1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-09 21:50:45 +01:00

Hadrons: all objects/modules mapped to an integer address system to remove string operations from scheduling

This commit is contained in:
Antonin Portelli 2016-05-10 19:07:41 +01:00
parent 7dfdc9baa0
commit d604580e5a
6 changed files with 734 additions and 311 deletions

View File

@ -42,10 +42,9 @@ using namespace Hadrons;
Application::Application(const std::string parameterFileName) Application::Application(const std::string parameterFileName)
: parameterFileName_(parameterFileName) : parameterFileName_(parameterFileName)
, env_(Environment::getInstance()) , env_(Environment::getInstance())
, modFactory_(ModuleFactory::getInstance())
{ {
LOG(Message) << "Modules available:" << std::endl; LOG(Message) << "Modules available:" << std::endl;
auto list = modFactory_.getBuilderList(); auto list = ModuleFactory::getInstance().getBuilderList();
for (auto &m: list) for (auto &m: list)
{ {
LOG(Message) << " " << m << std::endl; LOG(Message) << " " << m << std::endl;
@ -95,18 +94,12 @@ void Application::parseParameterFile(void)
do do
{ {
read(reader, "id", id); read(reader, "id", id);
module_[id.name] = modFactory_.create(id.type, id.name); env_.createModule(id.name, id.type, reader);
module_[id.name]->parseParameters(reader, "options");
std::vector<std::string> output = module_[id.name]->getOutput();
for (auto &n: output)
{
associatedModule_[n] = id.name;
}
input_[id.name] = module_[id.name]->getInput();
} while (reader.nextElement("module")); } while (reader.nextElement("module"));
pop(reader); pop(reader);
pop(reader); pop(reader);
env_.setSeed(strToVec<int>(par_.seed)); env_.setSeed(strToVec<int>(par_.seed));
env_.printContent();
} }
// schedule computation //////////////////////////////////////////////////////// // schedule computation ////////////////////////////////////////////////////////
@ -116,7 +109,7 @@ sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
void Application::schedule(void) void Application::schedule(void)
{ {
// memory peak function // memory peak function
auto memPeak = [this](const std::vector<std::string> &program) auto memPeak = [this](const std::vector<unsigned int> &program)
{ {
unsigned int memPeak; unsigned int memPeak;
bool msg; bool msg;
@ -124,7 +117,7 @@ void Application::schedule(void)
msg = HadronsLogMessage.isActive(); msg = HadronsLogMessage.isActive();
HadronsLogMessage.Active(false); HadronsLogMessage.Active(false);
env_.dryRun(true); env_.dryRun(true);
memPeak = execute(program); memPeak = env_.executeProgram(program);
env_.dryRun(false); env_.dryRun(false);
env_.freeAll(); env_.freeAll();
HadronsLogMessage.Active(true); HadronsLogMessage.Active(true);
@ -132,32 +125,14 @@ void Application::schedule(void)
return memPeak; return memPeak;
}; };
// create dependency graph
Graph<std::string> moduleGraph;
LOG(Message) << "Scheduling computation..." << std::endl;
for (auto &m: module_)
{
std::vector<std::string> input = m.second->getInput();
for (auto &n: input)
{
try
{
moduleGraph.addEdge(associatedModule_.at(n), m.first);
}
catch (std::out_of_range &)
{
HADRON_ERROR("unknown object '" + n + "'");
}
}
}
// constrained topological sort using a genetic algorithm // constrained topological sort using a genetic algorithm
LOG(Message) << "Scheduling computation..." << std::endl;
constexpr unsigned int maxGen = 200, maxCstGen = 50; constexpr unsigned int maxGen = 200, maxCstGen = 50;
unsigned int k = 0, gen, prevPeak, nCstPeak = 0; unsigned int k = 0, gen, prevPeak, nCstPeak = 0;
std::vector<Graph<std::string>> con = moduleGraph.getConnectedComponents(); auto graph = env_.makeModuleGraph();
GeneticScheduler<std::string>::Parameters par; auto con = graph.getConnectedComponents();
std::random_device rd; std::random_device rd;
GeneticScheduler<unsigned int>::Parameters par;
par.popSize = 20; par.popSize = 20;
par.mutationRate = .1; par.mutationRate = .1;
@ -165,7 +140,7 @@ void Application::schedule(void)
CartesianCommunicator::BroadcastWorld(0, &(par.seed), sizeof(par.seed)); CartesianCommunicator::BroadcastWorld(0, &(par.seed), sizeof(par.seed));
for (unsigned int i = 0; i < con.size(); ++i) for (unsigned int i = 0; i < con.size(); ++i)
{ {
GeneticScheduler<std::string> scheduler(con[i], memPeak, par); GeneticScheduler<unsigned int> scheduler(con[i], memPeak, par);
gen = 0; gen = 0;
do do
