queue if not locked and close on device // Move to LRU queue if not locked and close on device
if(AccCache.accLock==0) { if(AccCache.accLock==0) {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
LRUinsert(AccCache); LRUinsert(AccCache);
} else {
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
} }
} }
void MemoryManager::CpuViewClose(uint64_t CpuPtr) void MemoryManager::CpuViewClose(uint64_t CpuPtr)
@ -380,9 +404,10 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
auto AccCacheIterator = EntryLookup(CpuPtr); auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second; auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) { // CPU doesn't need to free space
EvictVictims(bytes); // if (!AccCache.AccPtr) {
} // EvictVictims(bytes);
// }
assert((mode==CpuRead)||(mode==CpuWrite)); assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error assert(AccCache.accLock==0); // Programming error
@ -436,20 +461,28 @@ void MemoryManager::NotifyDeletion(void *_ptr)
void MemoryManager::Print(void) void MemoryManager::Print(void)
{ {
PrintBytes(); PrintBytes();
std::cout << GridLogDebug << "--------------------------------------------" << std::endl; std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << "Memory Manager " << std::endl; std::cout << GridLogMessage << "Memory Manager " << std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl; std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogDebug << DeviceBytes << " bytes allocated on device " << std::endl; std::cout << GridLogMessage << DeviceBytes << " bytes allocated on device " << std::endl;
std::cout << GridLogDebug << DeviceLRUBytes<< " bytes evictable on device " << std::endl; std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
std::cout << GridLogDebug << DeviceMaxBytes<< " bytes max on device " << std::endl; std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device " << std::endl;
std::cout << GridLogDebug << HostToDeviceXfer << " transfers to device " << std::endl; std::cout << GridLogMessage << HostToDeviceXfer << " transfers to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostXfer << " transfers from device " << std::endl; std::cout << GridLogMessage << DeviceToHostXfer << " transfers from device " << std::endl;
std::cout << GridLogDebug << HostToDeviceBytes<< " bytes transfered to device " << std::endl; std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
std::cout << GridLogDebug << DeviceToHostBytes<< " bytes transfered from device " << std::endl; std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
std::cout << GridLogDebug << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl; std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl; std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
std::cout << GridLogDebug << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
std::cout << GridLogDebug << "--------------------------------------------" << std::endl; std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
}
void MemoryManager::PrintAll(void)
{
Print();
std::cout << GridLogMessage << std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){ for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second; auto &AccCache = it->second;
@ -459,13 +492,13 @@ void MemoryManager::Print(void)
if ( AccCache.state==AccDirty ) str = std::string("AccDirty"); if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent"); if ( AccCache.state==Consistent)str = std::string("Consistent");
std::cout << GridLogDebug << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str << "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock << "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock << "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl; << "\t" << AccCache.LRU_valid<<std::endl;
} }
std::cout << GridLogDebug << "--------------------------------------------" << std::endl; std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
}; };
int MemoryManager::isOpen (void* _CpuPtr) int MemoryManager::isOpen (void* _CpuPtr)
@ -479,6 +512,64 @@ int MemoryManager::isOpen (void* _CpuPtr)
return 0; return 0;
} }
} }
void MemoryManager::Audit(std::string s)
{
uint64_t CpuBytes=0;
uint64_t AccBytes=0;
uint64_t LruBytes1=0;
uint64_t LruBytes2=0;
uint64_t LruCnt=0;
uint64_t LockedBytes=0;
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
for(auto it=LRU.begin();it!=LRU.end();it++){
uint64_t cpuPtr = *it;
assert(EntryPresent(cpuPtr));
auto AccCacheIterator = EntryLookup(cpuPtr);
auto & AccCache = AccCacheIterator->second;
LruBytes2+=AccCache.bytes;
assert(AccCache.LRU_valid==1);
assert(AccCache.LRU_entry==it);
}
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
auto &AccCache = it->second;
std::string str;
if ( AccCache.state==Empty ) str = std::string("Empty");
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
if ( AccCache.state==Consistent)str = std::string("Consistent");
CpuBytes+=AccCache.bytes;
if( AccCache.AccPtr ) AccBytes+=AccCache.bytes;
if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
if( AccCache.LRU_valid ) LruCnt++;
if ( AccCache.cpuLock || AccCache.accLock ) {
assert(AccCache.LRU_valid==0);
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t cpuLock " << AccCache.cpuLock
<< "\t accLock " << AccCache.accLock
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
}
assert( AccCache.cpuLock== 0 ) ;
assert( AccCache.accLock== 0 ) ;
}
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
assert(LruBytes1==LruBytes2);
assert(LruBytes1==DeviceLRUBytes);
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
assert(AccBytes==DeviceBytes);
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
assert(LruCnt == LRU.size());
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
}
void MemoryManager::PrintState(void* _CpuPtr) void MemoryManager::PrintState(void* _CpuPtr)
{ {
@ -495,8 +586,8 @@ void MemoryManager::PrintState(void* _CpuPtr)
if ( AccCache.state==EvictNext) str = std::string("EvictNext"); if ( AccCache.state==EvictNext) str = std::string("EvictNext");
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl; std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str << "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
<< "\t" << AccCache.cpuLock << "\t" << AccCache.cpuLock
<< "\t" << AccCache.accLock << "\t" << AccCache.accLock
<< "\t" << AccCache.LRU_valid<<std::endl; << "\t" << AccCache.LRU_valid<<std::endl;

View File

@ -12,7 +12,10 @@ uint64_t MemoryManager::HostToDeviceBytes;
uint64_t MemoryManager::DeviceToHostBytes; uint64_t MemoryManager::DeviceToHostBytes;
uint64_t MemoryManager::HostToDeviceXfer; uint64_t MemoryManager::HostToDeviceXfer;
uint64_t MemoryManager::DeviceToHostXfer; uint64_t MemoryManager::DeviceToHostXfer;
uint64_t MemoryManager::DeviceEvictions;
uint64_t MemoryManager::DeviceDestroy;
void MemoryManager::Audit(std::string s){};
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){}; void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; }; void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
int MemoryManager::isOpen (void* CpuPtr) { return 0;} int MemoryManager::isOpen (void* CpuPtr) { return 0;}
@ -21,6 +24,7 @@ void MemoryManager::PrintState(void* CpuPtr)
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl; std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
}; };
void MemoryManager::Print(void){}; void MemoryManager::Print(void){};
void MemoryManager::PrintAll(void){};
void MemoryManager::NotifyDeletion(void *ptr){}; void MemoryManager::NotifyDeletion(void *ptr){};
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -131,7 +131,7 @@ public:
template<class obj> void GlobalSum(obj &o){ template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type; typedef typename obj::scalar_type scalar_type;
int words = sizeof(obj)/sizeof(scalar_type); int words = sizeof(obj)/sizeof(scalar_type);
scalar_type * ptr = (scalar_type *)& o; scalar_type * ptr = (scalar_type *)& o; // Safe alias
GlobalSumVector(ptr,words); GlobalSumVector(ptr,words);
} }
@ -155,7 +155,7 @@ public:
int xmit_to_rank,int do_xmit, int xmit_to_rank,int do_xmit,
void *recv, void *recv,
int recv_from_rank,int do_recv, int recv_from_rank,int do_recv,
int bytes,int dir); int xbytes,int rbytes,int dir);
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i); void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);

View File

@ -343,7 +343,7 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
int bytes,int dir) int bytes,int dir)
{ {
std::vector<CommsRequest_t> list; std::vector<CommsRequest_t> list;
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,dir); double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
StencilSendToRecvFromComplete(list,dir); StencilSendToRecvFromComplete(list,dir);
return offbytes; return offbytes;
} }
@ -353,7 +353,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int dest,int dox, int dest,int dox,
void *recv, void *recv,
int from,int dor, int from,int dor,
int bytes,int dir) int xbytes,int rbytes,int dir)
{ {
int ncomm =communicator_halo.size(); int ncomm =communicator_halo.size();
int commdir=dir%ncomm; int commdir=dir%ncomm;
@ -375,32 +375,27 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
if ( dor ) { if ( dor ) {
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) { if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+from*32; tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq); ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0); assert(ierr==0);
list.push_back(rrq); list.push_back(rrq);
off_node_bytes+=bytes; off_node_bytes+=rbytes;
} }
} }
if (dox) { if (dox) {
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) { if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
tag= dir+_processor*32; tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq); ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0); assert(ierr==0);
list.push_back(xrq); list.push_back(xrq);
off_node_bytes+=bytes; off_node_bytes+=xbytes;
} else { } else {
void *shm = (void *) this->ShmBufferTranslate(dest,recv); void *shm = (void *) this->ShmBufferTranslate(dest,recv);
assert(shm!=NULL); assert(shm!=NULL);
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes); acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
} }
} }
/* if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
* this->StencilSendToRecvFromComplete(list,dir);
* list.resize(0);
* }
*/
return off_node_bytes; return off_node_bytes;
} }
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir) void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)

View File

@ -126,7 +126,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
int xmit_to_rank,int dox, int xmit_to_rank,int dox,
void *recv, void *recv,
int recv_from_rank,int dor, int recv_from_rank,int dor,
int bytes, int dir) int xbytes,int rbytes, int dir)
{ {
return 2.0*bytes; return 2.0*bytes;
} }

View File

@ -29,6 +29,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
#include <Grid/GridCore.h> #include <Grid/GridCore.h>
#include <pwd.h> #include <pwd.h>
#include <syscall.h>
#ifdef GRID_CUDA #ifdef GRID_CUDA
#include <cuda_runtime_api.h> #include <cuda_runtime_api.h>

File diff suppressed because it is too large Load Diff

View File

@ -63,7 +63,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
typename std::remove_const<vobj>::type ret; typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object; typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type; // typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd(); const int Nsimd = vobj::vector_type::Nsimd();

View File

@ -291,8 +291,8 @@ public:
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0; typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
conformable(*this,r); conformable(*this,r);
this->checkerboard = r.Checkerboard(); this->checkerboard = r.Checkerboard();
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead); auto him= r.View(AcceleratorRead);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss)); coalescedWrite(me[ss],him(ss));
}); });
@ -306,8 +306,8 @@ public:
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){ inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
this->checkerboard = r.Checkerboard(); this->checkerboard = r.Checkerboard();
conformable(*this,r); conformable(*this,r);
auto me = View(AcceleratorWriteDiscard);
auto him= r.View(AcceleratorRead); auto him= r.View(AcceleratorRead);
auto me = View(AcceleratorWriteDiscard);
accelerator_for(ss,me.size(),vobj::Nsimd(),{ accelerator_for(ss,me.size(),vobj::Nsimd(),{
coalescedWrite(me[ss],him(ss)); coalescedWrite(me[ss],him(ss));
}); });

View File

@ -32,7 +32,6 @@ template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -82,7 +81,6 @@ template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -130,7 +128,6 @@ template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid(); GridBase *FullGrid = lhs.Grid();

View File

@ -96,9 +96,6 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid(); GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site)); assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
@ -136,9 +133,6 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
GridBase *grid=l.Grid(); GridBase *grid=l.Grid();
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site)); assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
@ -179,11 +173,11 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
idx= grid->iIndex(site); idx= grid->iIndex(site);
odx= grid->oIndex(site); odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx]; const vector_type *vp = (const vector_type *) &l[odx];
scalar_type * pt = (scalar_type *)&s; scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
pt[w] = vp[idx+w*Nsimd]; pt[w] = getlane(vp[w],idx);
} }
return; return;
@ -216,10 +210,10 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
idx= grid->iIndex(site); idx= grid->iIndex(site);
odx= grid->oIndex(site); odx= grid->oIndex(site);
scalar_type * vp = (scalar_type *)&l[odx]; vector_type * vp = (vector_type *)&l[odx];
scalar_type * pt = (scalar_type *)&s; scalar_type * pt = (scalar_type *)&s;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
vp[idx+w*Nsimd] = pt[w]; putlane(vp[w],pt[w],idx);
} }
return; return;
}; };

View File

@ -28,6 +28,9 @@ Author: Christoph Lehner <christoph@lhnr.de>
#if defined(GRID_CUDA)||defined(GRID_HIP) #if defined(GRID_CUDA)||defined(GRID_HIP)
#include <Grid/lattice/Lattice_reduction_gpu.h> #include <Grid/lattice/Lattice_reduction_gpu.h>
#endif #endif
#if defined(GRID_SYCL)
#include <Grid/lattice/Lattice_reduction_sycl.h>
#endif
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -124,7 +127,7 @@ inline Double max(const Double *arg, Integer osites)
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites) inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP) #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
return sum_gpu(arg,osites); return sum_gpu(arg,osites);
#else #else
return sum_cpu(arg,osites); return sum_cpu(arg,osites);
@ -133,7 +136,7 @@ inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
template<class vobj> template<class vobj>
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites) inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP) #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
return sumD_gpu(arg,osites); return sumD_gpu(arg,osites);
#else #else
return sumD_cpu(arg,osites); return sumD_cpu(arg,osites);
@ -142,7 +145,7 @@ inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
template<class vobj> template<class vobj>
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites) inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP) #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
return sumD_gpu_large(arg,osites); return sumD_gpu_large(arg,osites);
#else #else
return sumD_cpu(arg,osites); return sumD_cpu(arg,osites);
@ -152,13 +155,13 @@ inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg) inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP)
autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites(); Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu(&arg_v[0],osites); #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
typename vobj::scalar_object ssum;
autoView( arg_v, arg, AcceleratorRead);
ssum= sum_gpu(&arg_v[0],osites);
#else #else
autoView(arg_v, arg, CpuRead); autoView(arg_v, arg, CpuRead);
Integer osites = arg.Grid()->oSites();
auto ssum= sum_cpu(&arg_v[0],osites); auto ssum= sum_cpu(&arg_v[0],osites);
#endif #endif
arg.Grid()->GlobalSum(ssum); arg.Grid()->GlobalSum(ssum);
@ -168,7 +171,7 @@ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg) inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
{ {
#if defined(GRID_CUDA)||defined(GRID_HIP) #if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
autoView( arg_v, arg, AcceleratorRead); autoView( arg_v, arg, AcceleratorRead);
Integer osites = arg.Grid()->oSites(); Integer osites = arg.Grid()->oSites();
auto ssum= sum_gpu_large(&arg_v[0],osites); auto ssum= sum_gpu_large(&arg_v[0],osites);
@ -219,7 +222,6 @@ template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
template<class vobj> template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{ {
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type; typedef typename vobj::vector_typeD vector_type;
ComplexD nrm; ComplexD nrm;
@ -233,11 +235,10 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
typedef decltype(innerProductD(vobj(),vobj())) inner_t; typedef decltype(innerProductD(vobj(),vobj())) inner_t;
Vector<inner_t> inner_tmp(sites); Vector<inner_t> inner_tmp(sites);
auto inner_tmp_v = &inner_tmp[0]; auto inner_tmp_v = &inner_tmp[0];
{ {
autoView( left_v , left, AcceleratorRead); autoView( left_v , left, AcceleratorRead);
autoView( right_v,right, AcceleratorRead); autoView( right_v,right, AcceleratorRead);
// This code could read coalesce
// GPU - SIMT lane compliance... // GPU - SIMT lane compliance...
accelerator_for( ss, sites, nsimd,{ accelerator_for( ss, sites, nsimd,{
auto x_l = left_v(ss); auto x_l = left_v(ss);
@ -296,7 +297,6 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
conformable(z,x); conformable(z,x);
conformable(x,y); conformable(x,y);
typedef typename vobj::scalar_type scalar_type;
// typedef typename vobj::vector_typeD vector_type; // typedef typename vobj::vector_typeD vector_type;
RealD nrm; RealD nrm;
@ -341,7 +341,6 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
{ {
conformable(left,right); conformable(left,right);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type; typedef typename vobj::vector_typeD vector_type;
Vector<ComplexD> tmp(2); Vector<ComplexD> tmp(2);
@ -598,6 +597,7 @@ template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y, static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0) int orthogdim,RealD scale=1.0)
{ {
// perhaps easier to just promote A to a field and use regular madd
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -628,8 +628,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
for(int l=0;l<Nsimd;l++){ for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l); grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd; int ldx =r+icoor[orthogdim]*rd;
scalar_type *as =(scalar_type *)&av; av.putlane(scalar_type(a[ldx])*zscale,l);
as[l] = scalar_type(a[ldx])*zscale;
} }
tensor_reduced at; at=av; tensor_reduced at; at=av;
@ -669,7 +668,6 @@ template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0) static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -723,7 +721,6 @@ template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0) static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
int Nblock = X.Grid()->GlobalDimensions()[Orthog]; int Nblock = X.Grid()->GlobalDimensions()[Orthog];
@ -777,7 +774,6 @@ template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog) static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{ {
typedef typename vobj::scalar_object sobj; typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs.Grid(); GridBase *FullGrid = lhs.Grid();

View File

@ -211,13 +211,28 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
assert(ok); assert(ok);
Integer smemSize = numThreads * sizeof(sobj); Integer smemSize = numThreads * sizeof(sobj);
// UVM seems to be buggy under later CUDA drivers
Vector<sobj> buffer(numBlocks); // This fails on A100 and driver 5.30.02 / CUDA 12.1
// Fails with multiple NVCC versions back to 11.4,
// which worked with earlier drivers.
// Not sure which driver had first fail and this bears checking
// Is awkward as must install multiple driver versions
#undef UVM_BLOCK_BUFFER
#ifndef UVM_BLOCK_BUFFER
commVector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0]; sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size); reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
accelerator_barrier(); accelerator_barrier();
auto result = buffer_v[0]; acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
#else
Vector<sobj> buffer(numBlocks);
sobj *buffer_v = &buffer[0];
sobj result;
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
accelerator_barrier();
result = *buffer_v;
#endif
return result; return result;
} }
@ -250,8 +265,6 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
template <class vobj> template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites) inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{ {
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobj; typedef typename vobj::scalar_objectD sobj;
sobj ret; sobj ret;

View File

@ -0,0 +1,125 @@
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Possibly promote to double and sum
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_objectD sobjD;
sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
sobj identity; zeroit(identity);
sobj ret ;
Integer nsimd= vobj::Nsimd();
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(mysum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{osites},
Reduction,
[=] (cl::sycl::id<1> item, auto &sum) {
auto osite = item[0];
sum +=Reduce(lat[osite]);
});
});
theGridAccelerator->wait();
ret = mysum[0];
free(mysum,*theGridAccelerator);
sobjD dret; convertType(dret,ret);
return dret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
{
return sumD_gpu_tensor(lat,osites);
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
{
return sumD_gpu_large(lat,osites);
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
{
return sumD_gpu_large(lat,osites);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return as same precision as input performing reduction in double precision though
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu(lat,osites);
return result;
}
template <class vobj>
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
{
typedef typename vobj::scalar_object sobj;
sobj result;
result = sumD_gpu_large(lat,osites);
return result;
}
NAMESPACE_END(Grid);
/*
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
{
Double sumResult; zeroit(sumResult);
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
Double identity; zeroit(identity);
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
cgh.parallel_for(cl::sycl::range<1>{L},
Reduction,
[=] (cl::sycl::id<1> index, auto &sum) {
sum +=vec[index];
});
});
theGridAccelerator->wait();
Double ret = d_sum[0];
free(d_sum,*theGridAccelerator);
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
return ret;
}
template <class vobj>
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
{
typedef typename vobj::vector_type vector;
typedef typename vobj::scalar_type scalar;
typedef typename vobj::scalar_typeD scalarD;
typedef typename vobj::scalar_objectD sobjD;
sobjD ret;
scalarD *ret_p = (scalarD *)&ret;
const int nsimd = vobj::Nsimd();
const int words = sizeof(vobj)/sizeof(vector);
Vector<scalar> buffer(osites*nsimd);
scalar *buf = &buffer[0];
vector *dat = (vector *)lat;
for(int w=0;w<words;w++) {
accelerator_for(ss,osites,nsimd,{
int lane = acceleratorSIMTlane(nsimd);
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
});
//Precision change at this point is to late to gain precision
ret_p[w] = svm_reduce(buf,nsimd*osites);
}
return ret;
}
*/

View File

@ -194,11 +194,11 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
#endif #endif
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) { accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v); precisionChange(out,in);
} }
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) { accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v); precisionChange(out,in);
} }
template<typename T1,typename T2> template<typename T1,typename T2>
@ -677,10 +677,10 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]); Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]); Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]); Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
scalar_type * fp = (scalar_type *)&f_v[odx_f]; vector_type * fp = (vector_type *)&f_v[odx_f];
scalar_type * tp = (scalar_type *)&t_v[odx_t]; vector_type * tp = (vector_type *)&t_v[odx_t];
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke tp[w].putlane(fp[w].getlane(idx_f),idx_t);
} }
} }
}); });
@ -1080,9 +1080,27 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
}); });
} }
//Convert a Lattice from one precision to another //Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field)
template<class VobjOut, class VobjIn> template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in) void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{
typedef typename VobjOut::vector_type Vout;
typedef typename VobjIn::vector_type Vin;
const int N = sizeof(VobjOut)/sizeof(Vout);
conformable(out.Grid(),in.Grid());
out.Checkerboard() = in.Checkerboard();
int nsimd = out.Grid()->Nsimd();
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(idx,out.Grid()->oSites(),1,{
Vout *vout = (Vout *)&out_v[idx];
Vin *vin = (Vin *)&in_v[idx];
precisionChange(vout,vin,N);
});
}
//Convert a Lattice from one precision to another (original, slow implementation)
template<class VobjOut, class VobjIn>
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
{ {
assert(out.Grid()->Nd() == in.Grid()->Nd()); assert(out.Grid()->Nd() == in.Grid()->Nd());
for(int d=0;d<out.Grid()->Nd();d++){ for(int d=0;d<out.Grid()->Nd();d++){
@ -1097,7 +1115,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
int ndim = out.Grid()->Nd(); int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd(); int out_nsimd = out_grid->Nsimd();
int in_nsimd = in_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd); std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){ for(int lane=0; lane < out_nsimd; lane++){
@ -1128,6 +1146,128 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
}); });
} }
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
class precisionChangeWorkspace{
std::pair<Integer,Integer>* fmap_device; //device pointer
//maintain grids for checking
GridBase* _out_grid;
GridBase* _in_grid;
public:
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
assert(out_grid->Nd() == in_grid->Nd());
for(int d=0;d<out_grid->Nd();d++){
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
}
int Nsimd_out = out_grid->Nsimd();
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
for(int lane=0; lane < out_grid->Nsimd(); lane++)
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
thread_for(out_oidx,out_grid->oSites(),{
Coordinate out_ocorr;
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
int in_oidx = 0, in_lane = 0;
for(int d=0;d<in_grid->_ndimension;d++){
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
}
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
}
});
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
}
//Prevent moving or copying
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
void checkGrids(GridBase* out, GridBase* in) const{
conformable(out, _out_grid);
conformable(in, _in_grid);
}
~precisionChangeWorkspace(){
acceleratorFreeDevice(fmap_device);
}
};
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
template<class VobjOut, class VobjIn>
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
if(out.Grid() == in.Grid()){
precisionChangeFast(out,in);
return 1;
}else{
return 0;
}
}
template<class VobjOut, class VobjIn>
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
return 0;
}
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
//which contains the mapping data.
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
if(_precisionChangeFastWrap(out,in,0)) return;
static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
out.Checkerboard() = in.Checkerboard();
constexpr int Nsimd_out = VobjOut::Nsimd();
workspace.checkGrids(out.Grid(),in.Grid());
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
//Do the copy/precision change
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
int in_oidx = fmap_osite[out_lane].first;
int in_lane = fmap_osite[out_lane].second;
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
}
});
}
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
if(_precisionChangeFastWrap(out,in,0)) return;
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
precisionChange(out, in, workspace);
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Communicate between grids // Communicate between grids
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////

View File

@ -66,6 +66,7 @@ GridLogger GridLogError (1, "Error" , GridLogColours, "RED");
GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW"); GridLogger GridLogWarning(1, "Warning", GridLogColours, "YELLOW");
GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL"); GridLogger GridLogMessage(1, "Message", GridLogColours, "NORMAL");
GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL"); GridLogger GridLogMemory (1, "Memory", GridLogColours, "NORMAL");
GridLogger GridLogTracing(1, "Tracing", GridLogColours, "NORMAL");
GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE"); GridLogger GridLogDebug (1, "Debug", GridLogColours, "PURPLE");
GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN"); GridLogger GridLogPerformance(1, "Performance", GridLogColours, "GREEN");
GridLogger GridLogDslash (1, "Dslash", GridLogColours, "BLUE"); GridLogger GridLogDslash (1, "Dslash", GridLogColours, "BLUE");
@ -77,7 +78,8 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogError.Active(1); GridLogError.Active(1);
GridLogWarning.Active(0); GridLogWarning.Active(0);
GridLogMessage.Active(1); // at least the messages should be always on GridLogMessage.Active(1); // at least the messages should be always on
GridLogMemory.Active(0); // at least the messages should be always on GridLogMemory.Active(0);
GridLogTracing.Active(0);
GridLogIterative.Active(0); GridLogIterative.Active(0);
GridLogDebug.Active(0); GridLogDebug.Active(0);
GridLogPerformance.Active(0); GridLogPerformance.Active(0);
@ -87,6 +89,7 @@ void GridLogConfigure(std::vector<std::string> &logstreams) {
GridLogHMC.Active(1); GridLogHMC.Active(1);
for (int i = 0; i < logstreams.size(); i++) { for (int i = 0; i < logstreams.size(); i++) {
if (logstreams[i] == std::string("Tracing")) GridLogTracing.Active(1);
if (logstreams[i] == std::string("Memory")) GridLogMemory.Active(1); if (logstreams[i] == std::string("Memory")) GridLogMemory.Active(1);
if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1); if (logstreams[i] == std::string("Warning")) GridLogWarning.Active(1);
if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0); if (logstreams[i] == std::string("NoMessage")) GridLogMessage.Active(0);

View File

@ -186,6 +186,7 @@ extern GridLogger GridLogIterative ;
extern GridLogger GridLogIntegrator ; extern GridLogger GridLogIntegrator ;
extern GridLogger GridLogHMC; extern GridLogger GridLogHMC;
extern GridLogger GridLogMemory; extern GridLogger GridLogMemory;
extern GridLogger GridLogTracing;
extern Colours GridLogColours; extern Colours GridLogColours;
std::string demangle(const char* name) ; std::string demangle(const char* name) ;

View File

@ -30,6 +30,12 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_PERFCOUNT_H #ifndef GRID_PERFCOUNT_H
#define GRID_PERFCOUNT_H #define GRID_PERFCOUNT_H
#ifndef __SSC_START
#define __SSC_START
#define __SSC_STOP
#endif
#include <sys/time.h> #include <sys/time.h>
#include <ctime> #include <ctime>
#include <chrono> #include <chrono>

View File

@ -1,4 +1,7 @@
#pragma once #pragma once
NAMESPACE_BEGIN(Grid);
#ifdef GRID_TRACING_NVTX #ifdef GRID_TRACING_NVTX
#include <nvToolsExt.h> #include <nvToolsExt.h>
class GridTracer { class GridTracer {
@ -64,3 +67,4 @@ inline void traceStop(int ID) { }
#else #else
#define GRID_TRACE(name) GridTracer uniq_name_using_macros##__COUNTER__(name); #define GRID_TRACE(name) GridTracer uniq_name_using_macros##__COUNTER__(name);
#endif #endif
NAMESPACE_END(Grid);

View File

@ -16,7 +16,7 @@
#ifdef __NVCC__ #ifdef __NVCC__
#pragma push #pragma push
#if (__CUDACC_VER_MAJOR__ >= 11) && (__CUDACC_VER_MINOR__ >= 5) #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning" #pragma nv_diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"
#else #else
#pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning" #pragma diag_suppress declared_but_not_referenced // suppress "function was declared but never referenced warning"

