1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

test done

This commit is contained in:
Felix Erben 2021-07-06 11:42:36 +01:00
parent fcc4374d7b
commit d75a66a3e6

View File

@ -30,6 +30,9 @@ See the full license in the file "LICENSE" in the top level distribution directo
using namespace Grid; using namespace Grid;
const int TSRC = 0; //timeslice where rho is nonzero
const int VDIM = 5; //length of each vector
typedef typename DomainWallFermionR::ComplexField ComplexField; typedef typename DomainWallFermionR::ComplexField ComplexField;
typedef typename DomainWallFermionR::FermionField FermionField; typedef typename DomainWallFermionR::FermionField FermionField;
@ -38,23 +41,31 @@ int main(int argc, char *argv[])
// initialization // initialization
Grid_init(&argc, &argv); Grid_init(&argc, &argv);
std::cout << GridLogMessage << "Grid initialized" << std::endl; std::cout << GridLogMessage << "Grid initialized" << std::endl;
// Lattice and rng setup
Coordinate latt_size = GridDefaultLatt(); Coordinate latt_size = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(4, vComplex::Nsimd()); Coordinate simd_layout = GridDefaultSimd(4, vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi(); Coordinate mpi_layout = GridDefaultMpi();
GridCartesian grid(latt_size,simd_layout,mpi_layout); GridCartesian grid(latt_size,simd_layout,mpi_layout);
int Nt = GridDefaultLatt()[Tp];
// MesonField lhs and rhs vectors Lattice<iScalar<vInteger>> t(&grid);
int mfDim = 3; LatticeCoordinate(t, Tp);
std::vector<FermionField> phi(mfDim,&grid);
std::vector<FermionField> rho(mfDim,&grid);
std::vector<int> seeds({1,2,3,4}); std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&grid); GridParallelRNG pRNG(&grid);
pRNG.SeedFixedIntegers(seeds); pRNG.SeedFixedIntegers(seeds);
for (unsigned int i = 0; i < mfDim; ++i){
// MesonField lhs and rhs vectors
std::vector<FermionField> phi(VDIM,&grid);
std::vector<FermionField> rho(VDIM,&grid);
FermionField rho_tmp(&grid);
std::cout << GridLogMessage << "Initialising random meson fields" << std::endl;
for (unsigned int i = 0; i < VDIM; ++i){
random(pRNG,phi[i]); random(pRNG,phi[i]);
random(pRNG,rho[i]); //ideally only nonzero on t=0 random(pRNG,rho_tmp); //ideally only nonzero on t=0
rho[i] = where((t==TSRC), rho_tmp, 0.*rho_tmp); //ideally only nonzero on t=0
} }
std::cout << GridLogMessage << "Meson fields initialised, rho non-zero only for t = " << TSRC << std::endl;
// Gamma matrices used in the contraction // Gamma matrices used in the contraction
std::vector<Gamma::Algebra> Gmu = { std::vector<Gamma::Algebra> Gmu = {
Gamma::Algebra::GammaX, Gamma::Algebra::GammaX,
@ -71,6 +82,10 @@ int main(int argc, char *argv[])
{1.,1.,1.}, {1.,1.,1.},
{2.,0.,0.} {2.,0.,0.}
}; };
std::cout << GridLogMessage << "Meson fields will be created for " << Gmu.size() << " Gamma matrices and " << momenta.size() << " momenta." << std::endl;
std::cout << GridLogMessage << "Computing complex phases" << std::endl;
std::vector<ComplexField> phases(momenta.size(),&grid); std::vector<ComplexField> phases(momenta.size(),&grid);
ComplexField coor(&grid); ComplexField coor(&grid);
Complex Ci(0.0,1.0); Complex Ci(0.0,1.0);
@ -84,28 +99,46 @@ int main(int argc, char *argv[])
} }
phases[j] = exp((Real)(2*M_PI)*Ci*phases[j]); phases[j] = exp((Real)(2*M_PI)*Ci*phases[j]);
} }
std::cout << GridLogMessage << "Computing complex phases done." << std::endl;
Eigen::Tensor<ComplexD,5, Eigen::RowMajor> mf(momenta.size(),Gmu.size(),GridDefaultLatt()[3],mfDim,mfDim); Eigen::Tensor<ComplexD,5, Eigen::RowMajor> Mpp(momenta.size(),Gmu.size(),Nt,VDIM,VDIM);
Eigen::Tensor<ComplexD,5, Eigen::RowMajor> Mpr(momenta.size(),Gmu.size(),Nt,VDIM,VDIM);
Eigen::Tensor<ComplexD,5, Eigen::RowMajor> Mrr(momenta.size(),Gmu.size(),Nt,VDIM,VDIM);
// timer
double start,stop;
//execute meson field routine //execute meson field routine
A2Autils<WilsonImplR>::MesonField(mf,&phi[0],&phi[0],Gmu,phases,3); start = usecond();
A2Autils<WilsonImplR>::MesonField(Mpp,&phi[0],&phi[0],Gmu,phases,Tp);
std::cout << mf << std::endl; stop = usecond();
std::cout << GridLogMessage << "M(phi,phi) created, execution time " << stop-start << " us" << std::endl;
start = usecond();
/* Ideally, for this meson field we could pass TSRC (even better a list of timeslices)
* to the routine so that all the compnents which are predictably equal to zero are not computed. */
A2Autils<WilsonImplR>::MesonField(Mpr,&phi[0],&rho[0],Gmu,phases,Tp);
stop = usecond();
std::cout << GridLogMessage << "M(phi,rho) created, execution time " << stop-start << " us" << std::endl;
start = usecond();
A2Autils<WilsonImplR>::MesonField(Mrr,&rho[0],&rho[0],Gmu,phases,Tp);
stop = usecond();
std::cout << GridLogMessage << "M(rho,rho) created, execution time " << stop-start << " us" << std::endl;
std::string FileName = "Meson_Fields"; std::string FileName = "Meson_Fields";
#ifdef HAVE_HDF5 #ifdef HAVE_HDF5
using Default_Reader = Grid::Hdf5Reader; using Default_Reader = Grid::Hdf5Reader;
using Default_Writer = Grid::Hdf5Writer; using Default_Writer = Grid::Hdf5Writer;
FileName.append(".h5"); FileName.append(".h5");
#else #else
using Default_Reader = Grid::BinaryReader; using Default_Reader = Grid::BinaryReader;
using Default_Writer = Grid::BinaryWriter; using Default_Writer = Grid::BinaryWriter;
FileName.append(".bin"); FileName.append(".bin");
#endif #endif
Default_Writer w(FileName); Default_Writer w(FileName);
write(w,"phi_phi",mf); write(w,"phi_phi",Mpp);
write(w,"phi_rho",Mpr);
write(w,"rho_rho",Mrr);
// epilogue // epilogue
std::cout << GridLogMessage << "Grid is finalizing now" << std::endl; std::cout << GridLogMessage << "Grid is finalizing now" << std::endl;