@ -197,13 +172,13 @@ void Application::schedule(void)
{ {
program_.push_back(t[j]); program_.push_back(t[j]);
LOG(Message) << std::setw(4) << std::right << k + 1 << ": " LOG(Message) << std::setw(4) << std::right << k + 1 << ": "
<< program_[k] << std::endl; << env_.getModuleName(program_[k]) << std::endl;
k++; k++;
} }
} }
} }
// program execution /////////////////////////////////////////////////////////// // loop on configurations //////////////////////////////////////////////////////
void Application::configLoop(void) void Application::configLoop(void)
{ {
auto range = par_.configs.range; auto range = par_.configs.range;
@ -213,121 +188,8 @@ void Application::configLoop(void)
LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t
<< " " << BIG_SEP << std::endl; << " " << BIG_SEP << std::endl;
env_.setTrajectory(t); env_.setTrajectory(t);
execute(program_); env_.executeProgram(program_);
env_.freeAll(); env_.freeAll();
} }
LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl; LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl;
} }
unsigned int Application::execute(const std::vector<std::string> &program)
{
unsigned int memPeak = 0, sizeBefore, sizeAfter;
std::vector<std::set<std::string>> freeProg;
bool continueCollect, nothingFreed;
// build garbage collection schedule
freeProg.resize(program.size());
for (auto &n: associatedModule_)
{
auto pred = [&n, this](const std::string &s)
{
auto &in = input_[s];
auto it = std::find(in.begin(), in.end(), n.first);
return (it != in.end()) or (s == n.second);
};
auto it = std::find_if(program.rbegin(), program.rend(), pred);
if (it != program.rend())
{
freeProg[program.rend() - it - 1].insert(n.first);
}
}
// program execution
for (unsigned int i = 0; i < program.size(); ++i)
{
// execute module
LOG(Message) << SEP << " Measurement step " << i+1 << "/"
<< program.size() << " (module '" << program[i] << "') "
<< SEP << std::endl;
(*module_[program[i]])();
sizeBefore = env_.getTotalSize();
// print used memory after execution
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeBefore)
<< std::endl;
if (sizeBefore > memPeak)
{
memPeak = sizeBefore;
}
// garbage collection for step i
LOG(Message) << "Garbage collection..." << std::endl;
nothingFreed = true;
do
{
continueCollect = false;
auto toFree = freeProg[i];
for (auto &n: toFree)
{
// continue garbage collection while there are still
// objects without owners
continueCollect = continueCollect or !env_.hasOwners(n);
if(env_.freeObject(n))
{
// if an object has been freed, remove it from
// the garbage collection schedule
freeProg[i].erase(n);
nothingFreed = false;
}
}
} while (continueCollect);
// any remaining objects in step i garbage collection schedule
// is scheduled for step i + 1
if (i + 1 < program.size())
{
for (auto &n: freeProg[i])
{
freeProg[i + 1].insert(n);
}
}
// print used memory after garbage collection if necessary
sizeAfter = env_.getTotalSize();
if (sizeBefore != sizeAfter)
{
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeAfter)
<< std::endl;
}
else
{
LOG(Message) << "Nothing to free" << std::endl;
}
}
return memPeak;
}
// pretty size formatting //////////////////////////////////////////////////////
std::string Application::sizeString(long unsigned int bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
long unsigned int s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}

View File

@ -82,22 +82,14 @@ private:
void parseParameterFile(void); void parseParameterFile(void);
// schedule computation // schedule computation
void schedule(void); void schedule(void);
// program execution // loop on configurations
void configLoop(void); void configLoop(void);
unsigned int execute(const std::vector<std::string> &program);
// pretty size formatting
static std::string sizeString(long unsigned int bytes);
private: private:
long unsigned int locVol_; long unsigned int locVol_;
std::string parameterFileName_; std::string parameterFileName_;
GlobalPar par_; GlobalPar par_;
Environment &env_; Environment &env_;
ModuleFactory &modFactory_; std::vector<unsigned int> program_;
std::map<std::string, std::unique_ptr<Module>> module_;
std::map<std::string, std::string> associatedModule_;
std::map<std::string, std::vector<std::string>> input_;
std::vector<std::string> program_;
std::vector<std::vector<std::string>> freeProg_;
}; };
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE

View File

@ -26,6 +26,8 @@ directory.