View File

@ -126,6 +126,7 @@ typedef iSpinMatrix<ComplexD > SpinMatrixD;
typedef iSpinMatrix<vComplex > vSpinMatrix; typedef iSpinMatrix<vComplex > vSpinMatrix;
typedef iSpinMatrix<vComplexF> vSpinMatrixF; typedef iSpinMatrix<vComplexF> vSpinMatrixF;
typedef iSpinMatrix<vComplexD> vSpinMatrixD; typedef iSpinMatrix<vComplexD> vSpinMatrixD;
typedef iSpinMatrix<vComplexD2> vSpinMatrixD2;
// Colour Matrix // Colour Matrix
typedef iColourMatrix<Complex > ColourMatrix; typedef iColourMatrix<Complex > ColourMatrix;
@ -135,6 +136,7 @@ typedef iColourMatrix<ComplexD > ColourMatrixD;
typedef iColourMatrix<vComplex > vColourMatrix; typedef iColourMatrix<vComplex > vColourMatrix;
typedef iColourMatrix<vComplexF> vColourMatrixF; typedef iColourMatrix<vComplexF> vColourMatrixF;
typedef iColourMatrix<vComplexD> vColourMatrixD; typedef iColourMatrix<vComplexD> vColourMatrixD;
typedef iColourMatrix<vComplexD2> vColourMatrixD2;
// SpinColour matrix // SpinColour matrix
typedef iSpinColourMatrix<Complex > SpinColourMatrix; typedef iSpinColourMatrix<Complex > SpinColourMatrix;
@ -144,6 +146,7 @@ typedef iSpinColourMatrix<ComplexD > SpinColourMatrixD;
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix; typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF; typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD; typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
typedef iSpinColourMatrix<vComplexD2> vSpinColourMatrixD2;
// SpinColourSpinColour matrix // SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
@ -153,6 +156,7 @@ typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF; typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD; typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplexD2> vSpinColourSpinColourMatrixD2;
// SpinColourSpinColour matrix // SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
@ -162,6 +166,7 @@ typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix; typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF; typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD; typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplexD2> vSpinColourSpinColourMatrixD2;
// LorentzColour // LorentzColour
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix; typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
@ -171,6 +176,7 @@ typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix; typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF; typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD; typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
// DoubleStored gauge field // DoubleStored gauge field
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix; typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
@ -180,6 +186,7 @@ typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix; typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF; typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD; typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
typedef iDoubleStoredColourMatrix<vComplexD2> vDoubleStoredColourMatrixD2;
//G-parity flavour matrix //G-parity flavour matrix
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix; typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
@ -189,6 +196,7 @@ typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix; typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF; typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD; typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
typedef iGparityFlavourMatrix<vComplexD2> vGparityFlavourMatrixD2;
// Spin vector // Spin vector
@ -199,6 +207,7 @@ typedef iSpinVector<ComplexD> SpinVectorD;
typedef iSpinVector<vComplex > vSpinVector; typedef iSpinVector<vComplex > vSpinVector;
typedef iSpinVector<vComplexF> vSpinVectorF; typedef iSpinVector<vComplexF> vSpinVectorF;
typedef iSpinVector<vComplexD> vSpinVectorD; typedef iSpinVector<vComplexD> vSpinVectorD;
typedef iSpinVector<vComplexD2> vSpinVectorD2;
// Colour vector // Colour vector
typedef iColourVector<Complex > ColourVector; typedef iColourVector<Complex > ColourVector;
@ -208,6 +217,7 @@ typedef iColourVector<ComplexD> ColourVectorD;
typedef iColourVector<vComplex > vColourVector; typedef iColourVector<vComplex > vColourVector;
typedef iColourVector<vComplexF> vColourVectorF; typedef iColourVector<vComplexF> vColourVectorF;
typedef iColourVector<vComplexD> vColourVectorD; typedef iColourVector<vComplexD> vColourVectorD;
typedef iColourVector<vComplexD2> vColourVectorD2;
// SpinColourVector // SpinColourVector
typedef iSpinColourVector<Complex > SpinColourVector; typedef iSpinColourVector<Complex > SpinColourVector;
@ -217,6 +227,7 @@ typedef iSpinColourVector<ComplexD> SpinColourVectorD;
typedef iSpinColourVector<vComplex > vSpinColourVector; typedef iSpinColourVector<vComplex > vSpinColourVector;
typedef iSpinColourVector<vComplexF> vSpinColourVectorF; typedef iSpinColourVector<vComplexF> vSpinColourVectorF;
typedef iSpinColourVector<vComplexD> vSpinColourVectorD; typedef iSpinColourVector<vComplexD> vSpinColourVectorD;
typedef iSpinColourVector<vComplexD2> vSpinColourVectorD2;
// HalfSpin vector // HalfSpin vector
typedef iHalfSpinVector<Complex > HalfSpinVector; typedef iHalfSpinVector<Complex > HalfSpinVector;
@ -226,6 +237,7 @@ typedef iHalfSpinVector<ComplexD> HalfSpinVectorD;
typedef iHalfSpinVector<vComplex > vHalfSpinVector; typedef iHalfSpinVector<vComplex > vHalfSpinVector;
typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF; typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF;
typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD; typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD;
typedef iHalfSpinVector<vComplexD2> vHalfSpinVectorD2;
// HalfSpinColour vector // HalfSpinColour vector
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector; typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
@ -235,6 +247,7 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector; typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF; typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD; typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
typedef iHalfSpinColourVector<vComplexD2> vHalfSpinColourVectorD2;
//G-parity flavour vector //G-parity flavour vector
typedef iGparityFlavourVector<Complex > GparityFlavourVector; typedef iGparityFlavourVector<Complex > GparityFlavourVector;
@ -244,7 +257,7 @@ typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector; typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF; typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD; typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
typedef iGparityFlavourVector<vComplexD2> vGparityFlavourVectorD2;
// singlets // singlets
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type. typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
@ -254,6 +267,7 @@ typedef iSinglet<ComplexD> TComplexD; // FIXME This is painful. Tenso
typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure
typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure
typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure
typedef iSinglet<vComplexD2> vTComplexD2; // what if we don't know the tensor structure
typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without? typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without?
typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without? typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without?
@ -271,47 +285,58 @@ typedef iSinglet<Integer > TInteger;
typedef Lattice<vColourMatrix> LatticeColourMatrix; typedef Lattice<vColourMatrix> LatticeColourMatrix;
typedef Lattice<vColourMatrixF> LatticeColourMatrixF; typedef Lattice<vColourMatrixF> LatticeColourMatrixF;
typedef Lattice<vColourMatrixD> LatticeColourMatrixD; typedef Lattice<vColourMatrixD> LatticeColourMatrixD;
typedef Lattice<vColourMatrixD2> LatticeColourMatrixD2;
typedef Lattice<vSpinMatrix> LatticeSpinMatrix; typedef Lattice<vSpinMatrix> LatticeSpinMatrix;
typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF; typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF;
typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD; typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD;
typedef Lattice<vSpinMatrixD2> LatticeSpinMatrixD2;
typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix; typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix;
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF; typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD; typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
typedef Lattice<vSpinColourMatrixD2> LatticeSpinColourMatrixD2;
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix; typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF; typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD; typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
typedef Lattice<vSpinColourSpinColourMatrixD2> LatticeSpinColourSpinColourMatrixD2;
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix; typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF; typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD; typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
// DoubleStored gauge field // DoubleStored gauge field
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix; typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF; typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD; typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
typedef Lattice<vDoubleStoredColourMatrixD2> LatticeDoubleStoredColourMatrixD2;
typedef Lattice<vSpinVector> LatticeSpinVector; typedef Lattice<vSpinVector> LatticeSpinVector;
typedef Lattice<vSpinVectorF> LatticeSpinVectorF; typedef Lattice<vSpinVectorF> LatticeSpinVectorF;
typedef Lattice<vSpinVectorD> LatticeSpinVectorD; typedef Lattice<vSpinVectorD> LatticeSpinVectorD;
typedef Lattice<vSpinVectorD2> LatticeSpinVectorD2;
typedef Lattice<vColourVector> LatticeColourVector; typedef Lattice<vColourVector> LatticeColourVector;
typedef Lattice<vColourVectorF> LatticeColourVectorF; typedef Lattice<vColourVectorF> LatticeColourVectorF;
typedef Lattice<vColourVectorD> LatticeColourVectorD; typedef Lattice<vColourVectorD> LatticeColourVectorD;
typedef Lattice<vColourVectorD2> LatticeColourVectorD2;
typedef Lattice<vSpinColourVector> LatticeSpinColourVector; typedef Lattice<vSpinColourVector> LatticeSpinColourVector;
typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF; typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF;
typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD; typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD;
typedef Lattice<vSpinColourVectorD2> LatticeSpinColourVectorD2;
typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector; typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector;
typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF; typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF;
typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD; typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD;
typedef Lattice<vHalfSpinVectorD2> LatticeHalfSpinVectorD2;
typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector; typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector;
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF; typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD; typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
typedef Lattice<vHalfSpinColourVectorD2> LatticeHalfSpinColourVectorD2;
typedef Lattice<vTReal> LatticeReal; typedef Lattice<vTReal> LatticeReal;
typedef Lattice<vTRealF> LatticeRealF; typedef Lattice<vTRealF> LatticeRealF;
@ -320,6 +345,7 @@ typedef Lattice<vTRealD> LatticeRealD;
typedef Lattice<vTComplex> LatticeComplex; typedef Lattice<vTComplex> LatticeComplex;
typedef Lattice<vTComplexF> LatticeComplexF; typedef Lattice<vTComplexF> LatticeComplexF;
typedef Lattice<vTComplexD> LatticeComplexD; typedef Lattice<vTComplexD> LatticeComplexD;
typedef Lattice<vTComplexD2> LatticeComplexD2;
typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where" typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
@ -329,35 +355,40 @@ typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
/////////////////////////////////////////// ///////////////////////////////////////////
typedef LatticeHalfSpinColourVector LatticeHalfFermion; typedef LatticeHalfSpinColourVector LatticeHalfFermion;
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF; typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD; typedef LatticeHalfSpinColourVectorD LatticeHalfFermionD;
typedef LatticeHalfSpinColourVectorD2 LatticeHalfFermionD2;
typedef LatticeSpinColourVector LatticeFermion; typedef LatticeSpinColourVector LatticeFermion;
typedef LatticeSpinColourVectorF LatticeFermionF; typedef LatticeSpinColourVectorF LatticeFermionF;
typedef LatticeSpinColourVectorD LatticeFermionD; typedef LatticeSpinColourVectorD LatticeFermionD;
typedef LatticeSpinColourVectorD2 LatticeFermionD2;
typedef LatticeSpinColourMatrix LatticePropagator; typedef LatticeSpinColourMatrix LatticePropagator;
typedef LatticeSpinColourMatrixF LatticePropagatorF; typedef LatticeSpinColourMatrixF LatticePropagatorF;
typedef LatticeSpinColourMatrixD LatticePropagatorD; typedef LatticeSpinColourMatrixD LatticePropagatorD;
typedef LatticeSpinColourMatrixD2 LatticePropagatorD2;
typedef LatticeLorentzColourMatrix LatticeGaugeField; typedef LatticeLorentzColourMatrix LatticeGaugeField;
typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF; typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF;
typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD; typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD;
typedef LatticeLorentzColourMatrixD2 LatticeGaugeFieldD2;
typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField; typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField;
typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF; typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF;
typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD; typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD;
typedef LatticeDoubleStoredColourMatrixD2 LatticeDoubledGaugeFieldD2;
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >; template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
// Uhgg... typing this hurt ;)
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
typedef Lattice<vColourVector> LatticeStaggeredFermion; typedef Lattice<vColourVector> LatticeStaggeredFermion;
typedef Lattice<vColourVectorF> LatticeStaggeredFermionF; typedef Lattice<vColourVectorF> LatticeStaggeredFermionF;
typedef Lattice<vColourVectorD> LatticeStaggeredFermionD; typedef Lattice<vColourVectorD> LatticeStaggeredFermionD;
typedef Lattice<vColourVectorD2> LatticeStaggeredFermionD2;
typedef Lattice<vColourMatrix> LatticeStaggeredPropagator; typedef Lattice<vColourMatrix> LatticeStaggeredPropagator;
typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF; typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF;
typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD; typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD;
typedef Lattice<vColourMatrixD2> LatticeStaggeredPropagatorD2;
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// Peek and Poke named after physics attributes // Peek and Poke named after physics attributes
@ -476,9 +507,20 @@ template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<Lorentz
// Fermion <-> propagator assignements // Fermion <-> propagator assignements
////////////////////////////////////////////// //////////////////////////////////////////////
//template <class Prop, class Ferm> //template <class Prop, class Ferm>
#define FAST_FERM_TO_PROP
template <class Fimpl> template <class Fimpl>
void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c) void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::FermionField &f, const int s, const int c)
{ {
#ifdef FAST_FERM_TO_PROP
autoView(p_v,p,CpuWrite);
autoView(f_v,f,CpuRead);
thread_for(idx,p_v.oSites(),{
for(int ss = 0; ss < Ns; ++ss) {
for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
p_v[idx]()(ss,s)(cc,c) = f_v[idx]()(ss)(cc); // Propagator sink index is LEFT, suitable for left mult by gauge link (e.g.)
}}
});
#else
for(int j = 0; j < Ns; ++j) for(int j = 0; j < Ns; ++j)
{ {
auto pjs = peekSpin(p, j, s); auto pjs = peekSpin(p, j, s);
@ -490,12 +532,23 @@ void FermToProp(typename Fimpl::PropagatorField &p, const typename Fimpl::Fermio
} }
pokeSpin(p, pjs, j, s); pokeSpin(p, pjs, j, s);
} }
#endif
} }
//template <class Prop, class Ferm> //template <class Prop, class Ferm>
template <class Fimpl> template <class Fimpl>
void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c) void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::PropagatorField &p, const int s, const int c)
{ {
#ifdef FAST_FERM_TO_PROP
autoView(p_v,p,CpuRead);
autoView(f_v,f,CpuWrite);
thread_for(idx,p_v.oSites(),{
for(int ss = 0; ss < Ns; ++ss) {
for(int cc = 0; cc < Fimpl::Dimension; ++cc) {
f_v[idx]()(ss)(cc) = p_v[idx]()(ss,s)(cc,c); // LEFT index is copied across for s,c right index
}}
});
#else
for(int j = 0; j < Ns; ++j) for(int j = 0; j < Ns; ++j)
{ {
auto pjs = peekSpin(p, j, s); auto pjs = peekSpin(p, j, s);
@ -507,6 +560,7 @@ void PropToFerm(typename Fimpl::FermionField &f, const typename Fimpl::Propagato
} }
pokeSpin(f, fj, j); pokeSpin(f, fj, j);
} }
#endif
} }
////////////////////////////////////////////// //////////////////////////////////////////////

View File

@ -50,19 +50,23 @@ public:
RealD refresh_us; RealD refresh_us;
void reset_timer(void) { void reset_timer(void) {
deriv_us = S_us = refresh_us = 0.0; deriv_us = S_us = refresh_us = 0.0;
deriv_num=0;
deriv_norm_sum = deriv_max_sum=0.0; deriv_norm_sum = deriv_max_sum=0.0;
Fdt_max_sum = Fdt_norm_sum = 0.0; Fdt_max_sum = Fdt_norm_sum = 0.0;
deriv_num=0;
} }
void deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) { void deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) {
deriv_max_sum+=max; if ( max > deriv_max_sum ) {
deriv_max_sum=max;
}
deriv_norm_sum+=nrm; deriv_norm_sum+=nrm;
Fdt_max_sum+=Fdt_max; if ( Fdt_max > Fdt_max_sum ) {
Fdt_max_sum=Fdt_max;
}
Fdt_norm_sum+=Fdt_nrm; deriv_num++; Fdt_norm_sum+=Fdt_nrm; deriv_num++;
} }
RealD deriv_max_average(void) { return deriv_max_sum/deriv_num; }; RealD deriv_max_average(void) { return deriv_max_sum; };
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; }; RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
RealD Fdt_max_average(void) { return Fdt_max_sum/deriv_num; }; RealD Fdt_max_average(void) { return Fdt_max_sum; };
RealD Fdt_norm_average(void) { return Fdt_norm_sum/deriv_num; }; RealD Fdt_norm_average(void) { return Fdt_norm_sum/deriv_num; };
RealD deriv_timer(void) { return deriv_us; }; RealD deriv_timer(void) { return deriv_us; };
RealD S_timer(void) { return S_us; }; RealD S_timer(void) { return S_us; };

View File

@ -34,34 +34,43 @@ directory
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct GparityWilsonImplParams { struct GparityWilsonImplParams {
Coordinate twists; Coordinate twists;
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
Coordinate dirichlet; // Blocksize of dirichlet BCs Coordinate dirichlet; // Blocksize of dirichlet BCs
GparityWilsonImplParams() : twists(Nd, 0) { dirichlet.resize(0); }; int partialDirichlet;
GparityWilsonImplParams() : twists(Nd, 0) {
dirichlet.resize(0);
partialDirichlet=0;
};
}; };
struct WilsonImplParams { struct WilsonImplParams {
bool overlapCommsCompute; bool overlapCommsCompute;
Coordinate dirichlet; // Blocksize of dirichlet BCs Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;
AcceleratorVector<Real,Nd> twist_n_2pi_L; AcceleratorVector<Real,Nd> twist_n_2pi_L;
AcceleratorVector<Complex,Nd> boundary_phases; AcceleratorVector<Complex,Nd> boundary_phases;
WilsonImplParams() { WilsonImplParams() {
dirichlet.resize(0); dirichlet.resize(0);
partialDirichlet=0;
boundary_phases.resize(Nd, 1.0); boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0); twist_n_2pi_L.resize(Nd, 0.0);
}; };
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) { WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0); twist_n_2pi_L.resize(Nd, 0.0);
partialDirichlet=0;
dirichlet.resize(0); dirichlet.resize(0);
} }
}; };
struct StaggeredImplParams { struct StaggeredImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;
StaggeredImplParams() StaggeredImplParams()
{ {
partialDirichlet=0;
dirichlet.resize(0); dirichlet.resize(0);
}; };
}; };

View File

@ -140,6 +140,7 @@ public:
return NMAX; return NMAX;
} }
static int getNMAX(Lattice<iImplClover<vComplexD2>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);} static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);} static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
@ -204,15 +205,18 @@ public:
typedef WilsonCloverHelpers<Impl> Helpers; typedef WilsonCloverHelpers<Impl> Helpers;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers; typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void MassTerm(CloverField& Clover, RealD diag_mass) { static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
Clover += diag_mass; Clover += diag_mass;
} }
static void Exponentiate_Clover(CloverDiagonalField& Diagonal, static void InvertClover(CloverField& InvClover,
CloverTriangleField& Triangle, const CloverDiagonalField& diagonal,
RealD csw_t, RealD diag_mass) { const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv,
bool fixedBoundaries) {
// Do nothing CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
} }
// TODO: implement Cmunu for better performances with compact layout, but don't do it // TODO: implement Cmunu for better performances with compact layout, but don't do it
@ -237,9 +241,17 @@ public:
template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>; template <typename vtype> using iImplClover = iScalar<iMatrix<iMatrix<vtype, Impl::Dimension>, Ns>>;
typedef CompactWilsonCloverHelpers<Impl> CompactHelpers; typedef CompactWilsonCloverHelpers<Impl> CompactHelpers;
static void MassTerm(CloverField& Clover, RealD diag_mass) { // Can this be avoided?
// do nothing! static void IdentityTimesC(const CloverField& in, RealD c) {
// mass term is multiplied to exp(Clover) below int DimRep = Impl::Dimension;
autoView(in_v, in, AcceleratorWrite);
accelerator_for(ss, in.Grid()->oSites(), 1, {
for (int sa=0; sa<Ns; sa++)
for (int ca=0; ca<DimRep; ca++)
in_v[ss]()(sa,sa)(ca,ca) = c;
});
} }
static int getNMAX(RealD prec, RealD R) { static int getNMAX(RealD prec, RealD R) {
@ -254,175 +266,62 @@ public:
return NMAX; return NMAX;
} }
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);} static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
static int getNMAX(Lattice<iImplCloverDiagonal<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);} static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
static void ExponentiateHermitean6by6(const iMatrix<ComplexD,6> &arg, const RealD& alpha, const std::vector<RealD>& cN, const int Niter, iMatrix<ComplexD,6>& dest){ static void InstantiateClover(CloverField& Clover, CloverField& CloverInv, RealD csw_t, RealD diag_mass) {
typedef iMatrix<ComplexD,6> mat; GridBase* grid = Clover.Grid();
CloverField ExpClover(grid);
RealD qn[6]; int NMAX = getNMAX(Clover, 3.*csw_t/diag_mass);
RealD qnold[6];
RealD p[5];
RealD trA2, trA3, trA4;
mat A2, A3, A4, A5; Clover *= (1.0/diag_mass);
A2 = alpha * alpha * arg * arg;
A3 = alpha * arg * A2;
A4 = A2 * A2;
A5 = A2 * A3;
trA2 = toReal( trace(A2) ); // Taylor expansion, slow but generic
trA3 = toReal( trace(A3) ); // Horner scheme: a0 + a1 x + a2 x^2 + .. = a0 + x (a1 + x(...))
trA4 = toReal( trace(A4)); // qN = cN
// qn = cn + qn+1 X
p[0] = toReal( trace(A3 * A3)) / 6.0 - 0.125 * trA4 * trA2 - trA3 * trA3 / 18.0 + trA2 * trA2 * trA2/ 48.0;
p[1] = toReal( trace(A5)) / 5.0 - trA3 * trA2 / 6.0;
p[2] = toReal( trace(A4)) / 4.0 - 0.125 * trA2 * trA2;
p[3] = trA3 / 3.0;
p[4] = 0.5 * trA2;
qnold[0] = cN[Niter];
qnold[1] = 0.0;
qnold[2] = 0.0;
qnold[3] = 0.0;
qnold[4] = 0.0;
qnold[5] = 0.0;
for(int i = Niter-1; i >= 0; i--)
{
qn[0] = p[0] * qnold[5] + cN[i];
qn[1] = p[1] * qnold[5] + qnold[0];
qn[2] = p[2] * qnold[5] + qnold[1];
qn[3] = p[3] * qnold[5] + qnold[2];
qn[4] = p[4] * qnold[5] + qnold[3];
qn[5] = qnold[4];
qnold[0] = qn[0];
qnold[1] = qn[1];
qnold[2] = qn[2];
qnold[3] = qn[3];
qnold[4] = qn[4];
qnold[5] = qn[5];
}
mat unit(1.0);
dest = (qn[0] * unit + qn[1] * alpha * arg + qn[2] * A2 + qn[3] * A3 + qn[4] * A4 + qn[5] * A5);
}
static void Exponentiate_Clover(CloverDiagonalField& Diagonal, CloverTriangleField& Triangle, RealD csw_t, RealD diag_mass) {
GridBase* grid = Diagonal.Grid();
int NMAX = getNMAX(Diagonal, 3.*csw_t/diag_mass);
//
// Implementation completely in Daniel's layout
//
// Taylor expansion with Cayley-Hamilton recursion
// underlying Horner scheme as above
std::vector<RealD> cn(NMAX+1); std::vector<RealD> cn(NMAX+1);
cn[0] = 1.0; cn[0] = 1.0;
for (int i=1; i<=NMAX; i++){ for (int i=1; i<=NMAX; i++)
cn[i] = cn[i-1] / RealD(i); cn[i] = cn[i-1] / RealD(i);
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * Clover + cn[i];
// prepare inverse
CloverInv = (-1.0)*Clover;
Clover = ExpClover * diag_mass;
ExpClover = Zero();
IdentityTimesC(ExpClover, cn[NMAX]);
for (int i=NMAX-1; i>=0; i--)
ExpClover = ExpClover * CloverInv + cn[i];
CloverInv = ExpClover * (1.0/diag_mass);
} }
// Taken over from Daniel's implementation static void InvertClover(CloverField& InvClover,
conformable(Diagonal, Triangle); const CloverDiagonalField& diagonal,
const CloverTriangleField& triangle,
CloverDiagonalField& diagonalInv,
CloverTriangleField& triangleInv,
bool fixedBoundaries) {
long lsites = grid->lSites(); if (fixedBoundaries)
{ {
typedef typename SiteCloverDiagonal::scalar_object scalar_object_diagonal; CompactHelpers::Invert(diagonal, triangle, diagonalInv, triangleInv);
typedef typename SiteCloverTriangle::scalar_object scalar_object_triangle;
typedef iMatrix<ComplexD,6> mat;
autoView(diagonal_v, Diagonal, CpuRead);
autoView(triangle_v, Triangle, CpuRead);
autoView(diagonalExp_v, Diagonal, CpuWrite);
autoView(triangleExp_v, Triangle, CpuWrite);
thread_for(site, lsites, { // NOTE: Not on GPU because of (peek/poke)LocalSite
mat srcCloverOpUL(0.0); // upper left block
mat srcCloverOpLR(0.0); // lower right block
mat ExpCloverOp;
scalar_object_diagonal diagonal_tmp = Zero();
scalar_object_diagonal diagonal_exp_tmp = Zero();
scalar_object_triangle triangle_tmp = Zero();
scalar_object_triangle triangle_exp_tmp = Zero();
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(diagonal_tmp, diagonal_v, lcoor);
peekLocalSite(triangle_tmp, triangle_v, lcoor);
int block;
block = 0;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
} }
else{ else
srcCloverOpUL(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j))); {
CompactHelpers::ConvertLayout(InvClover, diagonalInv, triangleInv);
} }
} }
}
block = 1;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(diagonal_tmp()(block)(i)));
}
else{
srcCloverOpLR(i,j) = static_cast<ComplexD>(TensorRemove(CompactHelpers::triangle_elem(triangle_tmp, block, i, j)));
}
}
}
// exp(Clover)
ExponentiateHermitean6by6(srcCloverOpUL,1.0/diag_mass,cn,NMAX,ExpCloverOp);
block = 0;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
}
else if(i < j){
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
}
}
}
ExponentiateHermitean6by6(srcCloverOpLR,1.0/diag_mass,cn,NMAX,ExpCloverOp);
block = 1;
for(int i = 0; i < 6; i++){
for(int j = 0; j < 6; j++){
if (i == j){
diagonal_exp_tmp()(block)(i) = ExpCloverOp(i,j);
}
else if(i < j){
triangle_exp_tmp()(block)(CompactHelpers::triangle_index(i, j)) = ExpCloverOp(i,j);
}
}
}
pokeLocalSite(diagonal_exp_tmp, diagonalExp_v, lcoor);
pokeLocalSite(triangle_exp_tmp, triangleExp_v, lcoor);
});
}
Diagonal *= diag_mass;
Triangle *= diag_mass;
}
static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) { static GaugeLinkField Cmunu(std::vector<GaugeLinkField> &U, GaugeLinkField &lambda, int mu, int nu) {
assert(0); assert(0);

View File

@ -225,7 +225,7 @@ public:
RealD csw_t; RealD csw_t;
RealD cF; RealD cF;
bool open_boundaries; bool fixedBoundaries;
CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd; CloverDiagonalField Diagonal, DiagonalEven, DiagonalOdd;
CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd; CloverDiagonalField DiagonalInv, DiagonalInvEven, DiagonalInvOdd;

View File

@ -0,0 +1,291 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DWFSlow.h
Copyright (C) 2022
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class Impl>
class DWFSlowFermion : public FermionOperator<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
GridBase *GaugeGrid(void) { return _grid4; }
GridBase *GaugeRedBlackGrid(void) { return _cbgrid4; }
GridBase *FermionGrid(void) { return _grid; }
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
virtual void M(const FermionField &in, FermionField &out)
{
FermionField tmp(_grid);
out = (5.0 - M5) * in;
Dhop(in,tmp,DaggerNo);
out = out + tmp;
}
virtual void Mdag(const FermionField &in, FermionField &out)
{
FermionField tmp(_grid);
out = (5.0 - M5) * in;
Dhop(in,tmp,DaggerYes);
out = out + tmp;
};
/////////////////////////////////////////////////////////
// half checkerboard operations 5D redblack so just site identiy
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out)
{
if ( in.Checkerboard() == Odd ) {
this->DhopEO(in,out,DaggerNo);
} else {
this->DhopOE(in,out,DaggerNo);
}
}
void MeooeDag(const FermionField &in, FermionField &out)
{
if ( in.Checkerboard() == Odd ) {
this->DhopEO(in,out,DaggerYes);
} else {
this->DhopOE(in,out,DaggerYes);
}
};
// allow override for twisted mass and clover
virtual void Mooee(const FermionField &in, FermionField &out)
{
out = (5.0 - M5) * in;
}
virtual void MooeeDag(const FermionField &in, FermionField &out)
{
out = (5.0 - M5) * in;
}
virtual void MooeeInv(const FermionField &in, FermionField &out)
{
out = (1.0/(5.0 - M5)) * in;
};
virtual void MooeeInvDag(const FermionField &in, FermionField &out)
{
out = (1.0/(5.0 - M5)) * in;
};
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass,std::vector<double> twist) {} ;
////////////////////////
// Derivative interface
////////////////////////
// Interface calls an internal routine
void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag) { assert(0);};
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
///////////////////////////////////////////////////////////////
void Dhop(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
Dhop5(in,out,MassField,MassField,dag );
for(int mu=0;mu<4;mu++){
DhopDirU(in,Umu[mu],Umu[mu],tmp,mu,dag ); out = out + tmp;
}
};
void DhopOE(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
assert(in.Checkerboard()==Even);
Dhop5(in,out,MassFieldOdd,MassFieldEven,dag);
for(int mu=0;mu<4;mu++){
DhopDirU(in,UmuOdd[mu],UmuEven[mu],tmp,mu,dag ); out = out + tmp;
}
};
void DhopEO(const FermionField &in, FermionField &out, int dag)
{
FermionField tmp(in.Grid());
assert(in.Checkerboard()==Odd);
Dhop5(in,out, MassFieldEven,MassFieldOdd ,dag );
for(int mu=0;mu<4;mu++){
DhopDirU(in,UmuEven[mu],UmuOdd[mu],tmp,mu,dag ); out = out + tmp;
}
};
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ assert(0);};
void MdirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { assert(0);};
void DhopDirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { assert(0);};
void DhopDirU(const FermionField &in, const GaugeLinkField &U5e, const GaugeLinkField &U5o, FermionField &out, int mu, int dag)
{
RealD sgn= 1.0;
if (dag ) sgn=-1.0;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
// mass is 1,1,1,1,-m has to multiply the round the world term
FermionField tmp (in.Grid());
tmp = U5e * Cshift(in,mu+1,1);
out = tmp - Gamma(Gmu[mu])*tmp*sgn;
tmp = Cshift(adj(U5o)*in,mu+1,-1);
out = out + tmp + Gamma(Gmu[mu])*tmp*sgn;
out = -0.5*out;
};
void Dhop5(const FermionField &in, FermionField &out, ComplexField &massE, ComplexField &massO, int dag)
{
// Mass term.... must multiple the round world with mass = 1,1,1,1, -m
RealD sgn= 1.0;
if (dag ) sgn=-1.0;
Gamma G5(Gamma::Algebra::Gamma5);
FermionField tmp (in.Grid());
tmp = massE*Cshift(in,0,1);
out = tmp - G5*tmp*sgn;
tmp = Cshift(massO*in,0,-1);
out = out + tmp + G5*tmp*sgn;
out = -0.5*out;
};
// Constructor
DWFSlowFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass, RealD _M5)
:
_grid(&Fgrid),
_cbgrid(&Hgrid),
_grid4(_Umu.Grid()),
Umu(Nd,&Fgrid),
UmuEven(Nd,&Hgrid),
UmuOdd(Nd,&Hgrid),
MassField(&Fgrid),
MassFieldEven(&Hgrid),
MassFieldOdd(&Hgrid),
M5(_M5),
mass(_mass),
_tmp(&Hgrid)
{
Ls=Fgrid._fdimensions[0];
ImportGauge(_Umu);
typedef typename FermionField::scalar_type scalar;
Lattice<iScalar<vInteger> > coor(&Fgrid);
LatticeCoordinate(coor, 0); // Scoor
ComplexField one(&Fgrid);
MassField =scalar(-mass);
one =scalar(1.0);
MassField =where(coor==Integer(Ls-1),MassField,one);
for(int mu=0;mu<Nd;mu++){
pickCheckerboard(Even,UmuEven[mu],Umu[mu]);
pickCheckerboard(Odd ,UmuOdd[mu],Umu[mu]);
}
pickCheckerboard(Even,MassFieldEven,MassField);
pickCheckerboard(Odd ,MassFieldOdd,MassField);
}
// DoubleStore impl dependent
void ImportGauge(const GaugeField &_Umu4)
{
GaugeLinkField U4(_grid4);
for(int mu=0;mu<Nd;mu++){
U4 = PeekIndex<LorentzIndex>(_Umu4, mu);
for(int s=0;s<this->Ls;s++){
InsertSlice(U4,Umu[mu],s,0);
}
}
}
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
virtual RealD Mass(void) { return mass; }
virtual int isTrivialEE(void) { return 1; };
RealD mass;
RealD M5;
int Ls;
GridBase *_grid4;
GridBase *_grid;
GridBase *_cbgrid4;
GridBase *_cbgrid;
// Copy of the gauge field , with even and odd subsets
std::vector<GaugeLinkField> Umu;
std::vector<GaugeLinkField> UmuEven;
std::vector<GaugeLinkField> UmuOdd;
ComplexField MassField;
ComplexField MassFieldEven;
ComplexField MassFieldOdd;
///////////////////////////////////////////////////////////////
// Conserved current utilities
///////////////////////////////////////////////////////////////
void ContractConservedCurrent(PropagatorField &q_in_1,
PropagatorField &q_in_2,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu){}
void SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &phys_src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx){}
};
typedef DWFSlowFermion<WilsonImplF> DWFSlowFermionF;
typedef DWFSlowFermion<WilsonImplD> DWFSlowFermionD;
NAMESPACE_END(Grid);

View File

@ -47,6 +47,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
//////////////////////////////////////////// ////////////////////////////////////////////
// Fermion operators / actions // Fermion operators / actions
//////////////////////////////////////////// ////////////////////////////////////////////
#include <Grid/qcd/action/fermion/DWFSlow.h> // Slow DWF
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like #include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
NAMESPACE_CHECK(Wilson); NAMESPACE_CHECK(Wilson);
@ -112,28 +113,21 @@ NAMESPACE_CHECK(DWFutils);
// Cayley 5d // Cayley 5d
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
typedef WilsonFermion<WilsonImplR> WilsonFermionR; typedef WilsonFermion<WilsonImplD2> WilsonFermionD2;
typedef WilsonFermion<WilsonImplF> WilsonFermionF; typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD; typedef WilsonFermion<WilsonImplD> WilsonFermionD;
//typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
//typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
//typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF; typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD; typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermionR;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF; typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD; typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonTwoIndexAntiSymmetricFermionR;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF; typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD; typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
// Twisted mass fermion // Twisted mass fermion
typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR; typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF; typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD; typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
@ -141,23 +135,20 @@ typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>; template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>; template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR; typedef WilsonClover<WilsonImplD2> WilsonCloverFermionD2;
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF; typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD; typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR; typedef WilsonExpClover<WilsonImplD2> WilsonExpCloverFermionD2;
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF; typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD; typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR;
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF; typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD; typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF; typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD; typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF; typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD; typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
@ -165,161 +156,108 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>; template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>; template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR; typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF; typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD; typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR; typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF; typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD; typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF; typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD; typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF; typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD; typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF; typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD; typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
// Domain Wall fermions // Domain Wall fermions
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF; typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD; typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
typedef DomainWallFermion<WilsonImplD2> DomainWallFermionD2;
//typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL; typedef DomainWallEOFAFermion<WilsonImplD2> DomainWallEOFAFermionD2;
//typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
//typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF; typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD; typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
//typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL; typedef MobiusFermion<WilsonImplD2> MobiusFermionD2;
//typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
//typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF; typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD; typedef MobiusFermion<WilsonImplD> MobiusFermionD;
//typedef MobiusFermion<WilsonImplRL> MobiusFermionRL; typedef MobiusEOFAFermion<WilsonImplD2> MobiusEOFAFermionD2;
//typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
//typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF; typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD; typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
//typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL; typedef ZMobiusFermion<ZWilsonImplD2> ZMobiusFermionD2;
//typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
//typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF; typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD; typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
//typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL; typedef ScaledShamirFermion<WilsonImplD2> ScaledShamirFermionD2;
//typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
//typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF; typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD; typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
typedef MobiusZolotarevFermion<WilsonImplR> MobiusZolotarevFermionR; typedef MobiusZolotarevFermion<WilsonImplD2> MobiusZolotarevFermionD2;
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF; typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD; typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
typedef ShamirZolotarevFermion<WilsonImplR> ShamirZolotarevFermionR; typedef ShamirZolotarevFermion<WilsonImplD2> ShamirZolotarevFermionD2;
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF; typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD; typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplR> OverlapWilsonCayleyTanhFermionR; typedef OverlapWilsonCayleyTanhFermion<WilsonImplD2> OverlapWilsonCayleyTanhFermionD2;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF; typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD; typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplR> OverlapWilsonCayleyZolotarevFermionR; typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD2> OverlapWilsonCayleyZolotarevFermionD2;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF; typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD; typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
// Continued fraction // Continued fraction
typedef OverlapWilsonContFracTanhFermion<WilsonImplR> OverlapWilsonContFracTanhFermionR; typedef OverlapWilsonContFracTanhFermion<WilsonImplD2> OverlapWilsonContFracTanhFermionD2;
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF; typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD; typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplR> OverlapWilsonContFracZolotarevFermionR; typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD2> OverlapWilsonContFracZolotarevFermionD2;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF; typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD; typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
// Partial fraction // Partial fraction
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplR> OverlapWilsonPartialFractionTanhFermionR; typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD2> OverlapWilsonPartialFractionTanhFermionD2;
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF; typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD; typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplR> OverlapWilsonPartialFractionZolotarevFermionR; typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD2> OverlapWilsonPartialFractionZolotarevFermionD2;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF; typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD; typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
// Gparity cases; partial list until tested // Gparity cases; partial list until tested
typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR;
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF; typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD; typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
//typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
//typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
//typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF; typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD; typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
//typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL; typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionD2;
//typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
//typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF; typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD; typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
//typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL; typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionD2;
//typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
//typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF; typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD; typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
//typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL; typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionD2;
//typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
//typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF; typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD; typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
//typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL; typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionD2;
//typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
//typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF; typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD; typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
//typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
//typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
//typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF; typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD; typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF; typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD; typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF; typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD; typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;

View File

@ -32,17 +32,218 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////
// Wilson compressor will need FaceGather policies for:
// Periodic, Dirichlet, and partial Dirichlet for DWF
///////////////////////////////////////////////////////////////
const int dwf_compressor_depth=2;
#define DWF_COMPRESS
class FaceGatherPartialDWF
{
public:
#ifdef DWF_COMPRESS
static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
#else
static int PartialCompressionFactor(GridBase *grid) { return 1;}
#endif
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
int off,int so,int partial)
{
//DWF only hack: If a direction that is OFF node we use Partial Dirichlet
// Shrinks local and remote comms buffers
GridBase *Grid = rhs.Grid();
int Ls = Grid->_rdimensions[0];
#ifdef DWF_COMPRESS
int depth=dwf_compressor_depth;
#else
int depth=Ls/2;
#endif
std::pair<int,int> *table_v = & table[0];
auto rhs_v = rhs.View(AcceleratorRead);
int vol=table.size()/Ls;
accelerator_forNB( idx,table.size(), vobj::Nsimd(), {
Integer i=idx/Ls;
Integer s=idx%Ls;
Integer sc=depth+s-(Ls-depth);
if(s<depth) compress.Compress(buffer[off+i+s*vol],rhs_v[so+table_v[idx].second]);
if(s>=Ls-depth) compress.Compress(buffer[off+i+sc*vol],rhs_v[so+table_v[idx].second]);
});
rhs_v.ViewClose();
}
template<class decompressor,class Decompression>
static void DecompressFace(decompressor decompress,Decompression &dd)
{
auto Ls = dd.dims[0];
#ifdef DWF_COMPRESS
int depth=dwf_compressor_depth;
#else
int depth=Ls/2;
#endif
// Just pass in the Grid
auto kp = dd.kernel_p;
auto mp = dd.mpi_p;
int size= dd.buffer_size;
int vol= size/Ls;
accelerator_forNB(o,size,1,{
int idx=o/Ls;
int s=o%Ls;
if ( s < depth ) {
int oo=s*vol+idx;
kp[o]=mp[oo];
} else if ( s >= Ls-depth ) {
int sc = depth + s - (Ls-depth);
int oo=sc*vol+idx;
kp[o]=mp[oo];
} else {
kp[o] = Zero();//fill rest with zero if partial dirichlet
}
});
}
////////////////////////////////////////////////////////////////////////////////////////////
// Need to gather *interior portions* for ALL s-slices in simd directions
// Do the gather as need to treat SIMD lanes differently, and insert zeroes on receive side
// Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
GridBase *Grid = rhs.Grid();
int Ls = Grid->_rdimensions[0];
#ifdef DWF_COMPRESS
int depth=dwf_compressor_depth;
#else
int depth = Ls/2;
#endif
// insertion of zeroes...
assert( (table.size()&0x1)==0);
int num=table.size()/2;
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead);
auto p0=&pointers[0][0];
auto p1=&pointers[1][0];
auto tp=&table[0];
int nnum=num/Ls;
accelerator_forNB(j, num, vobj::Nsimd(), {
// Reorders both local and remote comms buffers
//
int s = j % Ls;
int sp1 = (s+depth)%Ls; // peri incremented s slice
int hxyz= j/Ls;
int xyz0= hxyz*2; // xyzt part of coor
int xyz1= hxyz*2+1;
int jj= hxyz + sp1*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
int kk0= xyz0*Ls + s ; // s=0 goes to s=1
int kk1= xyz1*Ls + s ; // s=Ls-1 -> s=0
compress.CompressExchange(p0[jj],p1[jj],
rhs_v[so+tp[kk0 ].second], // Same s, consecutive xyz sites
rhs_v[so+tp[kk1 ].second],
type);
});
rhs_v.ViewClose();
}
// Merge routine is for SIMD faces
template<class decompressor,class Merger>
static void MergeFace(decompressor decompress,Merger &mm)
{
auto Ls = mm.dims[0];
#ifdef DWF_COMPRESS
int depth=dwf_compressor_depth;
#else
int depth = Ls/2;
#endif
int num= mm.buffer_size/2; // relate vol and Ls to buffer size
auto mp = &mm.mpointer[0];
auto vp0= &mm.vpointers[0][0]; // First arg is exchange first
auto vp1= &mm.vpointers[1][0];
auto type= mm.type;
int nnum = num/Ls;
accelerator_forNB(o,num,Merger::Nsimd,{
int s=o%Ls;
int hxyz=o/Ls; // xyzt related component
int xyz0=hxyz*2;
int xyz1=hxyz*2+1;
int sp = (s+depth)%Ls;
int jj= hxyz + sp*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
int oo0= s+xyz0*Ls;
int oo1= s+xyz1*Ls;
// same ss0, ss1 pair goes to new layout
decompress.Exchange(mp[oo0],mp[oo1],vp0[jj],vp1[jj],type);
});
}
};
class FaceGatherDWFMixedBCs
{
public:
#ifdef DWF_COMPRESS
static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
#else
static int PartialCompressionFactor(GridBase *grid) {return 1;}
#endif
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
const Lattice<vobj> &rhs,
cobj *buffer,
compressor &compress,
int off,int so,int partial)
{
// std::cout << " face gather simple DWF partial "<<partial <<std::endl;
if(partial) FaceGatherPartialDWF::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
}
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
// std::cout << " face gather exch DWF partial "<<partial <<std::endl;
if(partial) FaceGatherPartialDWF::Gather_plane_exchange(table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
else FaceGatherSimple::Gather_plane_exchange (table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
}
template<class decompressor,class Merger>
static void MergeFace(decompressor decompress,Merger &mm)
{
int partial = mm.partial;
// std::cout << " merge DWF partial "<<partial <<std::endl;
if ( partial ) FaceGatherPartialDWF::MergeFace(decompress,mm);
else FaceGatherSimple::MergeFace(decompress,mm);
}
template<class decompressor,class Decompression>
static void DecompressFace(decompressor decompress,Decompression &dd)
{
int partial = dd.partial;
// std::cout << " decompress DWF partial "<<partial <<std::endl;
if ( partial ) FaceGatherPartialDWF::DecompressFace(decompress,dd);
else FaceGatherSimple::DecompressFace(decompress,dd);
}
};
///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////
// optimised versions supporting half precision too // optimised versions supporting half precision too??? Deprecate
///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////
template<class _HCspinor,class _Hspinor,class _Spinor, class projector,typename SFINAE = void >
class WilsonCompressorTemplate;
//Could make FaceGather a template param, but then behaviour is runtime not compile time
template<class _HCspinor,class _Hspinor,class _Spinor, class projector> template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector, class WilsonCompressorTemplate : public FaceGatherDWFMixedBCs
typename std::enable_if<std::is_same<_HCspinor,_Hspinor>::value>::type > // : public FaceGatherSimple
{ {
public: public:
@ -79,18 +280,19 @@ public:
/*****************************************************/ /*****************************************************/
/* Exchange includes precision change if mpi data is not same */ /* Exchange includes precision change if mpi data is not same */
/*****************************************************/ /*****************************************************/
accelerator_inline void Exchange(SiteHalfSpinor *mp, accelerator_inline void Exchange(SiteHalfSpinor &mp0,
const SiteHalfSpinor * __restrict__ vp0, SiteHalfSpinor &mp1,
const SiteHalfSpinor * __restrict__ vp1, const SiteHalfSpinor & vp0,
Integer type,Integer o) const { const SiteHalfSpinor & vp1,
Integer type) const {
#ifdef GRID_SIMT #ifdef GRID_SIMT
exchangeSIMT(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type); exchangeSIMT(mp0,mp1,vp0,vp1,type);
#else #else
SiteHalfSpinor tmp1; SiteHalfSpinor tmp1;
SiteHalfSpinor tmp2; SiteHalfSpinor tmp2;
exchange(tmp1,tmp2,vp0[o],vp1[o],type); exchange(tmp1,tmp2,vp0,vp1,type);
vstream(mp[2*o ],tmp1); vstream(mp0,tmp1);
vstream(mp[2*o+1],tmp2); vstream(mp1,tmp2);
#endif #endif
} }
@ -98,153 +300,61 @@ public:
/*****************************************************/ /*****************************************************/
/* Have a decompression step if mpi data is not same */ /* Have a decompression step if mpi data is not same */
/*****************************************************/ /*****************************************************/
accelerator_inline void Decompress(SiteHalfSpinor * __restrict__ out, accelerator_inline void Decompress(SiteHalfSpinor &out,
SiteHalfSpinor * __restrict__ in, Integer o) const { SiteHalfSpinor &in) const {
assert(0); out = in;
} }
/*****************************************************/ /*****************************************************/
/* Compress Exchange */ /* Compress Exchange */
/*****************************************************/ /*****************************************************/
accelerator_inline void CompressExchange(SiteHalfSpinor * __restrict__ out0, accelerator_inline void CompressExchange(SiteHalfSpinor &out0,
SiteHalfSpinor * __restrict__ out1, SiteHalfSpinor &out1,
const SiteSpinor * __restrict__ in, const SiteSpinor &in0,
Integer j,Integer k, Integer m,Integer type) const const SiteSpinor &in1,
Integer type) const
{ {
#ifdef GRID_SIMT #ifdef GRID_SIMT
typedef SiteSpinor vobj; typedef SiteSpinor vobj;
typedef SiteHalfSpinor hvobj; typedef SiteHalfSpinor hvobj;
typedef decltype(coalescedRead(*in)) sobj; typedef decltype(coalescedRead(in0)) sobj;
typedef decltype(coalescedRead(*out0)) hsobj; typedef decltype(coalescedRead(out0)) hsobj;
unsigned int Nsimd = vobj::Nsimd(); constexpr unsigned int Nsimd = vobj::Nsimd();
unsigned int mask = Nsimd >> (type + 1); unsigned int mask = Nsimd >> (type + 1);
int lane = acceleratorSIMTlane(Nsimd); int lane = acceleratorSIMTlane(Nsimd);
int j0 = lane &(~mask); // inner coor zero int j0 = lane &(~mask); // inner coor zero
int j1 = lane |(mask) ; // inner coor one int j1 = lane |(mask) ; // inner coor one
const vobj *vp0 = &in[k]; const vobj *vp0 = &in0;
const vobj *vp1 = &in[m]; const vobj *vp1 = &in1;
const vobj *vp = (lane&mask) ? vp1:vp0; const vobj *vp = (lane&mask) ? vp1:vp0;
auto sa = coalescedRead(*vp,j0); auto sa = coalescedRead(*vp,j0);
auto sb = coalescedRead(*vp,j1); auto sb = coalescedRead(*vp,j1);
hsobj psa, psb; hsobj psa, psb;
projector::Proj(psa,sa,mu,dag); projector::Proj(psa,sa,mu,dag);
projector::Proj(psb,sb,mu,dag); projector::Proj(psb,sb,mu,dag);
coalescedWrite(out0[j],psa); coalescedWrite(out0,psa);
coalescedWrite(out1[j],psb); coalescedWrite(out1,psb);
#else #else
SiteHalfSpinor temp1, temp2; SiteHalfSpinor temp1, temp2;
SiteHalfSpinor temp3, temp4; SiteHalfSpinor temp3, temp4;
projector::Proj(temp1,in[k],mu,dag); projector::Proj(temp1,in0,mu,dag);
projector::Proj(temp2,in[m],mu,dag); projector::Proj(temp2,in1,mu,dag);
exchange(temp3,temp4,temp1,temp2,type); exchange(temp3,temp4,temp1,temp2,type);
vstream(out0[j],temp3); vstream(out0,temp3);
vstream(out1[j],temp4); vstream(out1,temp4);
#endif #endif
} }
/*****************************************************/ /*****************************************************/
/* Pass the info to the stencil */ /* Pass the info to the stencil */
/*****************************************************/ /*****************************************************/
accelerator_inline bool DecompressionStep(void) const { return false; } accelerator_inline bool DecompressionStep(void) const {
return false;
}
}; };
#if 0
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
{
public:
int mu,dag;
void Point(int p) { mu=p; };
WilsonCompressorTemplate(int _dag=0){
dag = _dag;
}
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _HCspinor SiteHalfCommSpinor;
typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
accelerator_inline int CommDatumSize(void) const {
return sizeof(SiteHalfCommSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
SiteHalfSpinor hsp;
SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
projector::Proj(hsp,in,mu,dag);
precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
}
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
#ifdef GRID_SIMT
typedef decltype(coalescedRead(buf)) sobj;
sobj sp;
auto sin = coalescedRead(in);
projector::Proj(sp,sin,mu,dag);
coalescedWrite(buf,sp);
#else
projector::Proj(buf,in,mu,dag);
#endif
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
accelerator_inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o) const {
SiteHalfSpinor vt0,vt1;
SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
precisionChange((vComplexHigh *)&vt0,(vComplexLow *)&vpp0[o],Nw);
precisionChange((vComplexHigh *)&vt1,(vComplexLow *)&vpp1[o],Nw);
exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o) const {
SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
accelerator_inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type) const {
SiteHalfSpinor temp1, temp2,temp3,temp4;
SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(temp3,temp4,temp1,temp2,type);
precisionChange((vComplexLow *)&hout0[j],(vComplexHigh *)&temp3,Nw);
precisionChange((vComplexLow *)&hout1[j],(vComplexHigh *)&temp4,Nw);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
accelerator_inline bool DecompressionStep(void) const { return true; }
};
#endif
#define DECLARE_PROJ(Projector,Compressor,spProj) \ #define DECLARE_PROJ(Projector,Compressor,spProj) \
class Projector { \ class Projector { \
public: \ public: \
@ -374,24 +484,26 @@ public:
int dag = compress.dag; int dag = compress.dag;
int face_idx=0; int face_idx=0;
#define vet_same_node(a,b) \
{ auto tmp = b; }
if ( dag ) { if ( dag ) {
assert(this->same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx)); vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XpCompress,Xp,face_idx));
assert(this->same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx)); vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YpCompress,Yp,face_idx));
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx)); vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
assert(this->same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx)); vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TpCompress,Tp,face_idx));
assert(this->same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx)); vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XmCompress,Xm,face_idx));
assert(this->same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx)); vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YmCompress,Ym,face_idx));
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx)); vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
assert(this->same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx)); vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TmCompress,Tm,face_idx));
} else { } else {
assert(this->same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx)); vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XmCompress,Xp,face_idx));
assert(this->same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx)); vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YmCompress,Yp,face_idx));
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx)); vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
assert(this->same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx)); vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TmCompress,Tp,face_idx));
assert(this->same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx)); vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XpCompress,Xm,face_idx));
assert(this->same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx)); vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YpCompress,Ym,face_idx));
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx)); vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
assert(this->same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx)); vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TpCompress,Tm,face_idx));
} }
this->face_table_computed=1; this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size); assert(this->u_comm_offset==this->_unified_buffer_size);

View File

@ -242,18 +242,12 @@ public:
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > WilsonImplD2; // Double
//typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffComplex > ZWilsonImplD2; // Double
//typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float

View File

@ -52,13 +52,6 @@ public:
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector; typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
public: public:
#ifdef GRID_SYCL
#define SYCL_HACK
#endif
#ifdef SYCL_HACK
static void HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p, SiteDoubledGaugeField *U,SiteHalfSpinor *buf,
int ss,int sU,const SiteSpinor *in, SiteSpinor *out);
#endif
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf, static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
int Ls, int Nsite, const FermionField &in, FermionField &out, int Ls, int Nsite, const FermionField &in, FermionField &out,

View File

@ -905,88 +905,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
#undef TopRowWithSource #undef TopRowWithSource
#if 0
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInternalCompute(int dag, int inv,
Vector<iSinglet<Simd> > & Matp,
Vector<iSinglet<Simd> > & Matm)
{
int Ls=this->Ls;
GridBase *grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0];
if ( LLs == Ls ) {
return; // Not vectorised in 5th direction
}
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = bee[s];
Pminus(s,s)= bee[s];
}
for(int s=0;s<Ls-1;s++){
Pminus(s,s+1) = -cee[s];
}
for(int s=0;s<Ls-1;s++){
Pplus(s+1,s) = -cee[s+1];
}
Pplus (0,Ls-1) = mass*cee[0];
Pminus(Ls-1,0) = mass*cee[Ls-1];
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
if ( inv ) {
PplusMat =Pplus.inverse();
PminusMat=Pminus.inverse();
} else {
PplusMat =Pplus;
PminusMat=Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd=Simd::Nsimd();
Matp.resize(Ls*LLs);
Matm.resize(Ls*LLs);
for(int s2=0;s2<Ls;s2++){
for(int s1=0;s1<LLs;s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type *)&Vp;
scalar_type *sm = (scalar_type *)&Vm;
for(int l=0;l<Nsimd;l++){
if ( switcheroo<Coeff_t>::iscomplex() ) {
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
} else {
// if real
scalar_type tmp;
tmp = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(tmp.real(),tmp.real());
tmp = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(tmp.real(),tmp.real());
}
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
}
#endif
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -48,7 +48,7 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
, csw_r(_csw_r) , csw_r(_csw_r)
, csw_t(_csw_t) , csw_t(_csw_t)
, cF(_cF) , cF(_cF)
, open_boundaries(impl_p.boundary_phases[Nd-1] == 0.0) , fixedBoundaries(impl_p.boundary_phases[Nd-1] == 0.0)
, Diagonal(&Fgrid), Triangle(&Fgrid) , Diagonal(&Fgrid), Triangle(&Fgrid)
, DiagonalEven(&Hgrid), TriangleEven(&Hgrid) , DiagonalEven(&Hgrid), TriangleEven(&Hgrid)
, DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid) , DiagonalOdd(&Hgrid), TriangleOdd(&Hgrid)
@ -67,7 +67,7 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
csw_r /= clover_anisotropy.xi_0; csw_r /= clover_anisotropy.xi_0;
ImportGauge(_Umu); ImportGauge(_Umu);
if (open_boundaries) { if (fixedBoundaries) {
this->BoundaryMaskEven.Checkerboard() = Even; this->BoundaryMaskEven.Checkerboard() = Even;
this->BoundaryMaskOdd.Checkerboard() = Odd; this->BoundaryMaskOdd.Checkerboard() = Odd;
CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd); CompactHelpers::SetupMasks(this->BoundaryMask, this->BoundaryMaskEven, this->BoundaryMaskOdd);
@ -77,31 +77,31 @@ CompactWilsonCloverFermion<Impl, CloverHelpers>::CompactWilsonCloverFermion(Gaug
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::Dhop(const FermionField& in, FermionField& out, int dag) {
WilsonBase::Dhop(in, out, dag); WilsonBase::Dhop(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopOE(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopOE(in, out, dag); WilsonBase::DhopOE(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopEO(const FermionField& in, FermionField& out, int dag) {
WilsonBase::DhopEO(in, out, dag); WilsonBase::DhopEO(in, out, dag);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDir(const FermionField& in, FermionField& out, int dir, int disp) {
WilsonBase::DhopDir(in, out, dir, disp); WilsonBase::DhopDir(in, out, dir, disp);
if(this->open_boundaries) ApplyBoundaryMask(out); if(this->fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::DhopDirAll(const FermionField& in, std::vector<FermionField>& out) {
WilsonBase::DhopDirAll(in, out); WilsonBase::DhopDirAll(in, out);
if(this->open_boundaries) { if(this->fixedBoundaries) {
for(auto& o : out) ApplyBoundaryMask(o); for(auto& o : out) ApplyBoundaryMask(o);
} }
} }
@ -112,7 +112,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::M(const FermionField& in,
WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc WilsonBase::Dhop(in, out, DaggerNo); // call base to save applying bc
Mooee(in, Tmp); Mooee(in, Tmp);
axpy(out, 1.0, out, Tmp); axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
@ -121,19 +121,19 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mdag(const FermionField& i
WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc WilsonBase::Dhop(in, out, DaggerYes); // call base to save applying bc
MooeeDag(in, Tmp); MooeeDag(in, Tmp);
axpy(out, 1.0, out, Tmp); axpy(out, 1.0, out, Tmp);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::Meooe(const FermionField& in, FermionField& out) {
WilsonBase::Meooe(in, out); WilsonBase::Meooe(in, out);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::MeooeDag(const FermionField& in, FermionField& out) {
WilsonBase::MeooeDag(in, out); WilsonBase::MeooeDag(in, out);
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
@ -147,7 +147,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::Mooee(const FermionField&
} else { } else {
MooeeInternal(in, out, Diagonal, Triangle); MooeeInternal(in, out, Diagonal, Triangle);
} }
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
@ -166,7 +166,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MooeeInv(const FermionFiel
} else { } else {
MooeeInternal(in, out, DiagonalInv, TriangleInv); MooeeInternal(in, out, DiagonalInv, TriangleInv);
} }
if(open_boundaries) ApplyBoundaryMask(out); if(fixedBoundaries) ApplyBoundaryMask(out);
} }
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
@ -186,7 +186,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::MdirAll(const FermionField
template<class Impl, class CloverHelpers> template<class Impl, class CloverHelpers>
void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) { void CompactWilsonCloverFermion<Impl, CloverHelpers>::MDeriv(GaugeField& force, const FermionField& X, const FermionField& Y, int dag) {
assert(!open_boundaries); // TODO check for changes required for open bc assert(!fixedBoundaries); // TODO check for changes required for open bc
// NOTE: code copied from original clover term // NOTE: code copied from original clover term
conformable(X.Grid(), Y.Grid()); conformable(X.Grid(), Y.Grid());
@ -305,6 +305,7 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
GridBase* grid = _Umu.Grid(); GridBase* grid = _Umu.Grid();
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid); typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
CloverField TmpOriginal(grid); CloverField TmpOriginal(grid);
CloverField TmpInverse(grid);
// Compute the field strength terms mu>nu // Compute the field strength terms mu>nu
double t2 = usecond(); double t2 = usecond();
@ -324,24 +325,27 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t; TmpOriginal += Helpers::fillCloverXT(Ex) * csw_t;
TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t; TmpOriginal += Helpers::fillCloverYT(Ey) * csw_t;
TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t; TmpOriginal += Helpers::fillCloverZT(Ez) * csw_t;
// Handle mass term based on clover policy
CloverHelpers::MassTerm(TmpOriginal, this->diag_mass); // Instantiate the clover term
// - In case of the standard clover the mass term is added
// - In case of the exponential clover the clover term is exponentiated
double t4 = usecond();
CloverHelpers::InstantiateClover(TmpOriginal, TmpInverse, csw_t, this->diag_mass);
// Convert the data layout of the clover term // Convert the data layout of the clover term
double t4 = usecond(); double t5 = usecond();
CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle); CompactHelpers::ConvertLayout(TmpOriginal, Diagonal, Triangle);
// Exponentiate the clover (nothing happens in case of the standard clover) // Modify the clover term at the temporal boundaries in case of open boundary conditions
double t5 = usecond();
CloverHelpers::Exponentiate_Clover(Diagonal, Triangle, csw_t, this->diag_mass);
// Possible modify the boundary values
double t6 = usecond(); double t6 = usecond();
if(open_boundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass); if(fixedBoundaries) CompactHelpers::ModifyBoundaries(Diagonal, Triangle, csw_t, cF, this->diag_mass);
// Invert the Clover term (explicit inversion needed for the improvement in case of open boundary conditions) // Invert the Clover term
// In case of the exponential clover with (anti-)periodic boundary conditions exp(-Clover) saved
// in TmpInverse can be used. In all other cases the clover term has to be explictly inverted.
// TODO: For now this inversion is explictly done on the CPU
double t7 = usecond(); double t7 = usecond();
CompactHelpers::Invert(Diagonal, Triangle, DiagonalInv, TriangleInv); CloverHelpers::InvertClover(TmpInverse, Diagonal, Triangle, DiagonalInv, TriangleInv, fixedBoundaries);
// Fill the remaining clover fields // Fill the remaining clover fields
double t8 = usecond(); double t8 = usecond();
@ -362,10 +366,10 @@ void CompactWilsonCloverFermion<Impl, CloverHelpers>::ImportGauge(const GaugeFie
std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl; std::cout << GridLogDebug << "allocations = " << (t2 - t1) / 1e6 << std::endl;
std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl; std::cout << GridLogDebug << "field strength = " << (t3 - t2) / 1e6 << std::endl;
std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl; std::cout << GridLogDebug << "fill clover = " << (t4 - t3) / 1e6 << std::endl;
std::cout << GridLogDebug << "convert = " << (t5 - t4) / 1e6 << std::endl; std::cout << GridLogDebug << "instantiate clover = " << (t5 - t4) / 1e6 << std::endl;
std::cout << GridLogDebug << "exponentiation = " << (t6 - t5) / 1e6 << std::endl; std::cout << GridLogDebug << "convert layout = " << (t6 - t5) / 1e6 << std::endl;
std::cout << GridLogDebug << "boundaries = " << (t7 - t6) / 1e6 << std::endl; std::cout << GridLogDebug << "modify boundaries = " << (t7 - t6) / 1e6 << std::endl;
std::cout << GridLogDebug << "inversions = " << (t8 - t7) / 1e6 << std::endl; std::cout << GridLogDebug << "invert clover = " << (t8 - t7) / 1e6 << std::endl;
std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl; std::cout << GridLogDebug << "pick cbs = " << (t9 - t8) / 1e6 << std::endl;
std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl; std::cout << GridLogDebug << "total = " << (t9 - t0) / 1e6 << std::endl;
} }

View File

@ -63,6 +63,10 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
_tmp(&FiveDimRedBlackGrid), _tmp(&FiveDimRedBlackGrid),
Dirichlet(0) Dirichlet(0)
{ {
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// some assertions // some assertions
assert(FiveDimGrid._ndimension==5); assert(FiveDimGrid._ndimension==5);
assert(FourDimGrid._ndimension==4); assert(FourDimGrid._ndimension==4);
@ -96,6 +100,8 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
Coordinate block = p.dirichlet; Coordinate block = p.dirichlet;
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){ if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
Dirichlet = 1; Dirichlet = 1;
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
Block = block; Block = block;
} }
} else { } else {
@ -137,9 +143,6 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
StencilEven.BuildSurfaceList(LLs,vol4); StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4); StencilOdd.BuildSurfaceList(LLs,vol4);
// std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
// <<" " << StencilEven.surface_list.size()<<std::endl;
} }
template<class Impl> template<class Impl>
@ -148,12 +151,29 @@ void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
GaugeField HUmu(_Umu.Grid()); GaugeField HUmu(_Umu.Grid());
HUmu = _Umu*(-0.5); HUmu = _Umu*(-0.5);
if ( Dirichlet ) { if ( Dirichlet ) {
std::cout << GridLogDslash << " Dirichlet BCs 5d " <<Block<<std::endl;
if ( this->Params.partialDirichlet ) {
std::cout << GridLogMessage << " partialDirichlet BCs " <<Block<<std::endl;
} else {
std::cout << GridLogMessage << " FULL Dirichlet BCs " <<Block<<std::endl;
}
std:: cout << GridLogMessage << "Checking block size multiple of rank boundaries for Dirichlet"<<std::endl;
for(int d=0;d<Nd;d++) {
int GaugeBlock = Block[d+1];
int ldim=GaugeGrid()->LocalDimensions()[d];
if (GaugeBlock) assert( (GaugeBlock%ldim)==0);
}
if (!this->Params.partialDirichlet) {
std::cout << GridLogMessage << " Dirichlet filtering gauge field BCs block " <<Block<<std::endl;
Coordinate GaugeBlock(Nd); Coordinate GaugeBlock(Nd);
for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1]; for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
std::cout << GridLogDslash << " Dirichlet BCs 4d " <<GaugeBlock<<std::endl;
DirichletFilter<GaugeField> Filter(GaugeBlock); DirichletFilter<GaugeField> Filter(GaugeBlock);
Filter.applyFilter(HUmu); Filter.applyFilter(HUmu);
} else {
std::cout << GridLogMessage << " Dirichlet "<< Dirichlet << " NOT filtered gauge field" <<std::endl;
}
} }
Impl::DoubleStore(GaugeGrid(),Umu,HUmu); Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
pickCheckerboard(Even,UmuEven,Umu); pickCheckerboard(Even,UmuEven,Umu);