*******************************************************************************/ *******************************************************************************/
#include <Hadrons/Environment.hpp> #include <Hadrons/Environment.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
using namespace Grid; using namespace Grid;
using namespace QCD; using namespace QCD;
@ -41,6 +43,12 @@ Environment::Environment(void)
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi())); GridDefaultMpi()));
gridRb4d_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_.get())); gridRb4d_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_.get()));
auto loc = getGrid()->LocalDimensions();
locVol_ = 1;
for (unsigned int d = 0; d < loc.size(); ++d)
{
locVol_ *= loc[d];
}
rng4d_.reset(new GridParallelRNG(grid4d_.get())); rng4d_.reset(new GridParallelRNG(grid4d_.get()));
} }
@ -116,12 +124,312 @@ GridRedBlackCartesian * Environment::getRbGrid(const unsigned int Ls) const
} }
} }
// fermion actions ///////////////////////////////////////////////////////////// // random number generator /////////////////////////////////////////////////////
void Environment::addFermionMatrix(const std::string name, FMat *fMat) void Environment::setSeed(const std::vector<int> &seed)
{
rng4d_->SeedFixedIntegers(seed);
}
GridParallelRNG * Environment::get4dRng(void) const
{
return rng4d_.get();
}
// module management ///////////////////////////////////////////////////////////
void Environment::createModule(const std::string name, const std::string type,
XmlReader &reader)
{
auto addObject = [this](const std::string name, const int moduleAddress)
{
ObjInfo info;
object_.push_back(info);
objectName_.push_back(name);
objectAddress_[name] = object_.size() - 1;
objectModule_.push_back(moduleAddress);
owners_.push_back(std::set<unsigned int>());
properties_.push_back(std::set<unsigned int>());
};
if (!hasModule(name))
{
auto &factory = ModuleFactory::getInstance();
std::vector<unsigned int> inputAddress;
module_.push_back(factory.create(type, name));
moduleType_.push_back(type);
moduleName_.push_back(name);
moduleAddress_[name] = module_.size() - 1;
module_.back()->parseParameters(reader, "options");
auto input = module_.back()->getInput();
for (auto &in: input)
{
if (!hasObject(in))
{
addObject(in , -1);
}
inputAddress.push_back(objectAddress_[in]);
}
moduleInput_.push_back(inputAddress);
auto output = module_.back()->getOutput();
for (auto &out: output)
{
if (!hasObject(out))
{
addObject(out , module_.size() - 1);
}
else
{
if (objectModule_[objectAddress_[out]] < 0)
{
objectModule_[objectAddress_[out]] = module_.size() - 1;
}
else
{
HADRON_ERROR("object '" + out
+ "' is already produced by module '"
+ moduleName_[objectModule_[getObjectAddress(out)]]
+ "' (while creating module '" + name + "')");
}
}
}
}
else
{
HADRON_ERROR("module '" + name + "' already exists");
}
}
Module * Environment::getModule(const unsigned int address) const
{
if (hasModule(address))
{
return module_[address].get();
}
else
{
HADRON_ERROR("no module with address " + std::to_string(address));
}
}
Module * Environment::getModule(const std::string name) const
{
return getModule(getModuleAddress(name));
}
unsigned int Environment::getModuleAddress(const std::string name) const
{
if (hasModule(name))
{
return moduleAddress_.at(name);
}
else
{
HADRON_ERROR("no module with name '" + name + "'");
}
}
std::string Environment::getModuleName(const unsigned int address) const
{
if (hasModule(address))
{
return moduleName_[address];
}
else
{
HADRON_ERROR("no module with address " + std::to_string(address));
}
}
std::string Environment::getModuleType(const unsigned int address) const
{
if (hasModule(address))
{
return moduleType_[address];
}
else
{
HADRON_ERROR("no module with address " + std::to_string(address));
}
}
std::string Environment::getModuleType(const std::string name) const
{
return getModuleType(getModuleAddress(name));
}
bool Environment::hasModule(const unsigned int address) const
{
return (address < module_.size());
}
bool Environment::hasModule(const std::string name) const
{
return (moduleAddress_.find(name) != moduleAddress_.end());
}
Graph<unsigned int> Environment::makeModuleGraph(void) const
{
Graph<unsigned int> moduleGraph;
for (unsigned int i = 0; i < module_.size(); ++i)
{
for (auto &j: moduleInput_[i])
{
moduleGraph.addEdge(objectModule_[j], i);
}
}
return moduleGraph;
}
#define BIG_SEP "==============="
#define SEP "---------------"
#define MEM_MSG(size)\
sizeString((size)*locVol_) << " (" << sizeString(size) << "/site)"
unsigned int Environment::executeProgram(const std::vector<unsigned int> &p)
{
unsigned int memPeak = 0, sizeBefore, sizeAfter;
std::vector<std::set<unsigned int>> freeProg;
bool continueCollect, nothingFreed;
// build garbage collection schedule
freeProg.resize(p.size());
for (unsigned int i = 0; i < object_.size(); ++i)
{
auto pred = [i, this](const unsigned int j)
{
auto &in = moduleInput_[j];
auto it = std::find(in.begin(), in.end(), i);
return (it != in.end()) or (j == objectModule_[i]);
};