View File

@ -60,6 +60,9 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
_tmp(&Hgrid), _tmp(&Hgrid),
anisotropyCoeff(anis) anisotropyCoeff(anis)
{ {
Stencil.lo = &Lebesgue;
StencilEven.lo = &LebesgueEvenOdd;
StencilOdd.lo = &LebesgueEvenOdd;
// Allocate the required comms buffer // Allocate the required comms buffer
ImportGauge(_Umu); ImportGauge(_Umu);
if (anisotropyCoeff.isAnisotropic){ if (anisotropyCoeff.isAnisotropic){

View File

@ -433,11 +433,23 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
}); });
#define ASM_CALL(A) \ #define ASM_CALL(A) \
thread_for( ss, Nsite, { \ thread_for( sss, Nsite, { \
int ss = st.lo->Reorder(sss); \
int sU = ss; \ int sU = ss; \
int sF = ss*Ls; \ int sF = ss*Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \ WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
}); });
#define ASM_CALL_SLICE(A) \
auto grid = in.Grid() ; \
int nt = grid->LocalDimensions()[4]; \
int nxyz = Nsite/nt ; \
for(int t=0;t<nt;t++){ \
thread_for( sss, nxyz, { \
int ss = t*nxyz+sss; \
int sU = ss; \
int sF = ss*Ls; \
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
});}
template <class Impl> template <class Impl>
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf, void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
@ -490,6 +502,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
#ifndef GRID_CUDA #ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDag); return;}
#endif #endif
acceleratorFenceComputeStream();
} else if( interior ) { } else if( interior ) {
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;} if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagInt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;} if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagInt); return;}
@ -497,11 +510,13 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
#endif #endif
} else if( exterior ) { } else if( exterior ) {
acceleratorFenceComputeStream();
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;} if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;} if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
#ifndef GRID_CUDA #ifndef GRID_CUDA
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;} if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
#endif #endif
acceleratorFenceComputeStream();
} }
assert(0 && " Kernel optimisation case not covered "); assert(0 && " Kernel optimisation case not covered ");
} }

View File

@ -0,0 +1 @@
../CayleyFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../ContinuedFractionFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../DomainWallEOFAFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../MobiusEOFAFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../PartialFractionFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonCloverFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonTMFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
#define IMPLEMENTATION WilsonImplD2

View File

@ -0,0 +1 @@
../CayleyFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../ContinuedFractionFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../DomainWallEOFAFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../MobiusEOFAFermionInstantiation.cc.master

View File

@ -0,0 +1 @@
../PartialFractionFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonFermion5DInstantiation.cc.master

View File

@ -0,0 +1 @@
../WilsonKernelsInstantiation.cc.master

View File

@ -0,0 +1 @@
#define IMPLEMENTATION ZWilsonImplD2

View File

@ -9,6 +9,7 @@ STAG5_IMPL_LIST=""
WILSON_IMPL_LIST=" \ WILSON_IMPL_LIST=" \
WilsonImplF \ WilsonImplF \
WilsonImplD \ WilsonImplD \
WilsonImplD2 \
WilsonAdjImplF \ WilsonAdjImplF \
WilsonAdjImplD \ WilsonAdjImplD \
WilsonTwoIndexSymmetricImplF \ WilsonTwoIndexSymmetricImplF \
@ -25,8 +26,9 @@ COMPACT_WILSON_IMPL_LIST=" \
DWF_IMPL_LIST=" \ DWF_IMPL_LIST=" \
WilsonImplF \ WilsonImplF \
WilsonImplD \ WilsonImplD \
WilsonImplD2 \
ZWilsonImplF \ ZWilsonImplF \
ZWilsonImplD " ZWilsonImplD2 "
GDWF_IMPL_LIST=" \ GDWF_IMPL_LIST=" \
GparityWilsonImplF \ GparityWilsonImplF \

View File

@ -49,7 +49,7 @@ NAMESPACE_BEGIN(Grid);
typedef Lattice<SiteLink> LinkField; typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field; typedef Lattice<SiteField> Field;
typedef Field ComplexField; typedef LinkField ComplexField;
}; };
typedef QedGImpl<vComplex> QedGImplR; typedef QedGImpl<vComplex> QedGImplR;

View File

@ -59,7 +59,7 @@ NAMESPACE_BEGIN(Grid);
typedef RationalActionParams Params; typedef RationalActionParams Params;
Params param; Params param;
RealD RefreshAction;
//For action evaluation //For action evaluation
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow} MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow} MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
@ -115,6 +115,56 @@ NAMESPACE_BEGIN(Grid);
public: public:
// allow non-uniform tolerances
void SetTolerances(std::vector<RealD> action_tolerance,std::vector<RealD> md_tolerance)
{
assert(action_tolerance.size()==ApproxPowerAction.tolerances.size());
assert( md_tolerance.size()==ApproxPowerMD.tolerances.size());
// Fix up the tolerances
for(int i=0;i<ApproxPowerAction.tolerances.size();i++){
ApproxPowerAction.tolerances[i] = action_tolerance[i];
ApproxNegPowerAction.tolerances[i] = action_tolerance[i];
ApproxHalfPowerAction.tolerances[i] = action_tolerance[i];
ApproxNegHalfPowerAction.tolerances[i]= action_tolerance[i];
}
for(int i=0;i<ApproxPowerMD.tolerances.size();i++){
ApproxPowerMD.tolerances[i] = md_tolerance[i];
ApproxNegPowerMD.tolerances[i] = md_tolerance[i];
ApproxHalfPowerMD.tolerances[i] = md_tolerance[i];
ApproxNegHalfPowerMD.tolerances[i]= md_tolerance[i];
}
// Print out - could deprecate
for(int i=0;i<ApproxPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxPowerMD shift["<<i<<"] "
<<" pole "<<ApproxPowerMD.poles[i]
<<" residue "<<ApproxPowerMD.residues[i]
<<" tol "<<ApproxPowerMD.tolerances[i]<<std::endl;
}
/*
for(int i=0;i<ApproxNegPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxNegPowerMD shift["<<i<<"] "
<<" pole "<<ApproxNegPowerMD.poles[i]
<<" residue "<<ApproxNegPowerMD.residues[i]
<<" tol "<<ApproxNegPowerMD.tolerances[i]<<std::endl;
}
for(int i=0;i<ApproxHalfPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxHalfPowerMD shift["<<i<<"] "
<<" pole "<<ApproxHalfPowerMD.poles[i]
<<" residue "<<ApproxHalfPowerMD.residues[i]
<<" tol "<<ApproxHalfPowerMD.tolerances[i]<<std::endl;
}
for(int i=0;i<ApproxNegHalfPowerMD.tolerances.size();i++) {
std::cout<<GridLogMessage << " ApproxNegHalfPowerMD shift["<<i<<"] "
<<" pole "<<ApproxNegHalfPowerMD.poles[i]
<<" residue "<<ApproxNegHalfPowerMD.residues[i]
<<" tol "<<ApproxNegHalfPowerMD.tolerances[i]<<std::endl;
}
*/
}
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp, GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp, FermionOperator<Impl> &_DenOp,
const Params & p const Params & p
@ -149,6 +199,11 @@ NAMESPACE_BEGIN(Grid);
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance; ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
} }
std::vector<RealD> action_tolerance(ApproxHalfPowerAction.tolerances.size(),param.action_tolerance);
std::vector<RealD> md_tolerance (ApproxHalfPowerMD.tolerances.size(),param.md_tolerance);
SetTolerances(action_tolerance, md_tolerance);
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl; std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
}; };
@ -217,12 +272,19 @@ NAMESPACE_BEGIN(Grid);
assert(NumOp.ConstEE() == 1); assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1); assert(DenOp.ConstEE() == 1);
PhiEven = Zero(); PhiEven = Zero();
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
RefreshAction = norm2( etaOdd );
std::cout<<GridLogMessage << action_name() << " refresh: action is " << RefreshAction << std::endl;
}; };
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi // S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
virtual RealD Sinitial(const GaugeField &U) {
std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
return RefreshAction;
}
virtual RealD S(const GaugeField &U) { virtual RealD S(const GaugeField &U) {
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl; std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
ImportGauge(U); ImportGauge(U);

View File

@ -29,6 +29,8 @@
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H #ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H #define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -36,15 +38,19 @@ NAMESPACE_BEGIN(Grid);
// cf. GeneralEvenOddRational.h for details // cf. GeneralEvenOddRational.h for details
///////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class ImplD, class ImplF> template<class ImplD, class ImplF, class ImplD2>
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> { class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
private: private:
typedef typename ImplD2::FermionField FermionFieldD2;
typedef typename ImplD::FermionField FermionFieldD; typedef typename ImplD::FermionField FermionFieldD;
typedef typename ImplF::FermionField FermionFieldF; typedef typename ImplF::FermionField FermionFieldF;
FermionOperator<ImplD> & NumOpD; FermionOperator<ImplD> & NumOpD;
FermionOperator<ImplD> & DenOpD; FermionOperator<ImplD> & DenOpD;
FermionOperator<ImplD2> & NumOpD2;
FermionOperator<ImplD2> & DenOpD2;
FermionOperator<ImplF> & NumOpF; FermionOperator<ImplF> & NumOpF;
FermionOperator<ImplF> & DenOpF; FermionOperator<ImplF> & DenOpF;
@ -53,37 +59,71 @@ NAMESPACE_BEGIN(Grid);
//Allow derived classes to override the multishift CG //Allow derived classes to override the multishift CG
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){ virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD); #if 0
SchurDifferentiableOperator<ImplD> schurOp(numerator ? NumOpD : DenOpD);
ConjugateGradientMultiShift<FermionFieldD> msCG(MaxIter, approx);
msCG(schurOp,in, out);
#else
SchurDifferentiableOperator<ImplD2> schurOpD2(numerator ? NumOpD2 : DenOpD2);
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF); SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
FermionFieldD2 inD2(NumOpD2.FermionRedBlackGrid());
FermionFieldD2 outD2(NumOpD2.FermionRedBlackGrid());
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq); // Action better with higher precision?
msCG(schurOpD, in, out); ConjugateGradientMultiShiftMixedPrec<FermionFieldD2, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
precisionChange(inD2,in);
std::cout << "msCG single solve "<<norm2(inD2)<<" " <<norm2(in)<<std::endl;
msCG(schurOpD2, inD2, outD2);
precisionChange(out,outD2);
#endif
} }
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){ virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
SchurDifferentiableOperator<ImplD> schurOpD(numerator ? NumOpD : DenOpD); SchurDifferentiableOperator<ImplD2> schurOpD2(numerator ? NumOpD2 : DenOpD2);
SchurDifferentiableOperator<ImplF> schurOpF (numerator ? NumOpF : DenOpF); SchurDifferentiableOperator<ImplF> schurOpF (numerator ? NumOpF : DenOpF);
ConjugateGradientMultiShiftMixedPrec<FermionFieldD, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq); FermionFieldD2 inD2(NumOpD2.FermionRedBlackGrid());
msCG(schurOpD, in, out_elems, out); FermionFieldD2 outD2(NumOpD2.FermionRedBlackGrid());
std::vector<FermionFieldD2> out_elemsD2(out_elems.size(),NumOpD2.FermionRedBlackGrid());
ConjugateGradientMultiShiftMixedPrecCleanup<FermionFieldD2, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
precisionChange(inD2,in);
std::cout << "msCG in "<<norm2(inD2)<<" " <<norm2(in)<<std::endl;
msCG(schurOpD2, inD2, out_elemsD2, outD2);
precisionChange(out,outD2);
for(int i=0;i<out_elems.size();i++){
precisionChange(out_elems[i],out_elemsD2[i]);
}
} }
//Allow derived classes to override the gauge import //Allow derived classes to override the gauge import
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){ virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid()); typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
typename ImplD2::GaugeField Ud2(NumOpD2.GaugeGrid());
precisionChange(Uf, Ud); precisionChange(Uf, Ud);
precisionChange(Ud2, Ud);
std::cout << "Importing "<<norm2(Ud)<<" "<< norm2(Uf)<<" " << norm2(Ud2)<<std::endl;
NumOpD.ImportGauge(Ud); NumOpD.ImportGauge(Ud);
DenOpD.ImportGauge(Ud); DenOpD.ImportGauge(Ud);
NumOpF.ImportGauge(Uf); NumOpF.ImportGauge(Uf);
DenOpF.ImportGauge(Uf); DenOpF.ImportGauge(Uf);
NumOpD2.ImportGauge(Ud2);
DenOpD2.ImportGauge(Ud2);
} }
public: public:
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD, GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF, FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
FermionOperator<ImplD2> &_NumOpD2, FermionOperator<ImplD2> &_DenOpD2,
const RationalActionParams & p, Integer _ReliableUpdateFreq const RationalActionParams & p, Integer _ReliableUpdateFreq
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p), ) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
ReliableUpdateFreq(_ReliableUpdateFreq), NumOpD(_NumOpD), DenOpD(_DenOpD), NumOpF(_NumOpF), DenOpF(_DenOpF){} ReliableUpdateFreq(_ReliableUpdateFreq),
NumOpD(_NumOpD), DenOpD(_DenOpD),
NumOpF(_NumOpF), DenOpF(_DenOpF),
NumOpD2(_NumOpD2), DenOpD2(_DenOpD2)
{}
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";} virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
}; };

View File

@ -67,8 +67,9 @@ NAMESPACE_BEGIN(Grid);
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";} virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
}; };
template<class Impl,class ImplF> template<class Impl,class ImplF,class ImplD2>
class OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF> { class OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction
: public GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF,ImplD2> {
public: public:
typedef OneFlavourRationalParams Params; typedef OneFlavourRationalParams Params;
private: private:
@ -90,9 +91,11 @@ NAMESPACE_BEGIN(Grid);
FermionOperator<Impl> &_DenOp, FermionOperator<Impl> &_DenOp,
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_NumOpF,
FermionOperator<ImplF> &_DenOpF, FermionOperator<ImplF> &_DenOpF,
FermionOperator<ImplD2> &_NumOpD2,
FermionOperator<ImplD2> &_DenOpD2,
const Params & p, Integer ReliableUpdateFreq const Params & p, Integer ReliableUpdateFreq
) : ) :
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF>(_NumOp, _DenOp,_NumOpF, _DenOpF, transcribe(p),ReliableUpdateFreq){} GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF,ImplD2>(_NumOp, _DenOp,_NumOpF, _DenOpF,_NumOpD2, _DenOpD2, transcribe(p),ReliableUpdateFreq){}
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";} virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
}; };

View File

@ -50,6 +50,8 @@ NAMESPACE_BEGIN(Grid);
FermionField PhiOdd; // the pseudo fermion field for this trajectory FermionField PhiOdd; // the pseudo fermion field for this trajectory
FermionField PhiEven; // the pseudo fermion field for this trajectory FermionField PhiEven; // the pseudo fermion field for this trajectory
RealD RefreshAction;
public: public:
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp, TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
FermionOperator<Impl> &_DenOp, FermionOperator<Impl> &_DenOp,
@ -110,33 +112,60 @@ NAMESPACE_BEGIN(Grid);
// NumOp == V // NumOp == V
// DenOp == M // DenOp == M
// //
AUDIT();
FermionField etaOdd (NumOp.FermionRedBlackGrid()); FermionField etaOdd (NumOp.FermionRedBlackGrid());
FermionField etaEven(NumOp.FermionRedBlackGrid()); FermionField etaEven(NumOp.FermionRedBlackGrid());
FermionField tmp (NumOp.FermionRedBlackGrid()); FermionField tmp (NumOp.FermionRedBlackGrid());
AUDIT();
pickCheckerboard(Even,etaEven,eta); pickCheckerboard(Even,etaEven,eta);
AUDIT();
pickCheckerboard(Odd,etaOdd,eta); pickCheckerboard(Odd,etaOdd,eta);
AUDIT();
NumOp.ImportGauge(U); NumOp.ImportGauge(U);
AUDIT();
DenOp.ImportGauge(U); DenOp.ImportGauge(U);
std::cout << " TwoFlavourRefresh: Imported gauge "<<std::endl;
AUDIT();
SchurDifferentiableOperator<Impl> Mpc(DenOp); SchurDifferentiableOperator<Impl> Mpc(DenOp);
AUDIT();
SchurDifferentiableOperator<Impl> Vpc(NumOp); SchurDifferentiableOperator<Impl> Vpc(NumOp);
AUDIT();
std::cout << " TwoFlavourRefresh: Diff ops "<<std::endl;
AUDIT();
// Odd det factors // Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd); Mpc.MpcDag(etaOdd,PhiOdd);
AUDIT();
std::cout << " TwoFlavourRefresh: MpcDag "<<std::endl;
tmp=Zero(); tmp=Zero();
AUDIT();
std::cout << " TwoFlavourRefresh: Zero() guess "<<std::endl;
AUDIT();
HeatbathSolver(Vpc,PhiOdd,tmp); HeatbathSolver(Vpc,PhiOdd,tmp);
AUDIT();
std::cout << " TwoFlavourRefresh: Heatbath solver "<<std::endl;
Vpc.Mpc(tmp,PhiOdd); Vpc.Mpc(tmp,PhiOdd);
std::cout << " TwoFlavourRefresh: Mpc "<<std::endl;
// Even det factors // Even det factors
DenOp.MooeeDag(etaEven,tmp); DenOp.MooeeDag(etaEven,tmp);
NumOp.MooeeInvDag(tmp,PhiEven); NumOp.MooeeInvDag(tmp,PhiEven);
std::cout << " TwoFlavourRefresh: Mee "<<std::endl;
RefreshAction = norm2(etaEven)+norm2(etaOdd);
std::cout << " refresh " <<action_name()<< " action "<<RefreshAction<<std::endl;
}; };
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
// S = phi^dag V (Mdag M)^-1 Vdag phi // S = phi^dag V (Mdag M)^-1 Vdag phi
////////////////////////////////////////////////////// //////////////////////////////////////////////////////
virtual RealD Sinitial(const GaugeField &U) {
std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
return RefreshAction;
}
virtual RealD S(const GaugeField &U) { virtual RealD S(const GaugeField &U) {
NumOp.ImportGauge(U); NumOp.ImportGauge(U);

View File

@ -47,7 +47,7 @@ private:
const unsigned int N = Impl::Group::Dimension; const unsigned int N = Impl::Group::Dimension;
typedef typename Field::vector_object vobj; typedef typename Field::vector_object vobj;
typedef CartesianStencil<vobj, vobj,int> Stencil; typedef CartesianStencil<vobj, vobj,DefaultImplParams> Stencil;
SimpleCompressor<vobj> compressor; SimpleCompressor<vobj> compressor;
int npoint = 2 * Ndim; int npoint = 2 * Ndim;
@ -82,7 +82,7 @@ public:
virtual RealD S(const Field &p) virtual RealD S(const Field &p)
{ {
assert(p.Grid()->Nd() == Ndim); assert(p.Grid()->Nd() == Ndim);
static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements,0); static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor); phiStencil.HaloExchange(p, compressor);
Field action(p.Grid()), pshift(p.Grid()), phisquared(p.Grid()); Field action(p.Grid()), pshift(p.Grid()), phisquared(p.Grid());
phisquared = p * p; phisquared = p * p;
@ -133,7 +133,7 @@ public:
double interm_t = usecond(); double interm_t = usecond();
// move this outside // move this outside
static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements,0); static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements);
phiStencil.HaloExchange(p, compressor); phiStencil.HaloExchange(p, compressor);
double halo_t = usecond(); double halo_t = usecond();

View File

@ -143,6 +143,7 @@ private:
GridBase *Grid = U.Grid(); GridBase *Grid = U.Grid();
if(Params.PerformRandomShift){ if(Params.PerformRandomShift){
#if 0
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
// Mainly for DDHMC perform a random translation of U modulo volume // Mainly for DDHMC perform a random translation of U modulo volume
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
@ -167,11 +168,11 @@ private:
//shift all fields together in a way that respects the gauge BCs //shift all fields together in a way that respects the gauge BCs
for(int mu=0; mu < Grid->Nd(); mu++) for(int mu=0; mu < Grid->Nd(); mu++)
Umu[mu] = FieldImplementation::CshiftLink(Umu[mu],d,shift); Umu[mu] = FieldImplementation::CshiftLink(Umu[mu],d,shift);
}
for(int mu=0;mu<Grid->Nd();mu++) PokeIndex<LorentzIndex>(U,Umu[mu],mu); for(int mu=0;mu<Grid->Nd();mu++) PokeIndex<LorentzIndex>(U,Umu[mu],mu);
}
std::cout << GridLogMessage << "--------------------------------------------------\n"; std::cout << GridLogMessage << "--------------------------------------------------\n";
#endif
} }
TheIntegrator.reset_timer(); TheIntegrator.reset_timer();
@ -189,7 +190,7 @@ private:
////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << GridLogMessage << "--------------------------------------------------\n"; std::cout << GridLogMessage << "--------------------------------------------------\n";
std::cout << GridLogMessage << "Compute initial action"; std::cout << GridLogMessage << "Compute initial action";
RealD H0 = TheIntegrator.S(U); RealD H0 = TheIntegrator.Sinitial(U);
std::cout << GridLogMessage << "--------------------------------------------------\n"; std::cout << GridLogMessage << "--------------------------------------------------\n";
std::streamsize current_precision = std::cout.precision(); std::streamsize current_precision = std::cout.precision();

View File

@ -132,10 +132,17 @@ protected:
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared); Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
double start_force = usecond(); double start_force = usecond();
std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] before"<<std::endl;
AUDIT();
as[level].actions.at(a)->deriv_timer_start(); as[level].actions.at(a)->deriv_timer_start();
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
as[level].actions.at(a)->deriv_timer_stop(); as[level].actions.at(a)->deriv_timer_stop();
std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] after"<<std::endl;
AUDIT();
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl; std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
auto name = as[level].actions.at(a)->action_name(); auto name = as[level].actions.at(a)->action_name();
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force); if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
@ -145,7 +152,7 @@ protected:
// DumpSliceNorm("force ",force,Nd-1); // DumpSliceNorm("force ",force,Nd-1);
MomFilter->applyFilter(force); MomFilter->applyFilter(force);
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<< std::endl; std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<< std::endl;
DumpSliceNorm("force filtered ",force,Nd-1); DumpSliceNorm("force filtered ",force,Nd-1);
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x]) Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
@ -156,6 +163,7 @@ protected:
as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max); as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] dt : " << ep <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl; std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl; std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl; std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
@ -276,6 +284,15 @@ public:
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl; << as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
} }
} }
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Dslash counts "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl;
uint64_t full, partial, dirichlet;
DslashGetCounts(dirichlet,partial,full);
std::cout << GridLogMessage << " Full BCs : "<<full<<std::endl;
std::cout << GridLogMessage << " Partial dirichlet BCs : "<<partial<<std::endl;
std::cout << GridLogMessage << " Dirichlet BCs : "<<dirichlet<<std::endl;
std::cout << GridLogMessage << "--------------------------- "<<std::endl; std::cout << GridLogMessage << "--------------------------- "<<std::endl;
std::cout << GridLogMessage << " Force average size "<<std::endl; std::cout << GridLogMessage << " Force average size "<<std::endl;
std::cout << GridLogMessage << "------------------------- "<<std::endl; std::cout << GridLogMessage << "------------------------- "<<std::endl;
@ -283,7 +300,7 @@ public:
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) { for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
std::cout << GridLogMessage std::cout << GridLogMessage
<< as[level].actions.at(actionID)->action_name() << as[level].actions.at(actionID)->action_name()
<<"["<<level<<"]["<< actionID<<"] : " <<"["<<level<<"]["<< actionID<<"] :\n\t\t "
<<" force max " << as[level].actions.at(actionID)->deriv_max_average() <<" force max " << as[level].actions.at(actionID)->deriv_max_average()
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average() <<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
<<" Fdt max " << as[level].actions.at(actionID)->Fdt_max_average() <<" Fdt max " << as[level].actions.at(actionID)->Fdt_max_average()
@ -363,9 +380,14 @@ public:
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl; std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared); Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] before"<<std::endl;
AUDIT();
as[level].actions.at(actionID)->refresh_timer_start(); as[level].actions.at(actionID)->refresh_timer_start();
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG); as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
as[level].actions.at(actionID)->refresh_timer_stop(); as[level].actions.at(actionID)->refresh_timer_stop();
std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] after"<<std::endl;
AUDIT();
} }
// Refresh the higher representation actions // Refresh the higher representation actions
@ -402,6 +424,7 @@ public:
// Actions // Actions
for (int level = 0; level < as.size(); ++level) { for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) { for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
AUDIT();
// get gauge field from the SmearingPolicy and // get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID // based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared); Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
@ -411,6 +434,7 @@ public:
as[level].actions.at(actionID)->S_timer_stop(); as[level].actions.at(actionID)->S_timer_stop();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl; std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm; H += Hterm;
AUDIT();
} }
as[level].apply(S_hireps, Representations, level, H); as[level].apply(S_hireps, Representations, level, H);
} }
@ -418,8 +442,55 @@ public:
return H; return H;
} }
struct _Sinitial {
template <class FieldType, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
for (int a = 0; a < repr_set.size(); ++a) {
AUDIT();
RealD Hterm = repr_set.at(a)->Sinitial(Rep.U);
AUDIT();
std::cout << GridLogMessage << "Sinitial Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
H += Hterm;
}
}
} Sinitial_hireps{};
RealD Sinitial(Field& U)
{ // here also U not used
std::cout << GridLogIntegrator << "Integrator initial action\n";
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
RealD Hterm;
// Actions
for (int level = 0; level < as.size(); ++level) {
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
// get gauge field from the SmearingPolicy and
// based on the boolean is_smeared in actionID
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
as[level].actions.at(actionID)->S_timer_start();
AUDIT();
Hterm = as[level].actions.at(actionID)->Sinitial(Us);
as[level].actions.at(actionID)->S_timer_stop();
AUDIT();
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
H += Hterm;
}
as[level].apply(Sinitial_hireps, Representations, level, H);
}
return H;
}
void integrate(Field& U) void integrate(Field& U)
{ {
AUDIT();
// reset the clocks // reset the clocks
t_U = 0; t_U = 0;
for (int level = 0; level < as.size(); ++level) { for (int level = 0; level < as.size(); ++level) {
@ -437,8 +508,10 @@ public:
assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same assert(fabs(t_U - t_P[level]) < 1.0e-6); // must be the same
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl; std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
} }
AUDIT();
FieldImplementation::Project(U); FieldImplementation::Project(U);
AUDIT();
// and that we indeed got to the end of the trajectory // and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6); assert(fabs(t_U - Params.trajL) < 1.0e-6);

View File

@ -230,7 +230,8 @@ public:
// Presently 4 force evals, and should have 3, so 1.33x too expensive. // Presently 4 force evals, and should have 3, so 1.33x too expensive.
// could reduce this with sloppy CG to perhaps 1.15x too expensive // could reduce this with sloppy CG to perhaps 1.15x too expensive
// even without prediction. // even without prediction.
this->update_P(Pfg, Ufg, level, 1.0); this->update_P(Pfg, Ufg, level, fg_dt);
Pfg = Pfg*(1.0/fg_dt);
this->update_U(Pfg, Ufg, fg_dt); this->update_U(Pfg, Ufg, fg_dt);
this->update_P(Ufg, level, ep); this->update_P(Ufg, level, ep);
} }

View File

@ -78,13 +78,13 @@ static Registrar<OneFlavourRatioEOFModule<FermionImplementationPolicy>,
// Now a specific registration with a fermion field // Now a specific registration with a fermion field
// here must instantiate CG and CR for every new fermion field type (macro!!) // here must instantiate CG and CR for every new fermion field type (macro!!)
static Registrar< ConjugateGradientModule<WilsonFermionR::FermionField>, static Registrar< ConjugateGradientModule<WilsonFermionD::FermionField>,
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient"); HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient");
static Registrar< BiCGSTABModule<WilsonFermionR::FermionField>, static Registrar< BiCGSTABModule<WilsonFermionD::FermionField>,
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __BiCGWFmodXMLInit("BiCGSTAB"); HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __BiCGWFmodXMLInit("BiCGSTAB");
static Registrar< ConjugateResidualModule<WilsonFermionR::FermionField>, static Registrar< ConjugateResidualModule<WilsonFermionD::FermionField>,
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual"); HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual");
// add the staggered, scalar versions here // add the staggered, scalar versions here

View File

@ -615,7 +615,6 @@ public:
GridBase *grid = out.Grid(); GridBase *grid = out.Grid();
typedef typename LatticeMatrixType::vector_type vector_type; typedef typename LatticeMatrixType::vector_type vector_type;
typedef typename LatticeMatrixType::scalar_type scalar_type;
typedef iSinglet<vector_type> vTComplexType; typedef iSinglet<vector_type> vTComplexType;

View File

@ -26,7 +26,7 @@
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#include <Grid/Grid.h> #include <Grid/Grid.h>
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP)) #ifndef GRID_HIP
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
@ -82,7 +82,7 @@ void JSONWriter::writeDefault(const std::string &s, const std::string &x)
if (s.size()) if (s.size())
ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ; ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
else else
ss_ << os.str() << " ," ; ss_ << "\""<< os.str() << "\" ," ;
} }
// Reader implementation /////////////////////////////////////////////////////// // Reader implementation ///////////////////////////////////////////////////////

View File

@ -54,7 +54,7 @@ namespace Grid
void pop(void); void pop(void);
template <typename U> template <typename U>
void writeDefault(const std::string &s, const U &x); void writeDefault(const std::string &s, const U &x);
#ifdef __NVCC__ #if defined(GRID_CUDA) || defined(GRID_HIP)
void writeDefault(const std::string &s, const Grid::ComplexD &x) void writeDefault(const std::string &s, const Grid::ComplexD &x)
{ {
std::complex<double> z(real(x),imag(x)); std::complex<double> z(real(x),imag(x));
@ -101,7 +101,7 @@ namespace Grid
void readDefault(const std::string &s, std::vector<U> &output); void readDefault(const std::string &s, std::vector<U> &output);
template <typename U, typename P> template <typename U, typename P>
void readDefault(const std::string &s, std::pair<U,P> &output); void readDefault(const std::string &s, std::pair<U,P> &output);
#ifdef __NVCC__ #if defined(GRID_CUDA) || defined(GRID_HIP)
void readDefault(const std::string &s, ComplexD &output) void readDefault(const std::string &s, ComplexD &output)
{ {
std::complex<double> z; std::complex<double> z;

View File

@ -36,7 +36,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include "BinaryIO.h" #include "BinaryIO.h"
#include "TextIO.h" #include "TextIO.h"
#include "XmlIO.h" #include "XmlIO.h"
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP)) #ifndef GRID_HIP
#include "JSON_IO.h" #include "JSON_IO.h"
#endif #endif

View File

@ -501,7 +501,7 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
// Complex // Complex
template <typename T> template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){ inline vec<T> operator()(vec<T> a){
vec<T> out; vec<T> out;
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap(); const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
svbool_t pg1 = acle<T>::pg1(); svbool_t pg1 = acle<T>::pg1();
@ -520,7 +520,7 @@ struct TimesMinusI{
struct TimesI{ struct TimesI{
// Complex // Complex
template <typename T> template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){ inline vec<T> operator()(vec<T> a){
vec<T> out; vec<T> out;
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap(); const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
svbool_t pg1 = acle<T>::pg1(); svbool_t pg1 = acle<T>::pg1();

View File

@ -418,7 +418,7 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
// Complex float // Complex float
inline vecf operator()(vecf a, vecf b){ inline vecf operator()(vecf a){
lutf tbl_swap = acle<float>::tbl_swap(); lutf tbl_swap = acle<float>::tbl_swap();
pred pg1 = acle<float>::pg1(); pred pg1 = acle<float>::pg1();
pred pg_odd = acle<float>::pg_odd(); pred pg_odd = acle<float>::pg_odd();
@ -428,7 +428,7 @@ struct TimesMinusI{
return svneg_m(a_v, pg_odd, a_v); return svneg_m(a_v, pg_odd, a_v);
} }
// Complex double // Complex double
inline vecd operator()(vecd a, vecd b){ inline vecd operator()(vecd a){
lutd tbl_swap = acle<double>::tbl_swap(); lutd tbl_swap = acle<double>::tbl_swap();
pred pg1 = acle<double>::pg1(); pred pg1 = acle<double>::pg1();
pred pg_odd = acle<double>::pg_odd(); pred pg_odd = acle<double>::pg_odd();
@ -441,7 +441,7 @@ struct TimesMinusI{
struct TimesI{ struct TimesI{
// Complex float // Complex float
inline vecf operator()(vecf a, vecf b){ inline vecf operator()(vecf a){
lutf tbl_swap = acle<float>::tbl_swap(); lutf tbl_swap = acle<float>::tbl_swap();
pred pg1 = acle<float>::pg1(); pred pg1 = acle<float>::pg1();
pred pg_even = acle<float>::pg_even(); pred pg_even = acle<float>::pg_even();
@ -451,7 +451,7 @@ struct TimesI{
return svneg_m(a_v, pg_even, a_v); return svneg_m(a_v, pg_even, a_v);
} }
// Complex double // Complex double
inline vecd operator()(vecd a, vecd b){ inline vecd operator()(vecd a){
lutd tbl_swap = acle<double>::tbl_swap(); lutd tbl_swap = acle<double>::tbl_swap();
pred pg1 = acle<double>::pg1(); pred pg1 = acle<double>::pg1();
pred pg_even = acle<double>::pg_even(); pred pg_even = acle<double>::pg_even();

View File

@ -405,12 +405,12 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
//Complex single //Complex single
inline __m256 operator()(__m256 in, __m256 ret){ inline __m256 operator()(__m256 in){
__m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i __m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i
return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r
} }
//Complex double //Complex double
inline __m256d operator()(__m256d in, __m256d ret){ inline __m256d operator()(__m256d in){
__m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i __m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i
return _mm256_shuffle_pd(tmp,tmp,0x5); return _mm256_shuffle_pd(tmp,tmp,0x5);
} }
@ -418,12 +418,12 @@ struct TimesMinusI{
struct TimesI{ struct TimesI{
//Complex single //Complex single
inline __m256 operator()(__m256 in, __m256 ret){ inline __m256 operator()(__m256 in){
__m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r __m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r
return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r
} }
//Complex double //Complex double
inline __m256d operator()(__m256d in, __m256d ret){ inline __m256d operator()(__m256d in){
__m256d tmp = _mm256_shuffle_pd(in,in,0x5); __m256d tmp = _mm256_shuffle_pd(in,in,0x5);
return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r
} }

View File

@ -271,14 +271,14 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
//Complex single //Complex single
inline __m512 operator()(__m512 in, __m512 ret){ inline __m512 operator()(__m512 in){
//__m512 tmp = _mm512_mask_sub_ps(in,0xaaaa,_mm512_setzero_ps(),in); // real -imag //__m512 tmp = _mm512_mask_sub_ps(in,0xaaaa,_mm512_setzero_ps(),in); // real -imag
//return _mm512_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,1,0)); // 0x4E?? //return _mm512_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,1,0)); // 0x4E??
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); __m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
return _mm512_mask_sub_ps(tmp,0xaaaa,_mm512_setzero_ps(),tmp); return _mm512_mask_sub_ps(tmp,0xaaaa,_mm512_setzero_ps(),tmp);
} }
//Complex double //Complex double
inline __m512d operator()(__m512d in, __m512d ret){ inline __m512d operator()(__m512d in){
//__m512d tmp = _mm512_mask_sub_pd(in,0xaa,_mm512_setzero_pd(),in); // real -imag //__m512d tmp = _mm512_mask_sub_pd(in,0xaa,_mm512_setzero_pd(),in); // real -imag
//return _mm512_shuffle_pd(tmp,tmp,0x55); //return _mm512_shuffle_pd(tmp,tmp,0x55);
__m512d tmp = _mm512_shuffle_pd(in,in,0x55); __m512d tmp = _mm512_shuffle_pd(in,in,0x55);
@ -288,17 +288,16 @@ struct TimesMinusI{
struct TimesI{ struct TimesI{
//Complex single //Complex single
inline __m512 operator()(__m512 in, __m512 ret){ inline __m512 operator()(__m512 in){
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); __m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
return _mm512_mask_sub_ps(tmp,0x5555,_mm512_setzero_ps(),tmp); return _mm512_mask_sub_ps(tmp,0x5555,_mm512_setzero_ps(),tmp);
} }
//Complex double //Complex double
inline __m512d operator()(__m512d in, __m512d ret){ inline __m512d operator()(__m512d in){
__m512d tmp = _mm512_shuffle_pd(in,in,0x55); __m512d tmp = _mm512_shuffle_pd(in,in,0x55);
return _mm512_mask_sub_pd(tmp,0x55,_mm512_setzero_pd(),tmp); return _mm512_mask_sub_pd(tmp,0x55,_mm512_setzero_pd(),tmp);
} }
}; };
// Gpermute utilities consider coalescing into 1 Gpermute // Gpermute utilities consider coalescing into 1 Gpermute

View File

@ -0,0 +1,666 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_vector_types.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
template <class Scalar_type, class Vector_type>
class Grid_simd2 {
public:
typedef typename RealPart<Scalar_type>::type Real;
typedef Vector_type vector_type;
typedef Scalar_type scalar_type;
typedef union conv_t_union {
Vector_type v;
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
accelerator_inline conv_t_union(){};
} conv_t;
static constexpr int nvec=2;
Vector_type v[nvec];
static accelerator_inline constexpr int Nsimd(void) {
static_assert( (sizeof(Vector_type) / sizeof(Scalar_type) >= 1), " size mismatch " );
return nvec*sizeof(Vector_type) / sizeof(Scalar_type);
}
accelerator_inline Grid_simd2 &operator=(const Grid_simd2 &&rhs) {
for(int n=0;n<nvec;n++) v[n] = rhs.v[n];
return *this;
};
accelerator_inline Grid_simd2 &operator=(const Grid_simd2 &rhs) {
for(int n=0;n<nvec;n++) v[n] = rhs.v[n];
return *this;
}; // faster than not declaring it and leaving to the compiler
accelerator Grid_simd2() = default;
accelerator_inline Grid_simd2(const Grid_simd2 &rhs) { for(int n=0;n<nvec;n++) v[n] = rhs.v[n]; };
accelerator_inline Grid_simd2(const Grid_simd2 &&rhs){ for(int n=0;n<nvec;n++) v[n] = rhs.v[n]; };
accelerator_inline Grid_simd2(const Real a) { vsplat(*this, Scalar_type(a)); };
// Enable if complex type
template <typename S = Scalar_type> accelerator_inline
Grid_simd2(const typename std::enable_if<is_complex<S>::value, S>::type a) {
vsplat(*this, a);
};
/////////////////////////////
// Constructors
/////////////////////////////
accelerator_inline Grid_simd2 & operator=(const Zero &z) {
vzero(*this);
return (*this);
}
///////////////////////////////////////////////
// mac, mult, sub, add, adj
///////////////////////////////////////////////
friend accelerator_inline void mac(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ a,
const Grid_simd2 *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
friend accelerator_inline void mult(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ l,
const Grid_simd2 *__restrict__ r) {
*y = (*l) * (*r);
}
friend accelerator_inline void sub(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ l,
const Grid_simd2 *__restrict__ r) {
*y = (*l) - (*r);
}
friend accelerator_inline void add(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ l,
const Grid_simd2 *__restrict__ r) {
*y = (*l) + (*r);
}
friend accelerator_inline void mac(Grid_simd2 *__restrict__ y,
const Scalar_type *__restrict__ a,
const Grid_simd2 *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
friend accelerator_inline void mult(Grid_simd2 *__restrict__ y,
const Scalar_type *__restrict__ l,
const Grid_simd2 *__restrict__ r) {
*y = (*l) * (*r);
}
friend accelerator_inline void sub(Grid_simd2 *__restrict__ y,
const Scalar_type *__restrict__ l,
const Grid_simd2 *__restrict__ r) {
*y = (*l) - (*r);
}
friend accelerator_inline void add(Grid_simd2 *__restrict__ y,
const Scalar_type *__restrict__ l,
const Grid_simd2 *__restrict__ r) {
*y = (*l) + (*r);
}
friend accelerator_inline void mac(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ a,
const Scalar_type *__restrict__ x) {
*y = (*a) * (*x) + (*y);
};
friend accelerator_inline void mult(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ l,
const Scalar_type *__restrict__ r) {
*y = (*l) * (*r);
}
friend accelerator_inline void sub(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ l,
const Scalar_type *__restrict__ r) {
*y = (*l) - (*r);
}
friend accelerator_inline void add(Grid_simd2 *__restrict__ y,
const Grid_simd2 *__restrict__ l,
const Scalar_type *__restrict__ r) {
*y = (*l) + (*r);
}
////////////////////////////////////////////////////////////////////////
// FIXME: gonna remove these load/store, get, set, prefetch
////////////////////////////////////////////////////////////////////////
friend accelerator_inline void vset(Grid_simd2 &ret, Scalar_type *a) {
for(int n=0;n<nvec;n++) vset(ret.v[n],a);
}
///////////////////////
// Vstore
///////////////////////
friend accelerator_inline void vstore(const Grid_simd2 &ret, Scalar_type *a) {
for(int n=0;n<nvec;n++) vstore(ret.v[n],a);
}
///////////////////////
// Vprefetch
///////////////////////
friend accelerator_inline void vprefetch(const Grid_simd2 &v) {
vprefetch(v.v[0]);
}
///////////////////////
// Reduce
///////////////////////
friend accelerator_inline Scalar_type Reduce(const Grid_simd2 &in) {
return Reduce(in.v[0])+ Reduce(in.v[1]);
}
////////////////////////////
// operator scalar * simd
////////////////////////////
friend accelerator_inline Grid_simd2 operator*(const Scalar_type &a, Grid_simd2 b) {
Grid_simd2 va;
vsplat(va, a);
return va * b;
}
friend accelerator_inline Grid_simd2 operator*(Grid_simd2 b, const Scalar_type &a) {
return a * b;
}
//////////////////////////////////
// Divides
//////////////////////////////////
friend accelerator_inline Grid_simd2 operator/(const Scalar_type &a, Grid_simd2 b) {
Grid_simd2 va;
vsplat(va, a);
return va / b;
}
friend accelerator_inline Grid_simd2 operator/(Grid_simd2 b, const Scalar_type &a) {
Grid_simd2 va;
vsplat(va, a);
return b / a;
}
///////////////////////
// Unary negation
///////////////////////
friend accelerator_inline Grid_simd2 operator-(const Grid_simd2 &r) {
Grid_simd2 ret;
vzero(ret);
ret = ret - r;
return ret;
}
// *=,+=,-= operators
accelerator_inline Grid_simd2 &operator*=(const Grid_simd2 &r) {
*this = (*this) * r;
return *this;
}
accelerator_inline Grid_simd2 &operator+=(const Grid_simd2 &r) {
*this = *this + r;
return *this;
}
accelerator_inline Grid_simd2 &operator-=(const Grid_simd2 &r) {
*this = *this - r;
return *this;
}
///////////////////////////////////////
// Not all functions are supported
// through SIMD and must breakout to
// scalar type and back again. This
// provides support
///////////////////////////////////////
template <class functor>
friend accelerator_inline Grid_simd2 SimdApply(const functor &func, const Grid_simd2 &v) {
Grid_simd2 ret;
for(int n=0;n<nvec;n++){
ret.v[n]=SimdApply(func,v.v[n]);
}
return ret;
}
template <class functor>
friend accelerator_inline Grid_simd2 SimdApplyBinop(const functor &func,
const Grid_simd2 &x,
const Grid_simd2 &y) {
Grid_simd2 ret;
for(int n=0;n<nvec;n++){
ret.v[n]=SimdApplyBinop(func,x.v[n],y.v[n]);
}
return ret;
}
///////////////////////
// Exchange
// Al Ah , Bl Bh -> Al Bl Ah,Bh
///////////////////////
friend accelerator_inline void exchange0(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
out1.v[0] = in1.v[0];
out1.v[1] = in2.v[0];
out2.v[0] = in1.v[1];
out2.v[1] = in2.v[1];
}
friend accelerator_inline void exchange1(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
exchange0(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
exchange0(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
}
friend accelerator_inline void exchange2(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
exchange1(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
exchange1(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
}
friend accelerator_inline void exchange3(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
exchange2(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
exchange2(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
}
friend accelerator_inline void exchange4(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
exchange3(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
exchange3(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
}
friend accelerator_inline void exchange(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2,int n)
{
if (n==3) {
exchange3(out1,out2,in1,in2);
} else if(n==2) {
exchange2(out1,out2,in1,in2);
} else if(n==1) {
exchange1(out1,out2,in1,in2);
} else if(n==0) {
exchange0(out1,out2,in1,in2);
}
}
////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across
// all subtypes; may not be a good assumption, but could
// add the vector width as a template param for BG/Q for example
////////////////////////////////////////////////////////////////////
friend accelerator_inline void permute0(Grid_simd2 &y, Grid_simd2 b) {
y.v[0]=b.v[1];
y.v[1]=b.v[0];
}
friend accelerator_inline void permute1(Grid_simd2 &y, Grid_simd2 b) {
permute0(y.v[0],b.v[0]);
permute0(y.v[1],b.v[1]);
}
friend accelerator_inline void permute2(Grid_simd2 &y, Grid_simd2 b) {
permute1(y.v[0],b.v[0]);
permute1(y.v[1],b.v[1]);
}
friend accelerator_inline void permute3(Grid_simd2 &y, Grid_simd2 b) {
permute2(y.v[0],b.v[0]);
permute2(y.v[1],b.v[1]);
}
friend accelerator_inline void permute4(Grid_simd2 &y, Grid_simd2 b) {
permute3(y.v[0],b.v[0]);
permute3(y.v[1],b.v[1]);
}
friend accelerator_inline void permute(Grid_simd2 &y, Grid_simd2 b, int perm) {
if(perm==3) permute3(y, b);
else if(perm==2) permute2(y, b);
else if(perm==1) permute1(y, b);
else if(perm==0) permute0(y, b);
}
///////////////////////////////
// Getting single lanes
///////////////////////////////
accelerator_inline Scalar_type getlane(int lane) const {
if(lane < vector_type::Nsimd() ) return v[0].getlane(lane);
else return v[1].getlane(lane%vector_type::Nsimd());
}
accelerator_inline void putlane(const Scalar_type &S, int lane){
if(lane < vector_type::Nsimd() ) v[0].putlane(S,lane);
else v[1].putlane(S,lane%vector_type::Nsimd());
}
}; // end of Grid_simd2 class definition
///////////////////////////////
// Define available types
///////////////////////////////
typedef Grid_simd2<complex<double> , vComplexD> vComplexD2;
typedef Grid_simd2<double , vRealD> vRealD2;
/////////////////////////////////////////
// Some traits to recognise the types
/////////////////////////////////////////
template <typename T>
struct is_simd : public std::false_type {};
template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vRealH> : public std::true_type {};
template <> struct is_simd<vComplexF> : public std::true_type {};
template <> struct is_simd<vComplexD> : public std::true_type {};
template <> struct is_simd<vComplexH> : public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {};
template <> struct is_simd<vRealD2> : public std::true_type {};
template <> struct is_simd<vComplexD2> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
///////////////////////////////////////////////
// insert / extract with complex support
///////////////////////////////////////////////
template <class S, class V>
accelerator_inline S getlane(const Grid_simd<S, V> &in,int lane) {
return in.getlane(lane);
}
template <class S, class V>
accelerator_inline void putlane(Grid_simd<S, V> &vec,const S &_S, int lane){
vec.putlane(_S,lane);
}
template <class S,IfNotSimd<S> = 0 >
accelerator_inline S getlane(const S &in,int lane) {
return in;
}
template <class S,IfNotSimd<S> = 0 >
accelerator_inline void putlane(S &vec,const S &_S, int lane){
vec = _S;
}
template <class S, class V>
accelerator_inline S getlane(const Grid_simd2<S, V> &in,int lane) {
return in.getlane(lane);
}
template <class S, class V>
accelerator_inline void putlane(Grid_simd2<S, V> &vec,const S &_S, int lane){
vec.putlane(_S,lane);
}
////////////////////////////////////////////////////////////////////
// General rotate
////////////////////////////////////////////////////////////////////
template <class S, class V>
accelerator_inline void vbroadcast(Grid_simd2<S,V> &ret,const Grid_simd2<S,V> &src,int lane){
S* typepun =(S*) &src;
vsplat(ret,typepun[lane]);
}
template <class S, class V, IfComplex<S> =0>
accelerator_inline void rbroadcast(Grid_simd2<S,V> &ret,const Grid_simd2<S,V> &src,int lane){
typedef typename V::vector_type vector_type;
S* typepun =(S*) &src;
ret.v[0].v = unary<vector_type>(real(typepun[lane]), VsplatSIMD());
ret.v[1].v = unary<vector_type>(real(typepun[lane]), VsplatSIMD());
}
///////////////////////
// Splat
///////////////////////
// this is only for the complex version
template <class S, class V, IfComplex<S> = 0, class ABtype>
accelerator_inline void vsplat(Grid_simd2<S, V> &ret, ABtype a, ABtype b) {
vsplat(ret.v[0],a,b);
vsplat(ret.v[1],a,b);
}
// overload if complex
template <class S, class V>
accelerator_inline void vsplat(Grid_simd2<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), imag(c));
}
template <class S, class V>
accelerator_inline void rsplat(Grid_simd2<S, V> &ret, EnableIf<is_complex<S>, S> c) {
vsplat(ret, real(c), real(c));
}
// if real fill with a, if complex fill with a in the real part (first function
// above)
template <class S, class V>
accelerator_inline void vsplat(Grid_simd2<S, V> &ret, NotEnableIf<is_complex<S>, S> a)
{
vsplat(ret.v[0],a);
vsplat(ret.v[1],a);
}
//////////////////////////
///////////////////////////////////////////////
// Initialise to 1,0,i for the correct types
///////////////////////////////////////////////
// For complex types
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void vone(Grid_simd2<S, V> &ret) {
vsplat(ret, S(1.0, 0.0));
}
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void vzero(Grid_simd2<S, V> &ret) {
vsplat(ret, S(0.0, 0.0));
} // use xor?
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void vcomplex_i(Grid_simd2<S, V> &ret) {
vsplat(ret, S(0.0, 1.0));
}
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void visign(Grid_simd2<S, V> &ret) {
vsplat(ret, S(1.0, -1.0));
}
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void vrsign(Grid_simd2<S, V> &ret) {
vsplat(ret, S(-1.0, 1.0));
}
// if not complex overload here
template <class S, class V, IfReal<S> = 0>
accelerator_inline void vone(Grid_simd2<S, V> &ret) {
vsplat(ret, S(1.0));
}
template <class S, class V, IfReal<S> = 0>
accelerator_inline void vzero(Grid_simd2<S, V> &ret) {
vsplat(ret, S(0.0));
}
// For integral types
template <class S, class V, IfInteger<S> = 0>
accelerator_inline void vone(Grid_simd2<S, V> &ret) {
vsplat(ret, 1);
}
template <class S, class V, IfInteger<S> = 0>
accelerator_inline void vzero(Grid_simd2<S, V> &ret) {
vsplat(ret, 0);
}
template <class S, class V, IfInteger<S> = 0>
accelerator_inline void vtrue(Grid_simd2<S, V> &ret) {
vsplat(ret, 0xFFFFFFFF);
}
template <class S, class V, IfInteger<S> = 0>
accelerator_inline void vfalse(Grid_simd2<S, V> &ret) {
vsplat(ret, 0);
}
template <class S, class V>
accelerator_inline void zeroit(Grid_simd2<S, V> &z) {
vzero(z);
}
///////////////////////
// Vstream
///////////////////////
template <class S, class V, IfReal<S> = 0>
accelerator_inline void vstream(Grid_simd2<S, V> &out, const Grid_simd2<S, V> &in) {
vstream(out.v[0],in.v[0]);
vstream(out.v[1],in.v[1]);
}
template <class S, class V, IfComplex<S> = 0>
accelerator_inline void vstream(Grid_simd2<S, V> &out, const Grid_simd2<S, V> &in) {
vstream(out.v[0],in.v[0]);
vstream(out.v[1],in.v[1]);
}
template <class S, class V, IfInteger<S> = 0>
accelerator_inline void vstream(Grid_simd2<S, V> &out, const Grid_simd2<S, V> &in) {
vstream(out.v[0],in.v[0]);
vstream(out.v[1],in.v[1]);
}
////////////////////////////////////
// Arithmetic operator overloads +,-,*
////////////////////////////////////
template <class S, class V>
accelerator_inline Grid_simd2<S, V> operator+(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
Grid_simd2<S, V> ret;
ret.v[0] = a.v[0]+b.v[0];
ret.v[1] = a.v[1]+b.v[1];
return ret;
};
template <class S, class V>
accelerator_inline Grid_simd2<S, V> operator-(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
Grid_simd2<S, V> ret;
ret.v[0] = a.v[0]-b.v[0];
ret.v[1] = a.v[1]-b.v[1];
return ret;
};
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd2<S, V> real_mult(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
Grid_simd2<S, V> ret;
ret.v[0] =real_mult(a.v[0],b.v[0]);
ret.v[1] =real_mult(a.v[1],b.v[1]);
return ret;
};
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd2<S, V> real_madd(Grid_simd2<S, V> a, Grid_simd2<S, V> b, Grid_simd2<S,V> c) {
Grid_simd2<S, V> ret;
ret.v[0] =real_madd(a.v[0],b.v[0],c.v[0]);
ret.v[1] =real_madd(a.v[1],b.v[1],c.v[1]);
return ret;
};
// Distinguish between complex types and others
template <class S, class V>
accelerator_inline Grid_simd2<S, V> operator*(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
Grid_simd2<S, V> ret;
ret.v[0] = a.v[0]*b.v[0];
ret.v[1] = a.v[1]*b.v[1];
return ret;
};
// Distinguish between complex types and others
template <class S, class V>
accelerator_inline Grid_simd2<S, V> operator/(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
Grid_simd2<S, V> ret;
ret.v[0] = a.v[0]/b.v[0];
ret.v[1] = a.v[1]/b.v[1];
return ret;
};
///////////////////////
// Conjugate
///////////////////////
template <class S, class V>
accelerator_inline Grid_simd2<S, V> conjugate(const Grid_simd2<S, V> &in) {
Grid_simd2<S, V> ret;
ret.v[0] = conjugate(in.v[0]);
ret.v[1] = conjugate(in.v[1]);
return ret;
}
template <class S, class V, IfNotInteger<S> = 0>
accelerator_inline Grid_simd2<S, V> adj(const Grid_simd2<S, V> &in) {
return conjugate(in);
}
///////////////////////
// timesMinusI
///////////////////////
template <class S, class V>
accelerator_inline void timesMinusI(Grid_simd2<S, V> &ret, const Grid_simd2<S, V> &in) {
timesMinusI(ret.v[0],in.v[0]);
timesMinusI(ret.v[1],in.v[1]);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> timesMinusI(const Grid_simd2<S, V> &in) {
Grid_simd2<S, V> ret;
timesMinusI(ret.v[0],in.v[0]);
timesMinusI(ret.v[1],in.v[1]);
return ret;
}
///////////////////////
// timesI
///////////////////////
template <class S, class V>
accelerator_inline void timesI(Grid_simd2<S, V> &ret, const Grid_simd2<S, V> &in) {
timesI(ret.v[0],in.v[0]);
timesI(ret.v[1],in.v[1]);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> timesI(const Grid_simd2<S, V> &in) {
Grid_simd2<S, V> ret;
timesI(ret.v[0],in.v[0]);
timesI(ret.v[1],in.v[1]);
return ret;
}
/////////////////////
// Inner, outer
/////////////////////
template <class S, class V>
accelerator_inline Grid_simd2<S, V> innerProduct(const Grid_simd2<S, V> &l,const Grid_simd2<S, V> &r) {
return conjugate(l) * r;
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> outerProduct(const Grid_simd2<S, V> &l,const Grid_simd2<S, V> &r) {
return l * conjugate(r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> trace(const Grid_simd2<S, V> &arg) {
return arg;
}
////////////////////////////////////////////////////////////
// copy/splat complex real parts into real;
// insert real into complex and zero imag;
////////////////////////////////////////////////////////////
accelerator_inline void precisionChange(vComplexD2 &out,const vComplexF &in){
Optimization::PrecisionChange::StoD(in.v,out.v[0].v,out.v[1].v);
}
accelerator_inline void precisionChange(vComplexF &out,const vComplexD2 &in){
out.v=Optimization::PrecisionChange::DtoS(in.v[0].v,in.v[1].v);
}
accelerator_inline void precisionChange(vComplexD2 *out,const vComplexF *in,int nvec){
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
}
accelerator_inline void precisionChange(vComplexF *out,const vComplexD2 *in,int nvec){
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
}
accelerator_inline void precisionChange(vRealD2 &out,const vRealF &in){
Optimization::PrecisionChange::StoD(in.v,out.v[0].v,out.v[1].v);
}
accelerator_inline void precisionChange(vRealF &out,const vRealD2 &in){
out.v=Optimization::PrecisionChange::DtoS(in.v[0].v,in.v[1].v);
}
accelerator_inline void precisionChange(vRealD2 *out,const vRealF *in,int nvec){
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
}
accelerator_inline void precisionChange(vRealF *out,const vRealD2 *in,int nvec){
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
}
NAMESPACE_END(Grid);

View File

@ -244,7 +244,7 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
// Complex // Complex
template <typename T> template <typename T>
accelerator_inline vec<T> operator()(vec<T> a, vec<T> b){ accelerator_inline vec<T> operator()(vec<T> a){
vec<T> out; vec<T> out;
VECTOR_FOR(i, W<T>::c, 1) VECTOR_FOR(i, W<T>::c, 1)
@ -265,7 +265,7 @@ struct TimesMinusI{
struct TimesI{ struct TimesI{
// Complex // Complex
template <typename T> template <typename T>
accelerator_inline vec<T> operator()(vec<T> a, vec<T> b){ accelerator_inline vec<T> operator()(vec<T> a){
vec<T> out; vec<T> out;
VECTOR_FOR(i, W<T>::c, 1) VECTOR_FOR(i, W<T>::c, 1)