auto it = std::find_if(p.rbegin(), p.rend(), pred);
if (it != p.rend())
{
freeProg[p.rend() - it - 1].insert(i);
}
}
// program execution
for (unsigned int i = 0; i < p.size(); ++i)
{
// execute module
LOG(Message) << SEP << " Measurement step " << i+1 << "/"
<< p.size() << " (module '" << moduleName_[p[i]] << "') "
<< SEP << std::endl;
(*module_[p[i]])();
sizeBefore = getTotalSize();
// print used memory after execution
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeBefore)
<< std::endl;
if (sizeBefore > memPeak)
{
memPeak = sizeBefore;
}
// garbage collection for step i
LOG(Message) << "Garbage collection..." << std::endl;
nothingFreed = true;
do
{
continueCollect = false;
auto toFree = freeProg[i];
for (auto &j: toFree)
{
// continue garbage collection while there are still
// objects without owners
continueCollect = continueCollect or !hasOwners(j);
if(freeObject(j))
{
// if an object has been freed, remove it from
// the garbage collection schedule
freeProg[i].erase(j);
nothingFreed = false;
}
}
} while (continueCollect);
// any remaining objects in step i garbage collection schedule
// is scheduled for step i + 1
if (i + 1 < p.size())
{
for (auto &j: freeProg[i])
{
freeProg[i + 1].insert(j);
}
}
// print used memory after garbage collection if necessary
sizeAfter = getTotalSize();
if (sizeBefore != sizeAfter)
{
LOG(Message) << "Allocated objects: " << MEM_MSG(sizeAfter)
<< std::endl;
}
else
{
LOG(Message) << "Nothing to free" << std::endl;
}
}
return memPeak;
}
unsigned int Environment::executeProgram(const std::vector<std::string> &p)
{
std::vector<unsigned int> pAddress;
for (auto &n: p)
{
pAddress.push_back(getModuleAddress(n));
}
return executeProgram(pAddress);
}
// lattice store ///////////////////////////////////////////////////////////////
void Environment::freeLattice(const unsigned int address)
{
if (hasLattice(address))
{
if (!isDryRun())
{
LOG(Message) << "Freeing lattice '" << moduleName_[address]
<< "'" << std::endl;
}
lattice_.erase(address);
object_[address] = ObjInfo();
}
else
{
HADRON_ERROR("trying to free unknown lattice (address "
+ std::to_string(address) + ")");
}
}
bool Environment::hasLattice(const unsigned int address) const
{
return (hasRegisteredObject(address)
and (lattice_.find(address) != lattice_.end()));
}
bool Environment::hasLattice(const std::string name) const
{ {
if (hasObject(name)) if (hasObject(name))
{ {
fMat_[name].reset(fMat); return hasLattice(getObjectAddress(name));
}
else
{
return false;
}
}
// fermion actions /////////////////////////////////////////////////////////////
void Environment::addFermionMatrix(const std::string name, FMat *fMat)
{
if (hasRegisteredObject(name))
{
fMat_[getObjectAddress(name)].reset(fMat);
} }
else else
{ {
@ -131,15 +439,21 @@ void Environment::addFermionMatrix(const std::string name, FMat *fMat)
Environment::FMat * Environment::getFermionMatrix(const std::string name) const Environment::FMat * Environment::getFermionMatrix(const std::string name) const
{ {
unsigned int i;
if (hasFermionMatrix(name)) if (hasFermionMatrix(name))
{ {
return fMat_.at(name).get(); i = getObjectAddress(name);
return fMat_.at(i).get();
} }
else else
{ {
if (hasSolver(name)) if (hasSolver(name))
{ {
return fMat_.at(solverAction_.at(name)).get(); i = getObjectAddress(solverAction_.at(name));
return fMat_.at(i).get();
} }
else else
{ {
@ -148,41 +462,80 @@ Environment::FMat * Environment::getFermionMatrix(const std::string name) const
} }
} }
void Environment::freeFermionMatrix(const std::string name) bool Environment::hasFermionMatrix(const unsigned int address) const
{ {
if (hasFermionMatrix(name)) return (hasRegisteredObject(address)
{ and (fMat_.find(address) != fMat_.end()));
LOG(Message) << "Freeing fermion matrix '" << name << "'" << std::endl;
fMat_.erase(name);
object_.erase(name);
}
else
{
HADRON_ERROR("trying to free unknown fermion matrix '" + name + "'");
}
} }
bool Environment::hasFermionMatrix(const std::string name) const bool Environment::hasFermionMatrix(const std::string name) const
{ {
return (hasObject(name) and (fMat_.find(name) != fMat_.end())); if (hasObject(name))
{
return hasFermionMatrix(getObjectAddress(name));
}
else
{
return false;
}
}
void Environment::freeFermionMatrix(const unsigned int address)
{
if (hasFermionMatrix(address))
{
if (!isDryRun())
{
LOG(Message) << "Freeing fermion matrix '" << objectName_[address]
<< "'" << std::endl;
}
fMat_.erase(address);
object_[address] = ObjInfo();
}
else
{
HADRON_ERROR("trying to free unknown fermion matrix (address "
+ std::to_string(address) + ")");
}
}
void Environment::freeFermionMatrix(const std::string name)
{
freeFermionMatrix(getObjectAddress(name));
} }
// solvers ///////////////////////////////////////////////////////////////////// // solvers /////////////////////////////////////////////////////////////////////
void Environment::addSolver(const std::string name, Solver s) void Environment::addSolver(const std::string name, Solver s)
{ {
if (hasObject(name)) auto address = getObjectAddress(name);
if (hasRegisteredObject(address))