878
Grid/simd/Grid_gpu_rrii.h Normal file
View File

@ -0,0 +1,878 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_gpu.h
Copyright (C) 2021
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//----------------------------------------------------------------------
/*! @file Grid_gpu_rrii.h*/
//----------------------------------------------------------------------
//////////////////////////////
// fp16
//////////////////////////////
#ifdef GRID_CUDA
#include <cuda_fp16.h>
#endif
#ifdef GRID_HIP
#include <hip/hip_fp16.h>
#endif
#if !defined(GRID_HIP) && !defined(GRID_CUDA)
namespace Grid {
typedef struct { uint16_t x;} half;
}
#endif
namespace Grid {
accelerator_inline float half2float(half h)
{
float f;
#if defined(GRID_CUDA) || defined(GRID_HIP)
f = __half2float(h);
#else
Grid_half hh;
hh.x = h.x;
f= sfw_half_to_float(hh);
#endif
return f;
}
accelerator_inline half float2half(float f)
{
half h;
#if defined(GRID_CUDA) || defined(GRID_HIP)
h = __float2half(f);
#else
Grid_half hh = sfw_float_to_half(f);
h.x = hh.x;
#endif
return h;
}
}
#define COALESCE_GRANULARITY ( GEN_SIMD_WIDTH )
namespace Grid {
////////////////////////////////////////////////////////////////////////
// Real vector
////////////////////////////////////////////////////////////////////////
template<int _N, class _datum>
struct GpuVector {
_datum rrrr[_N];
static const int N = _N;
typedef _datum datum;
};
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator*(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]*r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator-(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]-r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator+(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]+r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuVector<N,datum> operator/(const GpuVector<N,datum> l,const GpuVector<N,datum> r) {
GpuVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]/r.rrrr[i];
}
return ret;
}
////////////////////////////////////////////////////////////////////////
// Complex vector
////////////////////////////////////////////////////////////////////////
template<int _N, class _datum>
struct GpuComplexVector {
_datum rrrr[_N];
_datum iiii[_N];
static const int N = _N;
typedef _datum datum;
};
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator*(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]*r.rrrr[i] - l.iiii[i]*r.iiii[i];
ret.iiii[i] = l.rrrr[i]*r.iiii[i] + l.iiii[i]*r.rrrr[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator-(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]-r.rrrr[i];
ret.iiii[i] = l.iiii[i]-r.iiii[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator+(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]+r.rrrr[i];
ret.iiii[i] = l.iiii[i]+r.iiii[i];
}
return ret;
}
template<int N,class datum>
inline accelerator GpuComplexVector<N,datum> operator/(const GpuComplexVector<N,datum> l,const GpuComplexVector<N,datum> r) {
GpuComplexVector<N,datum> ret;
for(int i=0;i<N;i++) {
ret.rrrr[i] = l.rrrr[i]/r.rrrr[i];
ret.iiii[i] = l.iiii[i]/r.iiii[i];
}
return ret;
}
////////////////////////////////
// SIMD counts
////////////////////////////////
constexpr int NSIMD_RealH = COALESCE_GRANULARITY / sizeof(half);
constexpr int NSIMD_ComplexH = COALESCE_GRANULARITY / sizeof(half);
constexpr int NSIMD_RealF = COALESCE_GRANULARITY / sizeof(float);
constexpr int NSIMD_ComplexF = COALESCE_GRANULARITY / sizeof(float);
constexpr int NSIMD_RealD = COALESCE_GRANULARITY / sizeof(double);
constexpr int NSIMD_ComplexD = COALESCE_GRANULARITY / sizeof(double);
constexpr int NSIMD_Integer = COALESCE_GRANULARITY / sizeof(Integer);
typedef GpuVector<NSIMD_RealH , half > GpuVectorRH;
typedef GpuComplexVector<NSIMD_ComplexH, half > GpuVectorCH;
typedef GpuVector<NSIMD_RealF, float > GpuVectorRF;
typedef GpuComplexVector<NSIMD_ComplexF, float> GpuVectorCF;
typedef GpuVector<NSIMD_RealD, double > GpuVectorRD;
typedef GpuComplexVector<NSIMD_ComplexD,double> GpuVectorCD;
typedef GpuVector<NSIMD_Integer, Integer > GpuVectorI;
namespace Optimization {
struct Vsplat{
//Complex float
accelerator_inline GpuVectorCF operator()(float a, float b){
GpuVectorCF ret;
for(int i=0;i<GpuVectorCF::N;i++){
ret.rrrr[i] = typename GpuVectorCF::datum(a);
ret.iiii[i] = typename GpuVectorCF::datum(b);
}
return ret;
}
// Real float
accelerator_inline GpuVectorRF operator()(float a){
GpuVectorRF ret;
for(int i=0;i<GpuVectorRF::N;i++){
ret.rrrr[i] = typename GpuVectorRF::datum(a);
}
return ret;
}
//Complex double
accelerator_inline GpuVectorCD operator()(double a, double b){
GpuVectorCD ret;
for(int i=0;i<GpuVectorCD::N;i++){
ret.rrrr[i] = typename GpuVectorCD::datum(a);
ret.iiii[i] = typename GpuVectorCD::datum(b);
}
return ret;
}
//Real double
accelerator_inline GpuVectorRD operator()(double a){
GpuVectorRD ret;
for(int i=0;i<GpuVectorRD::N;i++){
ret.rrrr[i] = typename GpuVectorRD::datum(a);
}
return ret;
}
//Integer
accelerator_inline GpuVectorI operator()(Integer a){
GpuVectorI ret;
for(int i=0;i<GpuVectorI::N;i++){
ret.rrrr[i] = typename GpuVectorI::datum(a);
}
return ret;
}
};
struct Vstore{
template<int N,class datum,class P>
accelerator_inline void operator()(GpuVector<N,datum> a, P* Fp){
GpuVector<N,datum> *vF = (GpuVector<N,datum> *)Fp;
*vF = a;
}
template<int N,class datum,class P>
accelerator_inline void operator()(GpuComplexVector<N,datum> a, P* Fp){
GpuComplexVector<N,datum> *vF = (GpuComplexVector<N,datum> *)Fp;
*vF = a;
}
};
struct Vstream{
template<int N,class datum, class P>
accelerator_inline void operator()(P* F,GpuVector<N,datum> a){
GpuVector<N,datum> *vF = (GpuVector<N,datum> *)F;
*vF = a;
}
template<int N,class datum, class P>
accelerator_inline void operator()(P* F,GpuComplexVector<N,datum> a){
GpuComplexVector<N,datum> *vF = (GpuComplexVector<N,datum> *)F;
*vF = a;
}
};
struct Vset{
// Complex float
accelerator_inline GpuVectorCF operator()(Grid::ComplexF *a){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i].real());
ret.iiii[i] = vec::datum(a[i].imag());
}
return ret;
}
// Complex double
accelerator_inline GpuVectorCD operator()(Grid::ComplexD *a){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i].real());
ret.iiii[i] = vec::datum(a[i].imag());
}
return ret;
}
// Real float
accelerator_inline GpuVectorRF operator()(float *a){
typedef GpuVectorRF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i]);
}
return ret;
}
// Real double
accelerator_inline GpuVectorRD operator()(double *a){
typedef GpuVectorRD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i]);
}
return ret;
}
// Integer
accelerator_inline GpuVectorI operator()(Integer *a){
typedef GpuVectorI vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = vec::datum(a[i]);
}
return ret;
}
};
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
accelerator_inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
//Real float
accelerator_inline GpuVectorRF operator()(GpuVectorRF a,GpuVectorRF b){
return a+b;
}
accelerator_inline GpuVectorRD operator()(GpuVectorRD a,GpuVectorRD b){
return a+b;
}
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
return a+b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
return a+b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a,GpuVectorI b){
return a+b;
}
};
struct Sub{
accelerator_inline GpuVectorRF operator()(GpuVectorRF a,GpuVectorRF b){
return a-b;
}
accelerator_inline GpuVectorRD operator()(GpuVectorRD a,GpuVectorRD b){
return a-b;
}
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
return a-b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
return a-b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a,GpuVectorI b){
return a-b;
}
};
struct MultRealPart{
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i];
}
return ret;
}
};
struct MaddRealPart{
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b,GpuVectorCF c){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i]+c.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i]+c.iiii[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b,GpuVectorCD c){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = a.rrrr[i]*b.rrrr[i]+c.rrrr[i];
ret.iiii[i] = a.rrrr[i]*b.iiii[i]+c.iiii[i];
}
return ret;
}
};
struct MultComplex{
accelerator_inline GpuVectorCF operator()(GpuVectorCF a,GpuVectorCF b){
return a*b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a,GpuVectorCD b){
return a*b;
}
};
struct Mult{
accelerator_inline void mac(GpuVectorRF &a, GpuVectorRF b, GpuVectorRF c){
a= a+b*c;
}
accelerator_inline void mac(GpuVectorRD &a, GpuVectorRD b, GpuVectorRD c){
a= a+b*c;
}
// Real float
accelerator_inline GpuVectorRF operator()(GpuVectorRF a, GpuVectorRF b){
return a*b;
}
// Real double
accelerator_inline GpuVectorRD operator()(GpuVectorRD a, GpuVectorRD b){
return a*b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a, GpuVectorI b){
return a*b;
}
};
struct Div{
// Real float
accelerator_inline GpuVectorRF operator()(GpuVectorRF a, GpuVectorRF b){
return a/b;
}
accelerator_inline GpuVectorRD operator()(GpuVectorRD a, GpuVectorRD b){
return a/b;
}
accelerator_inline GpuVectorI operator()(GpuVectorI a, GpuVectorI b){
return a/b;
}
// Danger -- element wise divide fro complex, not complex div.
// See Grid_vector_types.h lines around 735, applied after "toReal"
accelerator_inline GpuVectorCF operator()(GpuVectorCF a, GpuVectorCF b){
return a/b;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD a, GpuVectorCD b){
return a/b;
}
};
struct Conj{
// Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.rrrr[i];
ret.iiii[i] =-in.iiii[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.rrrr[i];
ret.iiii[i] =-in.iiii[i];
}
return ret;
}
};
struct TimesMinusI{
//Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.iiii[i];
ret.iiii[i] =-in.rrrr[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] = in.iiii[i];
ret.iiii[i] =-in.rrrr[i];
}
return ret;
}
};
struct TimesI{
//Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] =-in.iiii[i];
ret.iiii[i] = in.rrrr[i];
}
return ret;
}
accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec;
vec ret;
for(int i=0;i<vec::N;i++){
ret.rrrr[i] =-in.iiii[i];
ret.iiii[i] = in.rrrr[i];
}
return ret;
}
};
struct Permute{
template <int n,int _N, class _datum >
static accelerator_inline GpuVector<_N,_datum> PermuteN(GpuVector<_N,_datum> &in) {
typedef GpuVector<_N,_datum> vec;
vec out;
unsigned int _mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
out.rrrr[i] = in.rrrr[i^_mask];
}
return out;
}
template <int n,int _N, class _datum >
static accelerator_inline GpuComplexVector<_N,_datum> PermuteN(GpuComplexVector<_N,_datum> &in) {
typedef GpuComplexVector<_N,_datum> vec;
vec out;
unsigned int _mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
out.rrrr[i] = in.rrrr[i^_mask];
out.iiii[i] = in.iiii[i^_mask];
}
return out;
}
template <typename vec> static accelerator_inline vec Permute0(vec in) { return PermuteN<0,vec::N,typename vec::datum>(in); }
template <typename vec> static accelerator_inline vec Permute1(vec in) { return PermuteN<1,vec::N,typename vec::datum>(in); }
template <typename vec> static accelerator_inline vec Permute2(vec in) { return PermuteN<2,vec::N,typename vec::datum>(in); }
template <typename vec> static accelerator_inline vec Permute3(vec in) { return PermuteN<3,vec::N,typename vec::datum>(in); }
};
struct PrecisionChange {
////////////////////////////////////////////////////////////////////////////////////
// Single / Half
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCH StoH (GpuVectorCF a,GpuVectorCF b) {
int N = GpuVectorCF::N;
GpuVectorCH h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = float2half(a.rrrr[i]);
h.iiii[i ] = float2half(a.iiii[i]);
h.rrrr[i+N] = float2half(b.rrrr[i]);
h.iiii[i+N] = float2half(b.iiii[i]);
}
return h;
}
static accelerator_inline void HtoS (GpuVectorCH h,GpuVectorCF &sa,GpuVectorCF &sb) {
int N = GpuVectorCF::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = half2float(h.rrrr[i ]);
sa.iiii[i] = half2float(h.iiii[i ]);
sb.rrrr[i] = half2float(h.rrrr[i+N]);
sb.iiii[i] = half2float(h.iiii[i+N]);
}
}
static accelerator_inline GpuVectorRH StoH (GpuVectorRF a,GpuVectorRF b) {
int N = GpuVectorRF::N;
GpuVectorRH h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = float2half(a.rrrr[i]);
h.rrrr[i+N] = float2half(b.rrrr[i]);
}
return h;
}
static accelerator_inline void HtoS (GpuVectorRH h,GpuVectorRF &sa,GpuVectorRF &sb) {
int N = GpuVectorRF::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = half2float(h.rrrr[i ]);
sb.rrrr[i] = half2float(h.rrrr[i+N]);
}
}
////////////////////////////////////////////////////////////////////////////////////
// Double Single
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCF DtoS (GpuVectorCD a,GpuVectorCD b) {
int N = GpuVectorCD::N;
GpuVectorCF h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = a.rrrr[i];
h.iiii[i ] = a.iiii[i];
h.rrrr[i+N] = b.rrrr[i];
h.iiii[i+N] = b.iiii[i];
}
return h;
}
static accelerator_inline void StoD (GpuVectorCF h,GpuVectorCD &sa,GpuVectorCD &sb) {
int N = GpuVectorCD::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = h.rrrr[i ];
sa.iiii[i] = h.iiii[i ];
sb.rrrr[i] = h.rrrr[i+N];
sb.iiii[i] = h.iiii[i+N];
}
}
static accelerator_inline GpuVectorRF DtoS (GpuVectorRD a,GpuVectorRD b) {
int N = GpuVectorRD::N;
GpuVectorRF h;
for(int i=0;i<N;i++) {
h.rrrr[i ] = a.rrrr[i];
h.rrrr[i+N] = b.rrrr[i];
}
return h;
}
static accelerator_inline void StoD (GpuVectorRF h,GpuVectorRD &sa,GpuVectorRD &sb) {
int N = GpuVectorRD::N;
for(int i=0;i<N;i++) {
sa.rrrr[i] = h.rrrr[i ];
sb.rrrr[i] = h.rrrr[i+N];
}
}
////////////////////////////////////////////////////////////////////////////////////
// Double Half
////////////////////////////////////////////////////////////////////////////////////
static accelerator_inline GpuVectorCH DtoH (GpuVectorCD a,GpuVectorCD b,GpuVectorCD c,GpuVectorCD d) {
GpuVectorCF sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static accelerator_inline void HtoD (GpuVectorCH h,GpuVectorCD &a,GpuVectorCD &b,GpuVectorCD &c,GpuVectorCD &d) {
GpuVectorCF sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
static accelerator_inline GpuVectorRH DtoH (GpuVectorRD a,GpuVectorRD b,GpuVectorRD c,GpuVectorRD d) {
GpuVectorRF sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static accelerator_inline void HtoD (GpuVectorRH h,GpuVectorRD &a,GpuVectorRD &b,GpuVectorRD &c,GpuVectorRD &d) {
GpuVectorRF sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
struct Exchange{
template <int n,int _N, class _datum >
static accelerator_inline void ExchangeN(GpuVector<_N,_datum> &out1,
GpuVector<_N,_datum> &out2,
GpuVector<_N,_datum> &in1,
GpuVector<_N,_datum> &in2 )
{
typedef GpuVector<_N,_datum> vec;
unsigned int mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) { out1.rrrr[i]=in1.rrrr[j1];}
else { out1.rrrr[i]=in2.rrrr[j1];}
int j2 = i|mask;
if ( (i&mask) == 0 ) { out2.rrrr[i]=in1.rrrr[j2];}
else { out2.rrrr[i]=in2.rrrr[j2];}
}
}
template <int n,int _N, class _datum >
static accelerator_inline void ExchangeN(GpuComplexVector<_N,_datum> &out1,
GpuComplexVector<_N,_datum> &out2,
GpuComplexVector<_N,_datum> &in1,
GpuComplexVector<_N,_datum> &in2 )
{
typedef GpuComplexVector<_N,_datum> vec;
unsigned int mask = vec::N >> (n + 1);
for(int i=0;i<vec::N;i++) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) {
out1.rrrr[i]=in1.rrrr[j1];
out1.iiii[i]=in1.iiii[j1];
}
else {
out1.rrrr[i]=in2.rrrr[j1];
out1.iiii[i]=in2.iiii[j1];
}
int j2 = i|mask;
if ( (i&mask) == 0 ) {
out2.rrrr[i]=in1.rrrr[j2];
out2.iiii[i]=in1.iiii[j2];
}
else {
out2.rrrr[i]=in2.rrrr[j2];
out2.iiii[i]=in2.iiii[j2];
}
}
}
template <typename vec>
static accelerator_inline void Exchange0(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<0>(out1,out2,in1,in2);
};
template <typename vec>
static accelerator_inline void Exchange1(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<1>(out1,out2,in1,in2);
};
template <typename vec>
static accelerator_inline void Exchange2(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<2>(out1,out2,in1,in2);
};
template <typename vec>
static accelerator_inline void Exchange3(vec &out1,vec &out2,vec &in1,vec &in2){
ExchangeN<3>(out1,out2,in1,in2);
};
};
struct Rotate{
template <int n, typename vec> static accelerator_inline vec tRotate(vec in){
return rotate(in, n);
}
template <int _N, class _datum >
static accelerator_inline GpuComplexVector<_N,_datum> rotate_template(GpuComplexVector<_N,_datum> &in, int n)
{
typedef GpuComplexVector<_N,_datum> vec;
vec out;
for(int i=0;i<vec::N;i++){
out.rrrr[i] = in.rrrr[(i + n)%vec::N];
out.iiii[i] = in.iiii[(i + n)%vec::N];
}
return out;
}
template <int _N, class _datum >
static accelerator_inline GpuVector<_N,_datum> rotate_template(GpuVector<_N,_datum> &in, int n)
{
typedef GpuVector<_N,_datum> vec;
vec out;
for(int i=0;i<vec::N;i++){
out.rrrr[i] = in.rrrr[(i + n)%vec::N];
}
return out;
}
typedef GpuVectorRH SIMD_Htype; // Single precision type
typedef GpuVectorRF SIMD_Ftype; // Single precision type
typedef GpuVectorRD SIMD_Dtype; // Double precision type
typedef GpuVectorI SIMD_Itype; // Integer type
typedef GpuVectorCH SIMD_CHtype; // Single precision type
typedef GpuVectorCF SIMD_CFtype; // Single precision type
typedef GpuVectorCD SIMD_CDtype; // Double precision type
static accelerator_inline GpuVectorRH rotate(GpuVectorRH in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorRF rotate(GpuVectorRF in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorRD rotate(GpuVectorRD in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorI rotate(GpuVectorI in, int n){ return rotate_template(in,n);}
static accelerator_inline GpuVectorCH rotate(GpuVectorCH in, int n){ return rotate_template(in,n/2);} // Measure in complex not float
static accelerator_inline GpuVectorCF rotate(GpuVectorCF in, int n){ return rotate_template(in,n/2);}
static accelerator_inline GpuVectorCD rotate(GpuVectorCD in, int n){ return rotate_template(in,n/2);}
};
//////////////////////////////////////////////
// Some Template specialization
//Complex float Reduce
template<>
accelerator_inline Grid::ComplexF
Reduce<Grid::ComplexF, GpuVectorCF>::operator()(GpuVectorCF in)
{
Grid::ComplexF greduce(in.rrrr[0],in.iiii[0]);
for(int i=1;i<GpuVectorCF::N;i++) {
greduce = greduce+Grid::ComplexF(in.rrrr[i],in.iiii[i]);
}
return greduce;
}
template<>
accelerator_inline Grid::ComplexD
Reduce<Grid::ComplexD, GpuVectorCD>::operator()(GpuVectorCD in)
{
Grid::ComplexD greduce(in.rrrr[0],in.iiii[0]);
for(int i=1;i<GpuVectorCD::N;i++) {
greduce = greduce+ Grid::ComplexD(in.rrrr[i],in.iiii[i]);
}
return greduce;
}
// Real
template<>
accelerator_inline Grid::RealF
Reduce<RealF, GpuVectorRF>::operator()(GpuVectorRF in)
{
RealF ret = in.rrrr[0];
for(int i=1;i<GpuVectorRF::N;i++) {
ret = ret+in.rrrr[i];
}
return ret;
}
template<>
accelerator_inline Grid::RealD
Reduce<RealD, GpuVectorRD>::operator()(GpuVectorRD in)
{
RealD ret = in.rrrr[0];
for(int i=1;i<GpuVectorRD::N;i++) {
ret = ret+in.rrrr[i];
}
return ret;
}
template<>
accelerator_inline Integer
Reduce<Integer, GpuVectorI>::operator()(GpuVectorI in)
{
Integer ret = in.rrrr[0];
for(int i=1;i<GpuVectorI::N;i++) {
ret = ret+in.rrrr[i];
}
return ret;
}
}// End optimizatoin
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
//////////////////////////////////////////////////////////////////////////////////////
typedef GpuVectorRH SIMD_Htype; // Single precision type
typedef GpuVectorRF SIMD_Ftype; // Single precision type
typedef GpuVectorRD SIMD_Dtype; // Double precision type
typedef GpuVectorI SIMD_Itype; // Integer type
typedef GpuVectorCH SIMD_CHtype; // Single precision type
typedef GpuVectorCF SIMD_CFtype; // Single precision type
typedef GpuVectorCD SIMD_CDtype; // Double precision type
// prefetch utilities
accelerator_inline void v_prefetch0(int size, const char *ptr){};
accelerator_inline void prefetch_HINT_T0(const char *ptr){};
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}

View File

@ -38,7 +38,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_HIP #ifdef GRID_HIP
#include <hip/hip_fp16.h> #include <hip/hip_fp16.h>
#endif #endif
#ifdef GRID_SYCL #if !defined(GRID_CUDA) && !defined(GRID_HIP)
namespace Grid { namespace Grid {
typedef struct { uint16_t x;} half; typedef struct { uint16_t x;} half;
typedef struct { half x; half y;} half2; typedef struct { half x; half y;} half2;
@ -486,7 +486,7 @@ namespace Optimization {
struct TimesMinusI{ struct TimesMinusI{
//Complex single //Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in,GpuVectorCF dummy){ accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec; typedef GpuVectorCF vec;
vec ret; vec ret;
for(int i=0;i<vec::N;i++){ for(int i=0;i<vec::N;i++){
@ -495,7 +495,7 @@ namespace Optimization {
} }
return ret; return ret;
} }
accelerator_inline GpuVectorCD operator()(GpuVectorCD in,GpuVectorCD dummy){ accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec; typedef GpuVectorCD vec;
vec ret; vec ret;
for(int i=0;i<vec::N;i++){ for(int i=0;i<vec::N;i++){
@ -508,7 +508,7 @@ namespace Optimization {
struct TimesI{ struct TimesI{
//Complex single //Complex single
accelerator_inline GpuVectorCF operator()(GpuVectorCF in,GpuVectorCF dummy){ accelerator_inline GpuVectorCF operator()(GpuVectorCF in){
typedef GpuVectorCF vec; typedef GpuVectorCF vec;
vec ret; vec ret;
for(int i=0;i<vec::N;i++){ for(int i=0;i<vec::N;i++){
@ -517,7 +517,7 @@ namespace Optimization {
} }
return ret; return ret;
} }
accelerator_inline GpuVectorCD operator()(GpuVectorCD in,GpuVectorCD dummy){ accelerator_inline GpuVectorCD operator()(GpuVectorCD in){
typedef GpuVectorCD vec; typedef GpuVectorCD vec;
vec ret; vec ret;
for(int i=0;i<vec::N;i++){ for(int i=0;i<vec::N;i++){

View File

@ -356,7 +356,7 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
//Complex double //Complex double
inline vector4double operator()(vector4double v, vector4double ret){ inline vector4double operator()(vector4double v){
return vec_xxcpnmadd(v, (vector4double){1., 1., 1., 1.}, return vec_xxcpnmadd(v, (vector4double){1., 1., 1., 1.},
(vector4double){0., 0., 0., 0.}); (vector4double){0., 0., 0., 0.});
} }
@ -367,7 +367,7 @@ struct TimesMinusI{
struct TimesI{ struct TimesI{
//Complex double //Complex double
inline vector4double operator()(vector4double v, vector4double ret){ inline vector4double operator()(vector4double v){
return vec_xxcpnmadd(v, (vector4double){-1., -1., -1., -1.}, return vec_xxcpnmadd(v, (vector4double){-1., -1., -1., -1.},
(vector4double){0., 0., 0., 0.}); (vector4double){0., 0., 0., 0.});
} }

View File

@ -273,27 +273,25 @@ struct Conj{
struct TimesMinusI{ struct TimesMinusI{
//Complex single //Complex single
inline __m128 operator()(__m128 in, __m128 ret){ inline __m128 operator()(__m128 in){
__m128 tmp =_mm_addsub_ps(_mm_setzero_ps(),in); // r,-i __m128 tmp =_mm_addsub_ps(_mm_setzero_ps(),in); // r,-i
return _mm_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); return _mm_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1));
} }
//Complex double //Complex double
inline __m128d operator()(__m128d in, __m128d ret){ inline __m128d operator()(__m128d in){
__m128d tmp =_mm_addsub_pd(_mm_setzero_pd(),in); // r,-i __m128d tmp =_mm_addsub_pd(_mm_setzero_pd(),in); // r,-i
return _mm_shuffle_pd(tmp,tmp,0x1); return _mm_shuffle_pd(tmp,tmp,0x1);
} }
}; };
struct TimesI{ struct TimesI{
//Complex single //Complex single
inline __m128 operator()(__m128 in, __m128 ret){ inline __m128 operator()(__m128 in){
__m128 tmp =_mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); __m128 tmp =_mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
return _mm_addsub_ps(_mm_setzero_ps(),tmp); // r,-i return _mm_addsub_ps(_mm_setzero_ps(),tmp); // r,-i
} }
//Complex double //Complex double
inline __m128d operator()(__m128d in, __m128d ret){ inline __m128d operator()(__m128d in){
__m128d tmp = _mm_shuffle_pd(in,in,0x1); __m128d tmp = _mm_shuffle_pd(in,in,0x1);
return _mm_addsub_pd(_mm_setzero_pd(),tmp); // r,-i return _mm_addsub_pd(_mm_setzero_pd(),tmp); // r,-i
} }