{ {
solver_[name] = s; solver_[address] = s;
} }
else else
{ {
HADRON_ERROR("no object named '" << name << "'"); HADRON_ERROR("object with name '" + name
+ "' exsists but is not registered");
} }
} }
bool Environment::hasSolver(const unsigned int address) const
{
return (hasRegisteredObject(address)
and (solver_.find(address) != solver_.end()));
}
bool Environment::hasSolver(const std::string name) const bool Environment::hasSolver(const std::string name) const
{ {
return (hasObject(name) and (solver_.find(name) != solver_.end())); if (hasObject(name))
{
return hasSolver(getObjectAddress(name));
}
else
{
return false;
}
} }
void Environment::setSolverAction(const std::string name, void Environment::setSolverAction(const std::string name,
@ -222,7 +575,7 @@ void Environment::callSolver(const std::string name, LatticeFermion &sol,
{ {
if (hasSolver(name)) if (hasSolver(name))
{ {
solver_.at(name)(sol, source); solver_.at(getObjectAddress(name))(sol, source);
} }
else else
{ {
@ -230,114 +583,124 @@ void Environment::callSolver(const std::string name, LatticeFermion &sol,
} }
} }
// random number generator ///////////////////////////////////////////////////// // general memory management ///////////////////////////////////////////////////
void Environment::setSeed(const std::vector<int> &seed) void Environment::registerObject(const unsigned int address,
const unsigned int size, const unsigned int Ls)
{ {
rng4d_->SeedFixedIntegers(seed); if (!hasRegisteredObject(address))
}
GridParallelRNG * Environment::get4dRng(void) const
{
return rng4d_.get();
}
// lattice store ///////////////////////////////////////////////////////////////
void Environment::freeLattice(const std::string name)
{
if (hasLattice(name))
{ {
LOG(Message) << "Freeing lattice '" << name << "'" << std::endl; if (hasObject(address))
lattice_.erase(name); {
object_.erase(name); ObjInfo info;
info.size = size;
info.Ls = Ls;
info.isRegistered = true;
object_[address] = info;
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
} }
else else
{ {
HADRON_ERROR("trying to free unknown lattice '" + name + "'"); HADRON_ERROR("object with address " + std::to_string(address)
+ " already registered");
} }
} }
bool Environment::hasLattice(const std::string name) const
{
return (hasObject(name) and (lattice_.find(name) != lattice_.end()));
}
// general memory management ///////////////////////////////////////////////////
bool Environment::hasObject(const std::string name) const
{
return (object_.find(name) != object_.end());
}
void Environment::registerObject(const std::string name, void Environment::registerObject(const std::string name,
const unsigned int size, const unsigned int Ls) const unsigned int size, const unsigned int Ls)
{ {
if (!hasObject(name)) registerObject(getObjectAddress(name), size, Ls);
}
unsigned int Environment::getObjectAddress(const std::string name) const
{
if (hasObject(name))
{ {
ObjInfo info{size, Ls}; return objectAddress_.at(name);
object_[name] = info;
} }
else else
{ {
HADRON_ERROR("object '" + name + "' already exists"); HADRON_ERROR("no object with name '" + name + "'");
}
}
std::string Environment::getObjectName(const unsigned int address) const
{
if (hasObject(address))
{
return objectName_[address];
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
unsigned int Environment::getObjectSize(const unsigned int address) const
{
if (hasRegisteredObject(address))
{
return object_[address].size;
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address)
+ " exsists but is not registered");
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
} }
} }
unsigned int Environment::getObjectSize(const std::string name) const unsigned int Environment::getObjectSize(const std::string name) const
{ {
if (hasObject(name)) return getObjectSize(getObjectAddress(name));
}
unsigned int Environment::getObjectLs(const unsigned int address) const
{
if (hasRegisteredObject(address))
{ {
return object_.at(name).size; return object_[address].Ls;
}
else if (hasObject(address))
{
HADRON_ERROR("object with address " + std::to_string(address)
+ " exsists but is not registered");
} }
else else
{ {
HADRON_ERROR("no object named '" + name + "'"); HADRON_ERROR("no object with address " + std::to_string(address));
} }
} }
long unsigned int Environment::getTotalSize(void) const
{
long unsigned int size = 0;
for (auto &s: object_)
{
size += s.second.size;
}
return size;
}
unsigned int Environment::getObjectLs(const std::string name) const unsigned int Environment::getObjectLs(const std::string name) const
{ {
if (hasObject(name)) return getObjectLs(getObjectAddress(name));
{
return object_.at(name).Ls;
}
else
{
HADRON_ERROR("no object named '" + name + "'");
}
} }
bool Environment::isObject5d(const std::string name) const bool Environment::hasObject(const unsigned int address) const
{ {
return (getObjectLs(name) > 1); return (address < object_.size());
} }
void Environment::addOwnership(const std::string owner, bool Environment::hasObject(const std::string name) const
const std::string property)