View File

@ -110,11 +110,10 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
#ifdef GPU_VEC #ifdef GPU_VEC
#include "Grid_gpu_vec.h" #include "Grid_gpu_vec.h"
#endif #endif
/*
#ifdef GEN #ifdef GPU_RRII
#include "Grid_generic.h" #include "Grid_gpu_rrii.h"
#endif #endif
*/
#ifdef GEN #ifdef GEN
#if defined(A64FX) || defined(A64FXFIXEDSIZE) // breakout A64FX SVE ACLE here #if defined(A64FX) || defined(A64FXFIXEDSIZE) // breakout A64FX SVE ACLE here
@ -131,7 +130,6 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
#include "Grid_a64fx-fixedsize.h" #include "Grid_a64fx-fixedsize.h"
#endif #endif
#else #else
//#pragma message("building GEN") // generic
#include "Grid_generic.h" #include "Grid_generic.h"
#endif #endif
#endif #endif
@ -150,23 +148,6 @@ accelerator_inline Grid_half sfw_float_to_half(float ff) {
#endif #endif
#endif #endif
/*
#ifdef A64FXVLA
#pragma message("building A64FX VLA")
#if defined(ARMCLANGCOMPAT)
#pragma message("applying data types patch")
#endif
#include <arm_sve.h>
#include "Grid_a64fx-2.h"
#endif
#ifdef A64FXVLS
#pragma message("building A64FX VLS")
#include <arm_sve.h>
#include "Grid_a64fx-fixedsize.h"
#endif
*/
#ifdef SSE4 #ifdef SSE4
#include "Grid_sse4.h" #include "Grid_sse4.h"
#endif #endif
@ -270,11 +251,13 @@ public:
typedef Vector_type vector_type; typedef Vector_type vector_type;
typedef Scalar_type scalar_type; typedef Scalar_type scalar_type;
/*
typedef union conv_t_union { typedef union conv_t_union {
Vector_type v; Vector_type v;
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)]; Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
accelerator_inline conv_t_union(){}; accelerator_inline conv_t_union(){};
} conv_t; } conv_t;
*/
Vector_type v; Vector_type v;
@ -555,15 +538,13 @@ public:
template <class functor> template <class functor>
friend accelerator_inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) { friend accelerator_inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) {
Grid_simd ret; Grid_simd ret;
Grid_simd::conv_t conv;
Grid_simd::scalar_type s; Grid_simd::scalar_type s;
conv.v = v.v;
for (int i = 0; i < Nsimd(); i++) { for (int i = 0; i < Nsimd(); i++) {
s = conv.s[i]; s = v.getlane(i);
conv.s[i] = func(s); s = func(s);
ret.putlane(s,i);
} }
ret.v = conv.v;
return ret; return ret;
} }
template <class functor> template <class functor>
@ -571,18 +552,14 @@ public:
const Grid_simd &x, const Grid_simd &x,
const Grid_simd &y) { const Grid_simd &y) {
Grid_simd ret; Grid_simd ret;
Grid_simd::conv_t cx;
Grid_simd::conv_t cy;
Grid_simd::scalar_type sx,sy; Grid_simd::scalar_type sx,sy;
cx.v = x.v;
cy.v = y.v;
for (int i = 0; i < Nsimd(); i++) { for (int i = 0; i < Nsimd(); i++) {
sx = cx.s[i]; sx = x.getlane(i);
sy = cy.s[i]; sy = y.getlane(i);
cx.s[i] = func(sx,sy); sx = func(sx,sy);
ret.putlane(sx,i);
} }
ret.v = cx.v;
return ret; return ret;
} }
/////////////////////// ///////////////////////
@ -645,15 +622,36 @@ public:
/////////////////////////////// ///////////////////////////////
// Getting single lanes // Getting single lanes
/////////////////////////////// ///////////////////////////////
accelerator_inline Scalar_type getlane(int lane) { #ifdef GPU_RRII
template <class S = Scalar_type,IfComplex<S> = 0>
accelerator_inline Scalar_type getlane(int lane) const {
return Scalar_type(v.rrrr[lane],v.iiii[lane]);
}
template <class S = Scalar_type,IfComplex<S> = 0>
accelerator_inline void putlane(const Scalar_type &_S, int lane){
v.rrrr[lane] = real(_S);
v.iiii[lane] = imag(_S);
}
template <class S = Scalar_type,IfNotComplex<S> = 0>
accelerator_inline Scalar_type getlane(int lane) const {
return ((S*)&v)[lane];
}
template <class S = Scalar_type,IfNotComplex<S> = 0>
accelerator_inline void putlane(const S &_S, int lane){
((Scalar_type*)&v)[lane] = _S;
}
#else // Can pun to an array of complex
accelerator_inline Scalar_type getlane(int lane) const {
return ((Scalar_type*)&v)[lane]; return ((Scalar_type*)&v)[lane];
} }
accelerator_inline void putlane(const Scalar_type &S, int lane){ accelerator_inline void putlane(const Scalar_type &S, int lane){
((Scalar_type*)&v)[lane] = S; ((Scalar_type*)&v)[lane] = S;
} }
#endif
}; // end of Grid_simd class definition }; // end of Grid_simd class definition
/////////////////////////////// ///////////////////////////////
// Define available types // Define available types
/////////////////////////////// ///////////////////////////////
@ -663,7 +661,7 @@ typedef Grid_simd<double , SIMD_Dtype> vRealD;
typedef Grid_simd<Integer, SIMD_Itype> vInteger; typedef Grid_simd<Integer, SIMD_Itype> vInteger;
typedef Grid_simd<uint16_t,SIMD_Htype> vRealH; typedef Grid_simd<uint16_t,SIMD_Htype> vRealH;
#ifdef GPU_VEC #if defined(GPU_VEC) || defined(GPU_RRII)
typedef Grid_simd<complex<uint16_t>, SIMD_CHtype> vComplexH; typedef Grid_simd<complex<uint16_t>, SIMD_CHtype> vComplexH;
typedef Grid_simd<complex<float> , SIMD_CFtype> vComplexF; typedef Grid_simd<complex<float> , SIMD_CFtype> vComplexF;
typedef Grid_simd<complex<double> , SIMD_CDtype> vComplexD; typedef Grid_simd<complex<double> , SIMD_CDtype> vComplexD;
@ -763,6 +761,7 @@ accelerator_inline void vsplat(Grid_simd<S, V> &ret, NotEnableIf<is_complex<S>,
} }
////////////////////////// //////////////////////////
/////////////////////////////////////////////// ///////////////////////////////////////////////
// Initialise to 1,0,i for the correct types // Initialise to 1,0,i for the correct types
/////////////////////////////////////////////// ///////////////////////////////////////////////
@ -907,34 +906,6 @@ accelerator_inline Grid_simd<S, V> fxmac(Grid_simd<S, V> a, Grid_simd<S, V> b, G
// ---------------------------------------------- // ----------------------------------------------
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd;
simd ret;
simd den;
typename simd::conv_t conv;
ret = a * conjugate(b) ;
den = b * conjugate(b) ;
// duplicates real part
auto real_den = toReal(den);
simd zden;
memcpy((void *)&zden.v,(void *)&real_den.v,sizeof(zden));
ret.v=binary<V>(ret.v, zden.v, DivSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret;
};
/////////////////////// ///////////////////////
// Conjugate // Conjugate
/////////////////////// ///////////////////////
@ -959,30 +930,29 @@ accelerator_inline Grid_simd<S, V> adj(const Grid_simd<S, V> &in) {
/////////////////////// ///////////////////////
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
accelerator_inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) { accelerator_inline void timesMinusI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesMinusISIMD()); ret.v = unary<V>(in.v, TimesMinusISIMD());
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
timesMinusI(ret, in); ret.v=unary<V>(in.v, TimesMinusISIMD());
return ret; return ret;
} }
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesMinusI(const Grid_simd<S, V> &in) {
return in; return in;
} }
/////////////////////// ///////////////////////
// timesI // timesI
/////////////////////// ///////////////////////
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
accelerator_inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) { accelerator_inline void timesI(Grid_simd<S, V> &ret, const Grid_simd<S, V> &in) {
ret.v = binary<V>(in.v, ret.v, TimesISIMD()); ret.v = unary<V>(in.v, TimesISIMD());
} }
template <class S, class V, IfComplex<S> = 0> template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) { accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
Grid_simd<S, V> ret; Grid_simd<S, V> ret;
timesI(ret, in); ret.v= unary<V>(in.v, TimesISIMD());
return ret; return ret;
} }
template <class S, class V, IfNotComplex<S> = 0> template <class S, class V, IfNotComplex<S> = 0>
@ -990,6 +960,35 @@ accelerator_inline Grid_simd<S, V> timesI(const Grid_simd<S, V> &in) {
return in; return in;
} }
// Distinguish between complex types and others
template <class S, class V, IfComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
typedef Grid_simd<S, V> simd;
simd ret;
simd den;
ret = a * conjugate(b) ;
den = b * conjugate(b) ;
// duplicates real part
auto real_den = toReal(den);
simd zden;
memcpy((void *)&zden.v,(void *)&real_den.v,sizeof(zden));
ret.v=binary<V>(ret.v, zden.v, DivSIMD());
return ret;
};
// Real/Integer types
template <class S, class V, IfNotComplex<S> = 0>
accelerator_inline Grid_simd<S, V> operator/(Grid_simd<S, V> a, Grid_simd<S, V> b) {
Grid_simd<S, V> ret;
ret.v = binary<V>(a.v, b.v, DivSIMD());
return ret;
};
///////////////////// /////////////////////
// Inner, outer // Inner, outer
///////////////////// /////////////////////
@ -1021,12 +1020,12 @@ template <class Csimd> // must be a real arg
accelerator_inline typename toRealMapper<Csimd>::Realified toReal(const Csimd &in) { accelerator_inline typename toRealMapper<Csimd>::Realified toReal(const Csimd &in) {
typedef typename toRealMapper<Csimd>::Realified Rsimd; typedef typename toRealMapper<Csimd>::Realified Rsimd;
Rsimd ret; Rsimd ret;
typename Rsimd::conv_t conv; int j=0;
memcpy((void *)&conv.v,(void *)&in.v,sizeof(conv.v));
for (int i = 0; i < Rsimd::Nsimd(); i += 2) { for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
conv.s[i + 1] = conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc... auto s = real(in.getlane(j++));
ret.putlane(s,i);
ret.putlane(s,i+1);
} }
memcpy((void *)&ret.v,(void *)&conv.v,sizeof(ret.v));
return ret; return ret;
} }
@ -1039,23 +1038,24 @@ template <class Rsimd> // must be a real arg
accelerator_inline typename toComplexMapper<Rsimd>::Complexified toComplex(const Rsimd &in) { accelerator_inline typename toComplexMapper<Rsimd>::Complexified toComplex(const Rsimd &in) {
typedef typename toComplexMapper<Rsimd>::Complexified Csimd; typedef typename toComplexMapper<Rsimd>::Complexified Csimd;
typename Rsimd::conv_t conv; // address as real typedef typename Csimd::scalar_type scalar_type;
int j=0;
conv.v = in.v; Csimd ret;
for (int i = 0; i < Rsimd::Nsimd(); i += 2) { for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
assert(conv.s[i + 1] == conv.s[i]); auto rr = in.getlane(i);
auto ri = in.getlane(i+1);
assert(rr==ri);
// trap any cases where real was not duplicated // trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly // indicating the SIMD grids of real and imag assignment did not correctly
// match // match
conv.s[i + 1] = 0.0; // zero imaginary parts scalar_type s(rr,0.0);
ret.putlane(s,j++);
} }
Csimd ret;
memcpy((void *)&ret.v,(void *)&conv.v,sizeof(ret.v));
return ret; return ret;
} }
accelerator_inline void precisionChange(vRealF *out,vRealD *in,int nvec) accelerator_inline void precisionChange(vRealF *out,const vRealD *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -1063,7 +1063,7 @@ accelerator_inline void precisionChange(vRealF *out,vRealD *in,int nvec)
out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v); out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v);
} }
} }
accelerator_inline void precisionChange(vRealH *out,vRealD *in,int nvec) accelerator_inline void precisionChange(vRealH *out,const vRealD *in,int nvec)
{ {
assert((nvec&0x3)==0); assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){ for(int m=0;m*4<nvec;m++){
@ -1071,7 +1071,7 @@ accelerator_inline void precisionChange(vRealH *out,vRealD *in,int nvec)
out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v); out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v);
} }
} }
accelerator_inline void precisionChange(vRealH *out,vRealF *in,int nvec) accelerator_inline void precisionChange(vRealH *out,const vRealF *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -1079,7 +1079,7 @@ accelerator_inline void precisionChange(vRealH *out,vRealF *in,int nvec)
out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v); out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v);
} }
} }
accelerator_inline void precisionChange(vRealD *out,vRealF *in,int nvec) accelerator_inline void precisionChange(vRealD *out,const vRealF *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -1095,7 +1095,7 @@ accelerator_inline void precisionChange(vRealD *out,vRealF *in,int nvec)
// | ~~~~~~~^ // | ~~~~~~~^
} }
} }
accelerator_inline void precisionChange(vRealD *out,vRealH *in,int nvec) accelerator_inline void precisionChange(vRealD *out,const vRealH *in,int nvec)
{ {
assert((nvec&0x3)==0); assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){ for(int m=0;m*4<nvec;m++){
@ -1103,7 +1103,7 @@ accelerator_inline void precisionChange(vRealD *out,vRealH *in,int nvec)
Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v); Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v);
} }
} }
accelerator_inline void precisionChange(vRealF *out,vRealH *in,int nvec) accelerator_inline void precisionChange(vRealF *out,const vRealH *in,int nvec)
{ {
assert((nvec&0x1)==0); assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){ for(int m=0;m*2<nvec;m++){
@ -1111,12 +1111,12 @@ accelerator_inline void precisionChange(vRealF *out,vRealH *in,int nvec)
Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v); Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v);
} }
} }
accelerator_inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);} accelerator_inline void precisionChange(vComplexF *out,const vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);}
accelerator_inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);} accelerator_inline void precisionChange(vComplexH *out,const vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);}
accelerator_inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);} accelerator_inline void precisionChange(vComplexH *out,const vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);}
accelerator_inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);} accelerator_inline void precisionChange(vComplexD *out,const vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);}
accelerator_inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);} accelerator_inline void precisionChange(vComplexD *out,const vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
accelerator_inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);} accelerator_inline void precisionChange(vComplexF *out,const vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
// Check our vector types are of an appropriate size. // Check our vector types are of an appropriate size.
@ -1130,21 +1130,6 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
#endif #endif
#endif #endif
/////////////////////////////////////////
// Some traits to recognise the types
/////////////////////////////////////////
template <typename T>
struct is_simd : public std::false_type {};
template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vRealH> : public std::true_type {};
template <> struct is_simd<vComplexF> : public std::true_type {};
template <> struct is_simd<vComplexD> : public std::true_type {};
template <> struct is_simd<vComplexH> : public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -29,8 +29,7 @@ See the full license in the file "LICENSE" in the top level distribution
directory directory
*************************************************************************************/ *************************************************************************************/
/* END LEGAL */ /* END LEGAL */
#ifndef GRID_VECTOR_UNOPS #pragma once
#define GRID_VECTOR_UNOPS
#include <cmath> #include <cmath>
@ -112,6 +111,9 @@ template <class scalar>
struct ImagFunctor { struct ImagFunctor {
accelerator scalar operator()(const scalar &a) const { return imag(a); } accelerator scalar operator()(const scalar &a) const { return imag(a); }
}; };
/////////////
// Unary operations
/////////////
template <class S, class V> template <class S, class V>
accelerator_inline Grid_simd<S, V> real(const Grid_simd<S, V> &r) { accelerator_inline Grid_simd<S, V> real(const Grid_simd<S, V> &r) {
return SimdApply(RealFunctor<S>(), r); return SimdApply(RealFunctor<S>(), r);
@ -168,6 +170,65 @@ template <class S, class V>
accelerator_inline Grid_simd<S, V> div(const Grid_simd<S, V> &r, Integer y) { accelerator_inline Grid_simd<S, V> div(const Grid_simd<S, V> &r, Integer y) {
return SimdApply(DivIntFunctor<S>(y), r); return SimdApply(DivIntFunctor<S>(y), r);
} }
/// Double 2 cases
template <class S, class V>
accelerator_inline Grid_simd2<S, V> real(const Grid_simd2<S, V> &r) {
return SimdApply(RealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> imag(const Grid_simd2<S, V> &r) {
return SimdApply(ImagFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> sqrt(const Grid_simd2<S, V> &r) {
return SimdApply(SqrtRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> cos(const Grid_simd2<S, V> &r) {
return SimdApply(CosRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> sin(const Grid_simd2<S, V> &r) {
return SimdApply(SinRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> acos(const Grid_simd2<S, V> &r) {
return SimdApply(AcosRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> asin(const Grid_simd2<S, V> &r) {
return SimdApply(AsinRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> log(const Grid_simd2<S, V> &r) {
return SimdApply(LogRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> abs(const Grid_simd2<S, V> &r) {
return SimdApply(AbsRealFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> exp(const Grid_simd2<S, V> &r) {
return SimdApply(ExpFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> Not(const Grid_simd2<S, V> &r) {
return SimdApply(NotFunctor<S>(), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> pow(const Grid_simd2<S, V> &r, double y) {
return SimdApply(PowRealFunctor<S>(y), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> mod(const Grid_simd2<S, V> &r, Integer y) {
return SimdApply(ModIntFunctor<S>(y), r);
}
template <class S, class V>
accelerator_inline Grid_simd2<S, V> div(const Grid_simd2<S, V> &r, Integer y) {
return SimdApply(DivIntFunctor<S>(y), r);
}
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
// Allows us to assign into **conformable** real vectors from complex // Allows us to assign into **conformable** real vectors from complex
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
@ -212,4 +273,3 @@ accelerator_inline Grid_simd<S, V> operator||(const Grid_simd<S, V> &x,
return SimdApplyBinop(OrOrFunctor<S>(), x, y); return SimdApplyBinop(OrOrFunctor<S>(), x, y);
} }
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#endif

View File

@ -69,6 +69,7 @@ typedef RealF Real;
typedef thrust::complex<RealF> ComplexF; typedef thrust::complex<RealF> ComplexF;
typedef thrust::complex<RealD> ComplexD; typedef thrust::complex<RealD> ComplexD;
typedef thrust::complex<Real> Complex; typedef thrust::complex<Real> Complex;
typedef thrust::complex<uint16_t> ComplexH;
template<class T> using complex = thrust::complex<T>; template<class T> using complex = thrust::complex<T>;
accelerator_inline ComplexD pow(const ComplexD& r,RealD y){ return(thrust::pow(r,(double)y)); } accelerator_inline ComplexD pow(const ComplexD& r,RealD y){ return(thrust::pow(r,(double)y)); }
@ -77,6 +78,7 @@ accelerator_inline ComplexF pow(const ComplexF& r,RealF y){ return(thrust::pow(r
typedef std::complex<RealF> ComplexF; typedef std::complex<RealF> ComplexF;
typedef std::complex<RealD> ComplexD; typedef std::complex<RealD> ComplexD;
typedef std::complex<Real> Complex; typedef std::complex<Real> Complex;
typedef std::complex<uint16_t> ComplexH; // Hack
template<class T> using complex = std::complex<T>; template<class T> using complex = std::complex<T>;
accelerator_inline ComplexD pow(const ComplexD& r,RealD y){ return(std::pow(r,y)); } accelerator_inline ComplexD pow(const ComplexD& r,RealD y){ return(std::pow(r,y)); }
@ -224,18 +226,14 @@ accelerator_inline void Gpermute(VectorSIMD &y,const VectorSIMD &b,int perm);
NAMESPACE_END(Grid); NAMESPACE_END(Grid);
#include <Grid/simd/Grid_vector_types.h> #include <Grid/simd/Grid_vector_types.h>
#include <Grid/simd/Grid_doubled_vector.h>
#include <Grid/simd/Grid_vector_unops.h> #include <Grid/simd/Grid_vector_unops.h>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
// Default precision
#ifdef GRID_DEFAULT_PRECISION_DOUBLE // Default precision is wired to double
typedef vRealD vReal; typedef vRealD vReal;
typedef vComplexD vComplex; typedef vComplexD vComplex;
#else
typedef vRealF vReal;
typedef vComplexF vComplex;
#endif
inline std::ostream& operator<< (std::ostream& stream, const vComplexF &o){ inline std::ostream& operator<< (std::ostream& stream, const vComplexF &o){
int nn=vComplexF::Nsimd(); int nn=vComplexF::Nsimd();
@ -262,6 +260,13 @@ inline std::ostream& operator<< (std::ostream& stream, const vComplexD &o){
stream<<">"; stream<<">";
return stream; return stream;
} }
inline std::ostream& operator<< (std::ostream& stream, const vComplexD2 &o){
stream<<"<";
stream<<o.v[0];
stream<<o.v[1];
stream<<">";
return stream;
}
inline std::ostream& operator<< (std::ostream& stream, const vRealF &o){ inline std::ostream& operator<< (std::ostream& stream, const vRealF &o){
int nn=vRealF::Nsimd(); int nn=vRealF::Nsimd();

View File

@ -3,26 +3,108 @@
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
template<class vobj> class SimpleStencilParams{
accelerator_inline void exchangeSIMT(vobj &mp0,vobj &mp1,const vobj &vp0,const vobj &vp1,Integer type) public:
Coordinate dirichlet;
int partialDirichlet;
SimpleStencilParams() { partialDirichlet = 0; };
};
// Compressors will inherit buffer management policies
// Standard comms buffer management
class FaceGatherSimple
{ {
typedef decltype(coalescedRead(mp0)) sobj; public:
unsigned int Nsimd = vobj::Nsimd(); static int PartialCompressionFactor(GridBase *grid) {return 1;};
unsigned int mask = Nsimd >> (type + 1); // Decompress is after merge so ok
int lane = acceleratorSIMTlane(Nsimd); template<class vobj,class cobj,class compressor>
int j0 = lane &(~mask); // inner coor zero static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
int j1 = lane |(mask) ; // inner coor one const Lattice<vobj> &rhs,
const vobj *vpa = &vp0; cobj *buffer,
const vobj *vpb = &vp1; compressor &compress,
const vobj *vp = (lane&mask) ? (vpb) : (vpa); int off,int so,int partial)
auto sa = coalescedRead(vp[0],j0); {
auto sb = coalescedRead(vp[0],j1); int num=table.size();
coalescedWrite(mp0,sa); std::pair<int,int> *table_v = & table[0];
coalescedWrite(mp1,sb);
auto rhs_v = rhs.View(AcceleratorRead);
accelerator_forNB( i,num, vobj::Nsimd(), {
compress.Compress(buffer[off+table_v[i].first],rhs_v[so+table_v[i].second]);
});
rhs_v.ViewClose();
}
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type,int partial)
{
assert( (table.size()&0x1)==0);
int num=table.size()/2;
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead);
auto p0=&pointers[0][0];
auto p1=&pointers[1][0];
auto tp=&table[0];
auto rhs_p = &rhs_v[0];
accelerator_forNB(j, num, vobj::Nsimd(), {
compress.CompressExchange(p0[j],p1[j],
rhs_p[so+tp[2*j ].second],
rhs_p[so+tp[2*j+1].second],
type);
});
rhs_v.ViewClose();
} }
template<class vobj> template<class decompressor,class Decompression>
class SimpleCompressor { static void DecompressFace(decompressor decompress,Decompression &dd)
{
auto kp = dd.kernel_p;
auto mp = dd.mpi_p;
accelerator_forNB(o,dd.buffer_size,1,{
decompress.Decompress(kp[o],mp[o]);
});
}
template<class decompressor,class Merger>
static void MergeFace(decompressor decompress,Merger &mm)
{
auto mp = &mm.mpointer[0];
auto vp0= &mm.vpointers[0][0];
auto vp1= &mm.vpointers[1][0];
auto type= mm.type;
accelerator_forNB(o,mm.buffer_size/2,Merger::Nsimd,{
decompress.Exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
});
}
};
////////////////////////////////////
// Wilson compressor will add alternate policies for Dirichlet
// and possibly partial Dirichlet for DWF
////////////////////////////////////
/*
class FaceGatherDirichlet
{
// If it's dirichlet we don't assemble comms buffers
//
// Rely on zeroes in gauge field to drive the correct result
// NAN propgagation: field will locally wrap, so fermion should NOT contain NAN and just permute
template<class vobj,class cobj,class compressor>
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so){};
template<class vobj,class cobj,class compressor>
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
Vector<cobj *> pointers,int dimension,int plane,int cbmask,
compressor &compress,int type) {}
template<class decompressor,class Merger>
static void Merge(decompressor decompress,Merge &mm) { }
template<class decompressor,class Decompression>
static void Decompress(decompressor decompress,Decompression &dd) {}
};
*/
template<class vobj,class FaceGather>
class SimpleCompressorGather : public FaceGather {
public: public:
void Point(int) {}; void Point(int) {};
accelerator_inline int CommDatumSize(void) const { return sizeof(vobj); } accelerator_inline int CommDatumSize(void) const { return sizeof(vobj); }
@ -30,20 +112,19 @@ public:
accelerator_inline void Compress(vobj &buf,const vobj &in) const { accelerator_inline void Compress(vobj &buf,const vobj &in) const {
coalescedWrite(buf,coalescedRead(in)); coalescedWrite(buf,coalescedRead(in));
} }
accelerator_inline void Exchange(vobj *mp,vobj *vp0,vobj *vp1,Integer type,Integer o) const { accelerator_inline void Exchange(vobj &mp0,vobj &mp1,vobj &vp0,vobj &vp1,Integer type) const {
#ifdef GRID_SIMT #ifdef GRID_SIMT
exchangeSIMT(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type); exchangeSIMT(mp0,mp1,vp0,vp1,type);
#else #else
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type); exchange(mp0,mp1,vp0,vp1,type);
#endif #endif
} }
accelerator_inline void Decompress(vobj *out,vobj *in, int o) const { assert(0); } accelerator_inline void Decompress(vobj &out,vobj &in) const { };
accelerator_inline void CompressExchange(vobj *out0,vobj *out1,const vobj *in, accelerator_inline void CompressExchange(vobj &out0,vobj &out1,const vobj &in0,const vobj &in1,int type) const {
int j,int k, int m,int type) const {
#ifdef GRID_SIMT #ifdef GRID_SIMT
exchangeSIMT(out0[j],out1[j],in[k],in[m],type); exchangeSIMT(out0,out1,in0,in1,type);
#else #else
exchange(out0[j],out1[j],in[k],in[m],type); exchange(out0,out1,in0,in1,type);
#endif #endif
} }
// For cshift. Cshift should drop compressor coupling altogether // For cshift. Cshift should drop compressor coupling altogether
@ -52,11 +133,18 @@ public:
return arg; return arg;
} }
}; };
class SimpleStencilParams{
public: // Standard compressor never needs dirichlet.
Coordinate dirichlet; //
SimpleStencilParams() {}; // Get away with a local period wrap and rely on dirac operator to use a zero gauge link as it is faster
}; //
// Compressors that inherit Dirichlet and Non-dirichlet behaviour.
//
// Currently run-time behaviour through StencilParameters paramaters, p.dirichlet
// combined with the FaceGatherSimple behaviour
template <class vobj> using SimpleCompressor = SimpleCompressorGather<vobj,FaceGatherSimple>;
//template <class vobj> using SimpleCompressorDirichlet = SimpleCompressorGather<vobj,FaceGatherDirichlet>;
NAMESPACE_END(Grid); NAMESPACE_END(Grid);

View File

@ -29,6 +29,27 @@
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
uint64_t DslashFullCount;
uint64_t DslashPartialCount;
uint64_t DslashDirichletCount;
void DslashResetCounts(void)
{
DslashFullCount=0;
DslashPartialCount=0;
DslashDirichletCount=0;
}
void DslashGetCounts(uint64_t &dirichlet,uint64_t &partial,uint64_t &full)
{
dirichlet = DslashDirichletCount;
partial = DslashPartialCount;
full = DslashFullCount;
}
void DslashLogFull(void) { DslashFullCount++;}
void DslashLogPartial(void) { DslashPartialCount++;}
void DslashLogDirichlet(void){ DslashDirichletCount++;}
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask, void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
int off,std::vector<std::pair<int,int> > & table) int off,std::vector<std::pair<int,int> > & table)
{ {

View File

@ -52,6 +52,16 @@
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
// These can move into a params header and be given MacroMagic serialisation
struct DefaultImplParams {
Coordinate dirichlet; // Blocksize of dirichlet BCs
int partialDirichlet;
DefaultImplParams() {
dirichlet.resize(0);
partialDirichlet=0;
};
};
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split with compression // Gather for when there *is* need to SIMD split with compression
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
@ -59,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask, void Gather_plane_table_compute (GridBase *grid,int dimension,int plane,int cbmask,
int off,std::vector<std::pair<int,int> > & table); int off,std::vector<std::pair<int,int> > & table);
/*
template<class vobj,class cobj,class compressor> template<class vobj,class cobj,class compressor>
void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so) __attribute__((noinline)); void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,cobj *buffer,compressor &compress, int off,int so) __attribute__((noinline));
@ -80,11 +91,14 @@ void Gather_plane_simple_table (commVector<std::pair<int,int> >& table,const Lat
/////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////
template<class cobj,class vobj,class compressor> template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(const Lattice<vobj> &rhs, void Gather_plane_exchange_table(const Lattice<vobj> &rhs,
commVector<cobj *> pointers,int dimension,int plane,int cbmask,compressor &compress,int type) __attribute__((noinline)); commVector<cobj *> pointers,
int dimension,int plane,
int cbmask,compressor &compress,int type) __attribute__((noinline));
template<class cobj,class vobj,class compressor> template<class cobj,class vobj,class compressor>
void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs, void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,
Vector<cobj *> pointers,int dimension,int plane,int cbmask, const Lattice<vobj> &rhs,
std::vector<cobj *> &pointers,int dimension,int plane,int cbmask,
compressor &compress,int type) compressor &compress,int type)
{ {
assert( (table.size()&0x1)==0); assert( (table.size()&0x1)==0);
@ -92,17 +106,25 @@ void Gather_plane_exchange_table(commVector<std::pair<int,int> >& table,const La
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
auto rhs_v = rhs.View(AcceleratorRead); auto rhs_v = rhs.View(AcceleratorRead);
auto rhs_p = &rhs_v[0];
auto p0=&pointers[0][0]; auto p0=&pointers[0][0];
auto p1=&pointers[1][0]; auto p1=&pointers[1][0];
auto tp=&table[0]; auto tp=&table[0];
accelerator_forNB(j, num, vobj::Nsimd(), { accelerator_forNB(j, num, vobj::Nsimd(), {
compress.CompressExchange(p0,p1, &rhs_v[0], j, compress.CompressExchange(p0,p1, rhs_p, j,
so+tp[2*j ].second, so+tp[2*j ].second,
so+tp[2*j+1].second, so+tp[2*j+1].second,
type); type);
}); });
rhs_v.ViewClose(); rhs_v.ViewClose();
} }
*/
void DslashResetCounts(void);
void DslashGetCounts(uint64_t &dirichlet,uint64_t &partial,uint64_t &full);
void DslashLogFull(void);
void DslashLogPartial(void);
void DslashLogDirichlet(void);
struct StencilEntry { struct StencilEntry {
#ifdef GRID_CUDA #ifdef GRID_CUDA
@ -133,8 +155,18 @@ class CartesianStencilAccelerator {
int _osites; int _osites;
StencilVector _directions; StencilVector _directions;
StencilVector _distances; StencilVector _distances;
///////////////////////////////////////////////////
// If true, this is FULLY communicated per face
// Otherwise will either be full or partial dirichlet
///////////////////////////////////////////////////
StencilVector _comms_send; StencilVector _comms_send;
StencilVector _comms_recv; StencilVector _comms_recv; // this is FULLY communicated per face
///////////////////////////////////////////////////
// If true, this is partially communicated per face
///////////////////////////////////////////////////
StencilVector _comms_partial_send;
StencilVector _comms_partial_recv;
//
StencilVector _comm_buf_size; StencilVector _comm_buf_size;
StencilVector _permute_type; StencilVector _permute_type;
StencilVector same_node; StencilVector same_node;
@ -181,7 +213,7 @@ class CartesianStencilAccelerator {
template<class vobj,class cobj,class Parameters> template<class vobj,class cobj,class Parameters>
class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parameters> class CartesianStencilView : public CartesianStencilAccelerator<vobj,cobj,Parameters>
{ {
private: public:
int *closed; int *closed;
StencilEntry *cpu_ptr; StencilEntry *cpu_ptr;
ViewMode mode; ViewMode mode;
@ -216,7 +248,6 @@ class CartesianStencil : public CartesianStencilAccelerator<vobj,cobj,Parameters
public: public:
typedef typename cobj::vector_type vector_type; typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
typedef typename cobj::scalar_object scalar_object; typedef typename cobj::scalar_object scalar_object;
typedef const CartesianStencilView<vobj,cobj,Parameters> View_type; typedef const CartesianStencilView<vobj,cobj,Parameters> View_type;
typedef typename View_type::StencilVector StencilVector; typedef typename View_type::StencilVector StencilVector;
@ -230,19 +261,26 @@ public:
Integer from_rank; Integer from_rank;
Integer do_send; Integer do_send;
Integer do_recv; Integer do_recv;
Integer bytes; Integer xbytes;
Integer rbytes;
}; };
struct Merge { struct Merge {
static constexpr int Nsimd = vobj::Nsimd();
cobj * mpointer; cobj * mpointer;
Vector<scalar_object *> rpointers; // std::vector<scalar_object *> rpointers;
Vector<cobj *> vpointers; std::vector<cobj *> vpointers;
Integer buffer_size; Integer buffer_size;
Integer type; Integer type;
Integer partial; // partial dirichlet BCs
Coordinate dims;
}; };
struct Decompress { struct Decompress {
static constexpr int Nsimd = vobj::Nsimd();
cobj * kernel_p; cobj * kernel_p;
cobj * mpi_p; cobj * mpi_p;
Integer buffer_size; Integer buffer_size;
Integer partial; // partial dirichlet BCs
Coordinate dims;
}; };
struct CopyReceiveBuffer { struct CopyReceiveBuffer {
void * from_p; void * from_p;
@ -253,7 +291,8 @@ public:
Integer direction; Integer direction;
Integer OrthogPlane; Integer OrthogPlane;
Integer DestProc; Integer DestProc;
Integer bytes; Integer xbytes;
Integer rbytes;
Integer lane; Integer lane;
Integer cb; Integer cb;
void *recv_buf; void *recv_buf;
@ -261,9 +300,9 @@ public:
protected: protected:
GridBase * _grid; GridBase * _grid;
public: public:
GridBase *Grid(void) const { return _grid; } GridBase *Grid(void) const { return _grid; }
LebesgueOrder *lo;
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Needed to conveniently communicate gparity parameters into GPU memory // Needed to conveniently communicate gparity parameters into GPU memory
@ -278,6 +317,8 @@ public:
} }
int face_table_computed; int face_table_computed;
int partialDirichlet;
int fullDirichlet;
std::vector<commVector<std::pair<int,int> > > face_table ; std::vector<commVector<std::pair<int,int> > > face_table ;
Vector<int> surface_list; Vector<int> surface_list;
@ -307,6 +348,7 @@ public:
//////////////////////////////////////// ////////////////////////////////////////
// Stencil query // Stencil query
//////////////////////////////////////// ////////////////////////////////////////
#ifdef SHM_FAST_PATH
inline int SameNode(int point) { inline int SameNode(int point) {
int dimension = this->_directions[point]; int dimension = this->_directions[point];
@ -326,7 +368,40 @@ public:
if ( displacement == 0 ) return 1; if ( displacement == 0 ) return 1;
return 0; return 0;
} }
#else
// fancy calculation for shm code
inline int SameNode(int point) {
int dimension = this->_directions[point];
int displacement = this->_distances[point];
int pd = _grid->_processors[dimension];
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int recv_from_rank;
int xmit_to_rank;
if ( ! comm_dim ) return 1;
int nbr_proc;
if (displacement>0) nbr_proc = 1;
else nbr_proc = pd-1;
// FIXME this logic needs to be sorted for three link term
// assert( (displacement==1) || (displacement==-1));
// Present hack only works for >= 4^4 subvol per node
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
void *shm = (void *) _grid->ShmBufferTranslate(recv_from_rank,this->u_recv_buf_p);
if ( shm==NULL ) return 0;
return 1;
}
#endif
////////////////////////////////////////// //////////////////////////////////////////
// Comms packet queue for asynch thread // Comms packet queue for asynch thread
// Use OpenMP Tasks for cleaner ??? // Use OpenMP Tasks for cleaner ???
@ -366,13 +441,17 @@ public:
Packets[i].to_rank,Packets[i].do_send, Packets[i].to_rank,Packets[i].do_send,
Packets[i].recv_buf, Packets[i].recv_buf,
Packets[i].from_rank,Packets[i].do_recv, Packets[i].from_rank,Packets[i].do_recv,
Packets[i].bytes,i); Packets[i].xbytes,Packets[i].rbytes,i);
} }
_grid->StencilBarrier();// Synch shared memory on a single nodes
} }
void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs) void CommunicateComplete(std::vector<std::vector<CommsRequest_t> > &reqs)
{ {
_grid->StencilSendToRecvFromComplete(MpiReqs,0); _grid->StencilSendToRecvFromComplete(MpiReqs,0);
if ( this->partialDirichlet ) DslashLogPartial();
else if ( this->fullDirichlet ) DslashLogDirichlet();
else DslashLogFull();
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// Blocking send and receive. Either sequential or parallel. // Blocking send and receive. Either sequential or parallel.
@ -502,7 +581,9 @@ public:
} }
} }
Integer CheckForDuplicate(Integer direction, Integer OrthogPlane, Integer DestProc, void *recv_buf,Integer lane,Integer bytes,Integer cb) Integer CheckForDuplicate(Integer direction, Integer OrthogPlane, Integer DestProc, void *recv_buf,Integer lane,
Integer xbytes,Integer rbytes,
Integer cb)
{ {
CachedTransfer obj; CachedTransfer obj;
obj.direction = direction; obj.direction = direction;
@ -510,19 +591,22 @@ public:
obj.DestProc = DestProc; obj.DestProc = DestProc;
obj.recv_buf = recv_buf; obj.recv_buf = recv_buf;
obj.lane = lane; obj.lane = lane;
obj.bytes = bytes; obj.xbytes = xbytes;
obj.rbytes = rbytes;
obj.cb = cb; obj.cb = cb;
for(int i=0;i<CachedTransfers.size();i++){ for(int i=0;i<CachedTransfers.size();i++){
if ( (CachedTransfers[i].direction ==direction) if ( (CachedTransfers[i].direction ==direction)
&&(CachedTransfers[i].OrthogPlane==OrthogPlane) &&(CachedTransfers[i].OrthogPlane==OrthogPlane)
&&(CachedTransfers[i].DestProc ==DestProc) &&(CachedTransfers[i].DestProc ==DestProc)
&&(CachedTransfers[i].bytes ==bytes) &&(CachedTransfers[i].xbytes ==xbytes)
&&(CachedTransfers[i].rbytes ==rbytes)
&&(CachedTransfers[i].lane ==lane) &&(CachedTransfers[i].lane ==lane)
&&(CachedTransfers[i].cb ==cb) &&(CachedTransfers[i].cb ==cb)
){ ){
// FIXME worry about duplicate with partial compression
AddCopy(CachedTransfers[i].recv_buf,recv_buf,bytes); // Wont happen as DWF has no duplicates, but...
AddCopy(CachedTransfers[i].recv_buf,recv_buf,rbytes);
return 1; return 1;
} }
} }
@ -533,7 +617,7 @@ public:
void AddPacket(void *xmit,void * rcv, void AddPacket(void *xmit,void * rcv,
Integer to, Integer do_send, Integer to, Integer do_send,
Integer from, Integer do_recv, Integer from, Integer do_recv,
Integer bytes){ Integer xbytes,Integer rbytes){
Packet p; Packet p;
p.send_buf = xmit; p.send_buf = xmit;
p.recv_buf = rcv; p.recv_buf = rcv;
@ -541,18 +625,25 @@ public:
p.from_rank= from; p.from_rank= from;
p.do_send = do_send; p.do_send = do_send;
p.do_recv = do_recv; p.do_recv = do_recv;
p.bytes = bytes; p.xbytes = xbytes;
p.rbytes = rbytes;
// if (do_send) std::cout << GridLogMessage << " MPI packet to "<<to<< " of size "<<xbytes<<std::endl;
// if (do_recv) std::cout << GridLogMessage << " MPI packet from "<<from<< " of size "<<xbytes<<std::endl;
Packets.push_back(p); Packets.push_back(p);
} }
void AddDecompress(cobj *k_p,cobj *m_p,Integer buffer_size,std::vector<Decompress> &dv) { void AddDecompress(cobj *k_p,cobj *m_p,Integer buffer_size,std::vector<Decompress> &dv) {
Decompress d; Decompress d;
d.partial = this->partialDirichlet;
d.dims = _grid->_fdimensions;
d.kernel_p = k_p; d.kernel_p = k_p;
d.mpi_p = m_p; d.mpi_p = m_p;
d.buffer_size = buffer_size; d.buffer_size = buffer_size;
dv.push_back(d); dv.push_back(d);
} }
void AddMerge(cobj *merge_p,Vector<cobj *> &rpointers,Integer buffer_size,Integer type,std::vector<Merge> &mv) { void AddMerge(cobj *merge_p,std::vector<cobj *> &rpointers,Integer buffer_size,Integer type,std::vector<Merge> &mv) {
Merge m; Merge m;
m.partial = this->partialDirichlet;
m.dims = _grid->_fdimensions;
m.type = type; m.type = type;
m.mpointer = merge_p; m.mpointer = merge_p;
m.vpointers= rpointers; m.vpointers= rpointers;
@ -572,21 +663,10 @@ public:
void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd) void CommsMerge(decompressor decompress,std::vector<Merge> &mm,std::vector<Decompress> &dd)
{ {
for(int i=0;i<mm.size();i++){ for(int i=0;i<mm.size();i++){
auto mp = &mm[i].mpointer[0]; decompressor::MergeFace(decompress,mm[i]);
auto vp0= &mm[i].vpointers[0][0];
auto vp1= &mm[i].vpointers[1][0];
auto type= mm[i].type;
accelerator_forNB(o,mm[i].buffer_size/2,vobj::Nsimd(),{
decompress.Exchange(mp,vp0,vp1,type,o);
});
} }
for(int i=0;i<dd.size();i++){ for(int i=0;i<dd.size();i++){
auto kp = dd[i].kernel_p; decompressor::DecompressFace(decompress,dd[i]);
auto mp = dd[i].mpi_p;
accelerator_forNB(o,dd[i].buffer_size,1,{
decompress.Decompress(kp,mp,o);
});
} }
} }
//////////////////////////////////////// ////////////////////////////////////////
@ -645,6 +725,8 @@ public:
int block = dirichlet_block[dimension]; int block = dirichlet_block[dimension];
this->_comms_send[ii] = comm_dim; this->_comms_send[ii] = comm_dim;
this->_comms_recv[ii] = comm_dim; this->_comms_recv[ii] = comm_dim;
this->_comms_partial_send[ii] = 0;
this->_comms_partial_recv[ii] = 0;
if ( block && comm_dim ) { if ( block && comm_dim ) {
assert(abs(displacement) < ld ); assert(abs(displacement) < ld );
// Quiesce communication across block boundaries // Quiesce communication across block boundaries
@ -665,6 +747,10 @@ public:
if ( ( (ld*(pc+1) ) % block ) == 0 ) this->_comms_send[ii] = 0; if ( ( (ld*(pc+1) ) % block ) == 0 ) this->_comms_send[ii] = 0;
if ( ( (ld*pc ) % block ) == 0 ) this->_comms_recv[ii] = 0; if ( ( (ld*pc ) % block ) == 0 ) this->_comms_recv[ii] = 0;
} }
if ( partialDirichlet ) {
this->_comms_partial_send[ii] = !this->_comms_send[ii];
this->_comms_partial_recv[ii] = !this->_comms_recv[ii];
}
} }
} }
} }
@ -673,7 +759,7 @@ public:
int checkerboard, int checkerboard,
const std::vector<int> &directions, const std::vector<int> &directions,
const std::vector<int> &distances, const std::vector<int> &distances,
Parameters p) Parameters p=Parameters())
{ {
face_table_computed=0; face_table_computed=0;
_grid = grid; _grid = grid;
@ -692,8 +778,12 @@ public:
this->same_node.resize(npoints); this->same_node.resize(npoints);
if ( p.dirichlet.size() ==0 ) p.dirichlet.resize(grid->Nd(),0); if ( p.dirichlet.size() ==0 ) p.dirichlet.resize(grid->Nd(),0);
partialDirichlet = p.partialDirichlet;
DirichletBlock(p.dirichlet); // comms send/recv set up DirichletBlock(p.dirichlet); // comms send/recv set up
fullDirichlet=0;
for(int d=0;d<p.dirichlet.size();d++){
if (p.dirichlet[d]) fullDirichlet=1;
}
_unified_buffer_size=0; _unified_buffer_size=0;
surface_list.resize(0); surface_list.resize(0);
@ -828,7 +918,7 @@ public:
GridBase *grid=_grid; GridBase *grid=_grid;
const int Nsimd = grid->Nsimd(); const int Nsimd = grid->Nsimd();
int comms_recv = this->_comms_recv[point]; int comms_recv = this->_comms_recv[point] || this->_comms_partial_recv[point] ;
int fd = _grid->_fdimensions[dimension]; int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension]; int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension]; int rd = _grid->_rdimensions[dimension];
@ -1014,10 +1104,11 @@ public:
int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx, int point) int Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx, int point)
{ {
typedef typename cobj::vector_type vector_type; typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
int comms_send = this->_comms_send[point]; int comms_send = this->_comms_send[point];
int comms_recv = this->_comms_recv[point]; int comms_recv = this->_comms_recv[point];
int comms_partial_send = this->_comms_partial_send[point] ;
int comms_partial_recv = this->_comms_partial_recv[point] ;
assert(rhs.Grid()==_grid); assert(rhs.Grid()==_grid);
// conformable(_grid,rhs.Grid()); // conformable(_grid,rhs.Grid());
@ -1048,6 +1139,16 @@ public:
if (cbmask != 0x3) words=words>>1; if (cbmask != 0x3) words=words>>1;
int bytes = words * compress.CommDatumSize(); int bytes = words * compress.CommDatumSize();
int xbytes;
int rbytes;
if ( comms_send ) xbytes = bytes; // Full send
else if ( comms_partial_send ) xbytes = bytes/compressor::PartialCompressionFactor(_grid);
else xbytes = 0; // full dirichlet
if ( comms_recv ) rbytes = bytes;
else if ( comms_partial_recv ) rbytes = bytes/compressor::PartialCompressionFactor(_grid);
else rbytes = 0;
int so = sx*rhs.Grid()->_ostride[dimension]; // base offset for start of plane int so = sx*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
int comm_off = u_comm_offset; int comm_off = u_comm_offset;
@ -1061,12 +1162,11 @@ public:
assert (xmit_to_rank != _grid->ThisRank()); assert (xmit_to_rank != _grid->ThisRank());
assert (recv_from_rank != _grid->ThisRank()); assert (recv_from_rank != _grid->ThisRank());
if( comms_send ) {
if ( !face_table_computed ) { if ( !face_table_computed ) {
face_table.resize(face_idx+1); face_table.resize(face_idx+1);
std::vector<std::pair<int,int> > face_table_host ; std::vector<std::pair<int,int> > face_table_host ;
Gather_plane_table_compute ((GridBase *)_grid,dimension,sx,cbmask,comm_off,face_table_host); Gather_plane_table_compute ((GridBase *)_grid,dimension,sx,cbmask,comm_off,face_table_host);
// std::cout << "bytes expect "<< bytes << " " << face_table_host.size()* compress.CommDatumSize()<<std::endl;
face_table[face_idx].resize(face_table_host.size()); face_table[face_idx].resize(face_table_host.size());
acceleratorCopyToDevice(&face_table_host[0], acceleratorCopyToDevice(&face_table_host[0],
&face_table[face_idx][0], &face_table[face_idx][0],
@ -1074,36 +1174,60 @@ public:
} }
if ( compress.DecompressionStep() ) { if ( (compress.DecompressionStep()&&comms_recv) || comms_partial_recv ) {
recv_buf=u_simd_recv_buf[0]; recv_buf=u_simd_recv_buf[0];
} else { } else {
recv_buf=this->u_recv_buf_p; recv_buf=this->u_recv_buf_p;
} }
send_buf = this->u_send_buf_p; // Gather locally, must send // potential SHM fast path for intranode
int shm_send=0;
int shm_recv=0;
#ifdef SHM_FAST_PATH
// Put directly in place if we can
send_buf = (cobj *)_grid->ShmBufferTranslate(xmit_to_rank,recv_buf);
if ( (send_buf==NULL) ) {
shm_send=0;
send_buf = this->u_send_buf_p;
} else {
shm_send=1;
}
void *test_ptr = _grid->ShmBufferTranslate(recv_from_rank,recv_buf);
if ( test_ptr != NULL ) shm_recv = 1;
// static int printed;
// if (!printed){
// std::cout << " GATHER FAST PATH SHM "<<shm_send<< " "<<shm_recv<<std::endl;
// printed = 1;
// }
#else
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
// Gather locally // Gather locally
//////////////////////////////////////////////////////// ////////////////////////////////////////////////////////
send_buf = this->u_send_buf_p; // Gather locally, must send
assert(send_buf!=NULL); assert(send_buf!=NULL);
Gather_plane_simple_table(face_table[face_idx],rhs,send_buf,compress,comm_off,so); #endif
}
int duplicate = CheckForDuplicate(dimension,sx,comm_proc,(void *)&recv_buf[comm_off],0,bytes,cbmask); // std::cout << " GatherPlaneSimple partial send "<< comms_partial_send<<std::endl;
if ( (!duplicate) ) { // Force comms for now compressor::Gather_plane_simple(face_table[face_idx],rhs,send_buf,compress,comm_off,so,comms_partial_send);
int duplicate = CheckForDuplicate(dimension,sx,comm_proc,(void *)&recv_buf[comm_off],0,xbytes,rbytes,cbmask);
if ( !duplicate ) { // Force comms for now
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
// Build a list of things to do after we synchronise GPUs // Build a list of things to do after we synchronise GPUs
// Start comms now??? // Start comms now???
/////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////
int do_send = (comms_send|comms_partial_send) && (!shm_send );
int do_recv = (comms_send|comms_partial_send) && (!shm_recv );
AddPacket((void *)&send_buf[comm_off], AddPacket((void *)&send_buf[comm_off],
(void *)&recv_buf[comm_off], (void *)&recv_buf[comm_off],
xmit_to_rank, comms_send, xmit_to_rank, do_send,
recv_from_rank, comms_recv, recv_from_rank, do_recv,
bytes); xbytes,rbytes);
} }
if ( compress.DecompressionStep() && comms_recv ) { if ( (compress.DecompressionStep() && comms_recv) || comms_partial_recv ) {
AddDecompress(&this->u_recv_buf_p[comm_off], AddDecompress(&this->u_recv_buf_p[comm_off],
&recv_buf[comm_off], &recv_buf[comm_off],
words,Decompressions); words,Decompressions);
@ -1111,7 +1235,6 @@ public:
u_comm_offset+=words; u_comm_offset+=words;
face_idx++; face_idx++;
} }
} }
return 0; return 0;
@ -1126,6 +1249,8 @@ public:
int comms_send = this->_comms_send[point]; int comms_send = this->_comms_send[point];
int comms_recv = this->_comms_recv[point]; int comms_recv = this->_comms_recv[point];
int comms_partial_send = this->_comms_partial_send[point] ;
int comms_partial_recv = this->_comms_partial_recv[point] ;
int fd = _grid->_fdimensions[dimension]; int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension]; int rd = _grid->_rdimensions[dimension];
@ -1155,10 +1280,15 @@ public:
int datum_bytes = compress.CommDatumSize(); int datum_bytes = compress.CommDatumSize();
int bytes = (reduced_buffer_size*datum_bytes)/simd_layout; int bytes = (reduced_buffer_size*datum_bytes)/simd_layout;
// how many bytes on wire : partial dirichlet or dirichlet may set to < bytes
int xbytes;
int rbytes;
assert(bytes*simd_layout == reduced_buffer_size*datum_bytes); assert(bytes*simd_layout == reduced_buffer_size*datum_bytes);
Vector<cobj *> rpointers(maxl); std::vector<cobj *> rpointers(maxl);
Vector<cobj *> spointers(maxl); std::vector<cobj *> spointers(maxl);
/////////////////////////////////////////// ///////////////////////////////////////////
// Work out what to send where // Work out what to send where
@ -1190,16 +1320,31 @@ public:
acceleratorCopyToDevice(&face_table_host[0], acceleratorCopyToDevice(&face_table_host[0],
&face_table[face_idx][0], &face_table[face_idx][0],
face_table[face_idx].size()*sizeof(face_table_host[0])); face_table[face_idx].size()*sizeof(face_table_host[0]));
} }
if ( comms_send || comms_recv ) {
Gather_plane_exchange_table(face_table[face_idx],rhs,spointers,dimension,sx,cbmask,compress,permute_type); if ( comms_send ) xbytes = bytes;
else if ( comms_partial_send ) xbytes = bytes/compressor::PartialCompressionFactor(_grid);
else xbytes = 0;
if ( comms_recv ) rbytes = bytes;
else if ( comms_partial_recv ) rbytes = bytes/compressor::PartialCompressionFactor(_grid);
else rbytes = 0;
// Gathers SIMD lanes for send and merge
// Different faces can be full comms or partial comms with multiple ranks per node
if ( comms_send || comms_recv||comms_partial_send||comms_partial_recv ) {
int partial = partialDirichlet;
compressor::Gather_plane_exchange(face_table[face_idx],rhs,
spointers,dimension,sx,cbmask,
compress,permute_type,partial );
} }
face_idx++; face_idx++;
//spointers[0] -- low //spointers[0] -- low simd coor
//spointers[1] -- high //spointers[1] -- high simd coor
for(int i=0;i<maxl;i++){ for(int i=0;i<maxl;i++){
int my_coor = rd*i + x; // self explanatory int my_coor = rd*i + x; // self explanatory
@ -1220,17 +1365,48 @@ public:
int recv_from_rank; int recv_from_rank;
int xmit_to_rank; int xmit_to_rank;
int shm_send=0;
int shm_recv=0;
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank); _grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
#ifdef SHM_FAST_PATH
#warning STENCIL SHM FAST PATH SELECTED
// shm == receive pointer if offnode
// shm == Translate[send pointer] if on node -- my view of his send pointer
cobj *shm = (cobj *) _grid->ShmBufferTranslate(recv_from_rank,sp);
if (shm==NULL) {
shm = rp;
// we found a packet that comes from MPI and contributes to this shift.
// is_same_node is only used in the WilsonStencil, and gets set for this point in the stencil.
// Kernel will add the exterior_terms except if is_same_node.
// leg of stencil
shm_recv=0;
} else {
shm_recv=1;
}
rpointers[i] = shm;
// Test send side
void *test_ptr = (void *) _grid->ShmBufferTranslate(xmit_to_rank,sp);
if ( test_ptr != NULL ) shm_send = 1;
// static int printed;
// if (!printed){
// std::cout << " GATHERSIMD FAST PATH SHM "<<shm_send<< " "<<shm_recv<<std::endl;
// printed = 1;
// }
#else
rpointers[i] = rp; rpointers[i] = rp;
#endif
int duplicate = CheckForDuplicate(dimension,sx,nbr_proc,(void *)rp,i,bytes,cbmask); int duplicate = CheckForDuplicate(dimension,sx,nbr_proc,(void *)rp,i,xbytes,rbytes,cbmask);
if ( !duplicate ) { if ( !duplicate ) {
if ( (bytes != rbytes) && (rbytes!=0) ){
acceleratorMemSet(rp,0,bytes); // Zero prefill comms buffer to zero
}
int do_send = (comms_send|comms_partial_send) && (!shm_send );
int do_recv = (comms_send|comms_partial_send) && (!shm_recv );
AddPacket((void *)sp,(void *)rp, AddPacket((void *)sp,(void *)rp,
xmit_to_rank,comms_send, xmit_to_rank,do_send,
recv_from_rank,comms_recv, recv_from_rank,do_send,
bytes); xbytes,rbytes);
} }
} else { } else {
@ -1239,8 +1415,8 @@ public:
} }
} }
// rpointer may be doing a remote read in the gather over SHM
if ( comms_recv ) { if ( comms_recv|comms_partial_recv ) {
AddMerge(&this->u_recv_buf_p[comm_off],rpointers,reduced_buffer_size,permute_type,Mergers); AddMerge(&this->u_recv_buf_p[comm_off],rpointers,reduced_buffer_size,permute_type,Mergers);
} }

View File

@ -31,6 +31,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
NAMESPACE_BEGIN(Grid); NAMESPACE_BEGIN(Grid);
////////////////////////////////////////////////
// Inside a GPU thread
////////////////////////////////////////////////
template<class vobj>
accelerator_inline void exchangeSIMT(vobj &mp0,vobj &mp1,const vobj &vp0,const vobj &vp1,Integer type)
{
typedef decltype(coalescedRead(mp0)) sobj;
unsigned int Nsimd = vobj::Nsimd();
unsigned int mask = Nsimd >> (type + 1);
int lane = acceleratorSIMTlane(Nsimd);
int j0 = lane &(~mask); // inner coor zero
int j1 = lane |(mask) ; // inner coor one
const vobj *vpa = &vp0;
const vobj *vpb = &vp1;
const vobj *vp = (lane&mask) ? (vpb) : (vpa);
auto sa = coalescedRead(vp[0],j0);
auto sb = coalescedRead(vp[0],j1);
coalescedWrite(mp0,sa);
coalescedWrite(mp1,sb);
}
#ifndef GRID_SIMT #ifndef GRID_SIMT
////////////////////////////////////////// //////////////////////////////////////////

View File

@ -178,6 +178,7 @@ public:
stream << "S {" << o._internal << "}"; stream << "S {" << o._internal << "}";
return stream; return stream;
}; };
// FIXME These will break with change of data layout
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(&_internal); } strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(&_internal); }
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(&_internal); } strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(&_internal); }
strong_inline const scalar_type * end() const { return begin() + Traits::count; } strong_inline const scalar_type * end() const { return begin() + Traits::count; }
@ -288,6 +289,7 @@ public:
// return _internal[i]; // return _internal[i];
// } // }
// FIXME These will break with change of data layout
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal); } strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal); }
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal); } strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal); }
strong_inline const scalar_type * end() const { return begin() + Traits::count; } strong_inline const scalar_type * end() const { return begin() + Traits::count; }
@ -430,6 +432,7 @@ public:
// return _internal[i][j]; // return _internal[i][j];
// } // }
// FIXME These will break with change of data layout
strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal[0]); } strong_inline const scalar_type * begin() const { return reinterpret_cast<const scalar_type *>(_internal[0]); }
strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal[0]); } strong_inline scalar_type * begin() { return reinterpret_cast< scalar_type *>(_internal[0]); }
strong_inline const scalar_type * end() const { return begin() + Traits::count; } strong_inline const scalar_type * end() const { return begin() + Traits::count; }

View File

@ -1,5 +1,5 @@
/************************************************************************************* /*************************************************************************************
n
Grid physics library, www.github.com/paboyle/Grid Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_extract_merge.h Source file: ./lib/tensors/Tensor_extract_merge.h
@ -62,8 +62,18 @@ void extract(const vobj &vec,ExtractBuffer<sobj> &extracted)
const int words=sizeof(vobj)/sizeof(vector_type); const int words=sizeof(vobj)/sizeof(vector_type);
const int Nsimd=vector_type::Nsimd(); const int Nsimd=vector_type::Nsimd();
const int Nextr=extracted.size(); const int Nextr=extracted.size();
vector_type * vp = (vector_type *)&vec;
const int s=Nsimd/Nextr; const int s=Nsimd/Nextr;
sobj_scalar_type *sp = (sobj_scalar_type *) &extracted[0]; sobj_scalar_type *sp = (sobj_scalar_type *) &extracted[0];
sobj_scalar_type stmp;
for(int w=0;w<words;w++){
for(int i=0;i<Nextr;i++){
stmp = vp[w].getlane(i*s);
sp[i*words+w] =stmp;
// memcpy((char *)&sp[i*words+w],(char *)&stmp,sizeof(stmp));
}
}
/*
scalar_type *vp = (scalar_type *)&vec; scalar_type *vp = (scalar_type *)&vec;
scalar_type vtmp; scalar_type vtmp;
sobj_scalar_type stmp; sobj_scalar_type stmp;
@ -74,6 +84,8 @@ void extract(const vobj &vec,ExtractBuffer<sobj> &extracted)
memcpy((char *)&sp[i*words+w],(char *)&stmp,sizeof(stmp)); memcpy((char *)&sp[i*words+w],(char *)&stmp,sizeof(stmp));
} }
} }
*/
return; return;
} }
@ -93,7 +105,7 @@ void merge(vobj &vec,ExtractBuffer<sobj> &extracted)
const int s=Nsimd/Nextr; const int s=Nsimd/Nextr;
sobj_scalar_type *sp = (sobj_scalar_type *)&extracted[0]; sobj_scalar_type *sp = (sobj_scalar_type *)&extracted[0];
scalar_type *vp = (scalar_type *)&vec; vector_type *vp = (vector_type *)&vec;
scalar_type vtmp; scalar_type vtmp;
sobj_scalar_type stmp; sobj_scalar_type stmp;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
@ -101,7 +113,8 @@ void merge(vobj &vec,ExtractBuffer<sobj> &extracted)
for(int ii=0;ii<s;ii++){ for(int ii=0;ii<s;ii++){
memcpy((char *)&stmp,(char *)&sp[i*words+w],sizeof(stmp)); memcpy((char *)&stmp,(char *)&sp[i*words+w],sizeof(stmp));
vtmp = stmp; vtmp = stmp;
memcpy((char *)&vp[w*Nsimd+i*s+ii],(char *)&vtmp,sizeof(vtmp)); vp[w].putlane(vtmp,i*s+ii);
// memcpy((char *)&vp[w*Nsimd+i*s+ii],(char *)&vtmp,sizeof(vtmp));
} }
} }
} }
@ -117,16 +130,16 @@ typename vobj::scalar_object extractLane(int lane, const vobj & __restrict__ vec
typedef typename vobj::scalar_object scalar_object; typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
typedef typename ExtractTypeMap<scalar_type>::extract_type extract_type; typedef typename ExtractTypeMap<scalar_type>::extract_type extract_type;
typedef extract_type * pointer; typedef scalar_type * pointer;
constexpr int words=sizeof(vobj)/sizeof(vector_type); constexpr int words=sizeof(vobj)/sizeof(vector_type);
constexpr int Nsimd=vector_type::Nsimd(); constexpr int Nsimd=vector_type::Nsimd();
scalar_object extracted; scalar_object extracted;
pointer __restrict__ sp = (pointer)&extracted; // Type pun pointer __restrict__ sp = (pointer)&extracted; // Type pun
pointer __restrict__ vp = (pointer)&vec; vector_type *vp = (vector_type *)&vec;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
sp[w]=vp[w*Nsimd+lane]; sp[w]=vp[w].getlane(lane);
} }
return extracted; return extracted;
} }
@ -137,15 +150,15 @@ void insertLane(int lane, vobj & __restrict__ vec,const typename vobj::scalar_ob
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
typedef typename vector_type::scalar_type scalar_type; typedef typename vector_type::scalar_type scalar_type;
typedef typename ExtractTypeMap<scalar_type>::extract_type extract_type; typedef typename ExtractTypeMap<scalar_type>::extract_type extract_type;
typedef extract_type * pointer; typedef scalar_type * pointer;
constexpr int words=sizeof(vobj)/sizeof(vector_type); constexpr int words=sizeof(vobj)/sizeof(vector_type);
constexpr int Nsimd=vector_type::Nsimd(); constexpr int Nsimd=vector_type::Nsimd();
pointer __restrict__ sp = (pointer)&extracted; pointer __restrict__ sp = (pointer)&extracted;
pointer __restrict__ vp = (pointer)&vec; vector_type *vp = (vector_type *)&vec;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
vp[w*Nsimd+lane]=sp[w]; vp[w].putlane(sp[w],lane);
} }
} }
@ -164,15 +177,13 @@ void extract(const vobj &vec,const ExtractPointerArray<sobj> &extracted, int off
const int Nextr=extracted.size(); const int Nextr=extracted.size();
const int s = Nsimd/Nextr; const int s = Nsimd/Nextr;
scalar_type * vp = (scalar_type *)&vec; vector_type * vp = (vector_type *)&vec;
scalar_type vtmp; scalar_type vtmp;
sobj_scalar_type stmp; sobj_scalar_type stmp;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
for(int i=0;i<Nextr;i++){ for(int i=0;i<Nextr;i++){
sobj_scalar_type * pointer = (sobj_scalar_type *)& extracted[i][offset]; sobj_scalar_type * pointer = (sobj_scalar_type *)& extracted[i][offset];
memcpy((char *)&vtmp,(char *)&vp[w*Nsimd+i*s],sizeof(vtmp)); pointer[w] = vp[w].getlane(i*s);
stmp = vtmp;
memcpy((char *)&pointer[w],(char *)&stmp,sizeof(stmp)); // may do a precision conversion
} }
} }
} }
@ -192,23 +203,21 @@ void merge(vobj &vec,const ExtractPointerArray<sobj> &extracted, int offset)
const int Nextr=extracted.size(); const int Nextr=extracted.size();
const int s = Nsimd/Nextr; const int s = Nsimd/Nextr;
scalar_type * vp = (scalar_type *)&vec; vector_type * vp = (vector_type *)&vec;
scalar_type vtmp; scalar_type vtmp;
sobj_scalar_type stmp; sobj_scalar_type stmp;
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
for(int i=0;i<Nextr;i++){ for(int i=0;i<Nextr;i++){
sobj_scalar_type * pointer = (sobj_scalar_type *)& extracted[i][offset]; sobj_scalar_type * pointer = (sobj_scalar_type *)& extracted[i][offset];
for(int ii=0;ii<s;ii++){ for(int ii=0;ii<s;ii++){
memcpy((char *)&stmp,(char *)&pointer[w],sizeof(stmp)); vtmp=pointer[w];
vtmp=stmp; vp[w].putlane(vtmp,i*s+ii);
memcpy((char *)&vp[w*Nsimd+i*s+ii],(char *)&vtmp,sizeof(vtmp));
} }
} }
} }
} }
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
//Copy a single lane of a SIMD tensor type from one object to another //Copy a single lane of a SIMD tensor type from one object to another
//Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type) //Output object must be of the same tensor type but may be of a different precision (i.e. it can have a different root data type)
@ -217,7 +226,7 @@ template<class vobjOut, class vobjIn>
accelerator_inline accelerator_inline
void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in) void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __restrict__ vecIn, int lane_in)
{ {
static_assert( std::is_same<typename vobjOut::DoublePrecision, typename vobjIn::DoublePrecision>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same static_assert( std::is_same<typename vobjOut::scalar_typeD, typename vobjIn::scalar_typeD>::value == 1, "copyLane: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
typedef typename vobjOut::vector_type ovector_type; typedef typename vobjOut::vector_type ovector_type;
typedef typename vobjIn::vector_type ivector_type; typedef typename vobjIn::vector_type ivector_type;
@ -239,12 +248,12 @@ void copyLane(vobjOut & __restrict__ vecOut, int lane_out, const vobjIn & __rest
iscalar_type itmp; iscalar_type itmp;
oscalar_type otmp; oscalar_type otmp;
opointer __restrict__ op = (opointer)&vecOut; ovector_type * __restrict__ op = (ovector_type *)&vecOut;
ipointer __restrict__ ip = (ipointer)&vecIn; ivector_type * __restrict__ ip = (ivector_type *)&vecIn;
for(int w=0;w<owords;w++){ for(int w=0;w<owords;w++){
memcpy( (char*)&itmp, (char*)(ip + lane_in + iNsimd*w), sizeof(iscalar_type) ); itmp = ip[w].getlane(lane_in);
otmp = itmp; //potential precision change otmp = itmp; //potential precision change
memcpy( (char*)(op + lane_out + oNsimd*w), (char*)&otmp, sizeof(oscalar_type) ); op[w].putlane(otmp,lane_out);
} }
} }

View File

@ -214,24 +214,20 @@ accelerator_inline vRealD innerProductD2(const vRealD &l,const vRealD &
accelerator_inline vComplexD2 innerProductD2(const vComplexF &l,const vComplexF &r) accelerator_inline vComplexD2 innerProductD2(const vComplexF &l,const vComplexF &r)
{ {
vComplexD la,lb; vComplexD2 dl,dr;
vComplexD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
vComplexD2 ret; vComplexD2 ret;
ret._internal[0] = innerProduct(la,ra); precisionChange(dl,l);
ret._internal[1] = innerProduct(lb,rb); precisionChange(dr,r);
ret = innerProduct(dl,dr);
return ret; return ret;
} }
accelerator_inline vRealD2 innerProductD2(const vRealF &l,const vRealF &r) accelerator_inline vRealD2 innerProductD2(const vRealF &l,const vRealF &r)
{ {
vRealD la,lb; vRealD2 dl,dr;
vRealD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
vRealD2 ret; vRealD2 ret;
ret._internal[0]=innerProduct(la,ra); precisionChange(dl,l);
ret._internal[1]=innerProduct(lb,rb); precisionChange(dr,r);
ret=innerProduct(dl,dr);
return ret; return ret;
} }

Some files were not shown because too many files have changed in this diff Show More