{
owners_[property].insert(owner);
properties_[owner].insert(property);
}
bool Environment::hasOwners(const std::string name) const
{ {
auto it = objectAddress_.find(name);
auto it = owners_.find(name); return ((it != objectAddress_.end()) and hasObject(it->second));
}
if (it != owners_.end())
bool Environment::hasRegisteredObject(const unsigned int address) const
{
if (hasObject(address))
{ {
return (!it->second.empty()); return object_[address].isRegistered;
} }
else else
{ {
@ -345,26 +708,94 @@ bool Environment::hasOwners(const std::string name) const
} }
} }
bool Environment::freeObject(const std::string name) bool Environment::hasRegisteredObject(const std::string name) const
{ {
if (!hasOwners(name)) if (hasObject(name))
{ {
for (auto &p: properties_[name]) return hasRegisteredObject(getObjectAddress(name));
}
else
{
return false;
}
}
bool Environment::isObject5d(const unsigned int address) const
{
return (getObjectLs(address) > 1);
}
bool Environment::isObject5d(const std::string name) const
{
return (getObjectLs(name) > 1);
}
long unsigned int Environment::getTotalSize(void) const
{
long unsigned int size = 0;
for (auto &o: object_)
{
if (o.isRegistered)
{ {
owners_[p].erase(name); size += o.size;
} }
properties_[name].clear(); }
if (hasLattice(name))
return size;
}
void Environment::addOwnership(const unsigned int owner,
const unsigned int property)
{
owners_[property].insert(owner);
properties_[owner].insert(property);
}
void Environment::addOwnership(const std::string owner,
const std::string property)
{
addOwnership(getObjectAddress(owner), getObjectAddress(property));
}
bool Environment::hasOwners(const unsigned int address) const
{
if (hasObject(address))
{
return (!owners_[address].empty());
}
else
{
HADRON_ERROR("no object with address " + std::to_string(address));
}
}
bool Environment::hasOwners(const std::string name) const
{
return hasOwners(getObjectAddress(name));
}
bool Environment::freeObject(const unsigned int address)
{
if (!hasOwners(address))
{
for (auto &p: properties_[address])
{ {
freeLattice(name); owners_[p].erase(address);
} }
else if (hasFermionMatrix(name)) properties_[address].clear();
if (hasLattice(address))
{ {
freeFermionMatrix(name); freeLattice(address);
} }
else if (hasObject(name)) else if (hasFermionMatrix(address))
{ {
object_.erase(name); freeFermionMatrix(address);
}
else if (hasObject(address))
{
object_[address] = ObjInfo();
} }
return true; return true;
@ -375,9 +806,13 @@ bool Environment::freeObject(const std::string name)
} }
} }
bool Environment::freeObject(const std::string name)
{
return freeObject(getObjectAddress(name));
}
void Environment::freeAll(void) void Environment::freeAll(void)
{ {
object_.clear();
lattice_.clear(); lattice_.clear();
fMat_.clear(); fMat_.clear();
solver_.clear(); solver_.clear();
@ -385,3 +820,20 @@ void Environment::freeAll(void)
owners_.clear(); owners_.clear();
properties_.clear(); properties_.clear();
} }
void Environment::printContent(void)
{
LOG(Message) << "Modules: " << std::endl;
for (unsigned int i = 0; i < module_.size(); ++i)
{
LOG(Message) << std::setw(4) << std::right << i << ": "
<< moduleName_[i] << " ("
<< moduleType_[i] << ")" << std::endl;
}
LOG(Message) << "Objects: " << std::endl;
for (unsigned int i = 0; i < object_.size(); ++i)
{
LOG(Message) << std::setw(4) << std::right << i << ": "
<< objectName_[i] << std::endl;
}
}

View File

@ -29,28 +29,34 @@ directory.
#define Hadrons_Environment_hpp_ #define Hadrons_Environment_hpp_
#include <Hadrons/Global.hpp> #include <Hadrons/Global.hpp>
#include <Hadrons/Graph.hpp>
BEGIN_HADRONS_NAMESPACE BEGIN_HADRONS_NAMESPACE
/****************************************************************************** /******************************************************************************
* Global environment * * Global environment *
******************************************************************************/ ******************************************************************************/
// forward declaration of Module
class Module;
class Environment class Environment
{ {
SINGLETON(Environment); SINGLETON(Environment);
public: public:
typedef FermionOperator<WilsonImplR> FMat; typedef std::unique_ptr<Module> ModPt;
typedef std::function<void(LatticeFermion &,
const LatticeFermion &)> Solver;
typedef std::unique_ptr<GridCartesian> GridPt; typedef std::unique_ptr<GridCartesian> GridPt;
typedef std::unique_ptr<GridRedBlackCartesian> GridRbPt; typedef std::unique_ptr<GridRedBlackCartesian> GridRbPt;
typedef std::unique_ptr<GridParallelRNG> RngPt; typedef FermionOperator<WilsonImplR> FMat;
typedef std::unique_ptr<FMat> FMatPt; typedef std::unique_ptr<FMat> FMatPt;
typedef std::function<void(LatticeFermion &,
const LatticeFermion &)> Solver;
typedef std::unique_ptr<GridParallelRNG> RngPt;
typedef std::unique_ptr<LatticeBase> LatticePt; typedef std::unique_ptr<LatticeBase> LatticePt;
private: private:
struct ObjInfo struct ObjInfo
{ {
unsigned int size, Ls; unsigned int size{0}, Ls{0};
bool isRegistered{false};
}; };
public: public:
// dry run // dry run
@ -63,13 +69,45 @@ public:
void createGrid(const unsigned int Ls); void createGrid(const unsigned int Ls);
GridCartesian * getGrid(const unsigned int Ls = 1) const; GridCartesian * getGrid(const unsigned int Ls = 1) const;
GridRedBlackCartesian * getRbGrid(const unsigned int Ls = 1) const; GridRedBlackCartesian * getRbGrid(const unsigned int Ls = 1) const;
// random number generator
void setSeed(const std::vector<int> &seed);
GridParallelRNG * get4dRng(void) const;
// module management
void createModule(const std::string name,
const std::string type,
XmlReader &reader);
Module * getModule(const unsigned int address) const;
Module * getModule(const std::string name) const;
unsigned int getModuleAddress(const std::string name) const;
std::string getModuleName(const unsigned int address) const;
std::string getModuleType(const unsigned int address) const;
std::string getModuleType(const std::string name) const;
bool hasModule(const unsigned int address) const;
bool hasModule(const std::string name) const;
Graph<unsigned int> makeModuleGraph(void) const;
unsigned int executeProgram(const std::vector<unsigned int> &p);
unsigned int executeProgram(const std::vector<std::string> &p);
// lattice store
template <typename T>
T * create(const std::string name);
template <typename T>
T * get(const std::string name) const;
bool hasLattice(const unsigned int address) const;
bool hasLattice(const std::string name) const;
void freeLattice(const unsigned int address);
void freeLattice(const std::string name);
template <typename T>
unsigned int lattice4dSize(void) const;
// fermion actions // fermion actions
void addFermionMatrix(const std::string name, FMat *mat); void addFermionMatrix(const std::string name, FMat *mat);
FMat * getFermionMatrix(const std::string name) const; FMat * getFermionMatrix(const std::string name) const;
void freeFermionMatrix(const std::string name); bool hasFermionMatrix(const unsigned int address) const;
bool hasFermionMatrix(const std::string name) const; bool hasFermionMatrix(const std::string name) const;
void freeFermionMatrix(const unsigned int address);
void freeFermionMatrix(const std::string name);
// solvers // solvers
void addSolver(const std::string name, Solver s); void addSolver(const std::string name, Solver s);
bool hasSolver(const unsigned int address) const;
bool hasSolver(const std::string name) const; bool hasSolver(const std::string name) const;
void setSolverAction(const std::string name, void setSolverAction(const std::string name,
const std::string actionName); const std::string actionName);
@ -77,52 +115,73 @@ public:
void callSolver(const std::string name, void callSolver(const std::string name,
LatticeFermion &sol, LatticeFermion &sol,
const LatticeFermion &src) const; const LatticeFermion &src) const;
// random number generator
void setSeed(const std::vector<int> &seed);
GridParallelRNG * get4dRng(void) const;
// lattice store
template <typename T>
T * create(const std::string name);
template <typename T>
T * get(const std::string name) const;
bool hasLattice(const std::string name) const;
void freeLattice(const std::string name);
template <typename T>
unsigned int lattice4dSize(void) const;
// general memory management // general memory management
bool hasObject(const std::string name) const; void registerObject(const unsigned int address,
const unsigned int size,
const unsigned int Ls = 1);
void registerObject(const std::string name, void registerObject(const std::string name,
const unsigned int size, const unsigned int size,
const unsigned int Ls = 1); const unsigned int Ls = 1);
template <typename T> template <typename T>
void registerLattice(const unsigned int address,
const unsigned int Ls = 1);
template <typename T>
void registerLattice(const std::string name, void registerLattice(const std::string name,
const unsigned int Ls = 1); const unsigned int Ls = 1);
unsigned int getObjectAddress(const std::string name) const;
std::string getObjectName(const unsigned int address) const;
unsigned int getObjectSize(const unsigned int address) const;
unsigned int getObjectSize(const std::string name) const; unsigned int getObjectSize(const std::string name) const;
long unsigned int getTotalSize(void) const; unsigned int getObjectLs(const unsigned int address) const;
unsigned int getObjectLs(const std::string name) const; unsigned int getObjectLs(const std::string name) const;
bool hasObject(const unsigned int address) const;
bool hasObject(const std::string name) const;
bool hasRegisteredObject(const unsigned int address) const;
bool hasRegisteredObject(const std::string name) const;
bool isObject5d(const unsigned int address) const;
bool isObject5d(const std::string name) const; bool isObject5d(const std::string name) const;
long unsigned int getTotalSize(void) const;
void addOwnership(const unsigned int owner,
const unsigned int property);
void addOwnership(const std::string owner, void addOwnership(const std::string owner,
const std::string property); const std::string property);
bool hasOwners(const unsigned int address) const;
bool hasOwners(const std::string name) const; bool hasOwners(const std::string name) const;
bool freeObject(const unsigned int address);
bool freeObject(const std::string name); bool freeObject(const std::string name);
void freeAll(void); void freeAll(void);
void printContent(void);
private: private:
// general
private: bool dryRun_{false};
bool dryRun_{false}; unsigned int traj_, locVol_;
unsigned int traj_; // grids
GridPt grid4d_; GridPt grid4d_;
std::map<unsigned int, GridPt> grid5d_; std::map<unsigned int, GridPt> grid5d_;
GridRbPt gridRb4d_; GridRbPt gridRb4d_;
std::map<unsigned int, GridRbPt> gridRb5d_; std::map<unsigned int, GridRbPt> gridRb5d_;
RngPt rng4d_; // random number generator
std::map<std::string, ObjInfo> object_; RngPt rng4d_;
std::map<std::string, LatticePt> lattice_; // module and related maps
std::map<std::string, FMatPt> fMat_; std::vector<ModPt> module_;
std::map<std::string, Solver> solver_; std::vector<std::string> moduleType_;
std::map<std::string, std::string> solverAction_; std::vector<std::string> moduleName_;
std::map<std::string, std::set<std::string>> owners_; std::map<std::string, unsigned int> moduleAddress_;
std::map<std::string, std::set<std::string>> properties_; std::vector<std::vector<unsigned int>> moduleInput_;
// lattice store
std::map<unsigned int, LatticePt> lattice_;
// fermion matrix store
std::map<unsigned int, FMatPt> fMat_;
// solver store & solver/action map
std::map<unsigned int, Solver> solver_;
std::map<std::string, std::string> solverAction_;
// object register
std::vector<ObjInfo> object_;
std::vector<std::string> objectName_;
std::map<std::string, unsigned int> objectAddress_;
std::vector<int> objectModule_;
std::vector<std::set<unsigned int>> owners_;
std::vector<std::set<unsigned int>> properties_;
}; };
/****************************************************************************** /******************************************************************************
@ -137,11 +196,12 @@ unsigned int Environment::lattice4dSize(void) const
template <typename T> template <typename T>
T * Environment::create(const std::string name) T * Environment::create(const std::string name)
{ {
GridCartesian *g = getGrid(getObjectLs(name)); auto i = getObjectAddress(name);
GridCartesian *g = getGrid(getObjectLs(i));
lattice_[name].reset(new T(g)); lattice_[i].reset(new T(g));
return dynamic_cast<T *>(lattice_[name].get()); return dynamic_cast<T *>(lattice_[i].get());
} }
template <typename T> template <typename T>
@ -149,25 +209,35 @@ T * Environment::get(const std::string name) const
{ {
if (hasLattice(name)) if (hasLattice(name))
{ {
if (auto pt = dynamic_cast<T *>(lattice_.at(name).get())) auto i = getObjectAddress(name);
if (auto pt = dynamic_cast<T *>(lattice_.at(i).get()))
{ {
return pt; return pt;
} }
else else
{ {
HADRON_ERROR("object '" + name + "' does not have type " HADRON_ERROR("object '" + name + "' does not have type "
+ typeid(T *).name() + "(object type: " + typeName<T>() + "(object type: "
+ typeid(lattice_.at(name).get()).name() + ")"); + typeName(*lattice_.at(i).get()) + ")");
} }
} }
else else
{ {
HADRON_ERROR("no lattice name '" + name + "'"); HADRON_ERROR("no lattice with name '" + name + "'");
return nullptr; return nullptr;
} }
} }
template <typename T>
void Environment::registerLattice(const unsigned int address,
const unsigned int Ls)
{
createGrid(Ls);
registerObject(address, Ls*lattice4dSize<T>());
}
template <typename T> template <typename T>
void Environment::registerLattice(const std::string name, const unsigned int Ls) void Environment::registerLattice(const std::string name, const unsigned int Ls)
{ {

View File

@ -36,3 +36,30 @@ HadronsLogger Hadrons::HadronsLogWarning(1,"Warning");
HadronsLogger Hadrons::HadronsLogMessage(1,"Message"); HadronsLogger Hadrons::HadronsLogMessage(1,"Message");
HadronsLogger Hadrons::HadronsLogIterative(1,"Iterative"); HadronsLogger Hadrons::HadronsLogIterative(1,"Iterative");
HadronsLogger Hadrons::HadronsLogDebug(1,"Debug"); HadronsLogger Hadrons::HadronsLogDebug(1,"Debug");
// pretty size formatting //////////////////////////////////////////////////////
std::string Hadrons::sizeString(long unsigned int bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
long unsigned int s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}

View File

@ -30,6 +30,7 @@ directory.
#include <set> #include <set>
#include <stack> #include <stack>
#include <cxxabi.h>
#include <Grid.h> #include <Grid.h>
#define BEGIN_HADRONS_NAMESPACE \ #define BEGIN_HADRONS_NAMESPACE \
@ -91,6 +92,25 @@ public:\
private:\ private:\
name(void) = default; name(void) = default;
// pretty size formating
std::string sizeString(long unsigned int bytes);
template <typename T>
std::string typeName(const T &x)
{
std::string name(typeid(x).name());
return name;
}
template <typename T>
std::string typeName(void)
{
std::string name(typeid(T).name());
return name;
}
END_HADRONS_NAMESPACE END_HADRONS_NAMESPACE
#endif // Hadrons_Global_hpp_ #endif // Hadrons_Global_hpp_